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Abstract

In this paper, we utilize a bandwidth-centric job commu-
nication model that captures the interaction and impact of
simultaneously co-allocating jobs across multiple clusters.
We make use of a parallel job model that seeks to capture
both local and global communication access patterns. By
doing so, we are able to explore scheduling strategies that
attempt to improve average job turnaround time by selec-
tively mapping jobs across cluster boundaries in a process
known as job co-allocation.

In this research, we focus on scheduling strategies that
make use of available information such as network link uti-
lization, per-processor bandwidths, and job communication
topology in order to make intelligent decisions regarding
application partition sizes and job placement. We provide
results that help to establish the relationship between the
quantity of information available a priori to the scheduler
and its ability to improve overall system performance. Ad-
ditionally, we demonstrate the dramatic impact that salient
workload characteristics can have on the effectiveness of
co-allocation.

1This work was supported in part by the ERC Program of the National
Science Foundation under Award Number EEC-9731680. Any opinions,
findings, conclusions, or recommendations expressed in this material are
those of the authors and do not necessarily reflect those of the National
Science Foundation. Special thanks to Louis W. Pang for his contributions
to the simulator.†Corresponding author.

1 Introduction

Computational multi-clusters (Figure 1) are an important
emerging class of supercomputing architectures. As multi-
cluster systems become more prevalent, techniques for effi-
ciently exploiting these resources become increasingly sig-
nificant. A critical aspect of exploiting these resources is
the challenge of scheduling [5]. In order to maximize job
throughput, multi-cluster schedulers must simultaneously
leverage the collective computational resources of each of
its participating clusters. By doing so, jobs that would oth-
erwise wait for nodes to become available on a single clus-
ter can potentially run earlier by aggregating disjoint re-
sources throughout the multi-cluster in a process known as
co-allocationor multi-site scheduling(Figure 1). This pro-
cedure can result in dramatic reductions in queue waiting
times.

The main caveat of this approach is that by mapping jobs
across cluster boundaries, inter-cluster network resources
are also consumed. If the inter-cluster network links be-
come too saturated with traffic, any co-allocated jobs may
experience degraded runtime performance due to the com-
munication bottleneck present in the network infrastructure.
This degradation in runtime performance can potentially
offset the benefit of performing job co-allocation in the first
place. More precisely, the increase in job runtime due to
link saturation can rapidly outweigh the decrease in queue
waiting time, thus resulting in poorer overall system perfor-
mance.

Multi-cluster schedulers must make use of all available
information pertaining to job communication structure as
well as network topology and utilization in order to improve
job throughput while mitigating any negative impact to job
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Figure 1. A multi-cluster with co-allocated
jobs

runtime performance due to network congestion. Addition-
ally, these schedulers must make reasonable co-allocation
decisions in the absence of specific job and network infor-
mation, as this information is not always available.

In this research, we utilize a bandwidth-centric job com-
munication model that captures the interaction and impact
of simultaneously co-allocating jobs across multiple clus-
ters. We also make use of a parallel job model that seeks to
capture both local (nearest-neighbor) and global (all-to-all)
communication access patterns. By doing so, we are able to
explore scheduling strategies that attempt to improve aver-
age job turnaround time by selectively mapping jobs across
cluster boundaries.

Previous work in the area of job co-allocation tends to
characterize jobs by either specifying that all communica-
tions require a fixed amount of time to travel between clus-
ters [1], or by assigning co-allocated jobs a fixed execution-
time penalty, [2]. This type of characterization is not sen-
sitive to the time-varying contention for bandwidth in the
inter-cluster communication links and the impact it has on
the execution time of co-allocated jobs that share network
resources. We take a different approach by considering
that as jobs become co-allocated or co-allocated jobs ter-
minate, there is a continual change in the available inter-
cluster bandwidth. Therefore, in our work, the duration of
wide area communication is a function of the time-varying
network bandwidth utilization among clusters participating
in the multi-cluster, which in turn affects the execution time
of co-allocated jobs. This research aims to extend the work
presented in [1] and [2] by replacing the static communica-
tion model with a more dynamic view of job communica-
tion that isbandwidth-centric.

We find that schedulers designed to allocate node re-

sources across cluster boundaries can result in rather poor
overall performance over a wide range of workload char-
acterizations and multi-cluster configurations due to the
interaction simultaneously co-allocated jobs experience as
they contend for inter-cluster network bandwidth. There-
fore in this research, we focus on scheduling strategies that
make use of available information such as network link
utilization, per-processor bandwidths, and job communica-
tion topology in order to make intelligent decisions regard-
ing application partition sizes and job placement. We also
provide results that help to establish the relationship be-
tween the quantity of information available a priori to the
scheduler and its ability to improve overall system perfor-
mance. Additionally, we demonstrate the dramatic impact
that salient workload characteristics can have on the effec-
tiveness of co-allocation over simple job migration.

2. The Model

In this section we characterize the parallel job model as
well as the multi-cluster architecture. We provide avery
brief explanation (due to space constraints) of the commu-
nication model used, as well as a strategy to account for the
time-varying inter-cluster network utilization. This general
methodology is a modified version of our previous work
[9] and is fully documented in [8]. The interested reader
can obtain a detailed treatment of the complete modeling
methodology on our website [7].

2.1. Multi-cluster and Parallel Job Models

In the research presented in this paper, we consider a
multi-cluster to be a collection of arbitrarily sized clusters
with globally homogeneous nodes. Each cluster has its own
internal ideal switch. Additionally, the clusters are con-
nected to one another through a single dedicated link to a
central ideal switch. Each node in the multi-cluster has a
single processor and a single network interface card. Jobs
can be co-allocated in a multi-cluster by allocating nodes
from different clusters to the same job in order to better
meet collective needs across the multi-cluster. The model
used assumes that jobs are non-malleable. In other words,
each job requires a fixed number of processors for the life
of the job, and the scheduler may not adjust this number.
Additionally, neither execution-time migration nor gang-
scheduling is employed in mapping jobs the multi-cluster,
i.e. once the job is mapped to a particular set of nodes, the
job remains on these nodes for the lifetime of its execution.

A job’s execution time,TE , is a function of two com-
ponents, the computation time,TP , and the communica-
tion time, TC . The initial value of these two quantities is
considered to represent the total execution time that the job
would experience on asingle dedicated clusterwith an ideal
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switch. They therefore form a basis for the best-case execu-
tion time of a given job when it is co-allocated in the multi-
cluster. The computation portion of the execution time does
not vary, however the communication time is considered dy-
namic, since the communication time of simultaneously co-
allocated jobs may be lengthened due to the utilization of
any shared inter-cluster network links.

2.2. Communication Characterization

In order to capture both local and global communication
characteristics, each job modeled in this paper is assumed
to perform both nearest neighbor (2D mesh) and all-to-all
communication patterns throughout its execution.

During co-allocation, nodes must communicate across
cluster boundaries. This communication requires a certain
amount of bandwidth in the inter-cluster network links. A
job’s performance will deteriorate if it does not receive the
amount of bandwidth it requires to run at full speed. Each
time a new job is co-allocated or a co-allocated job ter-
minates, an algorithm is applied in order to determine the
amount of bandwidth ultimately allotted to each job on each
link. The amount of bandwidth each job receives is limited
by the most saturated link over which it spans.

As these inter-cluster state changing events occur, the re-
maining execution and communication times are recalcu-
lated based on a number of factors, including available net-
work bandwidth. Due to these recalculations, the job’s end-
event can slide forward (later) or backward (earlier) in time,
reflecting either a degradation or improvement in saturation
levels of the inter-cluster links over which it spans. In this
paper, jobs are characterized by a per-processor bandwidth
(PPBW) that describes the total bandwidth that is required
to sustain full-rate execution. Furthermore, this PPBW is
decomposed into two parts; the fraction that is due to global
all-to-all communications and the remaining bandwidth that
is due to the 2D mesh nearest neighbor communication ac-
cess patterns. The parameterρ is used throughout this paper
to denote the percentage that is associated with the all-to-all
comunication. (The full description is rather lengthy and is
therefore ommitted here due to space constraints, but can be
found in [9].)

This procedure provides a dynamic view of job commu-
nication by accounting for the slowdown a job experiences
due to the time-varying utilization of the inter-cluster net-
work links.

3 Simulation

In this paper, we present results based on two distinct
workload characterizations. The first is based on actual
workload trace files taken from several different supercom-
puting centers, while the second is a completely synthetic

workload used to contrast this work with our previous work
as well as to highlight a few critical issues with the real-
istic workload. The remainder of this section provides an
overview of our workload generation techniques.

3.1 Realistic Workload Generation

The workload on a cluster, in general, can be specified
using three characteristics, namely; job arrival process, job
size distribution and job runtime distribution. For generat-
ing a realistic workload in our simulator, we use statistical
distribution-based models, derived from the actual work-
load traces obtained from various supercomputing sites.
One of the main advantages of using a statistical model
to synthetically generate a workload based on actual trace
files is the ability to create a stream of jobs that is suffi-
ciently long as to ensure that the system is operating in a
stable steady-state [4]. Additionally, when using the jobs
present in the actual workload, the simulation is limited to
the number of jobs in the particular trace. This quantity
may well fall short of the number needed to obtain conver-
gence in the performance metrics used, especially when the
multi-cluster system is heavily loaded [3]. We have there-
fore made use of the statistical modeling approach proposed
by Lublin and Feitelson [11].

3.2 Job Arrival Process

In practice, job arrival processes tend to have daily,
weekly and yearly cycles. For the purpose of simplicity,
we consider only the daily and weekly cycles (Figure 2).
Arrivals during the peak hours (8 a.m. to 7 p.m., Mon-
days through Fridays) are modeled using a Gamma distri-
bution and the average daily cycle is modeled using another
Gamma distribution. The daily cycle is divided in 24 slots
and the slots are given different weights corresponding to
the relative arrival rates within each slot. In the weekly cy-
cle, the maximum job arrival rate is observed on Wednes-
days while, Sundays and Saturdays have the lowest job ar-
rival rates.

While the Gamma distribution could be used to model
the weekly cycle as well, we made use of a Weibull distri-
bution since it provides a better fit, particularly at the tail.

3.3 Job Size and Runtime

Jobs are divided into three categories: serial, power-of-
two and jobs of other sizes (Figure 4). Sizes of non-serial
jobs are modeled using a two-stage Uniform distribution.
Additionally, job run-times are modeled using a Hyper-
Gamma distribution which is a combination of two Gamma
distributions (Figure 3). It should be noted that this work-
load characterization assumes that there is a weak correla-
tion between job sizes and their respective run-times. A
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Figure 2. Daily and weekly arrival cycles

detailed description of this methodology can be found in
[11].

3.4 Workload Generator Parameters

In order to obtain the necessary parameters to drive the
statistical models used for job arrival, size, and runtime dis-
tributions, we made use of five workload traces provided by
the Parallel Workload Archive, [12], namely:

The distribution parameters were extracted from each of
the original workload traces by making use of several built-
in functions in MatLab. They were then used to provide a
parameterization for the statistical models used in our work-
load generator. The specific parameters used to drive the
Hyper-Gamma, Gamma, Weibull, and Two-stage Uniform
distributions are listed in Chapter 3 of [8] due to space con-
straints. (This text can be found at [7]).

3.5 Completely Synthetic Workload

Our second workload makes use of a much simpler char-
acterization. This workload is used in contrast to several of
the characteristics present in the previously described real-
istic workload. This workload assumes that the the arrival
process of jobs to each cluster,Ci, has a Poisson distribu-
tion with rateλi. Additionally, we assume that a job’s initial
service time,TE is exponential with parameter(µi)−1. The
number of nodes that a job requires is given by a uniform
distributionDnodes

i ∼ UNIF [ni
1, n

i
2]. For the results pre-

sented in this paper, the synthetic workload parameters are
as follows: Dnodes

i ∼ UNIF [10, 50], λi = 1/150, and
(µi)−1 = 450.

In both workloads, the fraction ofthe total execution
time that initially represents computation is set to a con-
stant,Ki = .7, for all jobs. Additionally, since this re-
search seeks to study the effects of varying levels of local

and global communication, we have also required that each
job be rectangular. That is to say, since a job performs 2D
nearest-neighbor communication, we have assumed that the
job can be decomposed into a whole number of rows and
columns. This implies that the actual job sizes are deter-
mined asnT = rows · cols = b

√
Nc · d

√
Ne. where,N

is the original job size specified by the workload generator.
While this does affect the size distribution to some extent,
the general shape of the distribution remains the same.

4 Scheduling Strategies

In this section, we describe our scheduling strategies in
detail. We also suggest several measures used to evaluate
the relative performance of job co-allocation strategies.

4.1 Job Selection Policy

Each of the strategies described in this paper uses the
classicFirst-Come-First-Served (FCFS) job selection pol-
icy with a slight modification. Specifically, the queue is tra-
versed from head to tail looking for the first job that will
fit into the available node sets. This policy is known as
Fit-Processors-First-Served (FPFS) ([13]). Traditionally,
backfilling, [14] is used in many production grid schedulers,
such as Maui. This method will attempt to run jobs in FCFS
order, but in the event that the job at the head of the queue
cannotrun due to insufficient resources, it will traverse the
queue from head to tail searching for the first job thatcan
run given the currently available free resources, provided
that by doing so, the start time of the job at the head of the
queue is not delayed. This technique is typically used as a
means by which to provide a degree of flexibility in back-
filling node-time holes in the schedule, while guaranteeing
that no starvation takes place.
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By making use of the bandwidth-centric communication
model, only an estimate of a job’s end event is known at any
instant in time, since a job’s end event can slide forward and
backward in time depending on the communication con-
tention in the inter-cluster network links. This makes it dif-
ficult to guarantee that the highest priority job’s reservation
in EASY backfilling will be meet, since we do not terminate
jobs; therefore, we do not employ EASY backfilling.

4.2 Co-allocation Strategies

First-Fit The First-Fit strategy performs job co-
allocation by assigning node resources starting with the
cluster with the largest number of free nodes. It then spans
as many clusters as necessary to satisfy the job’s node
requirement. By employing this technique, the number
of inter-cluster links over which a given job will span is
minimized. It should be noted that this strategy does not
make use of any available information regarding a job’s
communication characterization nor information related to
network link saturation. In this sense, it is the most naive.

LSLT Only The LSLT Only strategy performs job co-
allocation in the same order as First-Fit; however it first
identifies all clusters that have links that are saturated be-
yond a configurable threshold (the Link Saturation Level
Threshold i.e. LSLT). It then discounts each of these as
potential candidates for job co-allocation; therefore, it will
continue to utilize node resources on a given cluster for co-
allocation while its network link remains unsaturated. As
soon as saturation occurs on a particular network link, this
algorithm will then discontinue use of the associated clus-
ter until its saturation level drops. This implies that a link
can only be over-saturated to the extent due to a single job’s
bandwidth utilization. Based on our previous research [9],

we found that a threshold value of70% proved to provide
the best ’overall’ performance; therefore in this paper, the
threshold level has been statically set to70%. While this
algorithm attempts to mitigate network saturation by dis-
counting clusters with saturated network links, it does so
without regard to the communication characterization of the
given job.

LSLT+CS TheLSLT+CS performs job co-allocation un-
der the same conditions as the LSLT Only algorithm; how-
ever it imposes an additional constraint. In particular, it at-
tempts to co-allocate a sufficiently ”large chunk” (e.g.85%
of the node requirement) of the job onto a single cluster. If
successful, it will then place the remaining nodes of the job
on the remaining clusters, starting with the cluster with the
largest number of free nodes first.

This module attempts to capitalize on two primary ob-
servations. Since jobs may contain a large degree of all-
to-all global communication, the individual bandwidth re-
quirements during co-allocation are minimized when a job
is partitioned into a few pieces, one large and perhaps a few
small ones. This is in contrast to bisecting the job which
results in the maximum bandwidth requirement. However,
it may not always be possible to co-allocate a job by parti-
tioning it into at least one “large” piece; which can result in
underutilized node resources.

While the algorithm attempts to mitigate network satura-
tion by enforcing a ”chunk size” requirement, it does so un-
der the assumptions that the job’s communication patterns
are primarily all-to-all, and that its PPBW is sufficiently
large so as to cause extreme congestion in the inter-cluster
links if mapped without regard to partition sizes. Based on
our previous research [9], the chunk-size has been statically
set to85%.
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ICS After the scheduler has backfilled as many jobs as
possible via local execution and remote job migration, it be-
gins considering the remaining jobs for co-allocation. The
ICS (Integer Constraint Satisfaction) scheduler ensures that
no inter-cluster saturation occurs due to co-allocated jobs.
This strategy is an on-line algorithm, in that each time a
scheduling decision is made, the scheduler only has access
to the information related to the jobs that have arrived thus
far, i.e. not for jobs that will arrive in the future.

In order to map jobs onto the multi-cluster in such a
way that completely prevents the slowdown associated with
over-saturated inter-cluster network links, it is necessary to
first determine the range of nodes that a job could poten-
tially acquire on each cluster as a function of the job’s band-
width characterization, as well as the available inter-cluster
link bandwidth.In order to accomplish this task, the sched-
uler must have access to the job’s communication character-
ization, including its per-processor bandwidth requirements
requirements as well as current link utilizations. With this
information, this scheduler can determine a partitioning that
will guarantee that no link saturation occurs, while simulta-
neously making use of as many available node resources as
possible. We solve this graph partitioning problem by using
a custom integer constraint satisfaction algorithm. Note that
job co-allocation is also subject to the constraints imposed
by each local backfill schedule over which it spans. Addi-
tionally, it is important to note in our simulations, that our
scheduler is assumed to have access to accurate information
regarding a job’s execution time and bandwidth characteri-
zation. This implies that when I backfill schedule is gener-
ated, it never changes in response to jobs that finish early or
that run longer than expected.

(The interested reader may wish to explore the modeling,
design, and implementation in our previous work [9].)

4.3 Baselines for comparison

In order to establish an “reasonable” upper and lower
bound for the job turnaround time metric, three baseline
simulations were conducted to identify these levels. The
first is run under the assumption that the inter-cluster net-
work links have unlimited bandwidth capacities. This con-
figuration,Zero Comm. (Zero Communication Cost), rep-
resents a “best-case”, since there is no slowdown associated
with job co-allocation. The second strategy is referred to
asMigration Only . This strategy only performs job migra-
tion, i.e. no job co-allocation. Jobs that are migrated do not
contend for inter-cluster network resources. Therefore their
ultimate execution times are also unaffected by their band-
width requirements. Additionally, a third bound,No Share,
is included that represents the the performance of the multi-
cluster when all jobs that arrive to a given clustermustrun
locally. In this configuration, no resource sharing can take

place.
The Zero Comm.andMigration Only therefore appear

as horizontal “limits” in the included figures, since they
are unaffected by a job’s communication characterizations.
We have omitted theNo Shareperformance in the graphs
since we are more interested in the behavior of our schedul-
ing techniques in an operating range between that ofZero
Comm.andMigration Only; however, we have provided it
in the text.

5 Experimentation and Results

Each cluster in the multi-cluster consists of 100 homo-
geneous computational nodes and has a 1000 Mbps inter-
cluster network link to the central switch. The workload
presented to each cluster consists of 400,000 jobs. Such a
large number of jobs were required in order to achieve con-
vergence in the job turnaround time performance metric [3]
and to ensure that the queueing system operates in a stable
state.

Unless otherwise noted, in these experimentsρ (the frac-
tion of the PPBW that is associated all-to-all communica-
tion versus nearest-neighbor) is distributed uniformly[0, 1]
in order to provide a “mixture” of jobs ranging from purely
local (nearest-neighbor) to purely global (all-to-all) com-
munication characterizations. Additionally, in order to con-
strain the number of varying parameters, we have held the
number of clusters to four.

5.1 Response to Communication Intensity

In our first set of experiments, we observe the relative
behavior of our scheduling strategies as a function of in-
creasing job communication intensity. To study the impact
of this communication, the jobs are characterized by a per-
processor bandwidth,PPBW . In this case, we have cho-
sen to hold every job’s PPBW constant for a particular run
of the simulator. This produces a varying bisection band-
width,BSBW , due to the varying node sizes of jobs within
the workload. In these experiments, the ICS scheduler has
access to the PPBW andρ for every job in the presented
workload. This represents a best-case scenario, in the sense
that each time the ICS scheduler calculates possible parti-
tion sizes, it does so with full a priori knowledge of the
bandwidth requirements for the given job. The results for
these experiments is shown in Figures 5 and 6.

It is worth noting that while the LSLT and LSLT+CS
strategies perform fairly well for very small PPBWs, their
performance rapidly degrades as job PPBW increases. This
is primarily due to the fact that as the PPBW increases,
the more over-saturated the associated inter-cluster links be-
come. The decrease in queue waiting time provided by job
co-allocation is rapidly overshadowed by the increase in job
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Figure 6. Synthetic workload

execution time. Since these strategies do not have access to
a job’s communication characterization, they are unable to
effectively manage available network resources, especially
as the PPBW increases. On the other hand, the ICS sched-
uler performs much better, even as the PPBW increases. In
fact, its performance will never be worse than that of Migra-
tion Only. This is due to the fact that as the PPBW increases,
the available partition sizes it calculates grow smaller and
smaller, and in the limit, the ICS strategy reverts to Migra-
tion Only.

Since actual workloads tend to contain a mixture of jobs,
with varying PPBWs, a secondary experiment was run to
determine the average performance of our algorithms over
a range of PPBWs. In particular, in this secondary experi-
ment, jobs were characterized with PPBWs that were uni-
formly distributed over the interval[0, 300] Mbps. This in-
terval was chosen because is represents a reasonable range
of possible sustainable bandwidths on the PCI bus with cur-
rent GigE NICs. The results of this experiment are summa-
rized in Table 1.

Strategy Realistic Synthetic

Migration Only 0% 0%
LSLT+CS 1% 22%
ICS Best 8% 31%

Zero Comm. Cost 9% 36%

Table 1. Improvement over migration only

Note that in the case of the realistic workload, the pos-
sible range of improvement over Migration Only is9%,
as opposed to36% in the case of the synthetic workload.
Therefore, while the ICS scheduler improves the perfor-
mance in both cases, there isn’t as much room for improve-
ment with the realistic workload as there is with the syn-

thetic workload. This is due in part by the large number of
very small jobs (in the node dimension) present in the re-
alistic workload. Job co-allocation capitalizes on the pres-
ence of fragmented node resources present throughout the
multi-cluster; however, when a large number of very small
jobs are present, many jobs can simply be migrated in or-
der to fill in any “holes” located on remote clusters. This
means that co-allocation is not as important when a large
portion of the arriving workload are very small jobs. Work-
load characteristics strongly influence the effectiveness of
parallel job scheduling [6], [10]. The effects of some of
these key factors are explored in section 5.3.

Furthermore, it is worth noting that Migration Only af-
fords a substantial improvement over No Share (i.e. when
all jobs arriving to a cluster must run locally). Specifically,
in Migration Only is roughly60% and72% faster than No
Share for the realistic and synthetic workloads, respectively.
It should be noted that the Migration Only model does not
account for any overhead such as data-staging that could
otherwise result in poorer performance.

5.2 Response to Information Availability

In our second set of experiments, we observe the rela-
tive behavior of our scheduling strategies as a function of
increasing availability of job communication characteriza-
tion information. In these experiments, we randomly se-
lect jobs from the workload stream to “expose” their PPBW
andρ information to the ICS scheduler. By varying this ex-
posure probability from 0 to 1, we can observe how much
information about the arriving workload is necessary to im-
prove performance by a given amount. For example, in the
case of the synthetic workload, the ICS scheduler needs
roughly 10% of the incomming jobs to expose their com-
munication characterizations in order to improve average
job turnaround time to within50% is it’s best performace
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Figure 9. Effect of non-uniform arrival pro-
cess

(Figure 8). While in the case of the realistic workload, to
achieve the same relative level of improvement, the ICS
scheduler needs27% of the jobs to expose their commu-
nication characterizations (Figure 7).

These results suggest that the scheduler does not need
to have access to the communication characterizations of
every job in order to improve the performance of job co-
allocation. In fact, for certain workloads, the scheduler
only needs a priori communication knowledge of a rela-
tively small fraction of the arriving workload in order to
dramatically narrow the gap between the performance of
Migration Only and Zero Communication Cost.

5.3 Response to Workload Characteristics

One common pitfall in parallel job scheduling research
is to assert the general applicability of a given scheduling
strategy based on the performance on a single workload [4].

In this section we demonstrate that the effectiveness of job
co-allocation is tightly coupled to salient workload charac-
teristics.

For example, our synthetic workload’s arrival process is
Poisson, with a constant rate; whereas the realistic work-
load’s arrival rate varies throughout the day. This subjects
the system to varying levels of loading, which in turn cor-
relates closely with parameters such as waiting time in the
queue and queue depth (Figure 9).

The number of waiting jobs can affect the scheduler’s
ability to find enough “good” candidates for co-allocation.
For example, during periods of lower queue depth, there
may not be sufficient jobs in the queue that meet the sched-
uler’s criteria for co-allocation. Likewise, during periods of
intense activity, there may be more jobs waiting that meet
the scheduler’s criteria than it can presently make use of
for co-allocation. In this case, the additional jobs do not
significantly improve the likelihood of successful job co-
allocation and therefore simply lead to larger queue waiting
times.

In our last set of experiments, we have modified our
workloads to demonstrate that such key factors as arrival
process and size distributions can have a dramatic effect
on the performance on job co-allocation. Figures 10, 11,
12, and 13 show the performance of the ICS strategy with
a modified versions of our original workloads. Workload
“A” (Figure 10) shows that by simply replacing the real-
istic arrival process with a constant rate Poisson process,
the potential room for improvement, i.e. the gap between
simple Migration Only and Zero Communication Cost, in-
creases from9% in the case of the unmodified workload, to
roughly 28%. Likewise, workload “B” (Figure 11) shows
that by replacing the Poisson arrival process of the unmodi-
fied synthetic workload with the arrival process of the realis-
tic workload, the potential room for improvement decreases
from 36% to 9%. The varying arrival rate of the realistic
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Figure 11. (WL B) Synthetic workload with
realistic arrival process

workload has a strong impact on the potential effectiveness
of co-allocation.

Additionally, the presence of a large number of small
jobs in the arriving workload affects co-allocation effective-
ness. Workload “C” (Figure 12) shows the impact of remov-
ing all jobs that are smaller than 10 nodes from the realis-
tic workload. In this case, the room for improvement in-
creases from8% to 14%. Workload “D” (Figure 13) shows
the combined impact of removing the small jobs as well as
replacing the varying arrival process with the constant-rate
Poisson process. In the case, Zero Communication Cost is
a full 45% better than Migration Only, indicating a large
potential for improvement using co-allocation.

Table 2 summarizes the improvement that is obtained
over simple Migration Only, where columns R and S (Real-
istic and Synthetic) represent the original unmodified work-
loads, and A, B, C, and D represent the modified work-
loads. Note that that performance of the ICS strategy is also
strongly correlated to the salient workload characteristics.

Strategy R S A B C D

Mig. 0% 0% 0% 0% 0% 0%
ICS 8% 31% 15% 8% 14% 27%
Zero 9% 36% 28% 9% 24% 45%

Table 2. Improvement over migration only

6 Conclusions and Future Work

In this paper, we utilize a bandwidth-centric job commu-
nication model that captures the interaction and impact of
simultaneously co-allocating jobs across multiple clusters.
We make use of a parallel job model that seeks to capture

both local and global communication access patterns. By
doing so, we are able to explore scheduling strategies that
attempt to improve average job turnaround time by selec-
tively mapping jobs across cluster boundaries in a process
known as job co-allocation.

In this research, we focus on scheduling strategies that
make use of available information such as network link uti-
lization, per-processor bandwidths, and job communication
topology in order to make intelligent decisions regarding
application partition sizes and job placement. We also pro-
vide results that help to establish the relationship between
the quantity of information available a priori to the sched-
uler and its ability to improve overall system performance.

One of the primary conclusions of this paper is that while
job co-allocation can dramatically improve the overall per-
formance of the multi-cluster system, its ability to do so
depends heavily on the characteristics of the arriving work-
load stream. Job co-allocation capitalizes on aggregating
underutilized node resources from throughout the grid to
run parallel jobs earlier. It’s ability to improve performance
beyond that of simple job migration depends on there being
more large (wide) jobs compared to small (narrow) jobs,
since small jobs can simply be migrated to remote clus-
ters to make use of any underutilized local node resources;
thereby rendering co-allocation unnecessary. Additionally,
we demonstrate that the nature of the arrival process can
have a dramatic effect on the ability to improve system per-
formance using co-allocation, particularly the daily cycle of
job arrivals.

Finally, we demonstrate that having a priori knowledge
of a job’s communication characterization, including both
intensity and topology, is integral to the performance of job
co-allocation, especially as the average per-processor band-
widths grow larger.

We are currently working to integrate traditional conser-
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Figure 12. (WL C) Realistic workload with
small jobs removed
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Figure 13. (WL D) Realistic workload with
small jobs removed and Poisson arrival
process

vative backfilling into our scheduling algorithms in order to
ensure fairness among participating clusters during periods
of disparate loading conditions. We also plan on developing
models to address the impact that data staging to-and-from
remote clusters has on the overall performance of the sys-
tem. Additionally, we are planning to integrate models for
job check-pointing that will allow us to address issues such
as run-time job migration/re-coallocation, as a means by
which to recover from bad scheduling decisions that cause
unnecessary network congestion.
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