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Abstract

The 3C model was first developed in [Trac 89] and reviewed at last year’s workshop
[SMTR 90]. This position paper responds to that review, and in doing so outlines a framework
for thinking about 3C aspects of an architecture of components. Such components can be said
to be normalized in that they capture one concern of the architecture in their content.
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1 Introduction

The 3C model was presented and reviewed at our previous workshop, The Third Annual Workshop:

Methods and Tools for Reuse [SMTR 90]. Will Tracz summarized his perspective on the discussion:

The 3C model was accepted in part by most of the attendees. The most critical critisism
focused on the granularity of the modules. I believe people were trying to scale up
the model to apply to larger subsystems and were having difficulty in expressing the
semantics. Another area that needed further clarification is the process of differentiating
the roles of importation (“with” clause in Ada) and parameterization (genericity in Ada)
with regard to interface design.

Partly in response to this need to “scale up” the 3C model, and partly to explore related issues
such as the differing (actually complementary) roles of importation and parameterization, we at the
University of Maine have been exploring how the model can be used to design and craft:

• integrated component libraries, and

• generic software architectures
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By an integrated component library we mean a library (1) whose interface, or concept, is defined
by an organized collection of module abstractions, and (2) whose implementation, or content, is
defined by a collection of “normalized” subcomponents, each of which encapsulates a single design
concern and derives its context from both the environment in which the library is used and from
other library subcomponents. Such subcomponents are mixed and matched to realize the library
interface abstractions.

Such an integrated library has many of the same properties as a generic architecture. That is,
it provides not only a collection of components but an integrated framework for the construction of
a family of systems from such components.

We have proposed a schema for thinking about such integrated frameworks, called the lay-

ered generic architecture schema, or LGA schema. In it we attempt to deal with issues related
to integrated collections of components (concept organization, separation of concerns, contextual
dependencies between components, etc.). We present an overview of the schema and discuss issues
relating to it in the following sections.

2 The 3C Model and “Normalized” Components

As a starting point to building such frameworks, the 3C model provides us with a way to think
about the various aspects of a single component. As such, it forms the basis for constructing
“normalized” components within a framework. We take the term normalization from the relational
database world, since:

• intuitively we would like to think of a normalized component in the same sense that we think
of a normalized relation. That is, just as a normalized relation captures the essence of a single
entity with no embedded subentities, so does a normalized component capture the essence of
a single concept and implementation concern, with context factored out and either imported
or provided through parameterization.

• formally we would like to be able to provide rules for discovering and factoring out context
in the same way in which we have formulated rules for normalizing relations, i.e., by looking
for various forms of structural replication and factoring them out. An interesting avenue of
exploration, and one in which we have just begun to think about, is the formalization of such
rules.

3 Related Work

A good deal of work has recently been done on the design and construction of integrated li-
braries/generic architectures. The CAMP (Common Ada Missile Packages) [CAMP 85] effort pro-
vided one of the first such collections, approximately 200 normalized parts organized into a number
of subsystem architectures along with tools for instantiating such architectures. Stepanov and
Musser [Muss 88] have had an ongoing project constructing integrated component libraries consist-
ing of normalized subcomponents and a framework for instantiating them. Their initial Ada work
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was in the basic data structures domain, with a library of parts and a textbook [Muss 88] describ-
ing them. Uhl and Schmid [Uhl 90] have developed a systematic catalogue of reusable abstract
data types, in which they have similarly explored these issues. Bassett [Bass 87] has developed a
collection of code frames used to construct a wide variety of EDP systems. Batory [Bato 91] has
constructed a collection of normalized database components with tools for composing them into a
number of database management system variants.

Along with the above efforts specifically designed to provide integrated software libraries/architectures,
we have looked at a number of efforts that have similar characteristics. The UNIX environment,
for example, can be viewed as a multi-level collection (system calls, library facilities, composition
tools) of normalized components along with rules and tools for composing and tailoring them for a
particular domain. Similarly, the X windows system is a multi-level collection of components (Xlib
components, Widgets, Intrinsics, Resource files) along with rules and tools for their composition. In
fact, the philosophy of the X effort, to provide a collection of “look and feel” independent services,
is similar to our approach, i.e., to provide an extensible, adaptable collection of building blocks and
rules for composing them into flexible, evolving library interfaces/systems.

From these studies and our own experiments using Booch component [Booc 87] implementations
and Stepanov and Musser’s generic components, we derived a schema for such architectures, allowing
us to isolate and deal with a number of orthogonal architectural issues. Such a schema is built on
and is complementary to the 3C “schema” for dealing with single component issues.

4 The LGA Schema

As a starting point in the development of our schema, we draw on the 3C model of component
structure. We observe that the separation of concepts from their content has been relatively well
explored and widely practiced, but that the isolation of contextual dependencies has not been as
well explored, nor has it been subjected to a formal analysis.

It seems reasonable to assume that careful isolation of contextual dependencies in the modular
structure of an integrated library/generic architecture can produce a framework that is not only
capable of being instantiated to a large number of actual components/systems, but that can be easily
extended and adapted by “plugging in” newly constructed modules embodying different contextual
information. As we mentioned earlier, this approach has to an extent been explored in the CAMP
and Stepanov and Musser work.

Our schema divides the modules in an LGA into several classes, similar to the abstraction classes
defined by Stepanov and Musser. These classes are contextual abstractions, abstract algorithms,
auxiliary abstractions, base abstractions, and view abstractions.

Contextual abstractions encapsulate various contextual design decisions such as data representa-
tion, storage management, concurrency control, device handling, persistence, and communication.
They typically are characterized by hard coded design decisions with “invariant context” provided
by with statements, but they can be services provided by an entirely different “lower-level” archi-
tecture, such as a database management system or network architecture.

Abstract algorithms incorporate the algorithmic content of the architecture. They are parame-
terized by a collection of theories, each describing a class of abstract data types. They typically fall
into two categories:
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• Horizontal extensions: such algorithms provide additional functionality to theories in the same
way that operations are added to extend object classes in an object oriented environment.

• Vertical extensions: such algorithms combine theories to form structures that can be used
together with an abstraction function to build base and auxiliary abstractions. They are
vertical extensions in the sense that they provide the glue to perform vertical composition,
i.e., the glue to map a representation onto an abstraction.

Base abstractions are the canonical abstractions of the domain (the concepts of the domain),
while View abstractions are derived from the base abstractions by mapping one language onto
another. The terms view and base were again taken from the dbms domain, as they capture a
similar mapping notion. Code in a View “implementation” is typically concerned with renaming
procedures and types, redistributing procedure functionality, and tailoring a concept to a particular
protocol of use. Such code has little “algorithmic content” in the sense that algorithms have simple
complexity and little local resource utilization.

Auxiliary abstractions are structures that are convenient to build in order to provide concepts
to algorithm theories not provided by existing contextual abstractions. Both base and auxiliary
abstractions are constructed by composing a representation from auxiliary and contextual abstrac-
tions, defining an abstraction function, and then choosing a collection of generic algorithms that
realize the abstraction function.

Note that a generic architecture embodies two types of content: algorithmic and structural. The
development of algorithmic content is a programming in the small issue. It is concerned with the
implementation of a single algorithm or family of algorithms, organized according to the structural
and behavioral properties of the algorithms. Structural content is a programming in the large issue.
It refers to the “scaffolding” or framework of the architecture, and is implemented by a particular
modular decomposition. Generic architectures incorporate the structural content of a domain in
the structure of the architecture, and isolate the algorithmic content of the domain in abstract
algorithms.

5 Importation vs. Parameterization

Parameterization provides us with a way to build normalized components in a manner completely
independent of any contextual dependencies. We only need be concerned with defining the theories
that form the underlying representation (along with the abstract machine of the language) on which
the component content is specified. The binding of actual concepts to these theories is then done at
a later, system build, time. We have noticed though, that part of the process of limiting the domain
of a generic architecture includes the early binding of context by using Ada with statements rather
than generic parameters. This seems to be a similar issue to that of establishing the boundary
between context and content. That is, it is a design decision driven by domain scoping concerns
rather than by representation concerns.
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6 Conclusions

We have attempted both to fit prior efforts into our framework and to develop a number of examples
on our own in order to verify the schema structure. In doing so we have found, as others have before
us, that Ada is not the ideal design language for describing such generic architectures. We are
therefore exploring language formalisms in this regard, including efforts such as Goguen’s module
interconnect language work [Gogo 83], Tracz’s LILEANNA work [Trac 90], and modular extensions
to ML [Harp 86].
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