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Abstra
t

Beowulf 
lass parallel 
omputers have shown

impressive performan
e for spe
i�
 appli
a-

tions and have be
ome a popular 
hoi
e for

groups who need high performan
e 
omput-

ing resour
es on a tight budget. At the same

time, it is still un
lear how many fundamen-

tal appli
ations map to this platform. One

su
h appli
ation is that of sorting. More ex-

pensive 
lusters of high-performan
e worksta-

tions using proprietary networks have shown

ex
ellent sorting 
apabilities. However, this

appli
ation has yet to be explored on Beowulf

workstations, espe
ially in the 
ontext of data

sets larger than 
ore memory. In this paper

we study two algorithms for sorting, fo
using

on their performan
e on a Beowulf worksta-

tion as problem size approa
hes and ex
eeds


ore memory size.

1 Introdu
tion

Sorting is one of the most fundamental appli
ations

of 
omputers, as it is required for the many database

and storage systems operating today. One observable

trend 
ertain to 
ontinue is the exponential growth of

data set sizes. To keep pa
e with this trend, the use of

parallel ma
hines has also in
reased. Often sorting re-

quires rearranging large re
ords of data, and even par-

allel ma
hines 
an qui
kly run out of available memory.

This paper looks at sorting te
hniques whi
h 
an run

on data sets larger than the total memory size and

their performan
e on Beowulf-
lass 
omputers.

As the popularity of parallel pro
essing has in-


reased, so has the need for low 
ost parallel 
omput-

ing resour
es. Clusters of workstations were one of the

�rst attempts at providing parallel 
omputing fa
ilities

at a lower 
ost than massively parallel 
omputers [1℄.

These 
lusters are often built using existing worksta-

tions whi
h are used as intera
tive systems during the

day, 
an be heterogeneous in 
omposition, and rely on

extra software to balan
e the load a
ross the ma
hines

in the presen
e of intera
tive jobs. The Pile-of-PCs

ar
hite
ture is an extension of the 
luster of worksta-

tion 
on
ept that emphasizes dedi
ated resour
es and

a private system area network for 
ommuni
ation [2℄.

The Beowulf workstation 
on
ept builds on the Pile-of-

PCs 
on
ept by utilizing a freely available base of soft-

ware in
luding operating systems (e.g. Linux), message

passing libraries (e.g. MPI and PVM), and 
ompilers

(e.g. g

). Experiments have shown Beowulf worksta-

tions 
apable of providing high performan
e for appli-


ations in a number of problem domains.

Typi
al s
ienti�
 appli
ations that are well suited for

exe
ution on parallel ma
hines require large amounts
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of data. Unfortunately, rapid improvements in pro
es-

sor exe
ution rates have far outstripped the progress of

I/O systems, most notably disk a

ess rates. In order

to bridge the gap between these rates of progress, new

methods of I/O have been developed to take full ad-

vantage of the network bandwidth and multiple I/O re-

sour
es in parallel systems. Parallel disk systems, su
h

as RAIDs, provide in
reased I/O bandwidth and data

prote
tion through redundan
y [3℄. However, RAIDs

still rely on a single point of a

ess to the I/O sys-

tem. Parallel �le systems remove this bottlene
k by

splitting I/O requests between multiple nodes whi
h

handle I/O. These nodes, known as I/O nodes, a

ess

their disks in parallel and take advantage of the net-

work bandwidth, providing parallel points of a

ess to

the I/O system. Parallel �le systems thus provide a

ne
essary 
apability for many appli
ation domains, in-


luding out of 
ore methods.

Many parallel algorithms rely on the data set �tting

in the available memory on the parallel ma
hine. As

data sets grow beyond memory 
apabilities, algorithms

must be utilized that work on data sets beyond the 
ore

memory size. While virtual memory systems allow for

memory to spill over onto disk spa
e, VM often im-

poses a high performan
e penalty. As an alternative,

expli
it out of 
ore algorithms re
ognize that paral-

lel pro
esses rarely require all of their data in mem-

ory at one time and 
an read se
tions of su
h data

from disk at the ne
essary time. Traditional sequential

OOC algorithms do not port well to parallel ma
hines

be
ause many 
ommer
ial parallel ma
hines have poor

I/O 
hara
teristi
s, whi
h have adverse e�e
ts on OOC

appli
ations. In 
ontrast to these ma
hines, Beowulf

workstations have better relative I/O 
hara
teristi
s

be
ause ea
h node 
ontains a disk. Thus OOC al-

gorithms might map more e�e
tively to this type of

system.

One appli
ation that 
an take advantage of paral-

lel I/O systems and out of 
ore algorithms is sorting.

Sorting requires large amounts of I/O and has proven

well-suited to networks of workstations [4℄, whi
h ex-

hibit many of the 
hara
teristi
s of Piles-of-PCs. This

paper presents two out of 
ore sorting algorithms and

their performan
e on a Beowulf ma
hine running a par-

allel �le system. The fo
us of this study will be on

the behavior of these algorithms with problem sizes

that approa
h and ex
eed the 
ore memory size. The

next se
tion will delve into the work already performed

in this area and how it relates to the work presented

herein. Se
tion 3 will des
ribe the algorithms tested

and the experimental methods, and Se
tion 4 will

present the results.

2 Ba
kground

In order to eÆ
iently perform sorting operations on

Beowulf workstations, it is important to mat
h the al-

gorithm to the system software and ar
hite
ture 
har-

a
teristi
s. Here we dis
uss the parti
ulars of the

Beowulf workstation, the parallel �le system, paral-

lel sorting, and the role that OOC 
omputation will

play.

2.1 Beowulf Ma
hines

The Beowulf workstation is a fairly new 
on
ept in the

realm of parallel 
omputing [5℄. A Beowulf worksta-

tion is a dedi
ated set of PCs built from 
ommodity

parts 
onne
ted by an inexpensive dedi
ated system

area network, 
ombined with a set of freely available

software to provide an operating system, 
ompilers,

and message passing system. The ideal software for

this type of distributed ma
hine would allow the user

to view the system as a single ma
hine by 
oordinat-

ing pro
esses among the nodes. This set of software

is 
ontinuously enhan
ed by the growing 
ommunity

of Beowulf users, who generally make their additions

freely available. The use of 
ommodity o�-the-shelf

parts allows the most re
ent te
hnology to be in
luded

in a ma
hine being built. Massively parallel ma
hine

development has been hindered in the past by the

te
hnology 
urve in that by the time the ma
hine is

built, some of the hardware, espe
ially the pro
essors,

is obsolete. Beowulf nodes 
an be assembled and up-

graded like workstation PCs, and no 
ustom hardware

is needed to assemble a system.

The goal of a programmer on a Beowulf worksta-

tion is to develop algorithms that take advantage of a
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Beowulf's strengths, su
h as fast pro
essors and a dis-

tributed I/O system, while 
ompensating for its weak-

nesses, namely 
ommodity networking hardware not

designed for parallel 
omputing. Presently, Beowulf

workstations have been used to pro
ess N-body algo-

rithms [6℄, ele
tromagneti
 
odes, and systems of equa-

tions with Gauss-Seidel methods [7℄.

2.2 Parallel Virtual File System

In parallel appli
ations, I/O generally o

urs at three

points: initially reading the data set, writing out the

solution data, and, in the 
ase of out of 
ore appli-


ations, reading and writing intermediate data. The

limiting fa
tor of a parallel disk-to-disk sorting appli-


ation is often the I/O system, espe
ially with out of


ore sorts.

Certain basi
 prin
iples of parallel I/O persist

through most attempts to 
reate a useful parallel �le

system. De
lustering involves spreading a �le a
ross

a set of disks, in order to in
rease the total band-

width when a

essing a 
hunk of the �le. Striping is a

de
lustering s
heme where �le 
lusters are interleaved

round-robin a
ross a set of disks [8℄. A large a

ess

to a striped �le may 
ause several disks to respond,

thereby taking advantage of the greater network and

disk bandwidth. Also, if pla
ed 
orre
tly, a striped �le

should improve data lo
ality, as ea
h node 
ould have

part of its data set on a lo
al disk.

The Parallel Virtual File System (PVFS), developed

at Clemson University, takes a streams-based approa
h

to parallel I/O. It is one of the few parallel �le systems

designed spe
i�
ally for a 
luster of workstations en-

vironment. The system is user-level and 
onsists of

a manager daemon pro
ess, whi
h runs on any sin-

gle node, and a set I/O daemons (IOD), whi
h run

on any node used for I/O. The set of I/O nodes 
an

overlap the set of 
ompute nodes. TCP is used to 
om-

muni
ate with 
ompute pro
esses via a set of library


alls. The manager daemon 
oordinates �le opens and


loses, 
he
ks permissions and performs most of the

operations not requiring a read or write.

The IODs 
ommuni
ate dire
tly with 
ompute pro-


esses when performing a read or write. PVFS uses

UNIX so
ket 
ommands for 
ommuni
ation and, there-

fore, is portable to most UNIX systems. It has been

tested on a number of Linux systems and a DEC Al-

pha 
luster. The IOD takes a set of request parame-

ters and performs the set of sequential disk a

esses,


oordinating the transfer from disk to network. To im-

prove network performan
e, data is pa
ked into large

pa
kets before being sent over the network. The re-

quest parameters for PVFS are not dependent on the

disk distribution, so multi-strided requests 
an be �lled

without data sieving. PVFS is an e�e
tive parallel �le

system providing 
onsisten
y and speed for parallel ap-

pli
ations with large amounts of I/O.

One of the open issues in parallel I/O is the proper

allo
ation of nodes as I/O nodes and 
ompute nodes.

Most parallel ma
hines partition their nodes into 
om-

pute (or work) nodes and auxiliary nodes. With ded-

i
ated 
lusters, it may be more eÆ
ient to use nodes

for both 
ompute and I/O work, be
ause ea
h node

has a lo
al disk. Kotz has examined using 
ompute

nodes to do I/O work on a massively parallel ma
hine

using his disk-dire
ted I/O paradigm [9℄. Those results

show that the pro
essors 
an 
ontinue to run between

50% and 85% eÆ
ien
y while servi
ing I/O requests,

depending on the types of requests. These tests were

run on a parallel ma
hine simulation with a set of I/O

a

ess tra
es. The use of nodes for both 
omputation

and I/O was also explored by Cettei et al. [7℄, where

it was found that for an OOC Gauss-Seidel iterative

solver performan
e was highest when I/O and 
ompute

nodes were overlapped. This issue will be examined in

this paper as well in the 
ontext of sorting appli
ations.

2.3 Parallel Sorting

Resear
h related to parallel sorting is widespread but

mostly relates to the traditional fast network paral-

lel ma
hines, while very little work has fo
used on

a 
lustered 
omputing environment. Still, many of

the algorithm studies 
an transfer loosely to a 
lus-

ter of workstations, although eÆ
ient network use is

more important on a Pile-of-PCs ar
hite
ture than on

a massively parallel ma
hine. Most of the sequential

sorting algorithm 
omplexities were �rst reported by
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Knuth[10℄, and most work sin
e has fo
used on per-

forming sorts on various ar
hite
tures. The hyper
ube

algorithm put forth by Abali et al. [11℄ performs a

qui
ksort on ea
h node, then performs a Fast Parti-

tion algorithm to balan
e the load on ea
h pro
essor

before passing data to other pro
essors. This algo-

rithm is similar to the bu
ket sort on a 
luster of ma-


hines examined in this paper. Wen has shown an eÆ-


ient parallel algorithm for merging multiple lists on a


on
urrent-read ex
lusive-write parallel random a

ess

ma
hine (CREW PRAM) [12℄, whi
h has similarities

with the mergesort presented here.

The Network of Workstations (NOW) proje
t at

UC-Berkeley has provided the best non-
ommer
ial

disk-to-disk sorting performan
e to date [4℄. Using

a network of 95 Sun workstations and Myrinet net-

work, the NOW Sort group won the Indy MinuteSort

award for largest sort in one minute. The NOW Sort

uses a simple bu
ket sort algorithm and assumes a uni-

form distribution. Given P workstations, the problem

is partitioned into P bu
kets, based on the distribu-

tion. Ea
h workstation sorts its initial partition and

distributes the resulting bu
kets to the other pro
es-

sors. The initial sort used is a bu
ket/partial radix

sort, whi
h was found to be superior to a qui
ksort and

a qui
ksort over bu
kets for their implementation. To

perform read a

esses, the NOW Sort uses the mmap()


ommand with madvise() in order to maximize per-

forman
e. The key values are split into bu
kets and

sent to other nodes, where the lo
al data is sorted

and written to disk. In terms of overlapping 
ommu-

ni
ation with I/O, the best results were found with

a multi-threaded version using a reader thread and a

send thread.

The one-pass NOW Sort was found to be nearly per-

fe
tly s
alable up to 32 pro
essors on their hardware.

The NOW Sort group developed a two-pass sort in

order to operate on a data set that was OOC. The

two-pass 
onsists of several bu
ket sort runs followed

by a mergesort. This sort s
ales fairly well, although

the parallel version performs well below their one-pass

sort. The work by the NOW Sort group most 
losely

mat
hes the work presented here.

2.4 Out of Core Computation

Out of 
ore algorithms are de�ned as algorithms whi
h


an run on data sets larger than the main memory size.

The Beowulf ar
hite
ture is parti
ularly well-suited for

OOC programs be
ause often this shifting of data to

and from disk 
an happen lo
ally. There are two ap-

proa
hes to dealing with OOC problems: the use of

virtual memory and expli
it out of 
ore solutions.

Virtual memory is an operating system feature that

allows a larger \virtual" memory spa
e than the size

of physi
al memory. This is a

omplished by the use

of lo
al disk as a bu�er area for regions of memory

not 
urrently in use. Nothing need be done by the

user to enable virtual memory; the kernel simply moves

se
tions of memory onto disk when it needs more spa
e

in physi
al memory. This makes the 
oding of OOC

problems trivial; however, often performan
e su�ers

the moment the swapping of memory onto disk begins.

The primary 
hara
teristi
 of expli
it out of 
ore

programming is that the user manages memory use. To

this end, the programmer partitions the problem into

se
tions that 
an �t into memory and handles shifting

se
tions in and out of memory during the 
omputation.

This 
an be troublesome to 
ode if library support is

not available, but performan
e is often superior to vir-

tual memory solutions.

This paper builds on previous work studying the

performan
e of OOC implementations by fo
using on

OOC sorting. Previous work by the Parallel Ar
hite
-

ture Resear
h Lab (PARL) group at Clemson 
om-

pared an expli
it OOC implementation of a Gauss-

Seidel Iterative Solver with another version that was

not designed to run OOC. The non-OOC solver ran

well for small matrix sizes that �t in memory, but

when virtual memory was needed, the expli
it OOC

algorithm exe
uted mu
h more qui
kly [7℄. Kotz stud-

ied the use of disk-dire
ted I/O with an OOC LU

de
omposition problem, �nding that DDIO did im-

prove performan
e of the appli
ation over using tra-

ditional 
a
hing [13℄. Salmon and Warren studied par-

allel OOC methods for N-body simulation using tree


odes, and found the OOC tree 
odes essentially re-

du
ed to OOC sorting [6℄.
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0...N/P 3N/P...N2N/P...3N/P-1N/P...2N/P-1

Read Local
Data

Exchange

Write to Disk

Figure 1: Diagram of data 
ow for parallel bu
ket sort.

3 Out of Core Sorting

Previous sorting work has shown that near-optimal al-

gorithms 
an be developed for parallel sorting. As sort

data size requirements grow, methods of performing

sorts out of 
ore be
ome ne
essary. The fo
us of this

paper is the dedi
ated 
luster 
omputer, spe
i�
ally

the Beowulf 
lass 
omputer. In this se
tion the 
om-

plexity of OOC sorting on dedi
ated 
lusters will be

dis
ussed, as well as the experimental setup.

3.1 Bu
ket Sort

The bu
ket sort tested here was deliberately 
oded to

be nearly identi
al to the NOW Sort dis
ussed in the

previous 
hapter. The steps of the bu
ket sort are:

� Read

N

P

re
ords from disk with PVFS

� Partition data into P bu
kets and ex
hange with

other pro
essors

� Qui
ksort bu
ket and write ba
k to disk

A diagram of the data 
ow in this algorithm is given

in Figure 1. The obvious advantage is that there is

only one read step and one write step, so the I/O is

minimized, but the memory requirements are tied to

the problem size. Ea
h 
ompute node must send a

one-to-one message to ea
h pro
essor, at an average of

N�K

P

2

bytes per message, where K is the re
ord size in

bytes. Ea
h pro
essor sends P-1 messages, so the total

network traÆ
 is approximately N �K bytes.

The bu
ket sort utilizes two bu�ers on ea
h node to

hold data before and after sorting. It has been shown

by Nyberg et al. [14℄ that sorting via pointers is 
on-

siderably faster than sorting large re
ords; therefore,

our implementation uses an additional bu�er of point-

ers on whi
h the sort is performed. With a uniform

distribution ea
h pro
essor's bu
ket is assured to be

N�K

P

size. This leads to a total memory requirement

of:

N

P

� (2 �K + sizeof(ptr))

For a non-uniform distribution the memory require-

ments would vary depending on how mu
h the data is

skewed, as some bu
kets would be mu
h larger than

others. The NOW group has implemented a ran-

dom sampling into their bu
ket sort to approximate

the data range and minimize the bu
ket size varian
e;

this was not in
luded in our implementation, and non-

uniform distributions are not 
overed in this work.
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3.2 Mergesort Algorithms

The se
ond algorithm tested is based on a mergesort

s
heme. It has no relian
e on data distribution and 
an

also operate on any sized data set. The sort data be-

gins and ends distributed via PVFS striped �les. This

is not an optimal algorithm by any means, but it has

the interesting 
hara
teristi
 that it relies on a bu�er

whose size is independent of problem size. Given P

pro
essors, N re
ords of size K, and a bu�er of B bytes,

the steps of this mergesort are:

� Qui
ksort

N

P

re
ords in B -sized se
tions and write

ba
k to disk

� Mergesort the

N�K

P�B

B -sized se
tions and write

ba
k to disk. Ea
h pro
essor should have

N

P

sorted

re
ords on disk.

� Arrange pro
essors into a tree stru
ture and per-

form a mergesort. Ea
h pro
essor merges two

streams and sends them to the next tree level.

See Figure 2.

� Write ba
k to disk at the �nal two pro
essors.

The mergesort requires roughly 3 �B bytes of mem-

ory on ea
h ma
hine in the 
luster, and empiri
al test-

ing found that a bu�er size of 1MB was adequate. As-

suming that the number of pro
essors is a power of

two, the tree stru
ture above leaves two pro
essors at

the top level. Be
ause the transfer to disk is the bottle-

ne
k in the pro
ess, the �nal pro
essor merge is dupli-


ated, and ea
h pro
essor writes half of the �nal data

(in interleaved a

esses) ba
k to the disk. The bu�er

value is used to determine how mu
h data is merged

at one time. Ea
h of the �rst-level pro
essors read two

B -sized se
tions from disk, mergesorts the sets, and

sends them onto the next level. The �rst-level pro
es-

sors will therefore mergesort a total of

2N

P

re
ords. The

�nal merge is the limiting fa
tor of the algorithm, as

it always involves just two pro
essors, and thus limits

the s
alability of the algorithm. However, it serves as

a reasonable algorithm for our purposes.

The mergesort algorithm presented above operates

out of 
ore, so it requires more I/O than an in-
ore al-

gorithm. During the �rst phase, when ea
h node sorts

Disks

Compute
Nodes

. . . . .

Top Level

Bottom

Output File

Level

Figure 2: Diagram of data 
ow for mergesort algorithm

its own partition, the partition must be read and writ-

ten 
ompletely log d

N�K

B�P

e times. The se
ond phase,

where the merge tree is built, requires a read of N �K

bytes by

P

2

pro
essors and a write of the same amount

by 2 pro
essors. The entire sort data set must be sent

in a node-to-node 
ommuni
ation logP times, with

message sizes of B bytes. Mu
h of this 
ommuni
ation

will be overlapped with other 
ommuni
ations and the

disk reads, so that while the �rst row of pro
essors


ontinues to merge B -sized bu�ers from disk, it will

be piping 2B -sized bu�ers to the next level in the tree.

For sizable data sets, all pro
essors in the tree will be

busy for some period of time.

During our tests we also use this algorithm with

bu�er sizes set to hold the entire data set in 
ore. This

allows us to explore the behavior of the algorithm when

using VM by in
reasing the problem size.

3.3 The Grendel Ma
hine

The Beowulf ma
hine on whi
h this work was per-

formed is a 17-node 
luster 
onne
ted by a Bay Net-

works fast ethernet swit
h. Ea
h node has the follow-
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ing spe
i�
ations:

� Pentium 150MHz CPU

� 64 MB EDO DRAM

� 64 MB lo
al swap spa
e

� 2.1 GB IDE disk

� Tulip-based 100Mbit fast ethernet 
ard

One node runs the PVFS manager daemon and han-

dles intera
tive 
onne
tions while the other nodes 
an

be used as 
ompute nodes, I/O nodes, or both. Ea
h

node runs Linux v2.0.27 with a Tulip driver by Don-

ald Be
ker. The PVFS �le system was used to make

all I/O a

esses, and the Parallel Virtual Ma
hine

(PVM) [15℄ provided message-passing between 
om-

pute pro
esses. The IDE disks provide approximately

4.5MBps with sustained writes and 4.2MBps with sus-

tained reads, as reported by Bonnie, a popular UNIX

�le system performan
e ben
hmark. When idle, ap-

proximately 6MB of memory are used on ea
h node

by the kernel and various system pro
esses, in
luding

PVFS and the PVM daemon.

4 Results

This se
tion will dis
uss the experimental results of

tests performed on the two algorithms presented in

the previous 
hapter. Ea
h individual test was run

�ve times, with an average of these results presented

here. Unless otherwise noted, the sort keys were four

bytes in ea
h test, re
ord sizes were kept at 128 bytes,

all I/O was performed on the nodes used for 
omputa-

tion, and bu�er sizes of 1MB were used in the expli
it

OOC algorithm. The results �t in the following major


ategories:

� expli
it OOC and virtual memory performan
e for

the mergesort

� performan
e of algorithms with a uniform key dis-

tribution

� e�e
ts of 
ompute node and I/O node overlap

The standard performan
e metri
 is the total exe
u-

tion time for the disk-to-disk sort and the 
omparative

speedup, where appli
able.

4.1 Expli
it OOC and Virtual Memory

Mergesort

The purpose of these experiments was to determine

how well the expli
it OOC mergesort s
aled (for the

available number of nodes) and how it 
ompared to

the same algorithm using an in-
ore data set (and vir-

tual memory when ne
essary). The virtual memory

version, be
ause of limits on swap spa
e, would only

run up to a problem size of 256K re
ords of 128 bytes

on four nodes. Figure 3 demonstrates the speedup of

the OOC parallel mergesort over the virtual memory

parallel mergesort on the same number of nodes as the

data set is made larger. The performan
e is nearly

equivalent up to 128K elements, after whi
h the VM

version is mu
h slower.

The OOC mergesort 
ompeted well with the virtual

memory version on smaller data sets, and far outper-

formed it on larger sets. The OOC mergesort per-

formed well on data sets sizes up to 1GB on 16 nodes,

while the virtual memory version took hours or days

for tests requiring more than 64MB of memory per

node.

Figure 4 shows the speedup of the OOC parallel

mergesort over the OOC sequential version of the sort

for various array sizes. The mergesort does not provide

linear speedup be
ause the �nal writing, performed

by two pro
essors in this 
on�guration, is a bottle-

ne
k and be
ause for a fra
tion of the time spent in

the tree phase not all pro
essors are busy. However,

as the data set size is in
reased, the overall eÆ
ien
y

improves. This is due to two fa
tors: there is more

overlap of 
ommuni
ation and 
omputation in the tree

phase, and data transfer in this environment is more

eÆ
ient with larger blo
ks.

4.2 OOC Mergesort vs. Bu
ket Sort

This se
tion 
ompares the OOC mergesort with the

one-pass bu
ket sort presented by Arpa
i-Dusseau et

7
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e on a uniform distribution.

al. [4℄ on both a uniform distribution and a skewed

distribution. Figure 5 shows the 
omparative perfor-

man
e with a uniform distribution. The bu
ket sort

does perform better on the smaller data sets, but the

merge performs better as the data set size in
reases.

In parti
ular, the performan
e of the bu
ket sort be-

gins to drop when ea
h node is responsible for 128K of

128 byte re
ords. This 
orresponds to a memory usage

of 36MB by the bu
ket sort for holding lo
al re
ords.

With I/O being performed on these same nodes, 
on-

tention begins to o

ur for pages of memory as dirty

bu�ers a

umulate.

4.3 Sharing Compute and I/O Nodes

These experiments were designed to examine the use of

overlapping I/O and 
ompute nodes. Figure 6 summa-

rizes these results. In general, adding additional nodes

to serve as separate I/O nodes did improve the per-

forman
e of the algorithm. However, in ea
h 
ase, for

a �xed number of resour
es the algorithm performed

signi�
antly better when nodes were used for both I/O

and 
omputation. When we 
onsider the amount of ex-

pli
it disk I/O o

urring in these sorts, this seems obvi-

ous. For the mergesort operating on 256K of 128 byte

re
ords, the data set size is 32MB. This 
orresponds

to 96MB of writes and 96MB of reads throughout the

exe
ution time of the appli
ation. For 16 nodes, this is

only 12MB of I/O per node, whi
h we would expe
t to

take only 3 se
onds of the approximately 50 se
ond ex-

e
ution time based on the 
hara
teristi
s of our disks.

Thus the nodes are free to 
ompute roughly 94% of the

time.

5 Con
lusions

This paper has shown that an out of 
ore sorting algo-

rithm is superior to approa
hes that rely on virtual

memory for problem sizes that approa
h or ex
eed


ore memory size and has 
omparable performan
e for

smaller sizes. The most interesting point here is that

even a small amount of ne
essary I/O, su
h as the

9
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192MB of I/O over 50 se
onds in the 256K re
ord 
ase,


an result in a tremendous performan
e hit when in-

stead of expli
itly performing the I/O, the VM system

is left to its own devi
es. It is also interesting to note

that our OOC mergesort algorithm was operating with

3MB of memory for re
ord storage during most of the

tests and was able to sort data sets of 1GB, indi
ating

that it is not ne
essary to hold large portions of the

data set in 
ore. File system size 
onstraints limited

our ability to test beyond this size.

However, the exe
ution of parallel sorting algorithms

out of 
ore still presents several open issues. First, the

s
alability of this mergesort algorithm is questionable,

and new approa
hes to sorting that retain an indepen-

dent bu�er size should be studied in this environment.

Se
ond, further testing should be performed to push

the limits of the I/O subsystems to better determine

when it is appropriate to overlap I/O and 
ompute

nodes and when it is not. Finally, it is still mu
h

more 
onvenient to use VM rather than perform ex-

pli
it I/O; more progress needs to be made in order to

simplify the pro
ess of writing expli
it OOC appli
a-

tions so that the performan
e bene�ts are more easily

obtained.
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