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Abstract

In the past, claims have been made that one can expect improved software quality and
higher programmer productivity by faithful application of abstraction, encapsulation and lay-
ering (A/E/L). In an effort to explore the effects of A/E/L in the context of reusable software
components, we conducted an empirical pilot study using a class of graduate and upper-division
undergraduate students. We present some statistical results concerning the effects of A/E/L
based on the data collected by the study.
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1 The Problem

Many respected software engineers (e.g., [Parnas 72]) have long argued that potentially significant
quality and productivity gains can be achieved by faithful use of abstraction, encapsulation, and
layering (A/E/L). In this approach, higher-level parts of the system are layered on top of lower-level
encapsulated abstractions. The claimed benefits stem largely from separation of concerns between
a component’s implementer and a component’s client. The component implementer needs to un-
derstand only the abstract interface, not its use by the client; the client can reason abstractly about
higher layers of software knowing only the abstract interface, not its implementation. If underly-
ing representation or algorithmic details change (e.g., to improve performance) the higher layers
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remain stable. This modularity property is especially important when the lower-level abstractions
are reusable software components [Ernst 91, Weide 91].

In our experience as “used-program clients” (apologies to [Tracz 88]), we have noticed that
A/E/L principles are not faithfully observed by some used-program salesmen. There are two main
problems:

1. Some component libraries do not use A/E/L principles as much as they could, within those
libraries. For example, [Booch 87] represents a “map” abstraction as a hash table using
chaining for collision resolution. But he codes from scratch the lists that implement chains.
He does not reuse the list package.

2. The designs of components sometimes interact with each other and with certain language
features to make it difficult for clients to respect abstraction while layering new functionality
on top of existing components. The Booch components again provide an example. Ada’s
restriction on the mode for parameters to functions, mixed use of private and limited private
types, and a variety of details of the component designs combine to make it surprisingly diffi-
cult for clients of these components (and all others we know of) to observe A/E/L principles
[Hollingsworth 91]. It is, therefore, usually considered fortunate (although it probably should
not be [Muralidharan 90b]) that many component libraries are in source form. This makes it
possible for clients to extend and change component interfaces to suit their own needs—not
by layering on top of encapsulated abstractions but by directly modifying them.

Why should such an apparently well-established principle of software engineering—especially one
that seems to form the foundation for software reuse—still be so elusive in practice? We suggest
there are two main reasons:

1. There are some obvious disadvantages to A/E/L that temper the claimed advantages. The
most important is that performance suffers. Secondary operations implemented by layering
involve extra procedure call overhead. This is usually a small constant-factor performance
penalty that can be reduced with aggressive inlining and other compiler optimizations; yet
it may be important in some applications. But secondary operations also may be slow be-
cause the primary operations provided by an underlying component do not offer the proper
abstract functionality, with the right performance, to permit a layered implementation to
execute as quickly as if it were permitted to access underlying representations. This can be
an order-of-magnitude performance penalty that the client cannot overcome except by vio-
lating abstraction—prying open an encapsulated component and delving into the guts of its
implementation.

2. While A/E/L may have many software engineering benefits in principle, apparently there are
no controlled empirical studies that document measurable quality or productivity benefits of
using these techniques. In making a trade-off between the analyzable and measurable perfor-
mance penalties associated with faithful adherence to A/E/L, and the largely hypothetical
and unquantified quality and productivity gains, a designer or manager is clearly tempted
to opt for performance. This is particularly true where the programming language contains
“features” such as code inheritance that seem to support layering, but that actually encourage
violation of abstraction and encapsulation [LaLonde 89, Muralidharan 90a, Raj 90].
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We are impressed by the importance of the second point in many informal discussions with soft-
ware practitioners. Some claim to see the benefits of remaining completely faithful to A/E/L. They
blame short-term thinking by management, inflexible deadlines, unrealistic performance objectives,
and a variety of other factors, for violations of principles. The true skeptics, though, harbor sincere
doubts about the claimed advantages of A/E/L in practice. They really would like to see some
empirical evidence that a vigilant adherence to A/E/L actually “works.”

Having contributed already to the hypothetical academic arguments for essentially complete
allegiance to A/E/L principles in design of reusable software components [Harms 91, Weide 91],
we considered how we might influence potential industrial collaborators to undertake a realistic
empirical evaluation of the benefits of this approach. During summer 1991 we used a class of 18
graduate and upper- division undergraduate students to conduct an empirical pilot study of some
productivity and quality effects of A/E/L in the context of reusable software components. The main
purpose of this paper is to present preliminary results of that study, which support our position
that observing A/E/L principles is an important factor in obtaining the claimed productivity and
quality benefits of reuse.

2 The Study

The class in question was called “Software Components Using Ada.” The lectures heavily empha-
sized the trade-offs evident with A/E/L principles, and presented a detailed engineering discipline
for designing, formally specifying, and correctly and efficiently implementing Ada generic packages.
We used [Booch 87] as a supplementary text and did one project using the Booch components.
But the majority of the course used our own component designs and our own engineering discipline
[Harms 91, Weide 91]. Several programming assignments illustrated main points from the lectures.
On some of the assignments, we asked the students to keep track of the effort they spent on var-
ious activities (which we defined as carefully as possible), and on the number of bugs that caused
run-time errors that they found and fixed.

Two of the assignments were particularly relevant to the point of this paper. In the first, we
provided an implementation of a generic “unbounded queue” package that exported the standard
primary operations: enqueue, dequeue, and a test for emptiness. We asked the students to add
four secondary operations: copy, clear, append (concatenate two queues), and reverse. We formally
specified all the operations and discussed them in class so there would be no doubt as to their
intended semantics. We asked the students to implement these secondary operations using two
different methods: (a) by layering them in a new generic package on top of the provided queue
abstraction, and (b) without layering, i.e., by directly modifying the underlying generic package to
export the four additional operations. Half the class (nine students chosen at random) did part (a)
first; the other half did part (b) first. Below we call these Group A and Group B, respectively.

For the next assignment, we provided a standard solution to part (b) of the above assignment,
and asked the students to change the underlying representation of queues. This required that they
redesign and recode the implementations of the original primary operations as well as the four
secondary operations. We asked that all the students first reimplement the primary operations,
then the secondary operations.

For both assignments we asked the students to keep careful records of the time they spent in
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designing/coding, testing, and debugging/recoding each operation. We also asked them to report
how many bugs they fixed in each operation. We emphasized the importance of being internally
consistent in keeping and reporting this data, and stressed that grades in the course would have
nothing to do with the reported numbers. After discussing the study with each of the students
before and after the assignments, we found no reason to believe that the results were significantly
affected by variations in reporting methods, by collaboration, by severe outliers, or by latent fears
that honest effort/bug data would influence course grades.

3 The Results

We have just started to analyze the data and cannot yet report everything that might be lurking in
them. We plan to document statistical details of the following (and other results) in a future paper.

Assignment 1

Examining average total effort data for the two parts of the assignment (Table 1), we noted that
the students overall spent less than half as much total time on the layered implementation as on
the one without layering. Even those who did part (a) first spent less total time on the layered
implementation than on the non-layered one. Looking at just design/coding effort gave a similar
picture.

Table 1:

Average Total Times for Assignment 1

Group A Group B All
(Layered First) (Direct First) Students

Layered 145 57 101
Direct 182 261 222
Total 327 318 323

To test the statistical significance of these observations, we performed an analysis of variance
[Hicks 73], looking for the significance of three primary effects on the total effort required for the
assignment: (1) the effect due to the treatment, i.e., the difference in times to implement the
secondary operations with layering and without layering; (2) the effect due to the group, i.e., the
effect, on total time to do the two implementations, of the order in which layering and non-layering
were done; and (3) the interaction effect between treatment and order, i.e., the potential “learning”
effect that completing the first implementation had on the time to do the other implementation.
Our nested-factorial model also included the effect due to students within groups and the interaction
effect between students and treatments, but these effects were untestable because we had only one
point per student for each level of treatment. In this model, effects (1) and (3) are tested against
the interaction between students and treatments, while effect (2) is tested against the student effect.
We looked for F values that were significant at the 5% level; with 1 and 16 degrees of freedom, the
minimum significant F is 4.49.

We found (Table 2) that effects (1) and (3) were statistically significant, and that effect (2) was
not significant. That is, non-layering took significantly more total time than layering. Furthermore,
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there was an apparent learning effect in the sense that the total time spent on the first treatment
condition was significantly greater than that for the second treatment condition. We found no
significant difference between the two groups in the total time to do both parts of the assignment.

Table 2:

Analysis of Variance for Total Time for Assignment 1

Source/Effect df Sum of Squares Mean Square F
Treatment (layering) 1 130,321 130,321 23.70*
Group (order) 1 160 160 0.02
Treatment X Group (learning) 1 63,001 63,001 11.46*
Student (within Group) 16 149,566 9,348
Treatment X Student 16 87,970 5,498

∗ Significant at the 5% level, i.e., F > F1,16 = 4.49.

These data indicate a measurable productivity advantage when secondary operations are imple-
mented without violating A/E/L principles. Several students noted in their lab reports that it was
far easier to think abstractly about queues when designing and coding the secondary operations
than it was to worry about the nodes and pointers of the underlying representation. This seems
to be the most reasonable explanation of the observed data—exactly what A/E/L advocates might
have predicted.

The lack of a significant effect due to order is also plausible from common sense. While there
is reason to expect that something about the task will be learned from the first treatment con-
dition, in fact the mode of thinking, algorithms, and code for layering and non-layering are quite
different. Therefore, the total time to complete both parts of the assignment should (intuitively)
be independent of which one was done first. Indeed, this is what we observed.

We also found a significant difference in the quality of the code, as measured by the number
of bugs causing run-time errors that were found and fixed before testing revealed no more. The
layered implementations had significantly fewer bugs than the non-layered ones. Based on the
Mann-Whitney U Test [Downie 65], we were able to reject the hypothesis of no difference between
the number of bugs in the layered and non-layered implementations, at the 5% level.

Assignment 2

In the second assignment the students undertook a typical maintenance task: change the repre-
sentation of an abstraction and all the code that depends on it. Using layering, as in part (a) of the
first assignment, means that the code for the secondary operations can be written once and certified
to be correct. A change to the underlying representation costs only as much as changing the primary
operations. The students, however, also had to change the secondary operations, because they were
implemented without layering. It was this extra—and with A/E/L principles, unnecessary—effort
that the assignment was intended to help us measure.

We found that the students averaged spending about half their total redesign and recoding
effort on the four secondary operations. However, they had to find and fix an average of two-
thirds of all their bugs in these operations. These data have such large confidence intervals that
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we hesitate to draw any serious conclusions from a small sample and one example. Nonetheless,
it is entirely plausible that secondary operations generally should be more difficult to get right
than primary operations. Secondary operations perform more complicated manipulations than the
primary operations, which are chosen precisely because they are “primitive.”

4 Status and Recommendations

We plan to examine more carefully the effort and bug data obtained in this small study. We also
hope to refine it and run a study again next year with different students. But the preliminary results
suggest that a commercial software developer might do well to adhere carefully to A/E/L principles
on a realistically large software project, collecting as much similar and related data as possible, in
an attempt to document a convincing empirical case for the productivity and quality advantages
of A/E/L. By knowing the cost of design and coding time, maintenance activities, etc., and having
estimates of the different amounts of time involved in these tasks, a manager should be able to
make a more informed trade-off between software engineering costs and run-time performance costs
of design decisions.
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