
Profiling Architecture and Tools in Coven

A Thesis

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

Computer Engineering

by

Vishal Patil

May 2005

Advisor: Dr. Walter B. Ligon III

May 6, 2005

To the Graduate School:

This thesis entitled “Profiling Architecture and Tools in Coven” and written by
Vishal Patil is presented to the Graduate School of Clemson University. I recommend
that it be accepted in partial fulfillment of the requirements for the degree of Master
of Science with a major in Computer Engineering.

Walter B. Ligon III, Advisor

We have reviewed this thesis
and recommend its acceptance:

Adam W. Hoover

Tarek M. Taha

Accepted for the Graduate School:

Abstract

Profiling can help make application parallelization more effective by identifying

the performance bottlenecks. Visualization tools coupled with a tracing library can

highlight the temporal aspect of performance variations, showing when and where

the parallel program’s performance is being compromised. A complex challenge is to

analyze the data gathered during the program execution and provide useful sugges-

tions to the user which shall enable him to make appropriate changes and thereby

increase the throughput of the application as well as decrease the overall runtime.

The following work details the profiling framework for Coven, a component based

PSE toolkit. The framework consists of a modified tracing library used to log events,

a GUI tool used to visualize the temporal aspects of the parallel program and a rule

based expert system which analyzes the data gathered during the parallel program

run and provides useful suggestions to the end user.

Dedication

To Mom and Dad

Acknowledgments

I would like to thank my advisor Dr. Walt Ligon III and Nathan Debardeleben for

their guidance and support. I would like to thank the entire PARL group especially

Will, Phil, Mike, Louis and Patrick for their invaluable help and support.

Table of Contents

Page

TITLE PAGE . i

ABSTRACT . ii

DEDICATION . ii

LIST OF FIGURES . vi

1 Introduction . 1

1.1 Brief Overview of Coven . 2
1.2 Motivation for Research . 2
1.3 Proposed Solution . 4
1.4 Thesis Overview . 7

2 Related Work . 8

2.1 Common Profiler Tools . 9
2.1.1 Vampir . 10
2.1.2 TAU . 10
2.1.3 MultiProcessing Environment (MPE) 11
2.1.4 Paradyn . 12
2.1.5 PAPI . 13
2.2 Expert System Tools . 13
2.2.1 PPA . 14
2.2.2 Kappa-PI . 15
2.2.3 PDE . 15

3 Coven Profiling Framework . 17

3.0.4 Coven model of Computation 18
3.1 Back end data collection service 19
3.1.1 Using MPE to log information 20
3.1.2 Determining the load and memory 26
3.2 Front end visualizer . 27
3.2.1 Software Architecture . 28
3.2.2 Visualizations . 30
3.3 Rule Based Expert Agent . 40

4 Case Studies . 47

4.1 Work Environment . 47

v

4.2 Comparing module run times 48
4.3 Detecting memory problems . 50
4.4 Automatic Performance Analysis 52
4.4.1 Enabling Multithreading . 52
4.4.2 Enabling Load Balancing . 54
4.4.3 Enabling Shared Memory . 56

5 Conclusions and Future Work . 62

BIBLIOGRAPHY . 65

List of Figures

Figure Page

1.1 Coven Profiling Framework . 5

3.1 Sample Coven Application . 18
3.2 Sample code to profile function using MPE 21
3.3 Mapping TPH flow to user defined state 22
3.4 Log file visualization using Jumpshot 27
3.5 Coven Profiler Software Architecture 29
3.6 Pseudo Coven code for 2D FFT application 31
3.7 Pseudo Coven code for N-Body application 33
3.8 Total Module Runtime . 33
3.9 Total Event Runtime . 34
3.10 Module Thread Runtime . 35
3.11 Event Thread Runtime . 36
3.12 Load Information . 37
3.13 Memory Information . 38
3.14 TPH Lifetime View . 39
3.15 A sample JESS rule . 41
3.16 Before Multithreading . 42
3.17 After multithreading . 42
3.18 Without load balancing . 43
3.19 With load balancing . 43
3.20 Without shared memory, Coven uses MPI for inter-thread messages . 44
3.21 With shared memory . 44
3.22 Overlapping message transfers with module execution, without shared

memory . 45
3.23 Overlapping message transfers with module execution, with shared

memory . 45

4.1 Cannon’s matrix multiplication algorithm 48
4.2 Module Runtime before optimization 49
4.3 TPH view before optimization . 49
4.4 Module Runtime after optimization 49
4.5 TPH view after optimization . 49
4.6 N-body application with memory leak 51
4.7 N-body application without memory leak 51
4.8 Before Multithreading . 53
4.9 After Multithreading . 53

vii

4.10 Before Load Balancing . 54
4.11 After Load Balancing . 56
4.12 Before Shared Memory . 57
4.13 After Shared Memory . 57
4.14 TPH view for FFTW application without shared memory 59
4.15 Load view for FFTW application with shared memory 59
4.16 TPH view for FFTW application with shared memory 60

5.1 Current load view for a module . 63
5.2 Enhanced view for a module with computation, network I/O and disk

I/O information . 63

Chapter 1

Introduction

Problem Solving Environments (PSEs) have become an integral part of modern high

performance computing due to the increase in the complexities of the types of simula-

tions being run and the underlying problems being modeled, as well as the increasing

complexity of the computer systems being employed. They often are targeted at a

particular application domain, and have pre built tools and ready to use pieces of ap-

plication code. These properties help encourage code reuse and quicker development

time, especially during the design and test cycle. However, by abstracting away some

of the complexities involved in developing scientific application codes, performance

problems can be hidden and hard to detect, especially in parallel applications. Thus,

a problem solving environment needs to provide performance analysis and profiling

facilities in order to assist users in tuning their parallel applications for improved

performance[17]. This thesis discusses how performance measurement and analysis

has been integrated in Coven, a generic PSE toolkit and how these features assist

a Coven programmer to make important decisions regarding the parallel program

design in order to improve the performance and thereby decrease the overall runtime.

2

1.1 Brief Overview of Coven

Coven is a component-based framework used to develop parallel applications. The

main goal of Coven is to shield a problem solver from the complexities of parallel

programming thereby enabling him to concentrate on the problem that he is trying

to solve. A parallel program in Coven consists of a collection of modules that are

linked together to form a data flow graph[10]. A Coven module can be thought of

as a software component that implements an algorithm. Each of the Coven modules

implements a pre-defined interface which makes the modules reusable across different

parallel programs. In addition to this the framework also provides the functionality

to seamlessly multi-thread, load balance and checkpoint a parallel program without

requiring any additional programming effort on behave of the problem solver[10].

1.2 Motivation for Research

Obtaining high degree of performance in a parallel application is a difficult task. De-

cisions for improving the performance have to be made by considering different kinds

of information like the behavior of the programming model used, in order to select

the most adequate primitives for the program. Moreover understanding the actual

details of the parallel machine can also prove beneficial to comprehend the effect

of using certain primitives in the processor and in the communication links. These

requirements, although taken into account during the programming stages of the ap-

plication, usually require an additional stage of performance analysis when the results

obtained are far from the desired values. These performance values obtained from

the analysis provide a measure of the quality of both the design and implementation

of the parallel program [7].

When a parallel program developed using Coven does not perform as expected it is

necessary to review it’s behavior during the program runtime. Coven basically consists

3

of a middleware layer over which the parallel programs run. The fundamental problem

with software systems using middleware packages is that the application writer no

longer reasons at the system level best-suitable for performance debugging but rather

at a higher level of abstraction. The middleware takes care of mapping the high level

commands and directives to low level system calls, but when it comes to debugging

or performance tuning, most middleware packages are not properly instrumented and

therefore do not map the system state or the performance indicators back onto the

higher level of abstraction related to their user API[25]. Performance measurement of

the parallel programs written in Coven requires the development of instrumentation

and analysis techniques beyond those used for the traditional MPI programs. Events

pertaining to the Coven architecture need to be defined and these need to be tracked

in context of the Coven language abstractions during the program execution.

Once the information pertaining to the monitored application has been gathered

it is useful to depict this information in a manner that would enable the programmer

to easily comprehend the behavior. Graphical visualization is a standard technique

for facilitating human comprehension of complex phenomena and large volumes of

data. Also the gathered data needs to presented in the context of the programming

model being used. This helps the programmer in establishing a correlation between

the performance information and the logical structure of the parallel program. For

example, it might be useful to illustrate the execution time of the different Coven

modules that make up the parallel program. This can help the programmer in com-

paring the performance of different modules thereby enabling him to detect a module

thats needs to be tuned so as to optimize the overall parallel application.

The parallel programmers using the visualization tools to study the behavior of

the parallel program need substantial expertise and effort. The large amount of

performance information offered by these tools can sometimes inundate a parallel

programmer thereby making it difficult for him to make decisions for improving the

4

parallel program design. In addition, most of the parallel programmers are not skilled

in identifying and solving performance problems. However the chief goal of Coven is

to make things as simple as possible for a parallel programmer thereby enabling him

to concentrate on the problem that he is trying to solve. Most of the parallel programs

that need optimization fall into one of two categories. The first consists of those for

which good optimization strategies can be derived from well known heuristics. For

such programs an automated expert system for guiding optimization can potentially

achieve good results. The second category consists of programs which need new al-

gorithms and techniques for optimizing them. For such programs the intervention of

a human programmer is obviously needed. However there are many parallel appli-

cations that have well-recognized performance problems for which optimization can

be found using a few good heuristics[14]. Automating program optimizations using

knowledge based systems can significantly help reduce the parallel software develop-

ment effort. Even in cases where complete automatic techniques are not possible, it

is beneficial to automate the optimization steps to extent possible.

1.3 Proposed Solution

In this thesis we propose a profiling framework that facilitates the task of a pro-

grammer to understand the behavior of parallel programs written in Coven and if

possible provide suggestions to improve their runtime. As shown in the figure 1.1 the

framework consists of the following three important components:

• A data collection service which gathers information regarding the important

events during the life time of the parallel program.

• A visualization tool that uses the gathered information to highlight the impor-

tant performance aspects of the program.

5

Figure 1.1: Coven Profiling Framework

• An expert system which uses heuristics to process the gathered data and pro-

vides suggestions to improve the performance of the program.

The data collection service which is a part of the Coven middleware, is a tracing

library that gathers information regarding the different events that occur during the

lifetime of the parallel program. In order to log this information the Coven program-

mer does not have to manually instrument the parallel program, instead the Coven

middleware performs the data flow analysis of the program and identifies the appro-

priate instrumentation points. The information regarding these points of interest is

then automatically logged by the data collection service during the parallel program

run. The instrumentation and tracing employed by the data collection service is based

on the tracing library provided by MPE (MultiProcessing Environment)[5], which is

used to log information regarding MPI calls in a parallel program. MPE also enables

a programmer to define his own events and log them. This feature has been used

to define events pertaining to the Coven framework in terms of the programming

6

language constructs and these get logged during the parallel program run. At the

end of the parallel program execution, the MPE library handles the functionality of

gathering the trace information from all the nodes of the cluster and coalescing this

information into a single binary log file.

The binary trace file generated by the monitored parallel program contains time

sequenced information regarding the different events that occurred during it’s life

time. These events can then be studied using Jumpshot [26], a visualization tool

provided along with MPE. However this tool renders information in terms of MPI

calls and not in terms of the Coven programming constructs. Hence in order to study

the history of the program run in terms of the Coven programming model, a visu-

alization tool (Coven profiler) has been developed which depicts different aspects

of the parallel program run. The tool can be used to study different performance

metrics such as the execution time, memory usage and load exerted in terms of the

chief Coven programming constructs namely modules and threads. The GUI tool

has been developed using the Java Swing API[24] and a modified slog2sdk[4] library,

which provides a Java API to extract information from the binary log file generated

by MPE. In addition to visually displaying the performance information, the tool

enables the user to easily obtain detailed information regarding the different perfor-

mance parameters during the lifetime of the parallel program. This is achieved by

permitting the programmer to query performance information at a particular instance

of time during the program runtime by selecting a pertinent point on the graph. In

case of such event the tool extracts the relevant information from the log file and

displays it in a manner useful to the programmer.

To assist the programmer in analyzing the performance problem a rule based

expert system has been developed using JESS (Java Expert System Shell) [9]. The

expert system uses some predefined heuristics and the information extracted from

the trace file to perform automatic performance analysis of the parallel program run.

7

The expert agent then provides suggestions to the user with the aim of decreasing the

parallel program runtime. The rules used to make decisions regarding the behavior

of the parallel program are encoded in the form of text based scripts, hence changing

and testing the heuristics simply entails editing of the script file and does not require

any recompilation of the source code.

The profiling architecture has been tested by studying the behavior of several

parallel applications implemented using Coven. These applications comprised of well

known parallel algorithms (like 2D-FFT and Cannon’s parallel matrix multiplication)

as well as synthetic applications. The data generated by these applications was visu-

alized to understand their behavior and if possible identify performance bottlenecks.

In addition to interpreting the program behavior using the Coven profiler, the expert

system was consulted to obtain suggestions which would improve the runtime of the

applications. The changes suggested by the expert system were then made and the

parallel applications were rerun to verify the improvement in performance.

1.4 Thesis Overview

The work presented in this thesis dissertation has been divided into five chapters.

The second chapter defines the problem of performance analysis of parallel programs

and the common methods of confronting this problem using existing monitoring tools

and knowledge based systems. The third chapter gives a detailed explanation of the

software framework pertaining to the profiling architecture in Coven which consists a

modified tracing library, a Java based visualization tool and a rule based expert system

which detects common parallel program problems. The fourth chapter explains the

results of analysis of some parallel applications. These applications have been chosen

to represent the important categories of parallel message passing applications. Finally

in the fifth chapter the conclusions and future lines of the work are presented.

Chapter 2

Related Work

The traditional reason for using parallel or cluster computing is one of computational

limitations, e.g. the complexity of the calculations is limited by the computational

time. Gaining the best performance from the system is thus essential. An overall

assessment of the code can be gained by simply inserting timing calls within the code.

However much more detailed information is often required and inserting hundreds of

timing calls within a code can be extremely tedious. An alternative is to use a profiler,

which should provide more detailed timing information without code modification.

There are a number of serial profilers available, two of the most common being prof

and gprof. These tools provide timing information for various routines and are useful

for isolating computationally intense parts of a serial code. Parallel codes however

contain interprocessor communications and the user is interested in these, as well as

the computation[22]. Hence specific parallel profiling tools have been developed by

numerous groups and we discuss a few of these in the first half of the chapter.

Current state-of-the-art profiler tools provide valuable assistance in analyzing the

performance of parallel programs by visualizing the runtime behavior and calculating

statistics over the performance data. However, the developer of parallel programs is

still required to filter out relevant parts from a huge amount of information shown in

9

numerous displays and map that information onto program abstractions without tool

support. Attempts have been to made to automate the process of the performance

problem detection either by conducting a control flow analysis of the parallel program

or by post mortem analysis of the data generated by the parallel application. The

second half of the chapter looks at some of the attempts that have been made to solve

the problem of automatic parallel performance problem detection.

2.1 Common Profiler Tools

Most of profiler tools instrument the parallel application inorder to generate a trace

file containing the program runtime information. Instrumentation normally needs

the addition of some extra calls to subsystem that gives a timestamp and records the

execution of every instrumented primitive. On running the monitored application,

each instrumented primitive that executes generates an event which gets logged to

the trace file. Information included in the events depend on the actual format of the

trace but it usually contains a timestamp, an identification of the executing process

and some details about the instrumented primitive[7].

The trace file information is generally used to show the evolution of the execution

to the user in graphical analysis session. Typical graphical views include GANTT

chart, where the activity of each processor is represented by a horizontal line. Different

activities are depicted by different colors. Other views are also used to express the

dynamic behavior of the programs: bar graphs or pie charts are just a few examples

of rich variety of graphical data views.

In the following section, we shall discuss some of common parallel profiler tools

that are used to study the behavior of parallel programs.

10

2.1.1 Vampir

Vampir coupled with VampirTrace is a performance analysis tool for MPI programs

written in C, C++ and Fortran. The Vampir visualization tool enables the user to

analyze various aspects of the runtime behavior of message-passing programs. It dis-

plays post-mortem trace files in a variety of graphical views, and provides flexible

filter and statistical operations that condense the displayed information to a man-

ageable amount. It excels in rapid zooming, allowing the user to quickly focus on

arbitrary time intervals. Thus performance bottlenecks can easily be identified and

investigated at the appropriate level of detail. Vampir can display multiple views of

the parallel application execution, each one presenting information in a distinct way.

This includes a GANTT chart which shows per process application activities and mes-

sage passing along time axis. Source code click back is avaliable on platforms with

compiler support. Other displays include statistical analysis of program execution,

statistical analysis of communication operations, and a dynamic calling tree display.

VampirTrace is a MPI profiling library that generates Vampir traces. It hooks into

the MPI profiling interface, and guarantees low instrumentation overhead. The ef-

fects of distributed clock drift is automatically corrected. Tracing can be controlled

dynamically during runtime to minimize the amount of trace data to be collected[18].

However Vampir and VampirTrace are commercial products and can be used freely

only for a limited amount of time.

2.1.2 TAU

The TAU performance framework is composed of instrumentation, measurement, and

visualization phases. TAU supports a flexible instrumentation model that allows the

user to insert performance instrumentation calling the TAU measurement API at sev-

eral levels of program compilation and execution stages. The instrumentation identi-

fies code segments, provides mapping abstractions, and supports multi-threaded and

11

message passing parallel execution models. Instrumentation can be inserted manually,

or automatically with a source-to-source translation tool. When the instrumented

application is compiled and executed, profiles or event traces are produced. TAU

can use wrapper libraries to perform instrumentation when source code is unavail-

able for instrumentation. Instrumentation can also be inserted at runtime, using the

dynamic instrumentation system DynInst[6], or at the virtual machine level, using

language supplied interfaces such as the Java Virtual Machine Profiler interface. The

instrumentation model of TAU interfaces with the measurement model which can be

sub-divided into two models. A high level model which determines how events are

processed and a low-level measurement model that determines what system attributes

are measured. By providing a flexible measurement infrastructure, a user can experi-

ment with different attributes of the system and iteratively refine the performance of

a parallel application. TAU comes with both text-based and graphical tools to visu-

alize the performance data collected. The graphical tool used to visualize the trace is

called RACY while the text based profiler is termed as pprof. In addition to this it

provides bridges to other third-party tools such as Vampir [18] for more sophisticated

analysis and visualization. The performance data format is documented and TAU

provides tools that illustrate how this data can be converted to other formats [8].

2.1.3 MultiProcessing Environment (MPE)

MPE is a software package distributed along with MPICH[16]. It consists of a tracing

library and tools that are use to understand the behavior of parallel programs im-

plemented using the MPI library. Also MPE may be used with any implementation

of MPI[5]. When a MPI program is linked with the tracing library provided with

MPE all the standard MPI calls get logged and are stored in a binary file at the

end of the program execution. The record pertaining to each MPI call which gets

logged consists of the MPI function name, a time stamp and the id of the parallel

12

task making the call. In addition to logging the standard MPI calls, it is possible

for a programmer to define his own events and log information pertaining to those

events. The functionality of gathering the log information from the different nodes of

the cluster and coalescing it into a single binary log file is handled completely by the

MPE library. The log file generated can be either in ALOG, CLOG or SLOG format,

with SLOG being the most scalable format. In order to understand the behavior of

the parallel program using the generated binary log file, MPE provides a visualization

tool call Jumpshot[26]. This tool displays the various events that occur during the

parallel program run in the form of a GANTT chart.

2.1.4 Paradyn

Paradyn uses several novel technologies so that it scales to long running parallel pro-

grams (hours or days) and large (thousand node) systems, and automates much of

the search for performance bottlenecks. Paradyn is based on a dynamic notion of per-

formance instrumentation and measurement. Unmodified executable files are placed

into execution and then performance instrumentation is inserted into the application

program and modified during execution. Paradyn can gather and present perfor-

mance data in terms of high-level parallel languages (such as data parallel Fortran)

and can measure programs on massively parallel computers, workstation clusters,

and heterogeneous combinations of these systems. Paradyn provides a simple library

and remote procedure call interface to access performance data in real-time. Using

this library it is possible to interface existing performance visualization systems like

PABLO[20]. Visualization modules in Paradyn are external processes that use the

visualization library and interface. All performance visualizations are implemented

as visualization modules. Paradyn currently provides views in the form of time-

histograms (strip plots), bar charts, and tables. In addition to visualizing the parallel

program execution Paradyn helps in performance problem detection using a search

13

model called W 3. The W 3 search model tries to answer three questions: why is

the application performance poor (identifying the type of bottleneck, e.g., synchro-

nization, I/O, and computation)? where is the bottleneck (isolating a performance

bottleneck to a specific resource, e.g., a synchronization variable, a disk system, or

a procedure)? and when does the problem occur (isolating a bottleneck to a spe-

cific phase of the program’s execution) [13]. It also uses the same model to guide

placement and modification of dynamic instrumentation[6].

2.1.5 PAPI

PAPI (Performance Application Programming Interface) is an effort to establish a

uniform, standard programming interface for accessing hardware performance coun-

ters on modern microprocessors[2]. Hardware performance counters can be very useful

for tuning the performance of applications and for evaluating the effectiveness of the

compiler on the application. These counters allow direct measure of the actual us-

age of the hardware as an application runs and may help to diagnose bottlenecks in

the application’s performance. PAPI provides two standardized APIs to access the

underlying performance counter hardware, a low level interface designed for tool de-

velopers and expert users and a high level interface is for application engineers. Using

cross-platform interface to the counters, allows maintenance of a common source for

a wide variety of architectures. TAU as well as Paradyn provide an interface to use

PAPI to gather low level information regarding the parallel applications[8, 6].

2.2 Expert System Tools

Most of the tools listed above rely on fair degree of graphical representation of the

parallel program to help the programmer in detecting the performance bottlenecks.

However for large parallel applications the visualization of the program flow can be

14

too confusing to help the user to draw any conclusions. Moreover, performance predic-

tion and performance analysis based on accurate evaluation techniques like analytical

model techniques is not supported in the above tools. Attempts have been made

to overcome this problem by using Artificial Intelligence (AI) based techniques to

automatically detect the performance problems. These techniques treat the prob-

lem of finding performance bottleneck as a search problem[15]. The expert system

tools define a set of rules that test for possible causes of the performance loss and on

recognizing these make appropriate suggestions to the user.

The following sections of the chapter discusses examples of knowledge based tools

used to identify performance problems pertaining to parallel applications.

2.2.1 PPA

PPA (Parallel Program Analyzer) uses the program analysis techniques to detect

the strategy and algorithm concepts in a parallel program and suggests a better

strategy, if there is one, to the programmer. Since PPA derives algorithm concepts

from the text of a program by statically examining its source code without using

any specification or execution information, the problem of overload of trace data for

large scale parallel programs does not exist. PPA uses object oriented techniques

to represent programming concepts, plan based techniques to represent the program

knowledge, and a deductive inference framework to derive the algorithm concepts

from the program structure. The PPA tool consists of three important components

namely an event base, a plan base and an inference engine. A program parser scans

the source code and represents the statements in terms of events and stores them in

the event base. The plan base is a knowledge base in which plans are represented as

inference rules. The inference engine is the reasoning component which repeatedly

applies the rules in the plan base to the events in the event base until no more events

15

can be derived from the existing ones and presents the user with observation and and

recommendations of algorithmic optimization[15].

2.2.2 Kappa-PI

The main objective of the Kappa-PI (Knowledge-based Analyser of Parallel Program

Applications and Performance Improver) tool is to give parallel programmers some

aid when analyzing the performance of their applications[7]. This tool makes an

automatic post mortem analysis of the program behavior and provides suggestions

regarding the behavior of the program. The Kappa-PI tool is currently implemented

to analyze the parallel applications developed using PVM[21]. The tool bases the

search of the performance problems on it’s knowledge of their causes. The tool makes

a pattern matching between those execution intervals with degraded performance and

it’s knowledge base of the cause of the problems. This is the process of identification

of the problems and creation of the recommendations for their solution. This work-

ing model allows the performance problem database to adapt to new possibilities of

analysis with incorporation of new problems (new knowledge data) and new types of

programming model[7].

2.2.3 PDE

PDE (Program Development Environment) is a tool for programming distributed

memory system. The main goal of this tool is to handle all of the complexity intro-

duced by the parallel hardware such as data or load distribution or data communica-

tion in a user-transparent way. This has been achieved by offering the programmer a

high level, domain specific specification formalism, an expert system to exploit paral-

lelism and collection of hierarchically organized algorithmic skeletons. An algorithm

skeleton consists of a basic, configurable structure for efficient parallel execution of a

small related algorithm class on a particular parallel hardware. The initial problem

16

specification is divided into two parts, purely computational features and features

relevant to parallel structures. The first is passed to the program synthesizer while

the latter goes to the programming assistant. The programming assistant is an expert

system developed using CLIPS[1] which performs the task of analyzing the problem

specification given by the user, extracting the relevant parts for the parallel frame-

work and the selections of suitable algorithmic skeletons. The program synthesizer

expands the parallel framework into compilable, hardware specific, parallel C++ and

C programs[11].

Chapter 3

Coven Profiling Framework

The chief goal of this research is to develop a performance analysis framework that

will help expert as well as novice parallel programmers to understand the behavior of

parallel programs developed using Coven. These tools need to enable the programmer

to visualize the important aspects of the parallel program as well as provide a list of

suggestions that could possibly improve the performance of the application.

The proposed framework can be divided into the following three important com-

ponents namely

• Back end data collection service

• Front end visualizer and

• A rule based expert agent

However before explaining the proposed framework in detail, it would be bene-

ficial to have a brief idea about the Coven computational model. This would help

in highlighting the reasons why we chose a particular approach to implement the

performance analysis framework.

18

Figure 3.1: Sample Coven Application

3.0.4 Coven model of Computation

As explained earlier a parallel program in Coven consists of a collection of modules

linked together to form a data flow graph. Figure 3.1 shows an example of a Coven

program design for a parallel fractal application. The rectangular blocks represent the

Coven modules while the pipes connecting them indicate the flow of data from one

module to another. Each of the Coven modules essentially runs in a Coven program

thread. The Coven master thread runs on the head node of the cluster while the

slave threads run in parallel on the slave nodes of the cluster, with one or more slave

threads running on the same node. Using the graphical program editor the parallel

programmer can specify which modules need to be executed serially in the master

thread and which need to be executed in parallel in the slave threads by enclosing

these modules within a ”parallel segment” block as shown in the figure.

Coven’s runtime engine (middleware) which has been implemented using the MPI

library is responsible for running the user application. It is responsible for opera-

tions such as: data encapsulation, module execution, memory maintenance and the

19

movement of data between the modules. All of these functionalities have been im-

plemented in the runtime engine with the help of an internal data structure called

Tagged Partition Handle (TPH). This data structure is completely transparent to

the user. All the data in Coven that moves from one module to another is contained

inside a TPH. Whenever a module reads data as input, it reads it from the TPH and

when ever it creates a new output, it creates it inside a TPH. TPHs can be considered

analogous to packets in a network. Much like packets, TPHs contain arbitrary data

and are wrapped up into a data structure that flows around the system. The header

information of the TPH contains details like where is the TPH destined as well as

hints to what kind of information is contained within it. Similarly, much as a packet

flows around a network between hosts, TPHs pass between modules and parallel pro-

cesses. The Coven component responsible for calling the modules and passing the

TPHs between them is called as the program sequencer. Each parallel task executes

a single program sequencer[10].

The following sections shall now explain each of the performance framework com-

ponents in detail with reference to the Coven model of computation.

3.1 Back end data collection service

When a Coven parallel program is executed, information regarding the important

events pertaining to the Coven runtime as well as the parallel program get logged

by the data collection service. At the end of the parallel program run all of this

information is gathered at the head of the cluster and is stored in a binary log file. In

the following section we shall discuss how the data collection service is implemented

using MultiProcessing Environment (MPE). This is followed by a brief explanation

about how the load and memory information is determined for a parallel task at a

node of the Linux Beowulf Cluster.

20

3.1.1 Using MPE to log information

Coven makes use of the tracing library provided by MPE (Multi-Processing Environ-

ment) [5] for profiling the parallel applications that run under it’s framework. MPE

provides a number of useful facilities to the MPI programmers. These include several

profiling libraries used to collect information about MPI programs and generating log

files for post-mortem visualization. Also MPE may be used with any implementation

of MPI[5].

The MPE tracing library provides a function MPE Log event which is used

to log timestamped events. The MPE Log event function stores the information

pertaining to the timestamped events[3] in memory, and these memory buffers are

collected and merged into a single binary file at the end of the parallel program

execution. The calls to MPE Log event are made automatically for each MPI call

when a parallel program is linked with the MPE library[5].

In addition to logging timestamped events, MPE logging calls can be inserted

into user defined functions to define and log states. These states are termed as user

defined states. Logically a state can be thought of as a data structure that is logged

to the binary log file and which contains the following information

• Time stamp corresponding to the start of the function

• Time stamp corresponding to the end of the function

• The function name

• A color associated with the state (used for visualization)

The routines MPE Describe state and MPE Log event are used to describe and

log user-defined states. The use of these routines to profile a sample C function in a

MPI program is illustrated in figure 3.2. In addition to logging the timestamps, the

21

int eventID_begin , eventID_end;

...

eventID_begin = MPE_Log_get_event_number ();

eventID_end = MPE_Log_get_event_number ();

...

/* Specify the User defined state */

MPE_Describe_state (eventID_begin , eventID_end ,

"Amult", "bluegreen");

...

Amult(Matrix m, Vector v)

{

/* Start of the user defined state*/

MPE_Log_event (eventID_begin , m->n, (char *)0);

... The entire function code ...

/* End of the user defined state*/

MPE_Log_event (eventID_end , 0, (char *)0);

}

Figure 3.2: Sample code to profile function using MPE

MPE Log Event enables a programmer to log a 16 byte string and a 32 bit integer

information along with each timestamped record.

The Coven runtime engine uses the concept of user defined state to log information

regarding the various events that take place in the Coven runtime. Figure 3.3 shows

how the concept of user defined state is used track the flow of a TPH through a Coven

module. The start of the user defined state is used to log information regarding the

entry of the TPH into a module while the end of the user defined state is used to log

information regarding the exit of the TPH from a module. With each timestamped

event record corresponding to the entry and exit of the TPH from a module, the

processor id, Coven thread id, TPH id and other additional information like load and

memory consumption are saved in the 16-byte string. Thus each user defined state

stored in the binary log file contains the following information

• TPH id

22

Figure 3.3: Mapping TPH flow to user defined state

• Module id

• The thread id

• Time when the TPH enters the module

• Time when the TPH exits the module

• Load exerted by the module

Storing information regarding the flow of TPHs in the parallel program is the most

important function of the data collection service. This stored information enables

offline review of the steps that occurred during the Coven program run using the

Coven profiler. In addition to storing data regarding the flow of the TPHs, user

defined states are used to log information regarding the different events related to the

Coven runtime. These events pertaining to the Coven middleware are known as the

Coven auxiliary events.

Coven auxiliary events

The Coven auxiliary events are logged in order to understand the behavior of the

Coven middleware. Normally the information regarding these events is filtered out

23

by a Coven programmer using the Coven profiler, since he is more interested in

understanding the behavior the parallel application than the behavior of the frame-

work. However the information regarding these events can prove useful to the system

programmers who are involved in the development of the Coven framework. The

following events have been defined to understand the behavior the middleware:

• Startup : This is a user defined state used to determine the amount of time

required for the initialization of the Coven middleware.

• Program Sequencer : The Coven component responsible for calling the mod-

ules and passing the TPHs between them is called as the program sequencer.

Each parallel task executes a single program sequencer. A user defined state has

been defined to log the start and end times of the program sequencer running

on each of the slave nodes of the cluster.

• Cleanup : This user defined state logs the timing information regarding the

steps that the Coven middleware executes, once it has finished executing a

parallel program.

• Sleep / Wait : When there are no TPHs available to be processed by the

program sequencer, it is put to sleep. This user defined state is used to determine

the amount of sleeping time for the program sequencer.

• Process TPH : Whenever a TPH arrives for processing, the program sequencer

executes the modules assigned to it in a sequential manner, passing the TPH

into each module as an argument. The ”Process TPH” user defined state is used

to log the start and end times of the TPH processing by the program sequencer.

• Virtualized Send : Coven supports the concept of virtualization in which a

Coven thread sends or receives a message without specifying what thread it’s

communicating with, instead it simply specifies what part of the data to talk

24

to[10]. The ”Virtualized Send” event is used to log the time when a Coven

thread sends a message using virtualization.

• Virtualized Receive : This auxiliary event is used to log the time when a

Coven thread receives a message using virtualization.

• TPH Created : This auxiliary event is used to log the time when a TPH is

created.

• TPH Destroyed : This auxiliary event is used to log the time when a TPH is

destroyed.

• TPH Network Send : The Coven middleware uses asynchronous MPI send

and receive calls to transfer TPHs. As TPHs arrive in the output queue of

a programmer sequencer, an asynchronous MPI send is issued containing the

TPH data and a control header. This event is used to log the time when the

asynchronous MPI send has been issued.

• TPH Network Receive : This event is used to log the time when a TPH

arrives at a program sequencer for processing.

• TPH Enqueue : Each program sequencer has an input queue which is used

to store the TPHs that need to be processed by the modules assigned to the

program sequencer. The ”TPH Enqueue” auxiliary event is used to log the time

when a TPH is enqueued in the input queue of the program sequencer.

• TPH Dequeue : Similarly, each program sequencer has an output queue which

stores the TPHs once they have been processed by the modules assigned to the

program sequencer. The ”TPH Dequeue” auxiliary event is used to log the time

when a TPH is dequeued from the output queue.

25

• Memory Now : This event is used to log information regarding the amount

of memory being consumed by a Coven program thread.

• Requesting Steal : Internally Coven employs the Random Stealing dynamic

load balancing algorithm in order load balance a parallel program. Whenever a

Coven task runs out of TPHs to process, it issues a broadcast ”steal request”.

The ”Requesting Steal” auxiliary event is used to log the time when a steal

request is issued.

• Sending Steal : When a steal request is issued, heavily loaded tasks can choose

to respond by sending a portion of their work to be processed by the stealer.

The ”Sending Steal” event is used to log the time when heavily loaded task

sends a portion of it’s work to the requesting parallel task.

Log file format

MPE provides the option of storing the profiling information either in ALOG, CLOG

or SLOG binary format. Unlike the ALOG and CLOG binary log file format, the

SLOG format is most scalable format since it does not require the entire log file to

be parsed and stored in the memory. However currently SLOG strips off the 16 byte

string and 32 bit integer from each time stamped event record which is used to store

the following additional data (exported by Coven the framework)

• Processor id

• Coven thread id

• TPH id

• Module load

• Memory consumption

26

However this required extra information can be encoded along with each times-

tamped event record in the CLOG file format in the form of a 16 byte string. Since

this information is essential to understand the functionality of the parallel program

the CLOG file format has been chosen as the default log file format for the Coven

framework.

3.1.2 Determining the load and memory

The MPE tracing library does not support the determination of load and memory

consumption for a parallel task. In Coven, this information is extracted from the

Linux /proc file system. If pid is the process id corresponding to the parallel task

whose load and memory consumption is to be determined, then the statistical infor-

mation pertaining to this task can be extracted from the /proc/pid/stat file. This

file contains the following information useful to Coven

• The amount of memory being consumed by the process.

• The amount of time for which the process has been scheduled on the CPU in

the system (kernel) mode (system time)

• The amount of time for which the process has been scheduled on the CPU in

the user mode (user time)

The system time and user time values are used to determine the load for the

module as follows

scheduled time = system time + user time

The percentage load exerted by the module can then be calculated as

load = (scheduled time/total time)

27

Figure 3.4: Log file visualization using Jumpshot

Where total time is the time in entirety (which includes CPU, network I/O and

disk I/O time) for which the Coven module is scheduled by the Coven middle-ware

for execution.

3.2 Front end visualizer

The log file generated by the Coven framework can be visualized using the Jumpshot

visualizer that accompanies MPE. As seen in figure 3.4, jumpshot provides a single

view which consists of a timeline window in which time (in seconds) is indicated on the

x-axis and MPI process ranks are shown on the y-axis. Colored rectangles spanning

sections of the time lines indicate that a particular process was in a particular state

during the indicated time interval. These states are defined by the logging library

and typically consist of MPI function call durations and the durations of user-defined

states. Clicking with the mouse on such a rectangle pops up a small window containing

28

detailed information (state name, precise duration, etc). The arrows connecting the

states represent the MPI messages. Details about a particular message (length, tag,

etc.) appear when one clicks on the small circle appearing near the origin of the

arrow[26].

There are several other aspects of a parallel program like load and memory that

cannot be studied using Jumpshot. Moreover, Jumpshot was specifically developed

to view the behavior of MPI programs and is unable to display the parallel program

runtime information in terms of Coven programming constructs. These shortcomings

lead to the development of a custom front end visualizer for the Coven log files. This

tool is the Coven Profiler and was developed to provide the following information

about a parallel program written in Coven:

1. The flow of TPHs during the program execution

2. Computational load exerted by the different Coven modules

3. Memory consumption of each Coven thread

4. The amount of time spent executing a Coven module in each program thread

5. The cumulative time spent executing a Coven module

The tool was developed using the Java Swing API [24]and a modified version of

the slog2sdk[4] which is a part of MPE and provides a Java based API to parse

the CLOG binary file. This API had to be modified to extract the Coven specific

information (mentioned in section 3.1.1) from the CLOG file.

3.2.1 Software Architecture

The Coven profiler has been implemented using the Model View Controller design

pattern. The advantage of using this pattern is that it completely decouples the data

from the visualizations. This can prove to be beneficial in case the format of the log

29

Figure 3.5: Coven Profiler Software Architecture

file used to store the information is changed. As seen in figure 3.5 the profiler consists

of three important components: data model, controller and the views. Each of these

components is explained in brief below.

Data Model

This component is responsible for parsing the input log files and initializing the various

internal data structures which are used by the views to graphically render the data.

The Data Model is constructed by implementing a simple interface defined by the

profiler. The profiler then uses this interface to extract information from the log file

through the model. The advantage of this approach is that it is possible to use a

another log format without affecting the rest of the system. This can be done by

simply defining a new data model for the log format and implementing the interface

defined by the profiler. The current data model is implemented using the slog2sdk[4]

which is used to parse the CLOG files.

View Controller

This component is responsible for controlling the flow of data from the Data Model

to the various visualizations. After the information is extracted from the log files and

30

stored in the internal data structures, the View Controller uses them to initialize the

various visualizations. Working in coordination with the Configuration UI, the View

Controller is also responsible for reducing the information presented to the user as

they refine the trace data they are interested in analyzing.

Views

These form the visualizations that depict the different aspects of a parallel program

run. The profiler also provides an interface to incorporate new visualizations. Cre-

ating new views requires simply implementing this interface, upon which the view

can interact with the Data Model API. The profiler tool currently offers the follow-

ing seven visualizations to the programmer to understand the behavior of a parallel

program written in Coven.

1. Total Module Runtime View

2. Total Event Runtime View

3. Module Thread Runtime View

4. Event Thread Runtime View

5. Load Information View

6. Memory Consumption View

7. TPH Lifetime View

3.2.2 Visualizations

Each of the seven visualizations mentioned earlier shall now be explained in detail in

the following sections with the help of the 2D-FFT (Two Dimensional Fast Fourier

Transform) and N-Body Coven applications.

31

. . .

thread_master fftw_scatter(args)

PARALLEL {

for(i=0;i<3;i++){

thread_slave fftw_comp_nd(args)

thread_slave fftw_transpose(args)

thread_slave fftw_comp(args)

thread_slave fftw_transpose(args)

}

}

thread_master fftw_gather(args)

. . .

Figure 3.6: Pseudo Coven code for 2D FFT application

2D-FFT application

The 2D-FFT is used in many applications and is often considered representative of

workloads that operate on matrices that are distributed across the nodes of a parallel

machine[10]. The 2D-FFT algorithm is composed of the following four steps.

• Compute the 1D-FFT for each row (fftw comp nd)

• Transpose the matrix (redistribution of data) (fftw transpose(1))

• Compute the 1D-FFT for each row (fftw comp)

• Transpose the matrix (redistribution of data) (fftw transpose(2))

Each of these steps were directly translated into Coven modules and these steps

iterated thrice in order to compute three FFTs. The pseudo Coven code for the

application is shown in figure 3.6

N-Body application

The N-Body application is a program which models point-masses in three dimensional

space and how they interact due to gravitational forces. There are N individual

32

point-masses (bodies) which are divided between the parallel tasks. The N-Body

application is iterative, moving forward in time steps. In the most complete case of

N-Body, for each iteration each body must compute the forces applied on it by each

other body. In a parallel system this requires that each body eventually reach each

parallel task. Other N-Body algorithms, such as Barnes Hut, attempt to improve on

the performance by assuming that bodies far away have no force affect on each other.

With this assumption, it is not necessary for each body’s forces to be computed with

each other body’s forces and, therefore, not all bodies will need to be transported

to each parallel task. For this example, the application was implemented in such a

way that the bodies were divided into groups and those groups were passed around

in a ring until each parallel task had received them. After receiving a portion of

the bodies, each task computes the partial forces those bodies apply to the bodies

it is responsible for. Only after every task has computed all partial forces does the

application have a global solution for the current time step. Time then advances to

the next iteration[10]. The pseudo Coven code for this application is show in figure

3.7

Using these two example applications we shall now explain the various visualiza-

tions that are provided by the Coven profiler.

Total Module Runtime View

This view displays the total execution time of a Coven module during the lifetime of

a parallel program. Here the total execution time refers to the sum of the execution

time of the Coven module on all the nodes of the cluster. This view can enable a

Coven programmer to compare the execution times of the different Coven modules

that are used to develop the parallel program. Figure 3.8 shows this view for the

2D-FFT application. As seen in the figure, this visualization is a bar graph where the

x-axis represents the Coven modules while the y-axis represents the total execution

33

. . .

thread_master nbody_generate_planar(args)

thread_master nbody_scatter_multiple(args)

PARALLEL {

for(i=0;i<iterations;i++){

thread_slave nbody_copy_buffer(args)

for(j=0;j<num_of_slave_procs;j++){

thread_slave nbody_compute_forces(args)

thread_slave nbody_parallel_shift(args)

}

thread_slave nbody_compute_positions(args)

thread_slave nbody_visualize(args)

}

}

thread_master nbody_gather_multiple(args)

. . .

Figure 3.7: Pseudo Coven code for N-Body application

Figure 3.8: Total Module Runtime

34

Figure 3.9: Total Event Runtime

time of these modules in seconds. For example, the fftw transpose(1) module takes

a total of 676.8 seconds to execute. This value is obtained by adding the execution

time of this module on all the nodes of cluster. The dialog box exhibiting this value

is displayed by right clicking the bar corresponding to fftw transpose(1) module in

the bar graph.

Total Event Runtime View

This view is similar to the Total Module Runtime View except that instead of dis-

playing the total runtime for the Coven modules, it displays the total runtime for all

of the Coven auxiliary events. Figure 3.9 shows this view for the 2D-FFT application.

Module Thread Runtime View

This view displays the time taken by a module to execute in each Coven thread.

Figure 3.10 shows this view for the 2D-FFT application. As seen in the figure, this

35

Figure 3.10: Module Thread Runtime

visualization is a stripped bar graph where the x-axis represents the Coven modules

while the y-axis represents the thread execution time of these modules in seconds. The

strips in the bar graph correspond to the different Coven threads in which the module

runs. A legend which maps the Coven threads to the strip colors is provided at the

right side of the graph. The height of a strip corresponds to the execution time on the

module in a particular thread. For example, the fftw transpose(1) module took 84.75

seconds to execute on thread 1 of the slave processor 8. The dialog box displaying

these values can be obtained by right clicking the corresponding strip on the bar

graph. In addition to displaying the thread runtime information for the module, the

dialog box also displays the following data

• The type of processor (Master/Slave) on which the module was executed.

• The processor identifier.

• The thread identifier.

36

Figure 3.11: Event Thread Runtime

• The MPI parallel task identifier.

Event Thread Runtime View

This view is similar to the Module Thread Runtime View except that instead of

displaying the thread runtime for the Coven modules, it displays the thread runtime

for all of the Coven auxiliary events. Figure 3.11 shows this view for the 2D-FFT

application.

Load Information View

This view is used to study the load that is exerted by the Coven modules during the

lifetime of the parallel program. This view is basically a GANTT chart with the time

in seconds on the x-axis and the Coven program threads on the y-axis. Figure 3.12

shows this visualization for the 2D-FFT program. The colored rectangular blocks

across a Coven thread represent the sequential execution of the Coven modules in

37

Figure 3.12: Load Information

that particular thread. The length of the colored rectangular block corresponds to

the amount of time in seconds for which the module runs while the amount of filled

region corresponds to the percentage of load exerted by the Coven module. For

example, as seen from the dialog box in the figure the amount of load exerted by the

fftw transpose(2) module is 35%. This information box is obtained by right clicking

on any of the rectangular box corresponding to the fftw transpose(2) module on the

graph. In addition to the load, the dialog box also displays the start and the end

times of the module execution.

Memory Consumption View

This view enables a Coven programmer to study the memory patterns of the different

Coven program threads during the lifetime of the parallel application. Figure 3.13

shows this visualization for the N-Body problem. As seen in the figure, this view is a

graph with the time in seconds on the x-axis and the amount of memory consumed in

38

Figure 3.13: Memory Information

mega bytes on the y-axis. The colored lines in the graph correspond to the memory

consumption by the different Coven threads. A legend mapping the colored lines to

Coven threads is provided on the right hand side of the graph.

TPH Lifetime View

The TPH Lifetime view is the most important view and is used to study the flow of

TPHs (Tagged Partition Handles) [10] during the lifetime of the Coven program. This

view is basically used to study how the Coven architecture works and was specifically

developed for advanced programmers that are involved in the development of the

software framework. As seen in figure 3.14, the visualization is basically a GANTT

chart with the time in seconds on the x-axis and the Coven program threads on

the y-axis. The colored rectangles represent the modules through which the TPHs

flow. Each of these colored rectangle has a number as well as a thin colored strip

at the bottom to visually identify the TPH following through the module. The lines

39

Figure 3.14: TPH Lifetime View

connecting the rectangles represent the flow of TPHs from one module to another.

As in the load view, it is possible to obtain information regarding the TPH flowing

through a module by right clicking the the rectangle corresponding to the module.

This pops up an information box which displays the following data

• Module name

• Entry time of the TPH in module

• Exit time of the TPH from the module

• The amount of time spent by the TPH inside the module

• The processor type (Master/Slave)

• The processor identifier

• The thread identifier

• TPH identifier

40

3.3 Rule Based Expert Agent

The Coven profiler offers the programmer with several graphical views that represent

the behavior of the parallel program. From these graphical views the Coven program-

mer needs to answer questions like : How does the application perform? Where in

the execution does the performance fall? What causes the performance fall and how

can the performance be improved? When the programmer is trying to answer the

above questions, he must face the problem of handling enormous amount of graphi-

cal information, selecting views which explain the sensitive aspects of performance,

understanding the views to find which performance problems do actually appear and

relating them with their ultimate causes in the program code. Hence the programmers

require a very high level of experience in order to derive any conclusions regarding

the program behavior using the visualization tools[7].

It is also important to note that a system which can provide higher level of perfor-

mance measurement and analysis is more helpful in the performance tuning of parallel

program. For example, whether the programmer adopts a proper program strategy

or algorithm is one of the most important factors which affect the performance of

parallel programs. Therefore, a helpful performance tuning tool should be able to

assist programmers to optimize the strategy or algorithm in their parallel programs.

Providing higher level performance measurement and analysis is highly desirable [15].

Keeping these objectives in mind a rule based expert system has been developed

for automated post mortem performance analysis of the parallel programs written in

Coven. The expert agent has been built using JESS (Java Expert System Shell)[9].

The heuristics used to detect the problems in the parallel program are encoded in the

form of JESS rules. The syntax of these rules is similar to the LISP language syntax.

The rules are executed by the expert system shell coupled with the information ex-

tracted from the log file and necessary suggestions are then made to the programmer.

Figure 3.15 shows an example of a JESS rule which suggests multithreading when a

41

(defrule MultiThreading

(and (number -of-threads 1)

(is-coven -module ?m1)

(is-coven -module ?m2)

(or (has -low -load ?m1 ? threadid)

(has -low -load ?m2 ? threadid))

(or (follows ?m1 ?m2 ? processorid ? threadid)

(follows ?m2 ?m1 ? processorid ? threadid))

(not (place -on-seperate -threads ?m1 ?m2))

)

=>

(assert (place -on-seperate -threads ?m1 ?m2))

)

Figure 3.15: A sample JESS rule

single threaded Coven program has modules exhibiting low load load and which run

sequentially on the same thread.

Depending on the parallel program run, the expert agent may make one of the

following suggestions

• Enable multithreading

• Enable load balancing

• Enable shared memory

The heuristics behind each of these suggestions is explained in the following sec-

tions.

Enable multithreading

In parallel computing applications, there are periods of execution when the data

required for computing needs to be accessed outside the CPU. For example, when

a task does disk I/O or network I/O the CPU remains ideal during the data access

time. A common approach to overcome this latency is to use a multitasking operating

42

Figure 3.16: Before Multi-
threading

Figure 3.17: After multi-
threading

system and scheduling running processes concurrently. The idea being that while one

process is waiting for the data, it gets scheduled out while another process is scheduled

in thereby increasing the overall CPU utilization. This is generally termed as multi-

threading or asynchronous programming[10].

Since the Coven model separates the application code from the application state,

it makes it simple to schedule tasks to execute in parallel. TPHs are moved around

to combine with modules to form a task, and this task can execute anywhere in the

system at any time. In the same manner, the Coven multi-threading implementation

utilizes multiple threads of control concurrently executing on the same parallel node.

These threads can be assigned any module and as TPHs arrive they form tasks which

execute concurrently with other threads[10].

A typical scenario where multithreading can prove beneficial to Coven program

execution is shown in figure 3.16. This figure can be thought of as the load view,

where a rectangle represents the Coven module execution and the amount of filled

area corresponds to the percentage load exerted by it. Figure 3.16 shows a Coven

program with single thread of control on each node of the cluster. This thread executes

two Coven modules m1 and m2 sequentially and both of which execute a low load (≤

50%) on the CPU node. If there is no data dependency between the two modules it

might be possible to efficiently utilize the CPU by placing the modules on separate

threads and thereby decrease the overall runtime as shown in figure 3.17.

43

Figure 3.18: Without load balancing Figure 3.19: With load balanc-
ing

Enable load balancing

There are several parallel computing applications in which the workload divided

among the parallel tasks is variable. Examples of such applications include ray trac-

ing, fractal generation and so forth. In these type of applications it is extremely

difficult, if not impossible to determine the amount of computation to be performed

by each parallel task. As a result of which some of the nodes remain idle while the

others keep crunching numbers for a long time. This problem of uneven processor

utilization is referred to as the load balancing problem and is formally classified as

an NP-complete optimization problem[12].

Recall that the basic unit of work in Coven is a TPH. Each parallel Coven thread

operates on a single TPH at a time, while maintaining queues of TPHs to be pro-

cessed and to be sent. Coven tries to implicitly solve the load balancing problem

by implementing the Random Stealing dynamic load balancing algorithm. While the

random stealing algorithm is useful in a large class of applications, iterative applica-

tions that process a set of data over and over again have a more difficult time taking

advantage of this algorithm. Figure 3.18 shows the TPH view for a parallel applica-

tion with load imbalance. Such applications need to be explicitly load balanced by

partitioning the data into more TPHs than there are processors and by inserting a

dynamic load balancing system module provided by Coven, into the data flow graph

of the parallel program at the end of an iteration[10]. Once the parallel application

has been explicitly load balanced the TPHs get redistributed as shown in figure 3.19

thereby optimizing the processor utilization.

44

Figure 3.20: Without shared memory,
Coven uses MPI for inter-thread messages

Figure 3.21: With shared
memory

The expert system tries to detect the imbalance in workloads by first determining

the efficiency of each Coven thread. The efficiency of a Coven thread is defined as the

percentage of time the thread is busy executing out of the total parallel runtime. The

expert system then compares the efficiency of each Coven thread with the efficiency

of every other thread and when it notices that the difference in efficiencies of two or

more threads is greater that a fixed threshold (35%) it suggests the user to explicitly

load balance the parallel application.

Enable shared memory

Coven offers a programmer an option to switch on shared memory to transfer data

transparently between the Coven threads running on the same processor. This adds

a small amount of overhead since Coven internally performs all the shared memory

management. If shared memory is switched off, the shared data is exchanged between

the Coven threads using normal MPI routines and this results in poor performance

when the size of the data being exchanged is large. Experimental results have shown

that it requires 7 seconds to transfer 256 MB of data among Coven threads running

on the same processor when the shared memory option is switched off[10]. When the

shared memory feature is switched on, it requires less than 0.05 seconds to transfer

the same amount of data.

The expert system tries to determine whether enabling the shared memory feature

can benefit a parallel application by studying the pattern of the inter thread messages.

It computes the average of the inter thread message transfer times and if it is greater

45

Figure 3.22: Overlapping message trans-
fers with module execution, without shared
memory

Figure 3.23: Overlapping
message transfers with mod-
ule execution, with shared
memory

than a fixed threshold (5% of the program runtime) it suggests switching on the

shared memory feature. Initially only those inter thread messages were considered

for which the message transfer time did not overlap with the module execution time

on the destination thread. For example, as shown in figure 3.20 when message msg1 is

transferred from thread1 to thread2, the message transfer time does not overlap with

module execution time on thread2 and hence this message was considered as a good

candidate for determining whether switching on shared memory feature would be

beneficial. The transfer time of all such messages was used to determine the average

inter thread message time and if this value was greater that 5% of the program

runtime, switching on the shared memory feature was suggested. For applications

having this type of message pattern, once the shared memory feature was switched on

the inter-thread message transfer time was expected to decrease considerably (ideally

0) as shown in figure 3.21.

While making the decision regarding shared memory, the aforementioned heuristic

ignored the messages in which the transfer time of the message overlapped with the

module execution time on the destination thread. However consider an inter thread

communication pattern as shown in figure 3.22. While msg2 is transfered from thread1

to thread2 module M4 executes on thread2 and thus the communication time of

the message is overlapped with the execution time of the module. Similar is the

case with message msg4. The earlier heuristic did not consider these messages while

making decisions related to shared memory since it assumed that there was work

46

been done on the destination thread while the message is being transfered. However

it is important to note that the execution time of a module not only includes it’s

computation time (actual work) but it also includes the time for which the module

waits in order to receive the inter thread messages. Hence an additional performance

gain can be obtained by speeding up module execution by decreasing the inter thread

message transfer time using shared memory thereby decreasing the overall runtime

of the parallel application as shown in figure 3.23. Therefore a new heuristic has

been defined which considers all of the inter thread messages and if the average time

required to transfer these messages is greater than 5% of the program runtime, it

suggests enabling the shared memory feature in Coven.

The above three heuristics have been encoded in form of JESS rules in a text

based script file. These rules require some parameters which are extracted from the

CLOG file using the data model. The rules coupled with the extracted information

are then executed by the rule engine and an appropriate decision is made with the

goal of improving the performance of the parallel application if possible.

Chapter 4

Case Studies

The chief goal of this research is to develop performance analysis tools that enable a

programmer to easily identify the common problems that are encountered while de-

veloping parallel applications using Coven. This chapter discusses several case studies

that are used to demonstrate how the Coven profiling architecture facilitates the study

of the different aspects of a parallel program in order to identify the performance

bottlenecks. In these case studies different parallel algorithms and one synthetic ap-

plication have been implemented. In addition to visualizing the runtime information

using the Coven profiler to identify performance problems, the case studies are used

to demonstrate how the Coven expert system provides a parallel programmer with

suggestions to enhance a parallel application, in order to improve it’s performance.

4.1 Work Environment

The case studies were run on a 76 node Beowulf cluster consisting of nodes with

two 1GHz Pentium III processors, 1GB of RAM, and connected by Fast Ethernet.

Each node of the cluster ran Linux kernel 2.6, and MPICH2 0.93. All of the Coven

programs were compiled with GCC version 3.3.2 using maximum optimizations.

48

. . .

PARALLEL {

thread_slave1 CMM_init_block(args)

thread_slave1 CMM_read_mat1(args)

thread_slave1 CMM_read_mat2(args)

thread_slave1 CMM_gen_zero_mat(args)

thread_slave1 CMM_get_shifts(args)

for(__phase = 1 ; __phase <= phaseCount;

__phase += 1)

{

thread_slave2 CMM_shift_mats(args)

thread_slave2 CMM_mat_mult(args)

}

}

. . .

Figure 4.1: Cannon’s matrix multiplication algorithm

The following two sections shall now discuss experiments that illustrate how the

visualizations provided by the Coven profiler help in identifying common performance

issues.

4.2 Comparing module run times

Many times it is difficult to determine the amount of time a parallel program spends

doing a segment of code. This can make optimization difficult in that it is sometimes

not clear where performance is being lost, and where additional performance can be

gained.

In this case study we look at a Coven application which is an implementation of

the Cannon’s Matrix Multiplication algorithm [19], with poorly designed net-

work communication module which performs unnecessary computations. The steps

involved in this algorithm are shown in figure 4.1 in the form of Coven pseudo code.

The modules CMM shift mats and CMM mat mult perform most of the operations

49

Figure 4.2: Module Runtime before
optimization

Figure 4.3: TPH view before opti-
mization

Figure 4.4: Module Runtime after
optimization

Figure 4.5: TPH view after opti-
mization

50

of the parallel program. The CMM shift mats is basically a communication module

which transfers the block data between processors while the CMM mat mult module

performs the actual multiplication of the blocks of data available.

The parallel application was executed to multiply two 2400x2400 matrices and the

log file generated was then visualized using the Coven profiler. As seen from the views

in figure 4.2 and 4.3 the CMM shift mats took a considerable amount of the program

time even though it was simply responsible to move the blocks of data among the

appropriate neighbors. Focus was then placed on improving this module by removing

the unnecessary computations that were being performed. Figures 4.4 and 4.5 show

the resulting profiler views after the CMM shift mats module was optimized. As seen

from the figure the total runtime of the communication module dropped from 173.76

sec to 11.38 sec while the total application runtime decreased from 122.16 sec to 81.76

sec.

4.3 Detecting memory problems

Memory leaks can be hard to detect and even tougher to locate in complex parallel

applications. Coven takes a snapshot of memory usage at many points during program

execution using the Linux /proc file system as explained in section 3.1.2. This can be

helpful to identify the memory leaks and pinpoint their exact location. The following

case study demonstrates a Coven program with memory leak and how the profiler

was used to identify and locate the problem. In this case study we used the N-body

application explained in section 3.2.2, with 10,000 bodies being modeled. An initial

Coven implementation of this program exhibited performance problems in that the

amount of time each iteration took began to slow down at a high number of iterations.

The Coven profiler was then used to study the memory usage of the program. A

screen shot showing this view appears in Figure 4.6. As seen from the figure, the

51

Figure 4.6: N-body application with memory leak

Figure 4.7: N-body application without memory leak

52

amount of memory being used grew progressively with time and this was causing

the application to slow down. The different Coven modules that were employed to

construct the parallel program and which allocated memory dynamically were then

studied. This led to the identification of the offending module (nbody parallel shift)

which dynamically allocated memory without ever releasing it. Upon fixing the error,

the memory ceased to grow every few iterations as shown in figure 4.7 and the program

began to perform as expected.

4.4 Automatic Performance Analysis

The case studies presented in the following sections illustrate how the rule based

expert agent system is able to provide suggestions to the parallel programmer in

order to improve the runtime of the parallel applications.

4.4.1 Enabling Multithreading

As explained in section 3.3, multithreading can benefit a Coven program when the

modules that run on the same Coven thread exhibit a low load and are sequentially

executed one after the other. To illustrate this case a 10,000 x 10,000 2D-FFT ap-

plication was implemented in Coven and executed over 9 processors. The execution

steps of this application are explained in detail in section 3.2.2. The algorithm was

first implemented in single threaded mode. As seen from the load view in figure 4.8,

some of the Coven modules exhibited a low load (≤ 50%) during execution. The ex-

pert system was then consulted for any possible suggestions to improve the runtime

of the program. The expert system could detect that the modules having low load

ran sequentially on the same Coven thread and hence it suggested multithreading the

application as seen in figure 4.8. The application was then accordingly multi-threaded

with the fftw compute and fftw transpose modules being placed on separate threads

53

Figure 4.8: Before Multithreading

Figure 4.9: After Multithreading

54

Figure 4.10: Before Load Balancing

as a result of which the runtime of the application dropped from 218.5 seconds to

193.7 seconds as seen in figure 4.9.

4.4.2 Enabling Load Balancing

There are two Dynamic Load Balancing (DLB) optimizations available in Coven. The

first DLB algorithm transparently moves TPHs between parallel tasks as less loaded

tasks run out of TPHs to process. Coven currently implements this functionality

using the Random Stealing Algorithm. However there are some iterative applications

that process a set of data over and over again, which cannot directly benefit from

Coven’s random stealing DLB algorithm. Applications of this type need to be load

balanced explicitly. This less transparent DLB scheme requires breaking of data into

smaller chunks and inserting of a, pre-built DLB system module into the data flow

graph of the user application at the end of the iteration[10]. The following case study

illustrates a Coven program which does not benefit from the implicit load balancing

55

scheme implemented in Coven. The expert agent is then used to detect this problem

and suggest the user to explicitly load balance the parallel program using the system

module provided by Coven.

To illustrate this case, we consider the N-Body application explained in section

3.2.2 with 10,000 bodies. The application was executed on three nodes with one

master node and two slave nodes. The N-Body application is perfectly balanced

because there are a predefined number of calculations that are required to compute

the new force applied to each body. In an effort to experiment with load imbalances

with this type of application we introduced external load. We define external load as

some force other than the application which causes the application to execute with

an imbalance. To demonstrate the need for load balancing under these conditions,

the N-Body application was executed while one of the slave nodes was heavily loaded

with another application. This other application caused the Coven parallel task to

only get access to the CPU about 50% of the time. Therefore, this portion ran half

as fast as the other parallel task. Figure 4.10 is a screen-shot of the Coven profiler

which depicts this application. The first process (Slave 1) is the one competing for

CPU. Slave 2 can be seen to be idle for a large portion of the runtime, due to delays

waiting on the other parallel task. Also as seen from the dialog box thread 1 runs

for 74.06 seconds while thread 2 runs for 37.42 seconds. Thus the difference in the

efficiency of the two threads is 45.04% (≥ 35%). This imbalance in load is detected

by the expert agent using the heuristic explained in section 3.3 and it then suggests

explicitly load balancing the application.

Figure 4.11 shows the profiler screen-shot of the parallel application after it has

been load balanced. The application was explicitly load balanced by adding the load

balancing system module and by partitioning the data into more pieces than there

are parallel nodes. As a result of this not only did the runtime of the application

56

Figure 4.11: After Load Balancing

decrease by 31% but the parallel tasks reached a balance between their individual

run times.

4.4.3 Enabling Shared Memory

TPHs are transferred between Coven Threads using MPI. However Coven provides an

option to transfer TPHs among the program threads running on the same processor

using shared memory. From a user’s perspective it is essentially transparent how

Coven handles the movement of the TPHs among the different program threads. In

order to enable the shared memory feature, the user needs to simply set the value for

maximum size of the shared memory region. There is certainly a trade off when using

the shared memory system as it requires synchronization among the Coven threads

running on the same processor. Also the shared memory feature is only beneficial in

the case when the amount of data being exchanged between the threads running on

the same processor is large[10].

57

Figure 4.12: Before Shared Memory

Figure 4.13: After Shared Memory

58

The following case studies demonstrate how the expert system tries to detect when

using the shared memory feature would prove beneficial to a multi threaded Coven

application.

Synthetic Coven Application

This case study consists of a synthetic Coven application in which modules running

on separate Coven threads (on the same processor) simply exchange 384 MB of data.

The multi threaded application was executed on 5 nodes in single processor mode,

with one master node and four salve nodes. Figure 4.12 shows the profiler screen-

shot for this application with the shared memory feature switched off. For simplicity

of visualization, the screen shot displays information regarding the threads running

on a single node (slave1). As seen from the figure the inter thread messages take

a while to transfer between the threads running on the same processor (average of

1.63 sec, > 5% of the parallel program runtime). Also during the transfer of these

inter thread messages there was no useful computation done on the destination thread

and it remained ideal during the message transfer time. This pattern was recognized

by the expert agent and it suggested switching on the shared memory feature in

Coven. Figure 4.13 shows the profiler screen-shot for the same application with

shared memory enabled. As seen from the figure the inter thread message transfer

time was almost negligible as a result of which the program runtime decreased from

24.29 seconds to 4.43 seconds.

2D-FFT Application

This case study consists of the multi-threaded FFTW Coven application explained

in section 3.2.2. This application was executed to compute a 10,000 x 10,000 two

dimensional FFT and was run on 9 nodes with 1 master node and 8 slave nodes.

Figure 4.14 shows the TPH view for the application execution with shared memory

59

Figure 4.14: TPH view for FFTW application without shared memory

Figure 4.15: Load view for FFTW application with shared memory

60

Figure 4.16: TPH view for FFTW application with shared memory

switched off. For simplicity of the visualization we show the runtime information

pertaining to a single node (slave1). As seen from the figure the inter thread message

transfers took a long time (average of 47.5 seconds, > 5% of the parallel program

runtime). Note that in this case the inter thread communication time is overlapped

with the module execution time on the destination thread. Also see from the load

view for the application in figure 4.15 the Coven modules exhibited a low load while

execution indicating that they were spending time waiting for messages.

The expert system was then consulted for any recommendations to improve the

performance of the parallel program and it suggested switching on the shared memory

feature. The application was then rerun with the shared memory feature on and figure

4.16 shows the corresponding TPH view for it. As seen from the figure the inter

thread message time decreased significantly as result of which the overall runtime

decreased from 348.9 sec to 310.37 sec. It is important to note that a part of the

module execution included the time required to transfer messages among the program

61

threads. This inter thread message transfer time significantly decreased once the

shared memory feature was switched on and hence a performance gain was obtained.

Chapter 5

Conclusions and Future Work

Identification and tuning of performance problems in parallel applications can be

difficult, even for parallel computing experts. Since problem solving environments

generally target application domain scientists and engineers who are often unfamiliar

with the intricacies of parallel application performance tuning, tools which assist

them in these tasks are invaluable. In this thesis, we have introduced the Coven’s

profiling architecture that helps a programmer to tune parallel applications built using

Coven. With the help of different examples we have shown how the visualizations

provided by the front end tool assist the programmer in identifying the problems

that are encountered while developing parallel applications. In addition to his, in

order alleviate the requirements of user knowledge to understand and improve the

performance of a parallel application, an expert system has been presented. The

expert system identifies the common performance problems that are encountered

while developing parallel applications using Coven. Once these performance problems

have been identified, the expert system tries to help the parallel programmer by

making appropriate suggestions to overcome these problems. Currently the expert

system is able to identify problems that can be solved by using multi-threading, load

balancing and shared memory features in Coven.

63

Figure 5.1: Current load
view for a module

Figure 5.2: Enhanced view for a
module with computation, net-
work I/O and disk I/O informa-
tion

Although the Coven profiling framework is a working system, there exists sev-

eral directions for it’s growth. New visualizations need to be developed that provide

detailed performance information such as the exact periods of time for the different

types of operations namely computation, disk I/O and network I/O. For instance,

currently in case of the load view each rectangular block represents a module and

the amount of filled area is proportional to the load exerted by the Coven module

during the execution period as shown in figure 5.1. It does not provide any infor-

mation regarding the amount of time spent doing network and disk I/O activities.

It would be useful to divide every block in the load view into three sub blocks with

one representing the percentage of the computation time, the second representing the

percentage of network I/O time and the third representing the percentage of disk

access time as shown in 5.2. These new features can be added by defining additional

instrumentation points.

In addition to appending new performance data to the log file, it would be benefi-

cial to develop scalable methods of representing the data. This is especially required

since some of the visualizations become cluttered for large number of processors (32

or more). Currently scalability of visualizations is achieved in the Coven profiler by

enabling the programmer to filter out unnecessary information. However there are

several other ways in which scalability of visualizations can be achieved namely[23]

• Adaptive graphical representation, in which the graphical characteristics of the

display are changed in response to the size of the dataset

64

• Spatial arrangement, in which graphical elements get rearranged so that as a

dataset scales, the display size and/or complexity increase at a much slower rate

• Generalized scrolling, in which a localized view of a much larger mass of infor-

mation is provided

At present, on identifying performance problems, the expert system simply makes

suggestions to the programmer in order improve over them. This requires the user to

manually edit the Coven program and re-run the application. It would be useful if

the profiling system could automate this step. For instance in case the expert system

detects that a single threaded application could benefit by using multi-threading,

the expert system could perform the control flow analysis of the Coven program and

modify the flow graph by placing the modules exerting low loads on separate threads.

Similarly if it is detected that a multi-threaded application could be benefited using

shared memory, the expert system could switch on the shared memory feature in the

middleware and then re-run the application.

Finally, another future line for the expert system is to increment the performance

problem base. This can be done by identifying new patterns in the log files that

represent a problem and by appending new rules to the knowledge base of the Coven

expert system that help in identifying these patterns.

Bibliography

[1] CLIPS. http://www.ghg.net/clips/CLIPS.html.

[2] Papi. http://icl.cs.utk.edu/papi.

[3] Anthony Chan and William Gropp and Ewing Lusk. Per-
formance Visualization for Parallel Programs. http://www-
unix.mcs.anl.gov/perfvis/software/log format.

[4] Anthony Chan and William Gropp and Ewing Lusk.
SLOG-2 Software Development Kit . http://www-
unix.mcs.anl.gov/perfvis/download/index.htm#slog2sdk.

[5] Anthony Chan and William Gropp and Ewing Lusk. User’s
Guide for MPE: Extensions for MPI Programs. http://www-
unix.mcs.anl.gov/mpi/mpich/docs/mpeman/mpeman.htm.

[6] Barton P. Miller, Mark D. Callaghan, Jonathan M. Cargille,Jeffrey K.
Hollingsworth, R. Bruce Irvin, Karen L. Karavanic, Krishna Kunchithapadam
and Tia Newhall. The paradyn parallel performance measurement tools. IEEE
Computer 28, 11, 28:37–56, 1995.

[7] Tomas Margalef Burull. Automatic Performance Analysis of Parallel Programs.
PhD thesis, Department d’Informatica,Universitat Autonoma de Barcelona,
Barcelona, Spain, September 2000.

[8] Computer Science Department, University of Oregon. TAU tools.
http://www.cs.uoregon.edu/research/paracomp/tau/tautools.

[9] Craig Smith. Java Expert System Shell. http://herzberg.ca.sandia.gov/jess/.

[10] Nathan Debardeleben. Coven: A Computational Model and Problem Solving
Environment Framework for Supporting Optimization of Parallel Applications.
PhD thesis, Computer Engineering,Clemson University, Clemson, SC, USA, July
2004.

[11] J. Dvorak. Using clips in the domain of knowledge-based massively parallel
programming, 1992.

66

[12] Guy Robinson. Load Balancing as an Optimization Problem .
http://www.netlib.org/utk/lsi/pcwLSI/text/node248.html.

[13] J. K. Hollingsworth and B. P. Miller. Dynamic control of performance monitoring
on large scale parallel systems. In Proceedings of the 7th ACM International
Conference on Supercomputing, pages 185–194, July 1993.

[14] Sanjeev Krishnan and Laxmikant V. Kale. Automating parallel runtime opti-
mizations using post-mortem analysis. In Proceedings of the 10th international
conference on Supercomputing, pages 221–228. ACM Press, 1996.

[15] Kei-Chun Li and Kang Zhang. A knowledge-based performance tuning tool for
parallel programs.

[16] MCS Division, Argonne National Laboratory. MPICH2. http://www-
unix.mcs.anl.gov/mpi/mpich.

[17] Walter B. Ligon III Nathan A. DeBardeleben, Vishal Patil. Using coven to profile
and tune parallel programs. Technical report, Parallel Architecture Research
Lab, Clemson, SC 29631, USA, February 2004.

[18] Pallas. Vampir/VampirTrace. http://www.pallas.com/e/products/ vampir/doc-
uments.htm.

[19] Michael Quinn. Parallel Programming in C with MPI and OpenMP. Tata Mcgraw
Hill, 2003.

[20] D. A. Reed, R. A. Aydt, R. J. Noe, P. C. Roth, K. A. Shields, B. W. Schwartz,
and L. F. Tavera. Scalable Performance Analysis: The Pablo Performance Anal-
ysis Environment. In Proc. Scalable Parallel Libraries Conf., pages 104–113.
IEEE Computer Society, 1993.

[21] The Computer Science and Oak Ridge National Labora-
tory Mathematics Division (CSM). Parallel virtual machine.
http://www.cs.uoregon.edu/research/paraducks/papers/shpcc94.d.

[22] Dr Lorna Smith. Comparison of code development tools on
clusters. http://www.epcc.ed.ac.uk/overview/publications/ train-
ing material/tech watch/99 tw/ techwatch-clustertools/tools-1.html.

[23] Steven T. Hackstadt, Allen D. Malony, Bernd Mohr. Scal-
able Performance Visualization for Data-Parallel Programs.
http://www.cs.uoregon.edu/research/paracomp/tau/tautools.

[24] Sun Microsystems. Java Foundation Classes (JFC/Swing).
http://java.sun.com/products/jfc/index.jsp.

67

[25] Michela Taufer. Inverting Middleware: Performance Analysis of Layered Appli-
cation Codes in High Performance Distributed Computing. PhD thesis, SWISS
FEDERAL INSTITUTE OF TECHNOLOGY ZURICH, Zurich, Switzerland,
2002.

[26] Omer Zaki, Ewing Lusk, William Gropp, and Deborah Swider. Toward scal-
able performance visualization with Jumpshot. High Performance Computing
Applications, 13(2):277–288, Fall 1999.

	TITLE PAGE
	ABSTRACT
	DEDICATION
	LIST OF FIGURES
	Introduction
	Brief Overview of Coven
	Motivation for Research
	Proposed Solution
	Thesis Overview

	Related Work
	Common Profiler Tools
	Vampir
	TAU
	MultiProcessing Environment (MPE)
	Paradyn
	PAPI

	Expert System Tools
	PPA
	Kappa-PI
	PDE

	Coven Profiling Framework
	Coven model of Computation
	Back end data collection service
	Using MPE to log information
	Determining the load and memory

	Front end visualizer
	Software Architecture
	Visualizations

	Rule Based Expert Agent

	Case Studies
	Work Environment
	Comparing module run times
	Detecting memory problems
	Automatic Performance Analysis
	Enabling Multithreading
	Enabling Load Balancing
	Enabling Shared Memory

	Conclusions and Future Work
	BIBLIOGRAPHY

