
Software Reuse in Integrated, Domain-Oriented

Knowledge-based Design Environments

Kumiyo Nakakoji

Department of Computer Science and Institute of Cognitive Scien

University of Colorado

Boulder, Colorado 80309, USA

E-mail: kumiyo@cs.colorado.edu

Software Engineering Laboratory

Software Research Associates, Inc.

1-1-1 Hirakawa-cho, Chiyoda-ku, Tokyo 102, Japan

Abstract

Our approach to cope with ill-structured software design problems is to empower software

designers with domain-oriented, knowledge-based software environments that support coevo-

lution of requirements specification and design construction. The synergy of this integration

supports designers in reusing prestored design objects relevant to their current task at hand

as articulated with a partial specification and a partial construction.

Keywords: ill-structured software design problems, knowledge-based software environments,

multifaceted architecture, integration of specification and construction, reuse and redesign,

information retrieval, case-based reasoning

1 Introduction

Many software design problems are ill-structured [Simo 73] with fluctuating and conflicting re-
quirements. Traditional software design, use and maintenance methodologies are inadequate for
dealing with ill-structured problems. Empirical studies have shown that those problems are best
understood as design problems in which the design space and requirements unfold incrementally
[Fisc 91d]. These problems call for an integrated approach, supporting coevolution of requirements
specification and design construction.

Complex systems are not designed from scratch, but they evolve [Dawk 87]. Complex systems
evolve faster if they can be build on stable subsystems [Simo 81]. Previously solved design problems

1



and design experiences should be used for informing designers of possible solutions, failures, or
justifications of current decisions.

The above requirements have led us to conclude that software should be developed in inte-
grated, domain-oriented, knowledge-based design environments that support the whole lifecycle of
software – requirement articulation, design, maintenance, and reuse. Our goal is to empower soft-
ware designers and to augment their capability and productivity through artificial intelligence and
human-computer interaction techniques.

The research described here addresses issues of software reuse in such design environments. De-
sign environments store previously constructed design solutions as domain knowledge. By integrat-
ing design creation tools and domain knowledge bases, our environments based on the multifaceted
architecture support the cycle of location, comprehension, and modification of prestored design ob-
jects in one coherent substrate. One system component, CATALOGEXPLORER, which supports
the location phase in design environments, is described.

2 Problems of Current Approach for Software Reuse

Reuse in software development should be supported in such a way that designers can apply previ-
ously made design efforts not only to a final design artifact but also to a design process and rationale
behind the artifact. Truly reusable design objects can be achieved only when those objects have
been created in the same environment because then a system could store necessary information
along with the development of objects for later reuse [Frak 90]. Traditional CASE tools fail because
they do not directly support reusing created design artifacts [Curt 91]. Reuse should be supported
in the same context as the development of the software takes place.

The richer the information spaces are, the more expensive it is to access, in terms of both
computational and cognitive costs. Designers first must locate information, then comprehend the
retrieved information, and modify it according to their current needs. Comprehension may directly
lead to further retrieval, modification may require further comprehension. Software designers should
not be distracted by the information access, which is not their primary concern in designing software.

Conventional query-based retrieval mechanisms break down [Fisc 91c] because they assume that
humans can articulate what they are looking for by formulating a highly specific query. Stored
software objects in most software reuse support systems are represented in terms of a solution
domain; namely, final design solutions. When software designers need those information, they
usually have in their mind application goals, or requirements, which are represented in a problem
domain, but not concrete solutions. Therefore, they cannot form a specific query for retrieving such
stored objects.

A purely navigational access provided by a browsing mechanism only partially solves the above
problem because it still requires that the information space has a fairly rigid and predetermined
structure. For dealing with ill-defined domains there is not one right structure for the information
space and the structure needs to be tailored according to the task at hand. Moreover, humans
may get lost while tracing links among the information spaces if the search space is large and the
structure is complex [Hala 88].

2



3 The Approach

To this end, we have developed a conceptual framework incorporating evolutionary design and main-
tenance of software. The conceptual framework is based on cooperative problem solving between
designers and an integrated, knowledge-based, design environment, which supports the coevolution
of specification and construction [Ritt 84, Swar 82]. The design environment framework is instan-
tiated by innovative system building efforts supporting information access in high-functionality
software environments, providing feedback on partial designs, and enhancing reuse, redesign and
end-user modifiability. We have developed a multifaceted architecture for such environments, con-
sisting of design creation tools that support both requirement specification and design construction,
and domain knowledge bases (see Figure 1).

Orthogonal to the elements of an environment, the architecture supports three basic processes
for information access: location, comprehension, and modification of stored design objects. Reuse of
design objects is supported by using the catalog base. The catalog allows designers to reuse various
perspectives of design objects and design experiences in the domain, either of their own, or of others
that used the same design environments.

The multifaceted architecture enables an innovative information retrieval technique for compli-

3



menting the conventional approaches in locating design objects stored in the environments. The
architecture takes advantage of the synergistic integration that conventional information retrieval
systems are lacking. A partially articulated task at hand can be used to filter out irrelevant informa-
tion and reduce related information spaces. It relieves designers of the task of specifying queries or
navigating in information spaces for retrieval, thereby supporting designers to retain their working
context. The environments then support the designers to comprehend the retrieved information,
which may lead to refinement of their specification and construction.

4 CATALOGEXPLORER

CATALOGEXPLORER is a system component of the integrated design environments based on
the multifaceted architecture. CATALOGEXPLORER illustrates how a designer is supported in
locating prestored design object in the example domains of plotting data in graphic programming
[Fisc 91b].

The CATALOGEXPLORER augments the frame-based search technique provided by the HEL-
GON system [Fisc 89] with the following mechanisms for retrieving from the catalog, design objects
relevant to the task at hand:

• ordering design examples by computed appropriateness values based on the current specifica-
tion (retrieval from specification).

• analyzing the current construction and retrieving similar examples from the catalog (retrieval
from construction).

Retrieval from Specification. CATALOGEXPLORER provides a questionnaire type specifica-
tion component that allows designers to specify requirements to their current task, at the level of
a problem domain. These requirements relate to hidden features of a design. Hidden features are
related to functions of the design rather than low-level or surface structure [Gero 90]. For retrieving
design objects by hidden feature specifications, the system must have the domain knowledge for
mapping those features onto the surface structure. Such domain knowledge is represented by:

1. specification-linking rules that link each subjective hidden feature specification item to a set of
surface condition rules (in the integrated environment, this domain knowledge can be derived
from the content of the argumentation base; see Figure 2).

2. a metric that computes an appropriateness value of each design example in the catalog in
terms of a partial specification for dealing with trade-offs among contradictory specifications
(the system then reorders the examples according to those computed values).

For example, suppose a designer wants to create a program to plot the results of two persons
playing one-on-one basketball. The designer first specifies some of the requirements using the
specification sheet provided by CATALOGEXPLORER, such as “need to illustrate the correlation
of the two values” (see Figure 2). The system uses domain knowledge in the form of a specification
rule, “illustrating correlation requires horizontal and vertical axes and a diagonal line.” Using

4



this knowledge, the system searches the stored example programs in the catalog which have those
characteristics. The search yields as the most appropriate one, for instance, an example program
that plots the results of two people playing squash.
Retrieval from Construction. For retrieving design examples relevant to a partial construction,
one must deal with the issues of matching design examples in terms of surface features of a design,
namely, at a structural level. Two domain-specific parsers analyze the design under construction
by articulating types of design components being used at LISP structure level, and at graphics
semantic level. Then the system retrieves design examples from the catalog each of which has the
same set of types of design components in one of the two structure, according to a users’ request.

5 Related Work

The primary uniqueness of our work is our emphasis on “human-centeredness.” For example, the
LaSSIE project [Deva 91] overlaps with our approach in using a knowledge-base for supporting
software reuse. However, while the LaSSIE project stresses the knowledge base foremost in terms
of its structure, representation, and access methods, we stress capturing the user’s task at hand
by supporting requirement specification and design construction concurrently, and retrieving pre-
stored design objects in terms of that task. Several software reuse systems maintain representations
of what I have referred to as the higher-level requirement specification. They, however, use formal,
automated techniques to produce new programs and do not support humans thinking in a natural
manner [Neig 84, Reub 90]. As designers’ understanding of potential reuse components and ex-
amples increases, they are able to modify their requirements and the solution design accordingly

5



[Fisc 91c, Scho 83]. From the information retrieval perspective, searching a catalog in the integrated
design environment raises many issues in common with retrieval in case-based reasoning. Our ap-
proach addresses an indexing problem [Kolo 90] by combining abstract and surface features, using
the specification-linking rules that support analogical matching that is similar to systematicity-based
matching [Navi 88].

References

[Curt 91] B. Curtis, “The Psychology of Software Development”, Tutorial Presented at Conference
on Human Factors in Computing Systems, CHI’91 (New Orleans, LA)

[Dawk 87] R. Dawkins, The Blind Watchmaker, W.W. Norton and Company, New York - London,
1987.

[Deva 91] P. Devanbu, R.J. Brachman, P.G. Sefridge, B.W. Ballard, “LaSSIE: A Knowledge-Based
Software Information System”, Communications of the ACM, Vol. 34, No. 5, 1991, pp.
34-49.

[Fisc 91a] G. Fischer, A.C. Lemke, R. McCall, A. Morch, “Making Argumentation Serve Design”,
Human Computer Interaction, 1991, (in press)

[Fisc 91b] G. Fischer, A. Girgensohn, K. Nakakoji, D. Redmiles, “Supporting Software Design-
ers with Integrated, Domain-Oriented Environments”, IEEE Transactions on Sofware
Engineering, Special Issue on “Knowledge Representation and Reasoning in Software
Engineering”, 1991, (submitted)

[Fisc 91c] G. Fischer, S.R. Henninger, D.F. Redmiles, “Cognitive Tools for Locating and Compre-
hending Software Objects for Reuse”, Thirteenth International Conference on Software
Engineering (Austin, TX), IEEE Computer Society Press, ACM, IEEE, Los Alamitos,
CA, 1991, pp. 318-328.

[Fisc 89] G. Fischer, H. Nieper-Lemke, “HELGON: Extending the Retrieval by Reformulation
Paradigm”, Human Factors in Computing Systems, CHI’89 Conference Proceedings
(Austin, TX), ACM, New York, May 1989, pp. 357-362.

[Fisc 91d] G. Fischer, B.N. Reeves, “Beyond Intelligent Interfaces: Exploring, Analyzing and Cre-
ating Success Models of Cooperative Problem Solving”, Applied Intelligence, Special
Issue Intelligent Interfaces, 1991, (in press)

[Frak 90] W.B. Frakes, P.B. Gandel, “Representing Reusable Software”, Information and Software
Technology, Vol. 32, No. 10, December 1990, pp. 653-664.

[Gero 90] J.S. Gero, “A Locus for Knowledge-Based Systems in CAAD Education,” in The Elec-
tronic Design Studio, M. McCullough et al., eds., Cambridge, MA: The MIT Press, 1990,
pp. 49-60.

6



[Hala 88] F.G. Halasz, “Reflections on NoteCards: Seven Issues for the Next Generation of Hyper-
media Systems”, Communications of the ACM, Vol. 31, No. 7, July 1988, pp. 836-852.

[Kolo 90] J.L. Kolodner, “What is Case-Based Reasoning?”, In AAAI’90 Tutorial on Case-Based
Reasoning, pp. 1-32

[Navi 88] D. Navinchandra, “Case-Based Reasoning in CYCLOPS”, Proceedings: Case-Based Rea-
soning Workshop, J. Kolodner,ed., Morgan Kaufmann Publishers, Clearwater Beach,
FL, May 1988, pp. 286-301.

[Neig 84] J.M. Neighbors, “The Draco Approach to Constructing Software from Reusable Com-
ponents”, IEEE Transactions on Software Engineering, Vol. SE-10, No. 5, September
1984, pp. 564-574.

[Reub 90] H.B. Reubenstein, “Automated Acquisition of Evolving Informal Descriptions”, Tech.
report, MIT, 1990.

[Ritt 84] H.W.J. Rittel, “Second-Generation Design Methods,” in Developments in Design
Methodology, N. Cross, ed., New York: John Wiley & Sons, 1984, pp. 317-327.

[Scho 83] D.A. Schoen, The Reflective Practitioner: How Profes- sionals Think in Action, Basic
Books, New York, 1983.

[Simo 73] H.A. Simon, “The Structure of Ill-Structured Problems”, Artificial Intelligence, No. 4,
1973, pp. 181-200.

[Simo 81] H.A. Simon, The Sciences of the Artificial, The MIT Press, Cambridge, MA, 1981.

[Swar 82] W.R. Swartout, R. Balzer, “On the Inevitable Intertwining of Specification and Imple-
mentation”, Communications of the ACM, Vol. 25, No. 7, July 1982, pp. 438-439.

6 About the Author

Kumiyo Nakakoji received her B.A. degree in computer science from Osaka University, Japan, in
1986 and her M.S. degree in computer science from the University of Colorado, Boulder, in 1990.
She is currently a Ph.D. student in the Department of Computer Science and the Institute of Cog-
nitive Science at University of Colorado, Boulder. Her studies are sponsored through a scholarship
from Software Research Associates, Inc., Japan, where she has been an employee since 1986. Ms.
Nakakoji is a member of Human Computer Communication group led by Prof. Gerhard Fischer.
Her research interests include human-computer communication, artificial intelligence, knowledge-
based design environments, case-based reasoning, and software design. Her dissertation title is
”Delivering Case-based Information in Knowledge-based Design Environments.”

7


