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Abstract

Beowulf workstations have become a popular choice for
high-end computing in a number of application domains.
One of the key building blocks of parallel applications on
Beowulf workstations are message passing libraries which
utilize the Transmission Control Protocol (TCP) for cluster
communications. As cluster network fabrics achieve higher
bandwidths and shorter latencies, the TCP/IP software
and protocols become the common case “bottleneck” for
low latency communications. This bottleneck limits the
applicability of Beowulf Workstations to very coarse grain
applications.

Our research in this bottleneck area focuses on a “con-
figurable” TCP protocol, which will allow the user to de-
termine the optimal TCP transmission and retransmission
parameters needed for specific applications. In this paper
we discuss a system for configuring TCP to behave more
appropriately in the Beowulf environment and present re-
sults indicating expected performance improvements when
using this system.

1 Introduction

In recent years, clusters of workstations have become an
inexpensive alternative to supercomputers in specific appli-
cations. Traditionally, slow network hardware has limited
the applicability of clusters to coarse grain or embarrass-
ingly parallel applications. Today, advancements in net-
work hardware have provided clusters with very high band-
width and low latency connections. Now, the software and
protocols driving the network hardware have surfaced as
the new common case bottleneck.

In clusters, the primary protocol used in communication
has been the traditional Transmission Control Protocol /
Internet Protocol (TCP/IP). The implementation of the
TCP software and transmission protocols induce two kinds
of latencies limiting the range of applications that can ben-
efit from clusters: software and protocol. Generally, ker-
nels implement TCP/IP in layers, leading to software in-
duced latencies caused by passing data through multiple
layers prior to reaching the network wire. The transmis-

sion protocols used in TCP lead to protocol induced la-
tencies created by the inherent generality of the TCP/IP
algorithms. This thesis attempts to tackle this second kind
of latency by introducing a configurable transmission pro-
tocol concept that allows transmission algorithms to be
tuned for specific applications and/or hardware.

In Section 2 we will cover the relevant background mate-
rial for this work, including important TCP algorithms, Be-
owulf computing, and some preliminary work in this area.
The configurable TCP options and an overview of the im-
plementation are described in Section 3. Section 4 details
the test system and the tests performed in evaluating the
configuration options. Conclusions are drawn in Section 5
and possible future work is outlined.

2 Background

In order to effectively tune the TCP protocol in this envi-
ronment, it is important to first understand TCP and its
key algorithms. These algorithms must then be appropri-
ately matched to the peculiarities of the Beowulf environ-
ment.

2.1 TCP/IP

The Internet Protocols have been established to standard-
ize communication over the Internet. These standards and
recommendations come in the form of documents published
by the Internet Engineering Task Force (IETF) called Re-
quest for Comments (RFCs). Of all the Internet Proto-
cols, TCP in particular has encouraged Internet growth by
providing a reliable protocol that adjusts dynamically to
network traffic conditions.

A number of RFCs cover the details of TCP [16, 7, 15,
3,5,2,1, 10, 9, 4, 8. This section will summarize the
TCP characteristics to be manipulated in our experiments
but will assume that the reader has some knowledge of
TCP operation. The algorithms will be discussed in the
context of the sample TCP sessions seen in Figures 9 and
10. The algorithms discussed are acknowledgement mech-
anisms, the congestion window algorithms, retransmission
timeout (RTO) strategy, and round trip time (RTT) esti-



mation. Each section will present an algorithm’s equations
and explain in a step by step fashion their complex inter-
dependencies.

2.1.1 Acknowledgments

There are three different conditions which result in ac-
knowledgements being sent, and the resulting acknowledge-
ment is typically denoted as one of three types depending
on which condition resulted in the acknowledgement being
sent.

Delayed acknowledgments give the receiver the oppor-
tunity to merge multiple acknowledgments and/or data
with the returned segment. Equation 1 shows the esti-
mator used to calculate this delay time, called the ac-
knowledgment timeout (ATO). Figure 9 displays this es-
timator in action on the right rung of the two ladder dia-
grams. For example, after receiving segment D2, the esti-
mator uses the time between reception of D1 and D2 as
the time_between_data_receptions (40 ms) variable which
changes the ATO from 1 (10 ms) to 4 (40 ms). The ATO
estimator is designed to correlate the frequency of the ac-
knowledgments to the frequency of the incoming data.

ATO = ATO/2 + (time_between_data_receptions) (1)

Segment A2 represents the only actual delayed acknowl-
edgment shown in Figure 9. The receiver can return two
other types of acknowledgments: quick (Al) or forced
(A11, A13). Quick acknowledgments only occur on the
first data packet of a connection and they are designed
to help the sender quickly get to equilibrium where it can
send a full window of segments. Forced acknowledgments
occur after the receiver sees two full segments as recom-
mended in RFC-1122. This device is designed to provide
the sender with more frequent measured RTT samples to
keep the RTT estimators from aliasing.

When the receiver does return a delayed acknowledg-
ment, as in segment A2, the measured round trip time
encapsulates both the ATO and the actual network round
trip time. This artifact, in combination with the use of
fixed ATOs in some TCP implementations, limits the the
lower range for the retransmission timeout. If the sender
does allows the RTO to fall below this fixed ATO value,
unnecessary retransmissions will occur because the sender
RTO will expire before the receiver ATO.

2.1.2 Congestion Window Algorithms

The congestion window algorithms, including slow start
and congestion avoidance, provide sender side flow control
which work in conjunction with the receive window to limit

the amount of data the sender has in transit over a connec-
tion [11]. With all of the complex interaction between the
different congestion window algorithms, the explanation of
the congestion window variable (cwnd) can be greatly sim-
plified by focusing on the slow start and congestion avoid-
ance algorithms.

The slow start threshold variable (ssthresh) determines
whether the cwnd is updated according to the slow start or
the congestion avoidance algorithm (see Equations 2 and
3). If the cwnd is below the ssthresh the slow start al-
gorithm takes precedence, otherwise congestion avoidance
takes over. The variable ssthresh initializes to a very large
value and is set when an equilibrium point is reached, de-
termined by loss of packets. This puts a connection into
slow start initially, but turns control over to congestion
avoidance after reaching equilibrium.

cwnd = cwnd + 1 (slow start) (2)
cwnd = cwnd + 1/cwnd (congestion avoidance)  (3)

Figure 9 details how the Linux kernel actually performs
the calculation updates shown in Equations 2 and 3 with-
out using divides. This graphic shows the differences be-
tween increasing the cwnd quickly, as in the slow start re-
gion, and slowly, as in the congestion avoidance region. A
typical connection should spend a short period of time in
slow start and the majority of time at equilibrium perform-
ing congestion avoidance. This allows the sender to quickly
find an appropriate send window for the connection and
stabilize there.

The right ladder in Figure 10 gives an example of how
the congestion window provides flow control. The sender
can have only cwnd number of packets outstanding on a
connection, otherwise it can no longer transmit and must
stall waiting for an acknowledgment. After receiving the
acknowledgment, the sender updates the cwnd and can
transmit additional packets.

2.1.3 Round Trip Time

The RTT algorithm is designed to provide the sender with
an estimation of the time between a packet transmission
and the returned acknowledgment. The retransmission
timeout calculator then utilizes the RTT estimations for
smoothed round trip time (SRTT) and mean deviation
(mdev) to accurately determine when a segment can be
considered lost. Linux implements the RFC-1122 required
RTT algorithm using Jacobsen’s recommended gains for
the SRTT and mdev [3].

Equations 4 and 5 represent the RTT estimators al-
though the actual implementation uses shifts rather than
multiplications and divides to speed up processing. The
sender calculates the measured round trip time (MRTT) as



the time between sending the first unacknowledged packet
and receiving a new acknowledgment. For example, in Fig-
ure 9, the MRTT measurement for the returned acknowl-
edgment A11 begins from D10 and not D11, although A11
covers the acknowledgment for both D10 and D11. The
effects of the new measured round trip time on the SRTT
and mdev can be seen on the left rung of the ladders in the
graphic.

SRTT = SRTT +7/8 + MRTT % 1/8 (4)
mdev = mdev * 3/44+ | SRTT — MRTT | x1/4 (5)

2.1.4 Retransmission Timeout Strategy

The RTO algorithm is designed to give the sender an ac-
curate determination of when a segment has been lost and
should be resent. If a transmitted segment is not acknowl-
edged before the RTO timer expires, that segment will be
retransmitted. The left ladder in Figure 10 presents an ex-
ample of this device in action. Since the acknowledgment
segment D1 is lost, the sender never receives the acknowl-
edgment. Although, the receiver did actually receive the
segment, the sender has no way of knowing this in this
example, so it retransmits D1 after the RTO timer expires.
The RTO algorithms use the senders estimated SRTT
and mdev variables to determine how long to wait for an
acknowledgment before deciding that a packet has been
lost. For simplicity, the Jacobsen recommended RTO cal-
culation [11] is presented in Equation 6, though the Linux
kernel does make minor adjustments to this algorithm.

RTO = SRTT + 4 x mdev (6)

The example session also shows Karn’s exponential back-
off strategy [12] in action. The backoff variable is used to
double the RTO value every time a packet is retransmitted
and the backoff will not be reset until a nonretransmitted
packet has been acknowledged. This algorithm is designed
to provide the RTT algorithms with an accurate measured
round trip time on a packet that does not contain Karn’s
retransmission ambiguity.

It is important to note that the default RTO algorithm
places both an upper limit (2 minutes) and lower limit (200
ms) on the timeout value. The lower limit accounts for the
behavior of some TCP stacks.

2.2 Beowulf

The Beowulf-class parallel machine has evolved from early
work in low cost computing. The first work in this area
centered around clusters of workstations [6]. These clusters
are often composed of existing workstations which are used
as interactive systems during the day, can be heterogeneous

in composition, and rely on extra software to balance the
load across the machines in the presence of interactive jobs.
As it became obvious that workstations could be used for
parallel processing, groups began to build dedicated ma-
chines from inexpensive, non-proprietary hardware. These
“Pile-of-PCs” consist of a cluster of machines dedicated as
nodes in a parallel processor, built entirely from commod-
ity off the shelf parts, and employing a private system area
network for communication [17]. The use of off-the-shelf
parts results in systems that are tailored to meet the needs
of the users, built using the most up-to-date technology at
the time of purchase, and cost substantially less than pre-
vious parallel processing systems. The Beowulf worksta-
tion concept builds on the Pile-of-PCs model by utilizing
a freely available base of software. The free availability of
most system software source encourages customization and
performance improvements. Experiments have shown Be-
owulf workstations capable of providing high performance
for applications in a number of problem domains.

One of the greatest strengths of commercial systems in
general has always been the support, both in software and
troubleshooting, that is made available to owners. Along
this same vein the Beowulf community has banded together
to build a software infrastructure and to assist one another
with problems. Most of this software already existed, in-
cluding the operating system, compiler, network file sys-
tem, and most common utilities. However, it has become
apparent that while this software is robust and fulfills users’
needs, there is room for improvement. Parallel file sys-
tems such as PVFS [13] provide better I/O performance
and consistency for parallel applications using distributed
data sets, processor-specific compiler enhancements and
libraries can boost application performance, and kernel
modifications can provide services such as global process
ID’s, global signalling, and Distributed Shared Memory
(DSM) which help build a more complete environment.

Along these same lines, the existing kernel communi-
cation protocols were built for general purpose networks.
Thus, these protocols too could potentially be altered or
rewritten to more effectively operate in the Beowulf en-
vironment. Thus, the impetus for our modifications and
experiments.

2.3 Previous Study

Josip Loncaric et al. at the Institute for Computer Ap-
plications in Science and Engineering (NASA Langley)
have performed testing on TCP connections using uni-
directional small messages [14]. They have seen what they
call “stalls” in TCP when passing short messages with the
TCP_NODELAY option set (Nagle algorithm turned off).
These stalls are caused by a combination of the TCP algo-
rithms for congestion avoidance [1] and delayed acknowl-



edgment [3].

Basically, when passing short messages in one direction,
even with the Nagle algorithm off, no more than conges-
tion window number of packets can be on the link unac-
knowledged. In addition, the remote end has a delayed ac-
knowledgment strategy that prevents the acknowledgment
from occurring before the ATO expires. The point of these
strategies is to allow for packet conservation which makes
perfect sense in a lot of applications, but will only hurt in
these specific benchmarks.

To fix this problem, Loncaric et al. installed a kernel
patch that removed the delayed acknowledgment strategy
from the Linux 2.0.34 kernel when disabling Nagle’s al-
gorithm, instead immediately acknowledging all incoming
packets for the connection. Loncaric notes on his web page
that using this patch led to a factor of 20 improvement
when sending 100,000 single byte messages. However, we
will see that this type of simple modification on its own
can have detrimental effects to other traffic patterns.

3 Protocol Modifications

TCP provides a good general purpose transmission algo-
rithm that performs well under a wide variety of network
conditions and speeds, however, in some network environ-
ments these algorithms may not perform optimally. For
example, the Beowulf concept establishes networks as pri-
vate and local, which may benefit from transmission algo-
rithms geared towards this type of network. In addition,
since the optimal transmission algorithms may not conform
to standards set forth in the RFCs, Beowulf’s closed net-
work provides an excellent test platform by isolating these
nonstandard algorithms from outside networks.

Applications running in the Beowulf environment may
exhibit different communication patterns and may require
different transmission algorithms for optimal network per-
formance. A configurable model of transmission algorithms
can accommodate this discrepancy by allowing each appli-
cation to configure the transmission algorithms appropriate
to their communication needs. However, the model pre-
sented here provides a system level configuration of TCP.
This model is sufficient for a number of situations and led
to a simpler implementation.

The following TCP algorithms can be configured in our
model:

o Congestion window algorithms
e Acknowledgment algorithms
e Round trip time and mean deviation estimator

e Retransmission timeout calculation

e Experimental options (timestamp, window scaling,
and selective acknowledgments)

In this section we provide a description of the configu-
ration options available using our module and an overview
of its implementation.

3.0.1 Acknowledgments

Three new options are available for acknowledgements:

Maximum Segments Before Forced ACK - Sets the
maximum number of full segments to receive before
an ACK is sent.

Fixed Delayed ACK Estimator — Causes the delayed
ACK estimator function to always return a fixed value
instead of calculating how long to wait.

Quick Delayed ACK Estimator — Causes the estima-
tor function to always indicate that an ACK should
be sent.

These new algorithms should provide experimental evi-
dence on the effects of different acknowledgment timeout
algorithms, testing how small versus large ATO values ef-
fect different communication patterns. In addition, the
effects of changing the number of received segments before
forcing an acknowledgment will be ascertained.

Using fixed ATO values prevents the receiver from ad-
justing dynamically to the frequency of data receptions as
the default estimator does that is described in Section 2.1.1.
Fixed estimators are normally designed to simplify the es-
timation function, but the purpose here is to see if speedup
can be achieved on applications using Beowulf clusters.

RFC-1122 recommends that the the default value for
the number of full segments received before forcing an ac-
knowledgment be set to two[3]. This strategy provides the
sender with frequent MRTT samples in order to obtain an
accurate RTT estimation. However, this algorithm will be
changed to see if larger values can reduce sender interrupt
processing time by decreasing the number of returned ac-
knowledgments.

3.0.2 Congestion Window

We provide two mechanisms for manipulating the conges-
tion window algorithms:

Fixed Congestion Window - Sets the congestion win-
dow to a user defined fixed value.

Initial Window Value — Modifies initial window value
to be set to a user specified value when the window is
first initialized and whenever slow start is reset.



Forcing the cwnd to a constant value prevents it from
adapting to changes in network conditions as the default
algorithm would. However, since this algorithm will be
used in a Beowulf cluster, the cwnd may not need to be
adaptable. This strategy can put a connection directly
into an equilibrium state if the appropriate value is chosen.
Setting the initial congestion window allows connections
to reach the equilibrium point more quickly, reducing the
effects of slow start.

3.0.3 Round Trip Time

Two alternate RTT functions are made available:

Fixed Round Trip Time — Sets the RTT estimator
function to return a user defined value at all times.

Current Round Trip Time — Sets the RTT estimator
to use a simple estimation function which simply uses
the current RTT shifted left by a user specified number
of bits.

These algorithms allow us to examine how large and
small SRTT values effect communication performance. In
addition new algorithms will provide a fast acting SRTT es-
timator (Round Trip Time Current) for comparison against
the complicated default smoothing estimator.

A constant value for the smoothed round trip time pre-
vents the sender from adjusting dynamically to congestion
points as it would with the default algorithm described in
Section 2.1.3. Setting this value in a Beowulf cluster with a
known network round trip time may actually boost perfor-
mance in some situations. In contrast to the fixed value al-
gorithm, using the current value as the basis for the SRTT
value provides an estimator that will adjust very quickly
to changes in network loads.

3.0.4 Retransmission Timeout

Three replacement RTO functions were implemented:

Fixed Retransmission Timeout — Sets the retransmis-
sion timeout function to return a constant, user spec-
ified value at all times.

Retransmission Timeout Upper Limit — Places a
user defined upper limit on the value returned by the
RTO function.

Limitless Retransmission Timeout — Removes any
upper and lower limits on the values returned by the
RTO function.

These algorithms provide the means for testing how large
versus small values of the RTO perform on different pat-
terns in a cluster.

A constant value for the retransmission timeout effec-
tively wipes out all the estimating functions (SRTT, mdev,
backoff, and RTO) used by default and described in Sec-
tion 2.1.4. However, as with the RTT constants, Beowulf
clusters have generally consistent network round trip times,
which could make this algorithm beneficial in some situa-
tions. To appropriately control the RTO value, the bound-
ing functions must be modified because it limits the RTO
on the lower side, to handle fixed ATO implementations,
and on the upper side, to keep the RTO from getting out
of control. Since Beowulf clusters only communicate with
Linux machines, the lower limit can be safely removed;
however, care must be taken when changing the upper
limit,.

3.1 Implementation Overview

In order to facilitate testing of these new algorithms, two
features of the Linux operating system were used: modules
and the /proc file system. Linux modules provide the ca-
pability of attaching these new algorithms to the function
hooks at runtime, while the /proc file system allows user
level control of the modules. To reiterate, the modules con-
tain all of the new algorithms and the user specifies which
algorithm to attach by controlling the module through the
/proc file system.

Two Linux modules, beo_config.o and beo_slow.o, con-
tain all of the algorithms tested in this thesis. The former
provides algorithms for ATO, RTO, and RTT estimators
and calculators and the latter consists of the new algo-
rithms for controlling the congestion window. After insert-
ing the modules into the kernel using the “insmod” com-
mand, the following directories and files will be added to
the /proc file system:

e /proc/beowulf (directory added by beo_config.o)
e /proc/beowulf/beo_config (file added by beo_config.o)
e /proc/beowulf/beo_slow (file added by beo_slow.o)

Once the modules are in place, users can use the /proc
file system for control and status. Table 2 shows how to
use the /proc file system for this functionality. More details
are available in [?].

4 Testing and Results

This section will present testing methods and results aimed
at analyzing the benefits of tuning TCP for various traffic
patterns. In Section 4.1, the hardware setup and the test
methodology will be documented. Section 4.2 will exam-
ine test benchmarks on individual modifications made to
each transmission algorithm. Section 4.3 will specify, test,



and compare an all encompassing transmission algorithm
designed using the previous experiments to boost TCP per-
formance on Beowulf clusters.

4.1 Test Setup

The following information describes the hardware setup for
these tests:

e 17 nodes: P5-150, 64MB RAM, 2 Tulip NICs

e Linux v2.2.5, tulip.c v0.88

o Intel Express 510T 100mb switch connecting 16 slaves
e Head node connected to slaves via Asante 100mb hub

The head node spawns off all tasks and all message pass-
ing communication takes place on the switch. The test ap-
plications used either Beowulf Network Messaging (BNM)
or native sockets as the communications transport layer.
These message passing mechanisms provide direct evidence
on the effects of the modifications made to TCP without
interference from additional layers provided by PVM and
MPIL.

BNM is currently under development at the PARL Lab-
oratory at Clemson University as a low level solution for
task spawning and communication in the Beowulf envi-
ronment. BNM has been implemented directly over the
BSD sockets interface, providing a direct picture of how
the TCP modifications affect communication latencies and
bandwidths.

4.2 Preliminary Testing

The tests that were designed for this section isolate each
of the modifiable algorithms presented in Section 3, allow-
ing the individual effects on the various communication
patterns to be examined. All the tests described in this
section were implemented using the BNM message passing
library. Section 4.2.1 tests one way message passing com-
munications. Section 4.2.2 attempts to provide evidence on
the effects of transmission algorithms on interactive com-
munication.

4.2.1 Uni-directional Messages Tests

The uni-directional tests were designed to determine the
effects of the individual algorithms on passing data from
task to task in one direction. In these tests, two processes
are spawned on two different processors with one task hav-
ing rank 0 and the other rank 1. In all experiments, task
0 and task 1 reside on the same respective nodes and task
0 always passes data to task 1.
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The number of iterations and the size of the TCP data
payload to send were varied. The loop value was varied be-
tween 10000 and 90000 bytes with 1000 byte increments,
and reported values are the average of five runs. Two dis-
tinct data payload (segment) sizes were tested: single-byte
payloads and maximum size (full) payloads. The Nagle al-
gorithm [15] was disabled for the single-byte payload tests.
Experimental options were turned off in all cases except
when otherwise noted.

The first pair of test runs (Figures 1 and 2) concentrated
on the effects of varying acknowledgement algorithms. In
these tests, seven different configurations are tested:

e normal kernel operation with experimental options on
e normal kernel operation with experimental options off
e quick acknowledgement of all packets

e fixed ATO values of both 10 and 20 ms



o forced ACK at both 4 and 10 full segments

Figure 1 displays results from the uni-directional small
message experiments on the acknowledgment algorithms.
This graph indicates that the “Max Ack” modifications did

nothing to benefit or hinder the default algorithm. With 60
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i BNM CWND Const (150)
The figure does show that changes in the acknowledg- BNM CWND Init (30) -
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ment delay has a considerable impact on performance.

Since forced acknowledgments never occur in this situation,
the sender must rely on the ATO timer to expire before re-
ceiving an acknowledgment. If the sender has cwnd packets ) 4
in transit, waiting for the acknowledgment stalls commu- e -
nication and degrades performance. The graph proves this 10
by displaying attenuated performance as the fixed ATO
value increases.
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Executing quick acknowledgments on every packet guar- Loops
antees timely acknowledgments that will prevent the sender
from stalling. However, acknowledging every single seg- Figure 3: Uni-directional (1 Byte): Congestion Window

ment does not conserve network resources and flooding the
sender with acknowledgments forces continuous system in-
terrupts that reduce performance. Figure 1 clearly displays
this degradation and points to the lowest possible fixed
ATO value as the best of both worlds. The 10 millisecond
ATO provides timely responses and merges multiple ac-
knowledgments, thereby conserving network resources and
reducing the number of sender interrupts.

Figure 2 shows that the delayed acknowledgment algo-
rithms have very little effect on full sized segments. Since
by default the receiver acknowledges every two full sized

segments anyway, the sender is rarely limited by the cwnd,
20

preventing stalls. The graph does show slight benefit
from removing the experlmental options of TCP. This im- By CWNBDNgor’;‘;f(Tg)' — 1
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waiting for an acknowledgment. In this case forcing an ac- Loops

knowledgement at 10 full-sized segments is most effective.
Forcing acknowledgement at 4 full-sized segments was al-
most as effective, indicating that reducing the number of
acknowledgements beyond this point is of little benefit.
The next pair of tests (Figures 3 and 4 concentrated
on effects of varying the congestion window algorithms for
these same single-byte and full segment traffic patterns.
In the first test, using single-byte payloads, seven distinct

Figure 4: Uni-directional (Full): Congestion Window
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configurations were tested:
e normal kernel operation with experimental options on
e fixed congestion window of 30, 70, and 150 packets
e initial window size of 10, 30, and 50 packets

Figure 3 presents test results for these runs. This graph
indicates that the congestion window size has a slight effect
on performance. Again, this effect is a result of the stalls
seen by the sender when waiting for an acknowledgment.
The large congestion windows allow the sender to continue
to transmit where a small window would stall.

In the second test, using full-sized payloads, the fixed
congestion window sizes tested were 10, 30, and 50 pack-
ets. Figure 4 shows that the slight benefits seen with small
messages do not carry over to full sized segments. This fact
comes directly from the TCP receive window limitations.
The TCP packet format confines the window size to 64K
and the silly window syndrome (SWS) avoidance algorithm
bounds this 64K value by advertising a maximum 32K re-
ceive window. Since the sender can send no more than
the minimum of the congestion window and receive win-
dow, congestion windows greater than 22 (approx. 32K)
are useless when transmitting full segments.

Testing varying the RTO and RTT strategies showed
little impact on this type of communication. Since little
congestion occurs data losses are not common, which pre-
cludes the need for retransmissions.

4.2.2 Bi-directional Messages Tests

The bi-directional tests were designed to examine the ef-
fects of the transmission algorithms on two-way commu-
nication. In these tests, two tasks are spawned on two
different processors with one task having rank 0 and the
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other rank 1. In all experiments, task 0 and task 1 reside
on the same respective nodes and task 0 passes data to
task 1 then task 1 passes back to task 2 ending the loop.
Theses tests very the message size from 1 to 500,000 bytes.

Figure 5 presents the effects of the acknowledgment al-
gorithms on the bi-directional messages with the following
configurations:

e normal kernel operation with experimental options on
e normal kernel operation with experimental options off
e quick acknowledgement of all packets

e fixed ATO values of 10, 30, and 40 ms

o forced ACK at 4 and 10 full segments

The graph shows an improvement using a moderate forced
acknowledgment value, but shows a degradation when
using a large value. The moderate forced acknowledg-
ment increases performance by reducing the time senders
spend processing returned acknowledgments, while the
large value decreases performance by causing the sender
to stall waiting for an acknowledgment.

Figure 6 shows that the congestion window algorithms
in the kernel are hard to beat in an individual test. Here
the following configurations were examined:

e normal kernel operation with experimental options on
e fixed congestion window of 10 and 20 packets
e initial window size of 10 and 20 packets

The graph does show that too small a value for a fixed
congestion window will degrade performance slightly. How-
ever, in the long term, all tested algorithms spend approx-
imately equal amounts of time in equilibrium.



The graphs for the RTT and RTO results have been ex-
cluded because again these tests create no significant con-
gestion leading to lost segments.

4.3 Beowulf Transmission Policy

The tests described in this section were designed to reveal
the effects of multiply specified transmission algorithms on
communication benchmarks and a sample cluster applica-
tion. A logical combination of algorithms will be docu-
mented in Section 4.3 and tested in Sections 4.3.1 through
4.3.3. Section 4.3.1 utilizes the traditional NetPIPE bench-
mark to test network performance. Section 4.3.2 describes
performance for a multi-node communication patterns and
Section 4.3.3 examines implications on an actual cluster
application using the Parallel Virtual File System (PVFS).

The Beowulf Transition Policy (BTP) will assemble the
best combination of the individual algorithms tested for
our test environment. The specified algorithms need to
perform well individually as well in combination with the
other algorithms. The algorithms that make up the BTP
are as follows:

e Fixed ATO = 10 ms

e Forced acknowledgments at 4 full sized segments

Initial congestion window = 20

SRTT = 2*MRTT

e mdev =10
e No bounds on the RTO

The acknowledgment strategy used in the BTP combines
a small fixed ATO value of 10 ms with a moderate value
of 4 for the forced acknowledgment. The small fixed ATO
provides a timely acknowledgment for slow data transfers
while reducing the amount of transmitted segments by at-
tempting to merge multiple acknowledgments. The new
forced acknowledgment combines with the ATO benefits
to further decrease the frequency of acknowledgment which
reduces the interrupt processing time on the sender.

The change in the forced acknowledgment value does re-
duce the RTT sampling rate, which would introduce alias-
ing in the default RTT algorithms. We account for this
in BTP by utilizing a fast acting estimator based on the
current MRTT. This estimator sets the SRTT to twice the
current MRTT and is not effected by the decreased fre-
quency of RTT samples. The BTP uses the default kernel
RTO calculation, but removes the upper and lower limits
to allow a wider range of RTO values.

The initial congestion window value of 20 was picked as
a point where a connection can immediately get to equilib-
rium when transferring full sized segments. This algorithm
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Figure 7: Netpipe Throughput

also allows the congestion window to increment during fre-
quent small packet transmissions. As an additional benefit,
keeping the value of the congestion window over 4 meshes
well with the forced acknowledgment value for the BTP by
preventing stalls caused by the sender waiting for delayed
acknowledgments.

4.3.1 NetPIPE Tests

The NetPIPE benchmark measures network performance
characteristics between two nodes. The NetPIPE bench-
marks presented here utilize TCP sockets directly, and the
same two nodes were used on all NetPIPE tests. The graph
in Figure 7 represents the throughput on our switched fast
ethernet network for the algorithms tested, which were:

e normal kernel operation with experimental options on
e normal kernel operation with experimental options off
e BTP with experimental options on

e BTP with experimental options off

e BTP without new congestion window policy

Figure 7 examines network throughput on both large and
small message sizes. The BTP achieves greater than 6%
improvement in bandwidth at large message sizes. These
benefits can be attributed mainly to the combination of the
congestion window and acknowledgment strategies. These
strategies combine to bring a connection quickly to equi-
librium while conserving acknowledgment packets. In ad-
dition, eliminating the experimental options when not ex-
periencing heavy congestion contributes slight gains.
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4.3.2 All-to-All Tests

The All-to-All tests were designed to ascertain the effects
on applications with large congestion points using BNM.
These tests spawn 16 tasks on 16 nodes with the same
ranking tasks always on the same nodes for each test. In
the All-to-All tests, each task passes data to every other
task and vice versa to complete an iteration. The message
size was varied and 100 iterations were performed for each
test.

Figure 8 presents the results for the same algorithms
tested in the Netpipe tests. These graphs clearly indi-
cate the usefulness of a user specified algorithm in the Be-
owulf environment. The combination of the acknowledg-
ment and round trip time policies provides performance
improvements of over 50% for some highly congested pat-
terns. However, the BTP congestion window policy used
actually degrades performance for these tests by inhibiting
the connection from slowing down during packet losses.

The new RTT estimator seems to contribute the largest
portion of the performance improvement seen in these
tests. The use of this fast acting RTT algorithm in combi-
nation with the elimination of the 200 ms lower bound on
the RTO allows the network protocol to adjust very quickly
and accurately under dynamic loads. This benefit seems
to decrease somewhat as the message size increases.

The BTP acknowledgment policies contribute during
any bulk transfer as discussed in Section 4.3.1 and also re-
duce congestion by decreasing the number of acknowledg-
ments. Figure 8 also shows that enabling the experimental
options improves performance, which can be attributed to
the ability of the SACK protocols to recover from multiple
packet losses. In this particular communication pattern,
the benefits achieved by SACKs outweigh the complexity
of the implementation.

Table 1: Jacobi Results

BTP 45 seconds
Normal 63 seconds
Normal (Exp Off) | 63 seconds

4.3.3 Jacobi Tests

The Jacobi tests were designed to show how real world ap-
plications might benefit from BTP. This application per-
forms the traditional Jacobi iterative method using the
Parallel Virtual File System (PVFS) with an out of core
strategy.

The Jacobi method was used to solve a 2K x 2K matrix.
The results shown in Table 1 indicate that for this size the
BTP improves performance by 29%. The results obtained
provide evidence of the benefit of configurable transmis-
sion algorithms on real world applications utilizing Beowulf
clusters.

5 Conclusions

Experimental results presented in this work have proven
the viability of configurable transmission protocols on Be-
owulf workstations. Performance improvements using new
transmission strategies ranged from 6% to well over 50%
depending upon the communication pattern. These ben-
efits were obtained using simple and easy to implement
algorithms geared to applications on the Beowulf architec-
ture.

Future research and experimentation will focus on more
application studies. Further investigation of boosting per-
formance for applications using standard message passing
libraries such as MPI and PVM, which use TCP for much
of their communication, should be of direct benefit to the
Beowulf community.

Future configurable transmission algorithms may further
enhance performance by adding modifiable algorithms such
as fast retransmit, or by implementing more complicated
transmission algorithms. For example, new algorithms can
be derived with detailed analysis of typical communication
patterns on Beowulf clusters. Another approach might uti-
lize theoretical mathematical models to describe the algo-
rithms and speedup limitations. Either of these methods
would have a good chance at boosting performance beyond
the simple Beowulf Transmission Policy.

Even if research produces an optimal system level trans-
mission policy for a specific architecture, applications still
produce different communication patterns. These various
communication patterns change the effects of the trans-
mission protocols, moreover, running multiple applications



concurrently completely alters the communication dynam-
ics of the single process. Possible solutions to these prob-
lems would incorporate a system level strategy that accepts
user level hints, giving the application some control but
leaving the final decision to the underlying system policy.
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Table 2: Module/Proc File System

/proc Files

/proc/beowulf/beo_config

Changes/Info on RTO, RTT, and
ATO

/proc/beowulf/beo_slow

Changes/Info on congestion win-
dow

To Modify Algorithms

echo -0 [0/1] > /proc/beowulf/beo_config

Turn  experimental  options
(SACK’s, timestamp, and win-
dow scaling) on/off

echo -d [0/1/2] > /proc/beowulf/beo_config

Set ATO function (0 = off, 1 =
quick, 2 = fixed)

echo -f <value> > /proc/beowulf/beo_config

Set fixed ATO value

echo -b [0/1/2] > /proc/beowulf/beo_config

Set RT'O bound function (0 = off,
1 = no bounds, 2 = upper bounds

echo -t <value> > /proc/beowulf/beo_config

Set RTO upper bound

echo -s [0/1] > /proc/beowulf/beo_config

Set RTO calculator (0 = off, 1 =
constant)

echo -k <value> > /proc/beowulf/beo_config

Set RTO constant

echo -r [0/1] > /proc/beowulf/beo_config

Set RTT estimator (0 = off, 1 =
constant, 2 = current (shift)

echo -¢c <value> > /proc/beowulf/beo_config

Set RTT constant value

echo -h <value> > /proc/beowulf/beo_config

Set RTT shift value

echo -m <value> > /proc/beowulf/beo_config

Set beo_max_ack for forced ac-
knowledgments

echo -i <value> > /proc/beowulf/beo_config

Reset to original values

echo-c1-f1-r1-d1-n1l> /proc/beowulf/beo_slow

Set congestion window to con-
stant value

echo -v <value> > /proc/beowulf/beo_slow
echo -t <value> > /proc/beowulf/beo_slow

Set congestion window constant
Set beo_init_cwnd for initial con-
gestion window

echo -i <value> > /proc/beowulf/beo_slow

Reset to original values

To View Current Setup

cat /proc/beowulf/beo_config

Display RTO, RTT, and ATO
setup

cat /proc/beowulf/beo_slow

Display congestion window setup




