Out of Core Sorting on Beowulf Class Computers

Matthew M. Cettei
Lucent Technologies
Suite 105
8000 Regency Parkway
Cary, NC 27511
919-388-2656
mcettei@lucent.com

Walter B. Ligon III
Parallel Architecture Research Lab

walt@eng.clemson.edu

Robert B. Ross

Clemson University
102 Riggs Hall

Clemson, SC 29634-0915

864-656-7223
rbross@parl.clemson.edu

October 12, 1998

Abstract

Beowulf class parallel computers have shown
impressive performance for specific applica-
tions and have become a popular choice for
groups who need high performance comput-
ing resources on a tight budget. At the same
time, it is still unclear how many fundamen-
tal applications map to this platform. One
such application is that of sorting. More ex-
peunsive clusters of high-performance worksta-
tions using proprietary networks have shown
excellent sorting capabilities. However, this
application has yet to be explored on Beowulf
workstations, especially in the context of data
sets larger than core memory. In this paper
we study two algorithms for sorting, focusing
on their performance on a Beowulf worksta-
tion as problem size approaches and exceeds
core memory size.

1 Introduction

Sorting is one of the most fundamental applications
of computers, as it is required for the many database
and storage systems operating today. One observable
trend certain to continue is the exponential growth of
data set sizes. To keep pace with this trend, the use of

parallel machines has also increased. Often sorting re-
quires rearranging large records of data, and even par-
allel machines can quickly run out of available memory.
This paper looks at sorting techniques which can run
on data sets larger than the total memory size and
their performance on Beowulf-class computers.

As the popularity of parallel processing has in-
creased, so has the need for low cost parallel comput-
ing resources. Clusters of workstations were one of the
first attempts at providing parallel computing facilities
at a lower cost than massively parallel computers [1].
These clusters are often built using existing worksta-
tions which are used as interactive systems during the
day, can be heterogeneous in composition, and rely on
extra software to balance the load across the machines
in the presence of interactive jobs. The Pile-of-PCs
architecture is an extension of the cluster of worksta-
tion concept that emphasizes dedicated resources and
a private system area network for communication [2].
The Beowulf workstation concept builds on the Pile-of-
PCs concept by utilizing a freely available base of soft-
ware including operating systems (e.g. Linux), message
passing libraries (e.g. MPI and PVM), and compilers
(e.g. gee). Experiments have shown Beowulf worksta-
tions capable of providing high performance for appli-
cations in a number of problem domains.

Typical scientific applications that are well suited for
execution on parallel machines require large amounts



of data. Unfortunately, rapid improvements in proces-
sor execution rates have far outstripped the progress of
I/0O systems, most notably disk access rates. In order
to bridge the gap between these rates of progress, new
methods of I/O have been developed to take full ad-
vantage of the network bandwidth and multiple I/O re-
sources in parallel systems. Parallel disk systems, such
as RAIDs, provide increased 1/O bandwidth and data
protection through redundancy [3]. However, RAIDs
still rely on a single point of access to the I/O sys-
tem. Parallel file systems remove this bottleneck by
splitting I/O requests between multiple nodes which
handle I/O. These nodes, known as I/0 nodes, access
their disks in parallel and take advantage of the net-
work bandwidth, providing parallel points of access to
the I/O system. Parallel file systems thus provide a
necessary capability for many application domains, in-
cluding out of core methods.

Many parallel algorithms rely on the data set fitting
in the available memory on the parallel machine. As
data sets grow beyond memory capabilities, algorithms
must be utilized that work on data sets beyond the core
memory size. While virtual memory systems allow for
memory to spill over onto disk space, VM often im-
poses a high performance penalty. As an alternative,
explicit out of core algorithms recognize that paral-
lel processes rarely require all of their data in mem-
ory at one time and can read sections of such data
from disk at the necessary time. Traditional sequential
OOC algorithms do not port well to parallel machines
because many commercial parallel machines have poor
1/0O characteristics, which have adverse effects on OOC
applications. In contrast to these machines, Beowulf
workstations have better relative I/O characteristics
because each node contains a disk. Thus OOC al-
gorithms might map more effectively to this type of
system.

One application that can take advantage of paral-
lel I/O systems and out of core algorithms is sorting.
Sorting requires large amounts of I/O and has proven
well-suited to networks of workstations [4], which ex-
hibit many of the characteristics of Piles-of-PCs. This
paper presents two out of core sorting algorithms and
their performance on a Beowulf machine running a par-

allel file system. The focus of this study will be on
the behavior of these algorithms with problem sizes
that approach and exceed the core memory size. The
next section will delve into the work already performed
in this area and how it relates to the work presented
herein. Section 3 will describe the algorithms tested
and the experimental methods, and Section 4 will
present the results.

2 Background

In order to efficiently perform sorting operations on
Beowulf workstations, it is important to match the al-
gorithm to the system software and architecture char-
acteristics. Here we discuss the particulars of the
Beowulf workstation, the parallel file system, paral-
lel sorting, and the role that OOC computation will

play.

2.1 Beowulf Machines

The Beowulf workstation is a fairly new concept in the
realm of parallel computing [5]. A Beowulf worksta-
tion is a dedicated set of PCs built from commodity
parts connected by an inexpensive dedicated system
area network, combined with a set of freely available
software to provide an operating system, compilers,
and message passing system. The ideal software for
this type of distributed machine would allow the user
to view the system as a single machine by coordinat-
ing processes among the nodes. This set of software
is continuously enhanced by the growing community
of Beowulf users, who generally make their additions
freely available. The use of commodity off-the-shelf
parts allows the most recent technology to be included
in a machine being built. Massively parallel machine
development has been hindered in the past by the
technology curve in that by the time the machine is
built, some of the hardware, especially the processors,
is obsolete. Beowulf nodes can be assembled and up-
graded like workstation PCs, and no custom hardware
is needed to assemble a system.

The goal of a programmer on a Beowulf worksta-
tion is to develop algorithms that take advantage of a



Beowulf’s strengths, such as fast processors and a dis-
tributed I/O system, while compensating for its weak-
nesses, namely commodity networking hardware not
designed for parallel computing. Presently, Beowulf
workstations have been used to process N-body algo-
rithms [6], electromagnetic codes, and systems of equa-
tions with Gauss-Seidel methods [7].

2.2 Parallel Virtual File System

In parallel applications, I/O generally occurs at three
points: initially reading the data set, writing out the
solution data, and, in the case of out of core appli-
cations, reading and writing intermediate data. The
limiting factor of a parallel disk-to-disk sorting appli-
cation is often the I/O system, especially with out of
core sorts.

Certain basic principles of parallel I/O persist
through most attempts to create a useful parallel file
system. Declustering involves spreading a file across
a set of disks, in order to increase the total band-
width when accessing a chunk of the file. Striping is a
declustering scheme where file clusters are interleaved
round-robin across a set of disks [8]. A large access
to a striped file may cause several disks to respond,
thereby taking advantage of the greater network and
disk bandwidth. Also, if placed correctly, a striped file
should improve data locality, as each node could have
part of its data set on a local disk.

The Parallel Virtual File System (PVFS), developed
at Clemson University, takes a streams-based approach
to parallel I/O. It is one of the few parallel file systems
designed specifically for a cluster of workstations en-
vironment. The system is user-level and consists of
a manager daemon process, which runs on any sin-
gle node, and a set I/O daemons (IOD), which run
on any node used for I/O. The set of I/O nodes can
overlap the set of compute nodes. TCP is used to com-
municate with compute processes via a set of library
calls. The manager daemon coordinates file opens and
closes, checks permissions and performs most of the
operations not requiring a read or write.

The IODs communicate directly with compute pro-
cesses when performing a read or write. PVFS uses

UNIX socket commands for communication and, there-
fore, is portable to most UNIX systems. It has been
tested on a number of Linux systems and a DEC Al-
pha cluster. The IOD takes a set of request parame-
ters and performs the set of sequential disk accesses,
coordinating the transfer from disk to network. To im-
prove network performance, data is packed into large
packets before being sent over the network. The re-
quest parameters for PVFS are not dependent on the
disk distribution, so multi-strided requests can be filled
without data sieving. PVFS is an effective parallel file
system providing consistency and speed for parallel ap-
plications with large amounts of I/0.

One of the open issues in parallel I/O is the proper
allocation of nodes as I/O nodes and compute nodes.
Most parallel machines partition their nodes into com-
pute (or work) nodes and auxiliary nodes. With ded-
icated clusters, it may be more efficient to use nodes
for both compute and I/O work, because each node
has a local disk. Kotz has examined using compute
nodes to do I/O work on a massively parallel machine
using his disk-directed I/O paradigm [9]. Those results
show that the processors can continue to run between
50% and 85% efficiency while servicing I/O requests,
depending on the types of requests. These tests were
run on a parallel machine simulation with a set of I/O
access traces. The use of nodes for both computation
and I/O was also explored by Cettei et al. [7], where
it was found that for an OOC Gauss-Seidel iterative
solver performance was highest when I/O and compute
nodes were overlapped. This issue will be examined in
this paper as well in the context of sorting applications.

2.3 Parallel Sorting

Research related to parallel sorting is widespread but
mostly relates to the traditional fast network paral-
lel machines, while very little work has focused on
a clustered computing environment. Still, many of
the algorithm studies can transfer loosely to a clus-
ter of workstations, although efficient network use is
more important on a Pile-of-PCs architecture than on
a massively parallel machine. Most of the sequential
sorting algorithm complexities were first reported by



Knuth[10], and most work since has focused on per-
forming sorts on various architectures. The hypercube
algorithm put forth by Abali et al. [11] performs a
quicksort on each node, then performs a Fast Parti-
tion algorithm to balance the load on each processor
before passing data to other processors. This algo-
rithm is similar to the bucket sort on a cluster of ma-
chines examined in this paper. Wen has shown an effi-
cient parallel algorithm for merging multiple lists on a
concurrent-read exclusive-write parallel random access
machine (CREW PRAM) [12], which has similarities
with the mergesort presented here.

The Network of Workstations (NOW) project at
UC-Berkeley has provided the best non-commercial
disk-to-disk sorting performance to date [4]. Using
a network of 95 Sun workstations and Myrinet net-
work, the NOW Sort group won the Indy MinuteSort
award for largest sort in one minute. The NOW Sort
uses a simple bucket sort algorithm and assumes a uni-
form distribution. Given P workstations, the problem
is partitioned into P buckets, based on the distribu-
tion. Each workstation sorts its initial partition and
distributes the resulting buckets to the other proces-
sors. The initial sort used is a bucket/partial radix
sort, which was found to be superior to a quicksort and
a quicksort over buckets for their implementation. To
perform read accesses, the NOW Sort uses the mmap()
command with madvise() in order to maximize per-
formance. The key values are split into buckets and
sent to other nodes, where the local data is sorted
and written to disk. In terms of overlapping commu-
nication with I/O, the best results were found with
a multi-threaded version using a reader thread and a
send thread.

The one-pass NOW Sort was found to be nearly per-
fectly scalable up to 32 processors on their hardware.
The NOW Sort group developed a two-pass sort in
order to operate on a data set that was OOC. The
two-pass consists of several bucket sort runs followed
by a mergesort. This sort scales fairly well, although
the parallel version performs well below their one-pass
sort. The work by the NOW Sort group most closely
matches the work presented here.

2.4 Out of Core Computation

Out of core algorithms are defined as algorithms which
can run on data sets larger than the main memory size.
The Beowulf architecture is particularly well-suited for
OOC programs because often this shifting of data to
and from disk can happen locally. There are two ap-
proaches to dealing with OOC problems: the use of
virtual memory and explicit out of core solutions.

Virtual memory is an operating system feature that
allows a larger “virtual” memory space than the size
of physical memory. This is accomplished by the use
of local disk as a buffer area for regions of memory
not currently in use. Nothing need be done by the
user to enable virtual memory; the kernel simply moves
sections of memory onto disk when it needs more space
in physical memory. This makes the coding of OOC
problems trivial; however, often performance suffers
the moment the swapping of memory onto disk begins.

The primary characteristic of explicit out of core
programming is that the user manages memory use. To
this end, the programmer partitions the problem into
sections that can fit into memory and handles shifting
sections in and out of memory during the computation.
This can be troublesome to code if library support is
not available, but performance is often superior to vir-
tual memory solutions.

This paper builds on previous work studying the
performance of OOC implementations by focusing on
OOC sorting. Previous work by the Parallel Architec-
ture Research Lab (PARL) group at Clemson com-
pared an explicit OOC implementation of a Gauss-
Seidel Iterative Solver with another version that was
not designed to run OOC. The non-OOC solver ran
well for small matrix sizes that fit in memory, but
when virtual memory was needed, the explicit OOC
algorithm executed much more quickly [7]. Kotz stud-
ied the use of disk-directed I/O with an OOC LU
decomposition problem, finding that DDIO did im-
prove performance of the application over using tra-
ditional caching [13]. Salmon and Warren studied par-
allel OOC methods for N-body simulation using tree
codes, and found the OOC tree codes essentially re-
duced to OOC sorting [6].



/N YN /N

00

2N/P/.3N/P-1

0..N/P N/P.L.2N/P-1

Read Local
Data

Exchange

3N/P..N

Writeto Disk

Figure 1: Diagram of data flow for parallel bucket sort.

3 Out of Core Sorting

Previous sorting work has shown that near-optimal al-
gorithms can be developed for parallel sorting. As sort
data size requirements grow, methods of performing
sorts out of core become necessary. The focus of this
paper is the dedicated cluster computer, specifically
the Beowulf class computer. In this section the com-
plexity of OOC sorting on dedicated clusters will be
discussed, as well as the experimental setup.

3.1 Bucket Sort

The bucket sort tested here was deliberately coded to
be nearly identical to the NOW Sort discussed in the
previous chapter. The steps of the bucket sort are:

e Read % records from disk with PVFS

e Partition data into P buckets and exchange with
other processors

e Quicksort bucket and write back to disk

A diagram of the data flow in this algorithm is given
in Figure 1. The obvious advantage is that there is
only one read step and one write step, so the I/0O is
minimized, but the memory requirements are tied to

the problem size. Each compute node must send a
one-to-one message to each processor, at an average of
NI;}K bytes per message, where K is the record size in
bytes. Each processor sends P-1 messages, so the total

network traffic is approximately N % K bytes.

The bucket sort utilizes two buffers on each node to
hold data before and after sorting. It has been shown
by Nyberg et al. [14] that sorting via pointers is con-
siderably faster than sorting large records; therefore,
our implementation uses an additional buffer of point-
ers on which the sort is performed. With a uniform
distribution each processor’s bucket is assured to be

NI*,K size. This leads to a total memory requirement

of:

% % (2% K + sizeof (ptr))

For a non-uniform distribution the memory require-
ments would vary depending on how much the data is
skewed, as some buckets would be much larger than
others. The NOW group has implemented a ran-
dom sampling into their bucket sort to approximate
the data range and minimize the bucket size variance;
this was not included in our implementation, and non-
uniform distributions are not covered in this work.



3.2 Mergesort Algorithms

The second algorithm tested is based on a mergesort
scheme. It has no reliance on data distribution and can
also operate on any sized data set. The sort data be-
gins and ends distributed via PVFS striped files. This
is not an optimal algorithm by any means, but it has
the interesting characteristic that it relies on a buffer
whose size is independent of problem size. Given P
processors, N records of size K, and a buffer of B bytes,
the steps of this mergesort are:

e Quicksort % records in B-sized sections and write
back to disk

e Mergesort the %:g B-sized sections and write
back to disk. Each processor should have % sorted

records on disk.

e Arrange processors into a tree structure and per-
form a mergesort. KEach processor merges two
streams and sends them to the next tree level.
See Figure 2.

e Write back to disk at the final two processors.

The mergesort requires roughly 3 * B bytes of mem-
ory on each machine in the cluster, and empirical test-
ing found that a buffer size of IMB was adequate. As-
suming that the number of processors is a power of
two, the tree structure above leaves two processors at
the top level. Because the transfer to disk is the bottle-
neck in the process, the final processor merge is dupli-
cated, and each processor writes half of the final data
(in interleaved accesses) back to the disk. The buffer
value is used to determine how much data is merged
at one time. Each of the first-level processors read two
B-sized sections from disk, mergesorts the sets, and
sends them onto the next level. The first-level proces-
sors will therefore mergesort a total of % records. The
final merge is the limiting factor of the algorithm, as
it always involves just two processors, and thus limits
the scalability of the algorithm. However, it serves as
a reasonable algorithm for our purposes.

The mergesort algorithm presented above operates
out of core, so it requires more I/O than an in-core al-
gorithm. During the first phase, when each node sorts

Disks

]

Ul
QO O O
\ /e \
O odes

o
L

Output File

i

Bottom
Level

~O

Top Level

\

-

Figure 2: Diagram of data flow for mergesort algorithm

its own partition, the partition must be read and writ-
ten completely log [%Ig | times. The second phase,
where the merge tree is built, requires a read of N x K
bytes by g processors and a write of the same amount
by 2 processors. The entire sort data set must be sent
in a node-to-node communication log P times, with
message sizes of B bytes. Much of this communication
will be overlapped with other communications and the
disk reads, so that while the first row of processors
continues to merge B-sized buffers from disk, it will
be piping 2B-sized buffers to the next level in the tree.
For sizable data sets, all processors in the tree will be
busy for some period of time.

During our tests we also use this algorithm with
buffer sizes set to hold the entire data set in core. This
allows us to explore the behavior of the algorithm when
using VM by increasing the problem size.

3.3 The Grendel Machine

The Beowulf machine on which this work was per-
formed is a 17-node cluster connected by a Bay Net-
works fast ethernet switch. Each node has the follow-



ing specifications:

Pentium 150MHz CPU

64 MB EDO DRAM

64 MB local swap space
2.1 GB IDE disk

e Tulip-based 100Mbit fast ethernet card

One node runs the PVFS manager daemon and han-
dles interactive connections while the other nodes can
be used as compute nodes, I/O nodes, or both. Each
node runs Linux v2.0.27 with a Tulip driver by Don-
ald Becker. The PVFS file system was used to make
all I/O accesses, and the Parallel Virtual Machine
(PVM) [15] provided message-passing between com-
pute processes. The IDE disks provide approximately
4.5MBps with sustained writes and 4.2MBps with sus-
tained reads, as reported by Bonnie, a popular UNIX
file system performance benchmark. When idle, ap-
proximately 6MB of memory are used on each node
by the kernel and various system processes, including
PVFS and the PVM daemon.

4 Results

This section will discuss the experimental results of
tests performed on the two algorithms presented in
the previous chapter. Each individual test was run
five times, with an average of these results presented
here. Unless otherwise noted, the sort keys were four
bytes in each test, record sizes were kept at 128 bytes,
all I/O was performed on the nodes used for computa-
tion, and buffer sizes of 1MB were used in the explicit
OOC algorithm. The results fit in the following major
categories:

e explicit OOC and virtual memory performance for
the mergesort

e performance of algorithms with a uniform key dis-
tribution

e effects of compute node and I/O node overlap

The standard performance metric is the total execu-
tion time for the disk-to-disk sort and the comparative
speedup, where applicable.

4.1 Explicit OOC and Virtual Memory

Mergesort

The purpose of these experiments was to determine
how well the explicit OOC mergesort scaled (for the
available number of nodes) and how it compared to
the same algorithm using an in-core data set (and vir-
tual memory when necessary). The virtual memory
version, because of limits on swap space, would only
run up to a problem size of 256K records of 128 bytes
on four nodes. Figure 3 demonstrates the speedup of
the OOC parallel mergesort over the virtual memory
parallel mergesort on the same number of nodes as the
data set is made larger. The performance is nearly
equivalent up to 128K elements, after which the VM
version is much slower.

The OOC mergesort competed well with the virtual
memory version on smaller data sets, and far outper-
formed it on larger sets. The OOC mergesort per-
formed well on data sets sizes up to 1GB on 16 nodes,
while the virtual memory version took hours or days
for tests requiring more than 64MB of memory per
node.

Figure 4 shows the speedup of the OOC parallel
mergesort over the OOC sequential version of the sort
for various array sizes. The mergesort does not provide
linear speedup because the final writing, performed
by two processors in this configuration, is a bottle-
neck and because for a fraction of the time spent in
the tree phase not all processors are busy. However,
as the data set size is increased, the overall efficiency
improves. This is due to two factors: there is more
overlap of communication and computation in the tree
phase, and data transfer in this environment is more
efficient with larger blocks.

4.2 0OOC Mergesort vs. Bucket Sort

This section compares the OOC mergesort with the
one-pass bucket sort presented by Arpaci-Dusseau et



5 T T T

16 CPs, 16 IOPs —+— .
45 | 16 CPs, 810Ps -+ i
16 CPs, 410Ps =
8CPs, 810Ps x
4 8CPs 410Ps -+-- P i
4CPs, 410Ps —* - ;o
s 35t .
S
o 3+ N
3
o
% 25 | .
) 5L 1
15 | .
0.5 1 1 1
3?2 64 128 256 512

Array Size (K elements)

Figure 3: Speedup of the OOC mergesort over the virtual memory version.

8 T T T T T T T T T
1MB records ——
7 | 512k records -—+--- i
256k records &
= 128k records -
% 6l 64k records -+ |
Q
(@]
x
()
E) 5 - - .
c
n
o | i
3 4
o
>
g 3l 1
& &/
£ .
X
2 F . g
1 1 1 1 1 1 1 1 1 1

0 2 4 6 8 10 12 14 16 18 20
Number of Processors

Figure 4: Speedup of the OOC mergesort over the sequential single processor.



900 | 4 CP, 410Ps, bucket —— ;
4 CP, 410Ps, merge -+ ; /
800 | 8 CP, 8 10Ps, bucket = a] /]
8 CP, 8 10Ps, merge -~ /
16 CP, 16 |OPs, bucket =~ - /
700 116 CP, 16 10Ps, merge -~ S
Q)
< 600 fi -
£
F s00} -
c " ;
S o
g i / |
% 400
300 | ]
200 | e 1
100 | g 1
[ — |
32 64 128 256 512 1024 2048

Array Size (K elements)

Figure 5: Merge and bucket sort performance on a uniform distribution.

al. [4] on both a uniform distribution and a skewed
distribution. Figure 5 shows the comparative perfor-
mance with a uniform distribution. The bucket sort
does perform better on the smaller data sets, but the
merge performs better as the data set size increases.
In particular, the performance of the bucket sort be-
gins to drop when each node is responsible for 128K of
128 byte records. This corresponds to a memory usage
of 36MB by the bucket sort for holding local records.
With I/O being performed on these same nodes, con-
tention begins to occur for pages of memory as dirty
buffers accumulate.

4.3 Sharing Compute and I/O Nodes

These experiments were designed to examine the use of
overlapping I/O and compute nodes. Figure 6 summa-
rizes these results. In general, adding additional nodes
to serve as separate I/O nodes did improve the per-
formance of the algorithm. However, in each case, for
a fixed number of resources the algorithm performed

significantly better when nodes were used for both I/O
and computation. When we consider the amount of ex-
plicit disk I/O occurring in these sorts, this seems obvi-
ous. For the mergesort operating on 256K of 128 byte
records, the data set size is 32MB. This corresponds
to 96MB of writes and 96MB of reads throughout the
execution time of the application. For 16 nodes, this is
only 12MB of I/O per node, which we would expect to
take only 3 seconds of the approximately 50 second ex-
ecution time based on the characteristics of our disks.
Thus the nodes are free to compute roughly 94% of the
time.

5 Conclusions

This paper has shown that an out of core sorting algo-
rithm is superior to approaches that rely on virtual
memory for problem sizes that approach or exceed
core memory size and has comparable performance for
smaller sizes. The most interesting point here is that
even a small amount of necessary I/O, such as the



4 nodes, overlapped ——
1000 | 8 nodes, 4CPand410P --+--- :
8 nodes, overlapped -=--- ;
16 nodes, 8 CPand 8 [OP -
16 nodes, overlapped -=--
800 f
&
EJ/ ,‘//
S /
[ 600 | 'y
c ,/,
= /
5 . £ //
8 / ' ,//
i 400 |
A
200 - /+’/ ( ) A// |
g
0 g | |
32 64 128 256 512 1024 2048

Array Size (K elements)

Figure 6: Using I/O nodes as compute nodes.

192MB of I/O over 50 seconds in the 256K record case,
can result in a tremendous performance hit when in-
stead of explicitly performing the I/O, the VM system
is left to its own devices. It is also interesting to note
that our OOC mergesort algorithm was operating with
3MB of memory for record storage during most of the
tests and was able to sort data sets of 1GB, indicating
that it is not necessary to hold large portions of the
data set in core. File system size constraints limited
our ability to test beyond this size.

However, the execution of parallel sorting algorithms
out of core still presents several open issues. First, the
scalability of this mergesort algorithm is questionable,
and new approaches to sorting that retain an indepen-
dent buffer size should be studied in this environment.
Second, further testing should be performed to push
the limits of the I/O subsystems to better determine
when it is appropriate to overlap I/O and compute
nodes and when it is not. Finally, it is still much
more convenient to use VM rather than perform ex-
plicit I/O; more progress needs to be made in order to

simplify the process of writing explicit OOC applica-
tions so that the performance benefits are more easily
obtained.

References

[1] K. Castagnera, D. Cheng, R. Fatoohi, E. Hook,
B. Kramer, C. Manning, J. Musch, C. Niggley,
W. Saphir, D. Sheppard, M. Smith, I. Stock-
dale, S. Welch, R. Williams, and D. Yip, “Clus-
tered workstations and their potential role as high
speed compute processors,” Tech. Rep. RNS-94-
003, NAS Systems Division, NASA Ames Re-
search Center, April 1994.

[2] D. Ridge, D. Becker, P. Merkey, and T. Sterling,
“Beowulf: Harnessing the power of parallelism in
a pile-of-pcs,” in Proceedings of the 1997 IEEE
Aerospace Conference, 1997.

[3] D. Patterson, G. Gibson, and R. Katz, “A case for
redundant arrays of inexpensive disks (RAID),” in

10



Proceedings of the ACM SIGMOD International
Conference on Management of Data, (Chicago,
IL), pp. 109-116, ACM Press, June 1988.

A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau,
D. E. Culler, J. M. Hellerstein, and D. P. Patter-
son, “High-Performance Sorting on Networks of
Workstations,” in Proceedings of the 1997 ACM
SIGMOD Conference, pp. 243254, 1997.

T. Sterling, D. J. Becker, D. Savarese, J. E. Dor-
band, U. A. Ranawake, and C. V. Packer, “Be-
owulf: A parallel workstation for scientific compu-
tation,” in Proceedings of the 1995 International
Conference on Parallel Processing, 1995.

J. Salmon and M. Warren, “Parallel out-of-core
methods for N-body simulation,” in Proceedings
of the Eighth SIAM Conference on Parallel Pro-
cessing for Scientific Computing, 1997.

M. Cettei, W. B. L. III, and R. Ross, “Support
for parallel out of core applications on beowulf
workstations,” in Proceedings of the 1998 IEEE
Aerospace Conference, 1998.

P. Dibble, M. Scott, and C. Ellis, “Bridge: A high-
performance file system for parallel processors,”
in Proceedings of the Eighth International Confer-
ence on Distributed Computer Systems, pp. 154—
161, June 1988.

D. Kotz and T. Cai, “Exploring the use of I/O
nodes for computation in a MIMD multiproces-
sor,” in Proceedings of the IPPS 95 Workshop on
Input/Output in Parallel and Distributed Systems,
pp- 78-89, April 1995.

D. E. Knuth, The Art of Computer Programming:
Sorting and Searching (Volume 3). Addison-
Wesley, 1973.

B. Abali, F. Ozguner, and A. Bataineh, “Bal-
anced parallel sort on hypercube multiproces-

sors,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 4, pp. 572-581, May 1993.

11

[12]

[13]

[14]

Z. Wen, “Multiway merging in parallel,” [EEFE
Transactions on Parallel and Distributed Systems,
vol. 7, pp. 11-17, January 1996.

D. Kotz, “Disk-directed I/O for an out-of-core
computation,” in Proceedings of the Fourth IEEE
International Symposium on High Performance
Distributed Computing, pp. 159-166, August
1995.

C. Nyberg, T. Barclay, Z. Cvetanovic, J. Gray,
and D. Lomet, “AlphaSort: A RISC Machine
Sort,” in Proceedings of 1994 ACM SIGMOD
Conference, May 1994.

V. Sunderam, “Pvm: A framework for paral-
lel distributed computing,” Concurrecy: Practice
and Ezperience, pp. 315-339, December 1990.



