
Identification and Tailoring of Reusable Software
Components

Constance Palmer

McDonnell Douglas Missile Systems Company
Dept. EBE2, MS 3064025

P.O. Box 516

St. Louis, Missouri 63166-0516
(314) 232-0278

palmer%cstc.decnet@mdcgwy.mdc.com

Approved for Public Release

Export Authority: 22CFR 125.4(b)(13)

Abstract

Two significant technical challenges facing application developers are early identification
of potentially applicable software components, and adaptation and incorporation of reusable
software components in new applications. Software reuse can be facilitated by tools that
support these reuse-specific tasks and that are integrated with the user’s other development
tools.

The CAMP program developed prototype tools to support both early component identifica-
tion and tailoring of components. The early identification is based on domain- or application-
specific search, i.e., the user’s view of the search is in terms of the domain or application area
rather than in terms of keywords or other component attributes. A domain analysis generally
forms the basis for providing this type of search mechanism.

Tailoring support is provided by ”constructors”. These constructors automate much of
the tailoring process, making reuse easier. They can lower the cost of reuse in terms of both
time and resources. The CAMP project investigated ways of producing cost-effective, flexible
constructors.

Keywords: Software reuse, software tailoring, component identification

1



1 Background

The Common Ada Missile Packages (CAMP) program is a U.S. Air Force sponsored contracted
research and development effort. The program began in 1984, with the initial goal of determining
the feasibility of software reuse in a highly constrained real-time embedded domain, specifically, the
missile operational flight software domain. Once commonality within this domain was established,
attention was turned to investigating optimal methods for component design and incorporation
of software reuse into the software development lifecycle. There were three main thrusts: the
development of reusable resources; the development of a reuse support environment; and technology
transfer. The research efforts associated with commonality identification and component design
and development have been well-documented in [McNi 86, McNi 88, Palm 90]. The initial tool
investigation and development efforts have also been documented in these same sources.

Recognizing that most software developers would not adopt software reuse practices based on
studies alone, the CAMP program combined software reuse research and application. For example,
after the initial set of 450 reusable Ada components and the prototype reuse support tools were
developed, a testbed program was put in place to demonstrate the feasibility of incorporating soft-
ware reuse into the development process for real-time embedded applications. Specifically, the goal
of the testbed effort was to show that missile operational flight software applications incorporating
significant levels of reuse could be effectively developed.

2 Problem Statement

It seems to be a commonly held view today that the real barriers to software reuse are not technical
in nature, but rather are managerial, legal, social, and psychological. While there are barriers in
these areas, there are still significant technical challenges associated with software reuse.

Two problems that have persisted in the reuse arena are those of easily identifying and incor-
porating reusable components into new applications. Significant resources have been expended in
developing cataloging and library schemes, but effective software reuse requires more than a library
of available components. One problem with the traditional approach to software reuse catalogs and
libraries is that the user needs to have a fairly good idea of the types of components that he is
looking for in order to construct appropriate queries. This poses a barrier to reuse because early in
the lifecycle, when software reuse must first be considered (e.g., during system concept development
and software requirements analysis), the developer may not have sufficient information about the
application to get meaningful information out of a catalog or library.

The application developer faces another barrier to reuse when, after identifying candidate
reusable components, he tries to adapt or tailor them to fit his requirements. Obviously, this
is not a problem with low-level, black box components, but can become apparent when the applica-
tion developer is working with higher level families of components. These higher level components
may be at the subsystem or system level, and thus, have the potential for significantly higher pay-
back than low-level, black box components. The developer faces a further challenge when trying to
compose lower level components into higher level entities. Despite high quality documentation, it
may still be difficult for the application developer to easily and correctly tailor and compose existing
components into new applications.

2



3 Current CAMP Research Inititatives

Two of the most recent initiatives on the CAMP program were concerned with early identification
of reusable software components and with tailoring and composition of reusable components for new
applications. The first initiative was embodied in the development of a reuse support tool called
“parts exploration”, and the latter initiative was embodied in the development of a set of facilities
and procedures referred to as a “meta-constructor”.

3.1 Parts Exploration

The parts exploration (PE) facility allows the user to couch his queries about available software
components in terms of his application or domain rather than in terms of specific catalog attributes.
This permits more meaningful interaction between the application developer and the component
library early in the application development lifecycle, thus enhancing the prospect that significant
levels of reuse will be achieved.

A prototype parts exploration system that can accommodate multiple domains simultaneously
was developed. This system was used for the CAMP missile operational flight software domain, as
well as for a smaller, test domain.

The PE system prompts the user for information about his domain or application, and based
on the information obtained, PE will identify potentially applicable reusable components. This
information can be presented to the user in either list form or in the form of a system hierarchy tree
that the user can traverse until he gets to the lowest level reusable components that comprise the
leaf nodes in the tree. Once the user has this list of components, he can obtain detailed information
about them from the catalog.

The parts exploration system must be initialized for a given domain before that domain can be
supported by the tool. Initialization consists of entering domain-specific information that would
generally be obtained during a domain analysis.

Several issues were not addressed in our development of the parts exploration system. For
example, the definition of domains, and the treatment of overlapping domains and related domains
were not addressed. Although the definition of domains impacts the treatment of overlapping and
related domains, this definition was left to the user. In the case of overlapping domains, components
may be developed independently for these overlapping domains, and thus the components in the
domain intersection are not really in both domains; they are only in the domain for which they
were developed. This results in the user not being informed of potentially relevant components
that were developed for other domains. A similar situation arises with related domains. For
example, missile and aircraft autopilot applications are, at some level, similar. If the user were in
the missile operational flight software domain and the system identified the need for an autopilot
in his application, he would only be informed of the availability of reusable components for the
development of missile autopilots, despite the fact that he might be able to tailor an aircraft
autopilot for his application. Another issue that bears further exploration is that of the granularity
of the domain information that is needed in order for the PE system to effectively identify relevant
components for the user.

Earlier in the CAMP program, a version of PE was prototyped for the missile operational flight
software domain using an expert system shell. The current system was developed in Ada running

3



under VAX VMS. The interface is very simple and can accommodate even a VT100-type of terminal.
The system itself makes use of reusable components.

3.2 Meta-Constructor

Early in the investigation of the feasibility of software reuse, we recognized the importance of pro-
viding support for component tailoring and composition, as well as providing reusable components.
Thus, the concept of component constructors was developed. A component constructor assists the
user in tailoring and composing reusable software components for new applications. A constructor
may perform limited code generation in order to meet these requirements, but this is code generation
in a very narrow sense as opposed to generalized code generation.

A number of prototype constructors were developed to support adaptation of different types
of CAMP components, e.g., there were autopilot constructors for producing application-specific
lateral directional and pitch autopilots. Other constructors were developed for Kalman filters,
navigation subsystems, finite state machines, etc. These constructors demonstrated the feasibility
and usefulness of the concept. We had domain experts use the Kalman filter constructor. They
were able to generate 18 and 20 state filters in approximately an hour. The constructor provided
the required data types, operators, and tailored components based on the user’s specifications. If
this development were done from scratch, it could easily have taken several weeks to produce and
debug the code.

Constructors provide the ability to easily perform “what ifs” by providing the capability to
modify the specifications and regenerate code. This is particularly important in Kalman filter
development where implementors frequently change the number of states in the filter in an attempt
to obtain optimal performance. These changes often go on fairly late into the development cycle,
thus increasing the value of constructor-type support.

The most significant limitations of the early CAMP prototype constructors were (1) the linkage
between the constructors and the underlying components that they were designed to tailor, and (2)
the fact that, although there was a common paradigm for the constructors, each was custom built at
a non-trivial cost with respect to effort. The linkage between the constructors and the components
resulted in significant changes to the constructor if the underlying components changed, increasing
the cost of providing constructors. The ”custom built” aspect added to their cost. Thus, the
value of constructors as productivity enhancers was demonstrated, but their viability as a long
term solution was questionable. This conclusion led us to further research in this area during
later phases of the CAMP program. We wanted to investigate more efficient and effective ways of
producing constructors.

A number of alternatives were possible. We considered embedding directives in the reusable
components and using a preprocessor to generate the appropriate user queries for tailoring informa-
tion. Although this idea had merit, we ultimately decided that alteration of the reusable component
itself by embedding these directives was not desirable. The approach that we prototyped was that
of a ”meta-constructor”. The meta-constructor consists of a set of facilities and procedures for
constructing constructors. The final constructor that is produced is implemented in Ada, and thus,
is able to take advantage of the Ada compiler for much of the error checking.

The meta-constructor facilities consist of utilities of different types. For example, there are user
interface utilities that handle forms and menus, as well as utilities for querying the user about specific

4



types of information, for error checking, and for code generation. Routines have been developed
for obtaining different types of Ada data types, for obtaining information about procedures and
functions, and for instantiating Ada generic units.

The meta-constructor procedures guide the constructor developer in the development of new
constructors. Much of the implementation of a constructor consists of calls to existing meta-
constructor utilities and to utilities that are either specific to that particular constructor or that
are general, but that were not previously needed for existing constructors.

The meta-constructor is designed for extensibility. That is, it consists of a basic set of facilities
for implementing constructors together with a paradigm for their construction. The initial set of
facilities was identified by performing an informal domain analysis on the 12 previously developed
CAMP component constructors. It is anticipated that, as constructors are implemented using the
meta-constructor facilities, additional utilities will be added, thus facilitating implementation of
future constructors.

In order to demonstrate the capabilities of the meta-constructor, it was used to develop 2
constructors that are representative of the types of constructors that can be developed. These two
constructors are the Kalman filter (KF) constructor and the finite state machine (FSM) constructor.
The FSM constructor supports tailoring of a schematic part, i.e., a design component rather than a
code component. The KF constructor combines aspects of both generic constructors and schematic
constructors.

These types of constructors are based on the types of components that were identified during
the initial CAMP domain analysis. At that time, 2 different types of components were identified:
simple components and meta-parts. Simple components are components that can be used ”as is”
or, in the case of Ada, they can also be generic units that have little or no interaction with other
units and can be instantiated with the provision of a relatively small number of types and operators.
Meta-parts are either complex Ada generics or schematic parts. Complex Ada generic units may
require a fairly large number of types and operators for instantiation, and may have fairly significant
interactions with other generic units, e.g., there may be embedded instantiations or a number of
dependencies between the units. Schematic components are, in essence, design components rather
than code components. The design may be relatively straightforward and the code production may
be algorithmic, but the variability that is possible in the family of implementations embodied by
this component is not easily or possibly captured in the implementation language.

The two representative constructors have been implemented. Although the meta-constructor
does not negate the need for the constructor developer to have a thorough understanding of the
component family he is going to provide, it does facilitate the development process. A comparison of
the previous, custom-crafting approach with the new meta-constructor approach will be conducted
in order to assess the gain.

Although all of the constructor work performed under the CAMP program was directed at the
production of tailored, executable code, this approach could also be applied to the production of
documents and test procedures and code. Further work is also needed to determine the flexibility
and scalability of our approach. For example, we applied the meta-constructor approach to the
tailoring of components on the scale of Kalman filters and autopilots, but we have not attempted
its use on much larger scale entities (e.g., command and control center applications).

5



References

[McNi 86] McNicholl, D.G., Palmer, C., Cohen, S.G., et al, ”Common Ada Missile Packages
(CAMP)”, Tech. Report AFATL-TR-85-93, Volumes 1-3, U.S. Air Force, Wright Lab-
oratory, Armament Directorate, Eglin Air Force Base, Florida, 32542, May 1986, Distri-
bution limited to DoD and DoD contractors only.

[McNi 88] McNicholl, D.G., Cohen, S.G., Palmer, C., et al, Common Ada Missile Packages - Phase
2 (CAMP-2), Tech. Report AFATL-TR-88-62, Volumes 1-3, U.S. Air Force, Wright Lab-
oratory, Armament Directorate, Eglin Air Force Base, Florida, 32542, November 1988,
Distribution limited to DoD and DoD contractors only.

[Palm 90] Palmer, Constance, ”Developing and Using Ada Parts in Real-Time Embedded Applica-
tions”, Tech. Report AFATL-TR-90-67, U.S. Air Force, Wright Laboratory, Armament
Directorate, Eglin Air Force Base, Florida, 32542, April 1990.

4 About the Author

Connie Palmer is the CAMP program manager at McDonnell Douglas Missile Systems Company
(MDMSC). The Common Ada Missile Packages (CAMP) program is a USAF contracted research
and development effort that has been investigating the potential of software reuse in mission-critical
real-time embedded DOD domains; the specific domain addressed is missile operational flight soft-
ware. The CAMP program has developed over 500 reusable Ada software parts, as well as explored
issues and developed tools to support reuse efforts.

Ms. Palmer has been at McDonnell Douglas for almost 8 years, and has been involved in the
CAMP program since its inception in 1984. She also leads a group that is working to improve the
software engineering practices and processes at MDMSC.

Ms. Palmer has an M.S. in Computer Science from Washington University in St. Louis, and a
B.A. in Mathematics from George Washington University in Washington, D.C..

She is a member of IEEE, ACM, AAAI, and AIAA.

6


