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Abstra
t

Beowulf workstations have be
ome a popular 
hoi
e for

high-end 
omputing in a number of appli
ation domains.

One of the key building blo
ks of parallel appli
ations on

Beowulf workstations are message passing libraries whi
h

utilize the Transmission Control Proto
ol (TCP) for 
luster


ommuni
ations. As 
luster network fabri
s a
hieve higher

bandwidths and shorter laten
ies, the TCP/IP software

and proto
ols be
ome the 
ommon 
ase \bottlene
k" for

low laten
y 
ommuni
ations. This bottlene
k limits the

appli
ability of Beowulf Workstations to very 
oarse grain

appli
ations.

Our resear
h in this bottlene
k area fo
uses on a \
on-

�gurable" TCP proto
ol, whi
h will allow the user to de-

termine the optimal TCP transmission and retransmission

parameters needed for spe
i�
 appli
ations. In this paper

we dis
uss a system for 
on�guring TCP to behave more

appropriately in the Beowulf environment and present re-

sults indi
ating expe
ted performan
e improvements when

using this system.

1 Introdu
tion

In re
ent years, 
lusters of workstations have be
ome an

inexpensive alternative to super
omputers in spe
i�
 appli-


ations. Traditionally, slow network hardware has limited

the appli
ability of 
lusters to 
oarse grain or embarrass-

ingly parallel appli
ations. Today, advan
ements in net-

work hardware have provided 
lusters with very high band-

width and low laten
y 
onne
tions. Now, the software and

proto
ols driving the network hardware have surfa
ed as

the new 
ommon 
ase bottlene
k.

In 
lusters, the primary proto
ol used in 
ommuni
ation

has been the traditional Transmission Control Proto
ol /

Internet Proto
ol (TCP/IP). The implementation of the

TCP software and transmission proto
ols indu
e two kinds

of laten
ies limiting the range of appli
ations that 
an ben-

e�t from 
lusters: software and proto
ol. Generally, ker-

nels implement TCP/IP in layers, leading to software in-

du
ed laten
ies 
aused by passing data through multiple

layers prior to rea
hing the network wire. The transmis-

sion proto
ols used in TCP lead to proto
ol indu
ed la-

ten
ies 
reated by the inherent generality of the TCP/IP

algorithms. This thesis attempts to ta
kle this se
ond kind

of laten
y by introdu
ing a 
on�gurable transmission pro-

to
ol 
on
ept that allows transmission algorithms to be

tuned for spe
i�
 appli
ations and/or hardware.

In Se
tion 2 we will 
over the relevant ba
kground mate-

rial for this work, in
luding important TCP algorithms, Be-

owulf 
omputing, and some preliminary work in this area.

The 
on�gurable TCP options and an overview of the im-

plementation are des
ribed in Se
tion 3. Se
tion 4 details

the test system and the tests performed in evaluating the


on�guration options. Con
lusions are drawn in Se
tion 5

and possible future work is outlined.

2 Ba
kground

In order to e�e
tively tune the TCP proto
ol in this envi-

ronment, it is important to �rst understand TCP and its

key algorithms. These algorithms must then be appropri-

ately mat
hed to the pe
uliarities of the Beowulf environ-

ment.

2.1 TCP/IP

The Internet Proto
ols have been established to standard-

ize 
ommuni
ation over the Internet. These standards and

re
ommendations 
ome in the form of do
uments published

by the Internet Engineering Task For
e (IETF) 
alled Re-

quest for Comments (RFCs). Of all the Internet Proto-


ols, TCP in parti
ular has en
ouraged Internet growth by

providing a reliable proto
ol that adjusts dynami
ally to

network traÆ
 
onditions.

A number of RFCs 
over the details of TCP [16, 7, 15,

3, 5, 2, 1, 10, 9, 4, 8℄. This se
tion will summarize the

TCP 
hara
teristi
s to be manipulated in our experiments

but will assume that the reader has some knowledge of

TCP operation. The algorithms will be dis
ussed in the


ontext of the sample TCP sessions seen in Figures 9 and

10. The algorithms dis
ussed are a
knowledgement me
h-

anisms, the 
ongestion window algorithms, retransmission

timeout (RTO) strategy, and round trip time (RTT) esti-
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mation. Ea
h se
tion will present an algorithm's equations

and explain in a step by step fashion their 
omplex inter-

dependen
ies.

2.1.1 A
knowledgments

There are three di�erent 
onditions whi
h result in a
-

knowledgements being sent, and the resulting a
knowledge-

ment is typi
ally denoted as one of three types depending

on whi
h 
ondition resulted in the a
knowledgement being

sent.

Delayed a
knowledgments give the re
eiver the oppor-

tunity to merge multiple a
knowledgments and/or data

with the returned segment. Equation 1 shows the esti-

mator used to 
al
ulate this delay time, 
alled the a
-

knowledgment timeout (ATO). Figure 9 displays this es-

timator in a
tion on the right rung of the two ladder dia-

grams. For example, after re
eiving segment D2, the esti-

mator uses the time between re
eption of D1 and D2 as

the time between data re
eptions (40 ms) variable whi
h


hanges the ATO from 1 (10 ms) to 4 (40 ms). The ATO

estimator is designed to 
orrelate the frequen
y of the a
-

knowledgments to the frequen
y of the in
oming data.

ATO = ATO=2 + (time between data re
eptions) (1)

Segment A2 represents the only a
tual delayed a
knowl-

edgment shown in Figure 9. The re
eiver 
an return two

other types of a
knowledgments: qui
k (A1) or for
ed

(A11, A13). Qui
k a
knowledgments only o

ur on the

�rst data pa
ket of a 
onne
tion and they are designed

to help the sender qui
kly get to equilibrium where it 
an

send a full window of segments. For
ed a
knowledgments

o

ur after the re
eiver sees two full segments as re
om-

mended in RFC-1122. This devi
e is designed to provide

the sender with more frequent measured RTT samples to

keep the RTT estimators from aliasing.

When the re
eiver does return a delayed a
knowledg-

ment, as in segment A2, the measured round trip time

en
apsulates both the ATO and the a
tual network round

trip time. This artifa
t, in 
ombination with the use of

�xed ATOs in some TCP implementations, limits the the

lower range for the retransmission timeout. If the sender

does allows the RTO to fall below this �xed ATO value,

unne
essary retransmissions will o

ur be
ause the sender

RTO will expire before the re
eiver ATO.

2.1.2 Congestion Window Algorithms

The 
ongestion window algorithms, in
luding slow start

and 
ongestion avoidan
e, provide sender side 
ow 
ontrol

whi
h work in 
onjun
tion with the re
eive window to limit

the amount of data the sender has in transit over a 
onne
-

tion [11℄. With all of the 
omplex intera
tion between the

di�erent 
ongestion window algorithms, the explanation of

the 
ongestion window variable (
wnd) 
an be greatly sim-

pli�ed by fo
using on the slow start and 
ongestion avoid-

an
e algorithms.

The slow start threshold variable (ssthresh) determines

whether the 
wnd is updated a

ording to the slow start or

the 
ongestion avoidan
e algorithm (see Equations 2 and

3). If the 
wnd is below the ssthresh the slow start al-

gorithm takes pre
eden
e, otherwise 
ongestion avoidan
e

takes over. The variable ssthresh initializes to a very large

value and is set when an equilibrium point is rea
hed, de-

termined by loss of pa
kets. This puts a 
onne
tion into

slow start initially, but turns 
ontrol over to 
ongestion

avoidan
e after rea
hing equilibrium.


wnd = 
wnd+ 1 (slow start) (2)


wnd = 
wnd+ 1=
wnd (
ongestion avoidan
e) (3)

Figure 9 details how the Linux kernel a
tually performs

the 
al
ulation updates shown in Equations 2 and 3 with-

out using divides. This graphi
 shows the di�eren
es be-

tween in
reasing the 
wnd qui
kly, as in the slow start re-

gion, and slowly, as in the 
ongestion avoidan
e region. A

typi
al 
onne
tion should spend a short period of time in

slow start and the majority of time at equilibrium perform-

ing 
ongestion avoidan
e. This allows the sender to qui
kly

�nd an appropriate send window for the 
onne
tion and

stabilize there.

The right ladder in Figure 10 gives an example of how

the 
ongestion window provides 
ow 
ontrol. The sender


an have only 
wnd number of pa
kets outstanding on a


onne
tion, otherwise it 
an no longer transmit and must

stall waiting for an a
knowledgment. After re
eiving the

a
knowledgment, the sender updates the 
wnd and 
an

transmit additional pa
kets.

2.1.3 Round Trip Time

The RTT algorithm is designed to provide the sender with

an estimation of the time between a pa
ket transmission

and the returned a
knowledgment. The retransmission

timeout 
al
ulator then utilizes the RTT estimations for

smoothed round trip time (SRTT) and mean deviation

(mdev) to a

urately determine when a segment 
an be


onsidered lost. Linux implements the RFC-1122 required

RTT algorithm using Ja
obsen's re
ommended gains for

the SRTT and mdev [3℄.

Equations 4 and 5 represent the RTT estimators al-

though the a
tual implementation uses shifts rather than

multipli
ations and divides to speed up pro
essing. The

sender 
al
ulates the measured round trip time (MRTT) as



the time between sending the �rst una
knowledged pa
ket

and re
eiving a new a
knowledgment. For example, in Fig-

ure 9, the MRTT measurement for the returned a
knowl-

edgment A11 begins from D10 and not D11, although A11


overs the a
knowledgment for both D10 and D11. The

e�e
ts of the new measured round trip time on the SRTT

and mdev 
an be seen on the left rung of the ladders in the

graphi
.

SRTT = SRTT � 7=8 +MRTT � 1=8 (4)

mdev = mdev � 3=4+ j SRTT �MRTT j �1=4 (5)

2.1.4 Retransmission Timeout Strategy

The RTO algorithm is designed to give the sender an a
-


urate determination of when a segment has been lost and

should be resent. If a transmitted segment is not a
knowl-

edged before the RTO timer expires, that segment will be

retransmitted. The left ladder in Figure 10 presents an ex-

ample of this devi
e in a
tion. Sin
e the a
knowledgment

segment D1 is lost, the sender never re
eives the a
knowl-

edgment. Although, the re
eiver did a
tually re
eive the

segment, the sender has no way of knowing this in this

example, so it retransmits D1 after the RTO timer expires.

The RTO algorithms use the senders estimated SRTT

and mdev variables to determine how long to wait for an

a
knowledgment before de
iding that a pa
ket has been

lost. For simpli
ity, the Ja
obsen re
ommended RTO 
al-


ulation [11℄ is presented in Equation 6, though the Linux

kernel does make minor adjustments to this algorithm.

RTO = SRTT + 4 �mdev (6)

The example session also shows Karn's exponential ba
k-

o� strategy [12℄ in a
tion. The ba
ko� variable is used to

double the RTO value every time a pa
ket is retransmitted

and the ba
ko� will not be reset until a nonretransmitted

pa
ket has been a
knowledged. This algorithm is designed

to provide the RTT algorithms with an a

urate measured

round trip time on a pa
ket that does not 
ontain Karn's

retransmission ambiguity.

It is important to note that the default RTO algorithm

pla
es both an upper limit (2 minutes) and lower limit (200

ms) on the timeout value. The lower limit a

ounts for the

behavior of some TCP sta
ks.

2.2 Beowulf

The Beowulf-
lass parallel ma
hine has evolved from early

work in low 
ost 
omputing. The �rst work in this area


entered around 
lusters of workstations [6℄. These 
lusters

are often 
omposed of existing workstations whi
h are used

as intera
tive systems during the day, 
an be heterogeneous

in 
omposition, and rely on extra software to balan
e the

load a
ross the ma
hines in the presen
e of intera
tive jobs.

As it be
ame obvious that workstations 
ould be used for

parallel pro
essing, groups began to build dedi
ated ma-


hines from inexpensive, non-proprietary hardware. These

\Pile-of-PCs" 
onsist of a 
luster of ma
hines dedi
ated as

nodes in a parallel pro
essor, built entirely from 
ommod-

ity o� the shelf parts, and employing a private system area

network for 
ommuni
ation [17℄. The use of o�-the-shelf

parts results in systems that are tailored to meet the needs

of the users, built using the most up-to-date te
hnology at

the time of pur
hase, and 
ost substantially less than pre-

vious parallel pro
essing systems. The Beowulf worksta-

tion 
on
ept builds on the Pile-of-PCs model by utilizing

a freely available base of software. The free availability of

most system software sour
e en
ourages 
ustomization and

performan
e improvements. Experiments have shown Be-

owulf workstations 
apable of providing high performan
e

for appli
ations in a number of problem domains.

One of the greatest strengths of 
ommer
ial systems in

general has always been the support, both in software and

troubleshooting, that is made available to owners. Along

this same vein the Beowulf 
ommunity has banded together

to build a software infrastru
ture and to assist one another

with problems. Most of this software already existed, in-


luding the operating system, 
ompiler, network �le sys-

tem, and most 
ommon utilities. However, it has be
ome

apparent that while this software is robust and ful�lls users'

needs, there is room for improvement. Parallel �le sys-

tems su
h as PVFS [13℄ provide better I/O performan
e

and 
onsisten
y for parallel appli
ations using distributed

data sets, pro
essor-spe
i�
 
ompiler enhan
ements and

libraries 
an boost appli
ation performan
e, and kernel

modi�
ations 
an provide servi
es su
h as global pro
ess

ID's, global signalling, and Distributed Shared Memory

(DSM) whi
h help build a more 
omplete environment.

Along these same lines, the existing kernel 
ommuni-


ation proto
ols were built for general purpose networks.

Thus, these proto
ols too 
ould potentially be altered or

rewritten to more e�e
tively operate in the Beowulf en-

vironment. Thus, the impetus for our modi�
ations and

experiments.

2.3 Previous Study

Josip Lon
ari
 et al. at the Institute for Computer Ap-

pli
ations in S
ien
e and Engineering (NASA Langley)

have performed testing on TCP 
onne
tions using uni-

dire
tional small messages [14℄. They have seen what they


all \stalls" in TCP when passing short messages with the

TCP NODELAY option set (Nagle algorithm turned o�).

These stalls are 
aused by a 
ombination of the TCP algo-

rithms for 
ongestion avoidan
e [1℄ and delayed a
knowl-



edgment [3℄.

Basi
ally, when passing short messages in one dire
tion,

even with the Nagle algorithm o�, no more than 
onges-

tion window number of pa
kets 
an be on the link una
-

knowledged. In addition, the remote end has a delayed a
-

knowledgment strategy that prevents the a
knowledgment

from o

urring before the ATO expires. The point of these

strategies is to allow for pa
ket 
onservation whi
h makes

perfe
t sense in a lot of appli
ations, but will only hurt in

these spe
i�
 ben
hmarks.

To �x this problem, Lon
ari
 et al. installed a kernel

pat
h that removed the delayed a
knowledgment strategy

from the Linux 2.0.34 kernel when disabling Nagle's al-

gorithm, instead immediately a
knowledging all in
oming

pa
kets for the 
onne
tion. Lon
ari
 notes on his web page

that using this pat
h led to a fa
tor of 20 improvement

when sending 100,000 single byte messages. However, we

will see that this type of simple modi�
ation on its own


an have detrimental e�e
ts to other traÆ
 patterns.

3 Proto
ol Modi�
ations

TCP provides a good general purpose transmission algo-

rithm that performs well under a wide variety of network


onditions and speeds, however, in some network environ-

ments these algorithms may not perform optimally. For

example, the Beowulf 
on
ept establishes networks as pri-

vate and lo
al, whi
h may bene�t from transmission algo-

rithms geared towards this type of network. In addition,

sin
e the optimal transmission algorithms may not 
onform

to standards set forth in the RFCs, Beowulf's 
losed net-

work provides an ex
ellent test platform by isolating these

nonstandard algorithms from outside networks.

Appli
ations running in the Beowulf environment may

exhibit di�erent 
ommuni
ation patterns and may require

di�erent transmission algorithms for optimal network per-

forman
e. A 
on�gurable model of transmission algorithms


an a

ommodate this dis
repan
y by allowing ea
h appli-


ation to 
on�gure the transmission algorithms appropriate

to their 
ommuni
ation needs. However, the model pre-

sented here provides a system level 
on�guration of TCP.

This model is suÆ
ient for a number of situations and led

to a simpler implementation.

The following TCP algorithms 
an be 
on�gured in our

model:

� Congestion window algorithms

� A
knowledgment algorithms

� Round trip time and mean deviation estimator

� Retransmission timeout 
al
ulation

� Experimental options (timestamp, window s
aling,

and sele
tive a
knowledgments)

In this se
tion we provide a des
ription of the 
on�gu-

ration options available using our module and an overview

of its implementation.

3.0.1 A
knowledgments

Three new options are available for a
knowledgements:

Maximum Segments Before For
ed ACK { Sets the

maximum number of full segments to re
eive before

an ACK is sent.

Fixed Delayed ACK Estimator { Causes the delayed

ACK estimator fun
tion to always return a �xed value

instead of 
al
ulating how long to wait.

Qui
k Delayed ACK Estimator { Causes the estima-

tor fun
tion to always indi
ate that an ACK should

be sent.

These new algorithms should provide experimental evi-

den
e on the e�e
ts of di�erent a
knowledgment timeout

algorithms, testing how small versus large ATO values ef-

fe
t di�erent 
ommuni
ation patterns. In addition, the

e�e
ts of 
hanging the number of re
eived segments before

for
ing an a
knowledgment will be as
ertained.

Using �xed ATO values prevents the re
eiver from ad-

justing dynami
ally to the frequen
y of data re
eptions as

the default estimator does that is des
ribed in Se
tion 2.1.1.

Fixed estimators are normally designed to simplify the es-

timation fun
tion, but the purpose here is to see if speedup


an be a
hieved on appli
ations using Beowulf 
lusters.

RFC-1122 re
ommends that the the default value for

the number of full segments re
eived before for
ing an a
-

knowledgment be set to two[3℄. This strategy provides the

sender with frequent MRTT samples in order to obtain an

a

urate RTT estimation. However, this algorithm will be


hanged to see if larger values 
an redu
e sender interrupt

pro
essing time by de
reasing the number of returned a
-

knowledgments.

3.0.2 Congestion Window

We provide two me
hanisms for manipulating the 
onges-

tion window algorithms:

Fixed Congestion Window { Sets the 
ongestion win-

dow to a user de�ned �xed value.

Initial Window Value { Modi�es initial window value

to be set to a user spe
i�ed value when the window is

�rst initialized and whenever slow start is reset.



For
ing the 
wnd to a 
onstant value prevents it from

adapting to 
hanges in network 
onditions as the default

algorithm would. However, sin
e this algorithm will be

used in a Beowulf 
luster, the 
wnd may not need to be

adaptable. This strategy 
an put a 
onne
tion dire
tly

into an equilibrium state if the appropriate value is 
hosen.

Setting the initial 
ongestion window allows 
onne
tions

to rea
h the equilibrium point more qui
kly, redu
ing the

e�e
ts of slow start.

3.0.3 Round Trip Time

Two alternate RTT fun
tions are made available:

Fixed Round Trip Time { Sets the RTT estimator

fun
tion to return a user de�ned value at all times.

Current Round Trip Time { Sets the RTT estimator

to use a simple estimation fun
tion whi
h simply uses

the 
urrent RTT shifted left by a user spe
i�ed number

of bits.

These algorithms allow us to examine how large and

small SRTT values e�e
t 
ommuni
ation performan
e. In

addition new algorithms will provide a fast a
ting SRTT es-

timator (Round Trip Time Current) for 
omparison against

the 
ompli
ated default smoothing estimator.

A 
onstant value for the smoothed round trip time pre-

vents the sender from adjusting dynami
ally to 
ongestion

points as it would with the default algorithm des
ribed in

Se
tion 2.1.3. Setting this value in a Beowulf 
luster with a

known network round trip time may a
tually boost perfor-

man
e in some situations. In 
ontrast to the �xed value al-

gorithm, using the 
urrent value as the basis for the SRTT

value provides an estimator that will adjust very qui
kly

to 
hanges in network loads.

3.0.4 Retransmission Timeout

Three repla
ement RTO fun
tions were implemented:

Fixed Retransmission Timeout { Sets the retransmis-

sion timeout fun
tion to return a 
onstant, user spe
-

i�ed value at all times.

Retransmission Timeout Upper Limit { Pla
es a

user de�ned upper limit on the value returned by the

RTO fun
tion.

Limitless Retransmission Timeout { Removes any

upper and lower limits on the values returned by the

RTO fun
tion.

These algorithms provide the means for testing how large

versus small values of the RTO perform on di�erent pat-

terns in a 
luster.

A 
onstant value for the retransmission timeout e�e
-

tively wipes out all the estimating fun
tions (SRTT, mdev,

ba
ko�, and RTO) used by default and des
ribed in Se
-

tion 2.1.4. However, as with the RTT 
onstants, Beowulf


lusters have generally 
onsistent network round trip times,

whi
h 
ould make this algorithm bene�
ial in some situa-

tions. To appropriately 
ontrol the RTO value, the bound-

ing fun
tions must be modi�ed be
ause it limits the RTO

on the lower side, to handle �xed ATO implementations,

and on the upper side, to keep the RTO from getting out

of 
ontrol. Sin
e Beowulf 
lusters only 
ommuni
ate with

Linux ma
hines, the lower limit 
an be safely removed;

however, 
are must be taken when 
hanging the upper

limit.

3.1 Implementation Overview

In order to fa
ilitate testing of these new algorithms, two

features of the Linux operating system were used: modules

and the /pro
 �le system. Linux modules provide the 
a-

pability of atta
hing these new algorithms to the fun
tion

hooks at runtime, while the /pro
 �le system allows user

level 
ontrol of the modules. To reiterate, the modules 
on-

tain all of the new algorithms and the user spe
i�es whi
h

algorithm to atta
h by 
ontrolling the module through the

/pro
 �le system.

Two Linux modules, beo 
on�g.o and beo slow.o, 
on-

tain all of the algorithms tested in this thesis. The former

provides algorithms for ATO, RTO, and RTT estimators

and 
al
ulators and the latter 
onsists of the new algo-

rithms for 
ontrolling the 
ongestion window. After insert-

ing the modules into the kernel using the \insmod" 
om-

mand, the following dire
tories and �les will be added to

the /pro
 �le system:

� /pro
/beowulf (dire
tory added by beo 
on�g.o)

� /pro
/beowulf/beo 
on�g (�le added by beo 
on�g.o)

� /pro
/beowulf/beo slow (�le added by beo slow.o)

On
e the modules are in pla
e, users 
an use the /pro


�le system for 
ontrol and status. Table 2 shows how to

use the /pro
 �le system for this fun
tionality. More details

are available in [?℄.

4 Testing and Results

This se
tion will present testing methods and results aimed

at analyzing the bene�ts of tuning TCP for various traÆ


patterns. In Se
tion 4.1, the hardware setup and the test

methodology will be do
umented. Se
tion 4.2 will exam-

ine test ben
hmarks on individual modi�
ations made to

ea
h transmission algorithm. Se
tion 4.3 will spe
ify, test,



and 
ompare an all en
ompassing transmission algorithm

designed using the previous experiments to boost TCP per-

forman
e on Beowulf 
lusters.

4.1 Test Setup

The following information des
ribes the hardware setup for

these tests:

� 17 nodes: P5-150, 64MB RAM, 2 Tulip NICs

� Linux v2.2.5, tulip.
 v0.88

� Intel Express 510T 100mb swit
h 
onne
ting 16 slaves

� Head node 
onne
ted to slaves via Asante 100mb hub

The head node spawns o� all tasks and all message pass-

ing 
ommuni
ation takes pla
e on the swit
h. The test ap-

pli
ations used either Beowulf Network Messaging (BNM)

or native so
kets as the 
ommuni
ations transport layer.

These message passing me
hanisms provide dire
t eviden
e

on the e�e
ts of the modi�
ations made to TCP without

interferen
e from additional layers provided by PVM and

MPI.

BNM is 
urrently under development at the PARL Lab-

oratory at Clemson University as a low level solution for

task spawning and 
ommuni
ation in the Beowulf envi-

ronment. BNM has been implemented dire
tly over the

BSD so
kets interfa
e, providing a dire
t pi
ture of how

the TCP modi�
ations a�e
t 
ommuni
ation laten
ies and

bandwidths.

4.2 Preliminary Testing

The tests that were designed for this se
tion isolate ea
h

of the modi�able algorithms presented in Se
tion 3, allow-

ing the individual e�e
ts on the various 
ommuni
ation

patterns to be examined. All the tests des
ribed in this

se
tion were implemented using the BNM message passing

library. Se
tion 4.2.1 tests one way message passing 
om-

muni
ations. Se
tion 4.2.2 attempts to provide eviden
e on

the e�e
ts of transmission algorithms on intera
tive 
om-

muni
ation.

4.2.1 Uni-dire
tional Messages Tests

The uni-dire
tional tests were designed to determine the

e�e
ts of the individual algorithms on passing data from

task to task in one dire
tion. In these tests, two pro
esses

are spawned on two di�erent pro
essors with one task hav-

ing rank 0 and the other rank 1. In all experiments, task

0 and task 1 reside on the same respe
tive nodes and task

0 always passes data to task 1.
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The number of iterations and the size of the TCP data

payload to send were varied. The loop value was varied be-

tween 10000 and 90000 bytes with 1000 byte in
rements,

and reported values are the average of �ve runs. Two dis-

tin
t data payload (segment) sizes were tested: single-byte

payloads and maximum size (full) payloads. The Nagle al-

gorithm [15℄ was disabled for the single-byte payload tests.

Experimental options were turned o� in all 
ases ex
ept

when otherwise noted.

The �rst pair of test runs (Figures 1 and 2) 
on
entrated

on the e�e
ts of varying a
knowledgement algorithms. In

these tests, seven di�erent 
on�gurations are tested:

� normal kernel operation with experimental options on

� normal kernel operation with experimental options o�

� qui
k a
knowledgement of all pa
kets

� �xed ATO values of both 10 and 20 ms



� for
ed ACK at both 4 and 10 full segments

Figure 1 displays results from the uni-dire
tional small

message experiments on the a
knowledgment algorithms.

This graph indi
ates that the \Max A
k" modi�
ations did

nothing to bene�t or hinder the default algorithm. With

small payloads su
h as these, the for
ed a
knowledgement

algorithm rarely has any e�e
t on ACK transmission.

The �gure does show that 
hanges in the a
knowledg-

ment delay has a 
onsiderable impa
t on performan
e.

Sin
e for
ed a
knowledgments never o

ur in this situation,

the sender must rely on the ATO timer to expire before re-


eiving an a
knowledgment. If the sender has 
wnd pa
kets

in transit, waiting for the a
knowledgment stalls 
ommu-

ni
ation and degrades performan
e. The graph proves this

by displaying attenuated performan
e as the �xed ATO

value in
reases.

Exe
uting qui
k a
knowledgments on every pa
ket guar-

antees timely a
knowledgments that will prevent the sender

from stalling. However, a
knowledging every single seg-

ment does not 
onserve network resour
es and 
ooding the

sender with a
knowledgments for
es 
ontinuous system in-

terrupts that redu
e performan
e. Figure 1 
learly displays

this degradation and points to the lowest possible �xed

ATO value as the best of both worlds. The 10 millise
ond

ATO provides timely responses and merges multiple a
-

knowledgments, thereby 
onserving network resour
es and

redu
ing the number of sender interrupts.

Figure 2 shows that the delayed a
knowledgment algo-

rithms have very little e�e
t on full sized segments. Sin
e

by default the re
eiver a
knowledges every two full sized

segments anyway, the sender is rarely limited by the 
wnd,

preventing stalls. The graph does show slight bene�t

from removing the experimental options of TCP. This im-

provement 
an be attributed to the lower header overhead

and the removal of the 
omplex sele
tive a
knowledgement

(SACK) implementation.

The full segment graph does show positive impa
t from


hanges in the for
ed a
knowledgment algorithm. This im-

provement is 
aused by the redu
tion in the number of

a
knowledgments interrupting the sender. This 
learly in-

di
ates the signi�
an
e of sender interrupt pro
essing over-

head; however, too large of a value for for
ed a
knowl-

edgments 
an 
reate 
onditions that will stall the sender

waiting for an a
knowledgment. In this 
ase for
ing an a
-

knowledgement at 10 full-sized segments is most e�e
tive.

For
ing a
knowledgement at 4 full-sized segments was al-

most as e�e
tive, indi
ating that redu
ing the number of

a
knowledgements beyond this point is of little bene�t.

The next pair of tests (Figures 3 and 4 
on
entrated

on e�e
ts of varying the 
ongestion window algorithms for

these same single-byte and full segment traÆ
 patterns.

In the �rst test, using single-byte payloads, seven distin
t
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on�gurations were tested:

� normal kernel operation with experimental options on

� �xed 
ongestion window of 30, 70, and 150 pa
kets

� initial window size of 10, 30, and 50 pa
kets

Figure 3 presents test results for these runs. This graph

indi
ates that the 
ongestion window size has a slight e�e
t

on performan
e. Again, this e�e
t is a result of the stalls

seen by the sender when waiting for an a
knowledgment.

The large 
ongestion windows allow the sender to 
ontinue

to transmit where a small window would stall.

In the se
ond test, using full-sized payloads, the �xed


ongestion window sizes tested were 10, 30, and 50 pa
k-

ets. Figure 4 shows that the slight bene�ts seen with small

messages do not 
arry over to full sized segments. This fa
t


omes dire
tly from the TCP re
eive window limitations.

The TCP pa
ket format 
on�nes the window size to 64K

and the silly window syndrome (SWS) avoidan
e algorithm

bounds this 64K value by advertising a maximum 32K re-


eive window. Sin
e the sender 
an send no more than

the minimum of the 
ongestion window and re
eive win-

dow, 
ongestion windows greater than 22 (approx. 32K)

are useless when transmitting full segments.

Testing varying the RTO and RTT strategies showed

little impa
t on this type of 
ommuni
ation. Sin
e little


ongestion o

urs data losses are not 
ommon, whi
h pre-


ludes the need for retransmissions.

4.2.2 Bi-dire
tional Messages Tests

The bi-dire
tional tests were designed to examine the ef-

fe
ts of the transmission algorithms on two-way 
ommu-

ni
ation. In these tests, two tasks are spawned on two

di�erent pro
essors with one task having rank 0 and the
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tional (Full): Congestion Window

other rank 1. In all experiments, task 0 and task 1 reside

on the same respe
tive nodes and task 0 passes data to

task 1 then task 1 passes ba
k to task 2 ending the loop.

Theses tests very the message size from 1 to 500,000 bytes.

Figure 5 presents the e�e
ts of the a
knowledgment al-

gorithms on the bi-dire
tional messages with the following


on�gurations:

� normal kernel operation with experimental options on

� normal kernel operation with experimental options o�

� qui
k a
knowledgement of all pa
kets

� �xed ATO values of 10, 30, and 40 ms

� for
ed ACK at 4 and 10 full segments

The graph shows an improvement using a moderate for
ed

a
knowledgment value, but shows a degradation when

using a large value. The moderate for
ed a
knowledg-

ment in
reases performan
e by redu
ing the time senders

spend pro
essing returned a
knowledgments, while the

large value de
reases performan
e by 
ausing the sender

to stall waiting for an a
knowledgment.

Figure 6 shows that the 
ongestion window algorithms

in the kernel are hard to beat in an individual test. Here

the following 
on�gurations were examined:

� normal kernel operation with experimental options on

� �xed 
ongestion window of 10 and 20 pa
kets

� initial window size of 10 and 20 pa
kets

The graph does show that too small a value for a �xed


ongestion window will degrade performan
e slightly. How-

ever, in the long term, all tested algorithms spend approx-

imately equal amounts of time in equilibrium.



The graphs for the RTT and RTO results have been ex-


luded be
ause again these tests 
reate no signi�
ant 
on-

gestion leading to lost segments.

4.3 Beowulf Transmission Poli
y

The tests des
ribed in this se
tion were designed to reveal

the e�e
ts of multiply spe
i�ed transmission algorithms on


ommuni
ation ben
hmarks and a sample 
luster appli
a-

tion. A logi
al 
ombination of algorithms will be do
u-

mented in Se
tion 4.3 and tested in Se
tions 4.3.1 through

4.3.3. Se
tion 4.3.1 utilizes the traditional NetPIPE ben
h-

mark to test network performan
e. Se
tion 4.3.2 des
ribes

performan
e for a multi-node 
ommuni
ation patterns and

Se
tion 4.3.3 examines impli
ations on an a
tual 
luster

appli
ation using the Parallel Virtual File System (PVFS).

The Beowulf Transition Poli
y (BTP) will assemble the

best 
ombination of the individual algorithms tested for

our test environment. The spe
i�ed algorithms need to

perform well individually as well in 
ombination with the

other algorithms. The algorithms that make up the BTP

are as follows:

� Fixed ATO = 10 ms

� For
ed a
knowledgments at 4 full sized segments

� Initial 
ongestion window = 20

� SRTT = 2*MRTT

� mdev = 0

� No bounds on the RTO

The a
knowledgment strategy used in the BTP 
ombines

a small �xed ATO value of 10 ms with a moderate value

of 4 for the for
ed a
knowledgment. The small �xed ATO

provides a timely a
knowledgment for slow data transfers

while redu
ing the amount of transmitted segments by at-

tempting to merge multiple a
knowledgments. The new

for
ed a
knowledgment 
ombines with the ATO bene�ts

to further de
rease the frequen
y of a
knowledgment whi
h

redu
es the interrupt pro
essing time on the sender.

The 
hange in the for
ed a
knowledgment value does re-

du
e the RTT sampling rate, whi
h would introdu
e alias-

ing in the default RTT algorithms. We a

ount for this

in BTP by utilizing a fast a
ting estimator based on the


urrent MRTT. This estimator sets the SRTT to twi
e the


urrent MRTT and is not e�e
ted by the de
reased fre-

quen
y of RTT samples. The BTP uses the default kernel

RTO 
al
ulation, but removes the upper and lower limits

to allow a wider range of RTO values.

The initial 
ongestion window value of 20 was pi
ked as

a point where a 
onne
tion 
an immediately get to equilib-

rium when transferring full sized segments. This algorithm
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Figure 7: Netpipe Throughput

also allows the 
ongestion window to in
rement during fre-

quent small pa
ket transmissions. As an additional bene�t,

keeping the value of the 
ongestion window over 4 meshes

well with the for
ed a
knowledgment value for the BTP by

preventing stalls 
aused by the sender waiting for delayed

a
knowledgments.

4.3.1 NetPIPE Tests

The NetPIPE ben
hmark measures network performan
e


hara
teristi
s between two nodes. The NetPIPE ben
h-

marks presented here utilize TCP so
kets dire
tly, and the

same two nodes were used on all NetPIPE tests. The graph

in Figure 7 represents the throughput on our swit
hed fast

ethernet network for the algorithms tested, whi
h were:

� normal kernel operation with experimental options on

� normal kernel operation with experimental options o�

� BTP with experimental options on

� BTP with experimental options o�

� BTP without new 
ongestion window poli
y

Figure 7 examines network throughput on both large and

small message sizes. The BTP a
hieves greater than 6%

improvement in bandwidth at large message sizes. These

bene�ts 
an be attributed mainly to the 
ombination of the


ongestion window and a
knowledgment strategies. These

strategies 
ombine to bring a 
onne
tion qui
kly to equi-

librium while 
onserving a
knowledgment pa
kets. In ad-

dition, eliminating the experimental options when not ex-

perien
ing heavy 
ongestion 
ontributes slight gains.
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Figure 8: All-to-All Pattern Tests

4.3.2 All-to-All Tests

The All-to-All tests were designed to as
ertain the e�e
ts

on appli
ations with large 
ongestion points using BNM.

These tests spawn 16 tasks on 16 nodes with the same

ranking tasks always on the same nodes for ea
h test. In

the All-to-All tests, ea
h task passes data to every other

task and vi
e versa to 
omplete an iteration. The message

size was varied and 100 iterations were performed for ea
h

test.

Figure 8 presents the results for the same algorithms

tested in the Netpipe tests. These graphs 
learly indi-


ate the usefulness of a user spe
i�ed algorithm in the Be-

owulf environment. The 
ombination of the a
knowledg-

ment and round trip time poli
ies provides performan
e

improvements of over 50% for some highly 
ongested pat-

terns. However, the BTP 
ongestion window poli
y used

a
tually degrades performan
e for these tests by inhibiting

the 
onne
tion from slowing down during pa
ket losses.

The new RTT estimator seems to 
ontribute the largest

portion of the performan
e improvement seen in these

tests. The use of this fast a
ting RTT algorithm in 
ombi-

nation with the elimination of the 200 ms lower bound on

the RTO allows the network proto
ol to adjust very qui
kly

and a

urately under dynami
 loads. This bene�t seems

to de
rease somewhat as the message size in
reases.

The BTP a
knowledgment poli
ies 
ontribute during

any bulk transfer as dis
ussed in Se
tion 4.3.1 and also re-

du
e 
ongestion by de
reasing the number of a
knowledg-

ments. Figure 8 also shows that enabling the experimental

options improves performan
e, whi
h 
an be attributed to

the ability of the SACK proto
ols to re
over from multiple

pa
ket losses. In this parti
ular 
ommuni
ation pattern,

the bene�ts a
hieved by SACKs outweigh the 
omplexity

of the implementation.

Table 1: Ja
obi Results

BTP 45 se
onds

Normal 63 se
onds

Normal (Exp O�) 63 se
onds

4.3.3 Ja
obi Tests

The Ja
obi tests were designed to show how real world ap-

pli
ations might bene�t from BTP. This appli
ation per-

forms the traditional Ja
obi iterative method using the

Parallel Virtual File System (PVFS) with an out of 
ore

strategy.

The Ja
obi method was used to solve a 2K x 2K matrix.

The results shown in Table 1 indi
ate that for this size the

BTP improves performan
e by 29%. The results obtained

provide eviden
e of the bene�t of 
on�gurable transmis-

sion algorithms on real world appli
ations utilizing Beowulf


lusters.

5 Con
lusions

Experimental results presented in this work have proven

the viability of 
on�gurable transmission proto
ols on Be-

owulf workstations. Performan
e improvements using new

transmission strategies ranged from 6% to well over 50%

depending upon the 
ommuni
ation pattern. These ben-

e�ts were obtained using simple and easy to implement

algorithms geared to appli
ations on the Beowulf ar
hite
-

ture.

Future resear
h and experimentation will fo
us on more

appli
ation studies. Further investigation of boosting per-

forman
e for appli
ations using standard message passing

libraries su
h as MPI and PVM, whi
h use TCP for mu
h

of their 
ommuni
ation, should be of dire
t bene�t to the

Beowulf 
ommunity.

Future 
on�gurable transmission algorithms may further

enhan
e performan
e by adding modi�able algorithms su
h

as fast retransmit, or by implementing more 
ompli
ated

transmission algorithms. For example, new algorithms 
an

be derived with detailed analysis of typi
al 
ommuni
ation

patterns on Beowulf 
lusters. Another approa
h might uti-

lize theoreti
al mathemati
al models to des
ribe the algo-

rithms and speedup limitations. Either of these methods

would have a good 
han
e at boosting performan
e beyond

the simple Beowulf Transmission Poli
y.

Even if resear
h produ
es an optimal system level trans-

mission poli
y for a spe
i�
 ar
hite
ture, appli
ations still

produ
e di�erent 
ommuni
ation patterns. These various


ommuni
ation patterns 
hange the e�e
ts of the trans-

mission proto
ols, moreover, running multiple appli
ations




on
urrently 
ompletely alters the 
ommuni
ation dynam-

i
s of the single pro
ess. Possible solutions to these prob-

lems would in
orporate a system level strategy that a

epts

user level hints, giving the appli
ation some 
ontrol but

leaving the �nal de
ision to the underlying system poli
y.
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waiting for

acknowledgment

Sender stalls

cwnd = 2

packets_out = 0

Sender stalls
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Table 2: Module/Pro
 File System

/pro
 Files

/pro
/beowulf/beo 
on�g Changes/Info on RTO, RTT, and

ATO

/pro
/beowulf/beo slow Changes/Info on 
ongestion win-

dow

To Modify Algorithms

e
ho -o [0/1℄ > /pro
/beowulf/beo 
on�g Turn experimental options

(SACK's, timestamp, and win-

dow s
aling) on/o�

e
ho -d [0/1/2℄ > /pro
/beowulf/beo 
on�g Set ATO fun
tion (0 = o�, 1 =

qui
k, 2 = �xed)

e
ho -f <value> > /pro
/beowulf/beo 
on�g Set �xed ATO value

e
ho -b [0/1/2℄ > /pro
/beowulf/beo 
on�g Set RTO bound fun
tion (0 = o�,

1 = no bounds, 2 = upper bounds

e
ho -t <value> > /pro
/beowulf/beo 
on�g Set RTO upper bound

e
ho -s [0/1℄ > /pro
/beowulf/beo 
on�g Set RTO 
al
ulator (0 = o�, 1 =


onstant)

e
ho -k <value> > /pro
/beowulf/beo 
on�g Set RTO 
onstant

e
ho -r [0/1℄ > /pro
/beowulf/beo 
on�g Set RTT estimator (0 = o�, 1 =


onstant, 2 = 
urrent (shift)

e
ho -
 <value> > /pro
/beowulf/beo 
on�g Set RTT 
onstant value

e
ho -h <value> > /pro
/beowulf/beo 
on�g Set RTT shift value

e
ho -m <value> > /pro
/beowulf/beo 
on�g Set beo max a
k for for
ed a
-

knowledgments

e
ho -i <value> > /pro
/beowulf/beo 
on�g Reset to original values

e
ho -
 1 -f 1 -r 1 -d 1 -n 1 > /pro
/beowulf/beo slow Set 
ongestion window to 
on-

stant value

e
ho -v <value> > /pro
/beowulf/beo slow Set 
ongestion window 
onstant

e
ho -t <value> > /pro
/beowulf/beo slow Set beo init 
wnd for initial 
on-

gestion window

e
ho -i <value> > /pro
/beowulf/beo slow Reset to original values

To View Current Setup


at /pro
/beowulf/beo 
on�g Display RTO, RTT, and ATO

setup


at /pro
/beowulf/beo slow Display 
ongestion window setup


