
On the Di�erences Between

Very Large Scale Reuse

and

Large Scale Reuse

Don Batory

Department of Computer Sciences

The University of Texas

Austin, Texas 78712

dsb@cs.utexas.edu

Abstract

Very large scale software reuse (VLSR) is an every-day occurrence whereas large scale software

reuse (LSR) remains an elusive and unrealized goal. We o�er an explanation for this apparent

contradiction in this paper.

Keywords: Genesis, realms, software building-blocks.

1 Introduction

Very large scale software are systems of 50K lines of code or greater. As-is reuse is the reuse of

software without modi�cations. As-is very large scale software reuse (henceforth called as-is VLSR)

is an every-day phenomena. Each time we build an application on top of Unix, we are reusing Unix

as-is. Each time we build a graphical front-end using Motif or Interviews, we are reusing Motif

or Interviews as-is. Since both Motif and Interviews are built upon X-windows, X-windows is

reused as-is. Creating pipes in Unix, where processes of prewritten �le �lters are glued together, is

yet another example. In general, as-is VLSR occurs anytime we build applications upon existing

software.

There are two general conditions for as-is reuse to occur. They are when users (1) agree to use the

abstractions provided by existing software and (2) agree to use the existing implementations of these

abstractions. Both points are self-evident: if the abstractions presented by software components

in a library are not relevant to an application, they obviously will never be (re)used. Similarly,

if performance or special features are critical requirements and existing software doesn't provide

either, then that software cannot be (re)used without modi�cation.

1

There probably is universal agreement that in the ideal case software components should be

reused as-is. Since as-is VLSR is already is a daily occurrence, and large scale reuse (LSR) is known

to be a fundamentally di�cult problem, where is the contradition? Why has as-is VLSR been

successful while as-is LSR has not? To answer this question, we introduce a model of VLSR and

LSR.

2 A Model of As-Is Reuse

From our work on Genesis and Avoca [Bat88, Bat91a, Bat91b, OMa90, Pet90], we have shown

that large software systems correspond to type expressions. Our idea is simple. Let R be the

function-call interface to a software system. In principle, we know that there can be many di�erent

implementations of R. We de�ne the realm of R to be the set of all software systems that support

exactly interface of R. The members of realm/interface R can be listed as an enumerated type. Two

possible realms R and S are shown below:

R = a, b, c

S = d[x:R], e[x:R], f[x:R]

Interface R has three implementations, namely the software components a, b, and c. Similarly,

interface S is implemented by the components d, e, and f. Observe that realms group together all

components that are plug-compatible and interchangeable. For example, because all components of

R implement the same interface, one can swap one implementation/component of R with another.

The same applies for components of other realms.

Components may have parameters. All components of S, for example, have a single parameter

of type R. What this means is that a component d[x:R] of S translates objects and operations

of the interface of S to objects and operations of the interface of R. The translation itself does not

depend on how R is implemented. This means that any implementation of R can be `plugged' into

component d to make it work.

Software systems correspond to type expressions. Two systems are shown below:

System 1 = d[b]

System 2 = f[b]

System 1 is a composition of component d with b; System 2 is a composition of component f

with b. Since both of these systems present the same interface (i.e., both present the interface of

S), System 1 and System 2 are also interchangeable implementations of S.

The way we have modeled software makes as-is reuse easy to spot. Consider two systems and

their type expressions. If both expressions reference the same component, then that component is

being reused. Note that System 1 and System 2 reuse component b. More generally, if two systems

have a common subexpression, then these systems share a common subsystem.

2

Finally, observe that our model of software construction is independent of component size.

Components can be very large (i.e., the size of Unix and X-windows), or they could be substantially

smaller [Bat91a, Bat91b, Bat91c]. Thus, our model can be used to explain as-is VLSR as well as

as-is LSR.

3 An Example

Consider the following realms. Let UNIX denote the realm of systems that implement the Unix

interface. Let XW denote the realm of X-window interface implementations, and MOT be the realm

of implementations of the Motif interface. Finally, let APPL be the realm of applications whose

interface takes command-line and mouse-click inputs. Typical population of these realms are:

UNIX = bsd4.3, system5

XW = xwindows[x:UNIX]

MOT = motif1.1[x:XW]

APPL = myprog[x:MOT, y:UNIX], ...

We have taken a few liberties in de�ning the above realms to keep our example simple. Note

that we have lumped bsd4.3 and system5 together in the same realm (UNIX). Actually, there are

signi�cant di�erences between Berkeley Unix and System 5, and in reality each belongs to its own

distinct realm. For our purposes, however, both implement a common subset of interface functions

which we de�ne as the UNIX realm interface. Another point worth mentioning is that we have

simpli�ed our model of the motif[] and xwindows[] components by omitting parameters (i.e., their

calls to the Unix interface). We leave it to readers as a straightforward exercise to eliminate these

simpli�cations.

Recall that systems correspond to type expressions. Suppose `myprog' is an application program

that makes calls to the Unix and Motif interfaces. Motif, in turn, translates its calls into X-window

calls, which in turn, translates into calls to Berkeley Unix. The layering of very large scale software

that de�nes this system is given by the expression:

My System = myprog[motif1.1[xwindows[unix4.3]], unix4.3]

By swapping the unix4.3 component with system5, we have ported My System to System 5

Unix.

As a step toward understanding the problems of LSR, consider the membership of contemporary

realms. As a general rule, most realms today have very few components. The members of the UNIX

realm, for example, are the current implementation(s) of Unix plus out-dated versions. The same for

XW (X-windows) and MOT (motif). The reason is simple: interfaces to software systems tend to

be ad hoc and unique. The institution that designed the interface of a system also built that system,

3

and maintains only one implementation of it (modulo version and platform upgrades). The idea

of building a family of di�erent implementations for an interface is not yet popular. Consequently,

typical realms have singleton (or very small) memberships. This provides us with a key clue to

resolving the contradiction we identi�ed earlier.

4 Explaining the Contradiction

As mentioned earlier, as-is VLSR is an every-day occurrence while as-is LSR remains an unrealized

goal. The techniques that have been proposed for as-is LSR (e.g., formal methods) have had

di�culties scaling-up. Oddly enough, the simple ideas that have made as-is VLSR work have not

been successfully scaled-down so that large (sub)systems like unix4.3, xwindows, motif1.1, etc., can

themselves be de�ned from compositions of more primitive components.

Recall the two conditions for successful as-is reuse. Users must (1) agree to use the interface

abstractions of existing software and (2) agree to use the implementations of these interfaces. As a

community, we have not been successful in agreeing on the interfaces/abstractions that lie inbetween

the interfaces of major systems (e.g., interfaces/abstractions in between Motif and X, between X

and Unix, etc.). Nor have we, as a community, truely realized the importance of families of systems

that share the same interface but have di�erent implementations.

Until these two issues are bridged, as-is LSR will continue to remain elusive and unrealized. In

[Bat91a], we explore these issues further, and present a validated approach for achieving as-is LSR.

References

[Bat88] D.S. Batory, `Concepts for a Database System Synthesizer', ACM PODS 1988, 184-192.

[Bat91a] D.S. Batory and S.W. O'Malley, `The Design and Implementation of Hierarchical Software

Systems Using Reusable Components', submitted for publication.

[Bat91b] D.S. Batory and S.W. O'Malley, `Genvoca: Reuse In Layered Domains', Proc. 1st Inter-

national Workshop on Software Reuse, Dortmund, Germany, 1991.

[Bat91c] D.S. Batory and S.W. O'Malley, `A De�nition of Open Architecture Systems with Reusable

Components: Preliminary Draft', ICSE Domain Modeling Workshop, 1991.

[Pet90] L. Peterson, N. Hutchinson, and H. Rao, and S.W. O'Malley, `The x-kernel: A Platform

for Accessing Internet Resources'. IEEE Computer (Special Issue on Operating Systems),

23,5 (May 1990), 23-33.

[OMa90] S.W. O'Malley and L. Peterson, `A New Methodology for Designing Network Software',

University of Arizona TR 90-29 (Sept. 1990). Submitted for publication.

4

5 Biography

Don Batory is an Associate Professor in the Department of Computer Sciences at The University

of Texas, Austin. He received his Ph.D. from the University of Toronto in 1980, he was Associate

Editor of the IEEE Database Engineering Newsletter from 1981-84 and was Associate Editor of

ACM Transactions on Database Systems from 1986-1991. He is currently a member of the ACM

Software Systems Award Committee, and his research interests are in extensible and object-oriented

database management systems and large scale reuse.

5

