
Software Reuse Research at KSLA

Ben A. Sijtsma

Koninklijke/Shell–Laboratorium, Amsterdam
(Shell Research B.V.)

P.O. Box 3003, 1003 AA Amsterdam, The Netherlands

e-mail: SIJTSMA1@KSLA.NL

Abstract

This paper briefly discusses the research efforts aimed at providing reuse technology for
the Laboratory. Some characteristic properties of software development at the Laboratory are
considered and their influence on software reuse are presented. We conclude with an outline
of our approach to domain analysis.

Keywords: repository construction, domain analysis

Introduction

The research on software reuse at Koninklijke/Shell–Laboratorium, Amsterdam (KSLA) has two
main goals:

1. to establish the characteristic properties that an effective reuse repository for a department
in the Laboratory should possess, and

2. to define a process by which such a repository can be created.

These goals are not, of course, unique (cf. [5, 8]). However, they imply some important and not
so obvious side conditions we have not encountered in other research efforts. These side conditions
will be discussed later on. First, please bear with us while we make some remarks on the goals in
order to provide some insight into what we mean by them.

By the characteristic properties of an effective reuse repository we do not only mean technical
properties such as the component classification mechanism, tools for component retrieval and the
kind of version management, but also more “managerial” ones such as the quality control process
and incentive schemes. Characteristic properties should therefore be taken in the widest possible
sense.

There is a surprisingly large number of issues that needs to be addressed before any repository
can be constructed (see [1, 4]). We will give two examples. First, it is generally agreed that a repos-
itory containing only code components has limited benefits ([1]); design or even requirement reuse

1



is expected to have a higher pay-off potential. There is a practical question-mark, however: source
code has a natural representation, but what (formal) language is used to represent designs? There
are many possible choices, but little is known about their effectiveness in transporting knowledge
from the author of a design to a possible reuser.

The other example is the issue of white-box reuse versus black-box reuse: in the case of black-
box reuse the reuser cannot change a code component, whereas in the white-box case he or she
has the possibility to change it. The advantages of black-box reuse are that (1) the documentation
does not need to be written or rewritten (it is already there), (2) the understanding of the program
during maintenance or bug fixing is facilitated and (3) more support can be given in the event of
an error being found in a component. The advantages of white-box reuse are that the likelihood
that a component can be (partially) reused increases and that partial reuse is more effective than
writing from scratch. Although many advocate white-box reuse, in this instance, too, it is not yet
clear what the most cost-effective alternative is or, more generally, what the essential factors that
are determine which alternative to take.

The second goal takes the reuse technology a step further than the first. The intention of the
second goal is to make the construction of an effective repository a clearly defined and manageable
task. Moreover, it should make it a repeatable effort, not relying on reuse researchers. A great deal
of effort has already been put in this topic, see, for example, [5, 8].

For the second goal, totally different, but nevertheless related, issues than for the first goal need
to be addressed. For example: a characteristic property will be the way in which domain knowledge
is represented. For the second goal it will be necessary to describe the process of acquiring such
knowledge. Another example concerns the components. For the first goal it is sufficient to know
that a component can be a piece of source code or a piece of design (or . . . ). A question that needs
to be answered for the second goal is how components are constructed. Are they developed from
scratch or are they to be found in the existing software (salvaging)? If the latter is the case, the
question arises as to what kind of tools, techniques, and methods are needed. Furthermore, little is
yet known about which alternative is in the long run economically the most attractive: development
for reuse or software salvaging.

In the remainder of this paper we will discuss some important properties of software development
at the Laboratory, our approach to fulfill the goals as stated in the foregoing, and we will conclude
with some remarks.

The Laboratory Environment

An important issue that is related to our environment is that the Laboratory is not a software
production environment. Software is not an end in itself. At the Laboratory, software is mainly
written to explore a problem and/or solution. The primary aim of the researcher is generally to
gain insight into a physical process. The software is only a means to express and test ideas. Hence
much software has a very short lifetime, ranging from a few hours to a few days. Regularly, though,
the software developed during research is used for a long time, especially software that has resulted
at the end of a research effort. In such a case the software is a vehicle that transports knowledge
from the Laboratory to other parts of the company.

Although it might seem that, in such an environment, there is little opportunity for reuse, it
has nevertheless been observed that many pieces of functionality are implemented time and again.

2



In our efforts we hope to find ways to locate and capture these pieces.
The software is written by researchers who are experts in their fields, say, physics and chemistry,

but who have received little or no training in software development. This has severe repercussions
on several aspects of the repository. First of all, we have to limit ourselves in the use of formal
languages. We cannot use a formal language, such as Z or predicate calculus, to specify the source
text components. Such a formalism would not be understood easily and it would hinder possible
reuse severely. Similarly, we cannot use a very formal language to describe designs and properties
of data structures and a transformational approach (see e.g.[2]) to software reuse is also not a viable
option. In the end it means that we cannot use formal languages the researcher is not familiar with,
unless these are supported to the extent that the formal aspects become hardly noticeable.

The fact that experts in the field are generally not experts in software development influences
the domain analysis particularly. Experts in the field eloquently explain the technical difficulties
they have solved, but are much less able to explain how their solutions are implemented. For
example, they could describe a Fortran subroutine by stating that it is needed by another one that
computes, say, mixing in a reactor. Moreover, one could say that their translation of the concepts
in the domain to objects in the software is often not up to modern software development standards.
For example, the concept of abstract data types is unknown to many.

It goes perhaps without saying, that in the Laboratory the researchers do not follow standard,
or even common, software development methods. This implies that a great deal of attention must
be given to let researchers reuse software. We expect, unless great care is taken, that the “not-
invented-here” syndrome will be a major problem. The “Programmers’s Viewpoint” as presented
in [10] maps rather too well on researchers in the Laboratory.

Our approach

Apart from the well-known motivations for reusing software, productivity and quality, another one
also plays a role. The average employee works in a research job for about five years and then moves
on to another, most likely non-research, job. This implies that there is a high staff turnover. It is
believed that the results of the domain analysis could be very useful in bringing new employees up
to date with the activities of a department.

We have elected to study the construction of a repository for a department in the Laboratory
rather than one for the whole Laboratory. The areas in which research is performed are quite
diverse. To develop a single repository for the whole Laboratory was therefore, in our opinion,
unrealistic. We do expect, however, that repositories for different departments will overlap, and
we hope to devise mechanisms that will enable possible reusers to look over the boundaries of the
repositories without becoming lost in the sheer quantity of components.

The repository will not only contain source code but designs and code templates as well. We
also intend to provide links to the software that was used to test the various components. The 3Cs
model (see [3]) will be used to define the structure of a reusable component.

A case study was started one of whose goals was to construct a repository for a department.
It was decided to start this case study with a domain analysis. A priori it was decided that the
“deliverables”of the domain analysis consists of the following three items:

1. a glossary of terms

3



In this glossary the concepts and objects of the domain will be defined and their interrela-
tionships recorded. It is expected that many terms in the glossary will have a counterpart in
software. It is particularly important to have a clear view of the interrelationships between the
terms, because these interrelationships indicate the likely interactions between the software
counterparts. As such they (partially) determine the interface of the software components.
The glossary also provides important information for the classification of the components.

For reasons explained above, we will use natural language to document the components. To
avoid some of the ambiguities that arise in natural language documentation, the author of the
documentation is allowed to use only the technical terms that are listed in the glossary with
the same meaning. So the glossary will become a constant “terms of reference” or context for
the reader of the documentation. This will facilitate the ease of understanding.

2. a list of characteristic problems
We hope to find components in the large amount of available software or, to be precise, we
hope to adapt pieces of existing software such that they become components. The list of
characteristic problems is a first step in gaining a grip on the available software and forms a
first classification mechanism for it.

3. one or more solution strategies for every characteristic problem
An example of a characteristic problem is a phase equilibrium computation. In such a com-
putation there is a mixture of chemical substances, a pressure and a temperature. A phase
equilibrium computation entails the computation of the number of phases and their composi-
tions. Such a problem can be solved in many different ways: using different models, different
numerical methods, etc. The purpose of this “deliverable” is to have a relatively abstract de-
scription of each solution. The solution strategies will enable us to further classify the existing
software and enable us to abstract away from any specific details of one implementation. This
should help us to construct truly reusable components.

Although the domain was not large, already early in the domain analysis phase it was observed
that it would require a substantial effort. That the Laboratory is not a software production environ-
ment and the researchers not professional software developers hindered the analysis substantially.
Since a full domain analysis would take probably too long, we are considering to follow the approach
as given in [5].

Notwithstanding the above observation, the domain knowledge representation is much more an
open problem than the domain analysis. We are still actively looking for a good “tool.” Due to the
technical environment a great deal of technical notation exists. We need to have a way to be able
to capture such notation, since it would facilitate the understanding of components a great deal.
Therefore, we consider a hypertext-like environment in which it is possible to define cards using TEX
a viable option. Furthermore, this hypertext-like environment should provide support for layered
semantic networks. Such networks will be used to record the “deliverables” of the domain analysis.

Concluding Remarks

We have described some of the problems we are facing in constructing a repository for a department
in our Laboratory. The nature of our environment forces us to use natural languages to describe

4



and/or specify components. We see the domain analysis as the important step in the construction
of an effective reuse repository. The process to arrive at a repository will be an adaptation of the
process described in [5]. The process for domain analysis is still being developed; our starting point
was an approach presented in [6].

We have just started a case study and we have a long way to go before software reuse is
institutionalised software reuse.

References

[1] Biggerstaff, T.J., Richter, C. Reusability Framework, Assessment, and Directions. IEEE Soft-
ware, Vol. 4, Nr. 2, March, 1987.

[2] Boyle, J.M. Program Reusability through Program Transformation. IEEE Transactions on Soft-
ware Engineering, Vol. SE-10, Nr. 5, September, 1984.

[3] Frakes, B., Latour, L., Wheeler, T. Descriptive and Prescriptive Aspects of the 3Cs Model –

SETA Working Group Summary – In: Proceedings of the Third Annual Workshop: Methods
& Tools for Reuse, CASE Center, Syracuse University, June, 1990.

[4] Oddy, G. Software Reuse at G-MRC. In: [7], pp. 30 - 35.

[5] Prieto-Diaz, R. Making Software Reuse Work: An Implementation Model. In: [7], pp. 86 - 92.

[6] Prieto-Diaz, R. Domain Analysis for Reusability. Proceedings of COMPSAC’87, 1987, pp. 23
- 29.

[7] Prieto-Diaz, R., Schäfer, W., Cramer, J., and Wolf, S. (eds.) Proceedings of the First Inter-
national Workshop on Software Reusability, Dortmund, Germany, July 3-5, 1991. SWT-Memo
Nr. 57, University Dortmund, Germany.

[8] Tracz, W. RMISE Workshop on Software Reuse Meeting Summary. In: [9], pp. 41 - 53.

[9] Tracz, W. Software Reuse: Emerging Technology. The Computer Society of the IEEE, 1988,
ISBN 0-8186-4846-3.

[10] Tracz, W. Software Reuse: Motivators and Inhibitors. Proceedings of COMPCON S’87, 1987,
pp. 358 - 363.

5


