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ABSTRACT

As high performance computers continue to gain in acceptance and presence glob-

ally, more people are beginning to use them. This increase in use has brought parallel com-

puting to groups seeking its performance benefits but who may not be trained in parallel

computing. Problem solving environments (PSEs) have long been a software mechanism

to ease programming complexity and are also gaining in popularity in the high performance

computing realm. However, while PSEs have been useful in simplifying parallel program

implementation, most lack the ability to optimize an application to perform with efficiency

on the target architecture.

This work details a model of computation for parallel computing called the Coven

model and the Coven PSE which implements the model. The Coven model makes it pos-

sible for the PSE to optimize applications implemented in it by understanding the appli-

cation’s computational structure, including data and control flow. The design and imple-

mentation of the Coven PSE is detailed and includes a suite of features that ease parallel

programming by exploiting properties of the Coven model.

Three optimizations (multi-threading, dynamic load balancing, and checkpoint / re-

covery) are detailed and analyzed to study the performance benefits they provide to Coven

applications. Using real applications such as the FFT, fractal generation, N-Body simula-

tion, and a heat transfer simulation, this work examines both the performance improvement

by employing these optimizations as well as the complexity of implementing the optimiza-

tion outside of Coven. We conclude that Coven can provide these optimizations with al-

most no programming cost to the user and can be used to achieve performance gains. Most

importantly, this work makes accessible these optimizations to users without the need for

them to possess parallel computing expertise.
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CHAPTER 1

INTRODUCTION

There have always been applications that perform poorly or fundamentally cannot execute

on conventional computers. These applications are often limited by the resources of con-

ventional computers including memory, disk, and processor speeds. As computers and their

components have improved over the years, many of the applications that were previously

unsolvable on commodity machines are so trivial that they now run on hand-held comput-

ers. This trend, however, does not mean that the set of applications that require advanced

computers is shrinking. On the contrary, as more computing power is made available,

scientists are finding that they can expand their algorithms to include more parameters or

increase the data resolution to provide more realistic solutions, improved simulations, and

achieve more accurate answers.

Even today on some of the world’s fastest and most expensive supercomputers,

many applications take days, weeks, or longer to execute. Often the goal is for these appli-

cations to execute in a matter of minutes. For example, while scientists have developed very

accurate weather models that can predict tornado paths, the models take weeks to run on a

multi-million dollar machine. This is far too slow to prove useful in saving lives or prop-

erty. Examples like this can be found throughout computational science and engineering,

as well as business, biomedicine, and many other areas.

Parallel computers are machines that aim to achieve high performance by bringing

multiple processors together into a single computational entity. This approach contrasts

with traditional methods that concentrate on increasing the speed of a single processor or

other resource. There are numerous classes of parallel computers ranging from many indi-

vidual machines connected together by a network, to several powerful processors sharing

a massive centralized memory. Although the machines that reside at opposite ends of this
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spectrum strive to solve vastly different classes of problems, they share an important simi-

larity. In particular, they all require special languages, tools, and environments to develop,

execute, and debug programs.

For many years it appeared that with the arrival of each new supercomputer came

a set of new tools and languages to learn. Invariably, legacy code had to be rewritten

for the new system. This led to efforts in making languages or libraries portable across

architectures. Libraries such as PVM [81] and MPI [36] provide APIs that are implemented

on most systems and prove to be a much more portable way of moving applications between

systems. While these interfaces have gone a long way in making parallel code easier to

write, they still require a steep learning curve which is often a daunting fact to application

domain scientists and engineers. Furthermore, achieving the best performance of these

parallel machines often requires a very detailed understanding of many of its components,

such as the operating system, network, memory, and storage system. For example, a code

modification that results in improved performance in application runtime on one system

often has the opposite effect on another.

The fundamental problem is that there are two separate classes of people in the

parallel computing field: those who have applications that need the benefits from paral-

lel computers, and those who understand how to correctly and efficiently implement code

on parallel computers. We will term members from these two classesapplication domain

specialistsandparallel computing specialistsrespectively. Although there are many indi-

viduals that possess skills from both of these classes, the complexity of parallel computing

often requires that an individual of one class learn the skills of the other class in order to

reap the rewards of parallel computing.

With the introduction of Beowulf [80] clusters, more and more organizations are

acquiring parallel computers. Beowulf clusters offer a low cost to performance ratio, gen-

erally through use of commodity hardware and open source software. This software in-

cludes operating systems, programming libraries, compilers, and debugging tools. One
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needs only to observe the fluctuation of the top list of the fastest supercomputers [35]

to notice that parallel computing is becoming more prevalent. However, from the small

university researcher who needs only sixteen nodes to the groups who need multi-million

dollar machines, programming parallel computers still is difficult.

1.1 The Parallel Programming Problem

While parallel computer usage is increasing in amazing numbers all over the world, users

are finding that in order to achieve the projected performance benefits of their system they

must be skilled parallel programmers. Skillicorn and Talia [76] suggest a few reasons why

parallel computers are complex to program. They note that while the execution time of

a “sequential program changes by no more than a constant factor when it is moved from

one uniprocessor to another,” this is not necessarily the case for parallel programs. Order of

magnitude runtime differences are not uncommon when transporting parallel code between

different machines. This is because the performance of the code is heavily dependent upon

the underlying system, including the hardware architecture and operating system software.

Furthermore, they state that it takes a “long time to understand the balance necessary be-

tween the performance of different parts of a parallel computer and how this balance affects

(overall application) performance.” In particular, the dynamic relationship between proces-

sor and network interconnect greatly affects application performance. It is often difficult to

achieve balance between processor and network capabilities, even for parallel computing

specialists.

There are many approaches aimed at easing the task of parallel programming. Au-

tomatic parallelizing compilers can take sequential code and parallelize it; however the

effectiveness of these compilers is largely limited to a relatively small class of applications.

Programming models have emerged as a fairly productive way to achieve high performance

on most architectures. MPI [36], for example, provides high level primitives which are im-

plemented differently on each underlying system to achieve good performance. As with any
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high level “language”, there is a tradeoff between simplicity and performance. A talented

and knowledgeable programmer could likely code a faster common parallel programming

construct on a system in much the same way as a gifted assembly language programmer

is able to achieve higher performance than a conventional compiler. Although this manual

approach is effective, it is also extremely costly in man-hours and is usually considered not

worthwhile in the long term.

1.2 Problem Solving Environments

Problem Solving Environments (PSEs) are one approach in addressing the programming

complexity of parallel computers. They are gaining popularity, especially as more focus

is being placed on making parallel computers accessible to those that need them the most.

A PSE, simply put, is a software toolkit that assists an end-user in solving a particular

problem. PSEs are intended to provide all the necessary tools a user needs, helping them at

each stage of an application’s life cycle. This includes design, implementation, execution,

debugging, data analysis, performance analysis, performance tuning, data visualization,

and application maintenance. Many PSEs exist for sequential computers, but there are

considerably fewer for parallel computing. Related work in the PSE field is outlined in

Chapter 3.

While there exist a number of problem solving environments for specific applica-

tion domains, little effort has been placed into general purpose problem solving environ-

ments, particularly in the realm of parallel computing. PSEs are generally used to reduce

application development time through the use of modular programs, code reuse, and debug-

ging tools. Parallel computing brings forth another constraint that is sometimes overlooked

in sequential PSE development, namely performance. Programmers who look to parallel

computing as an alternative for their code do so because the sequential world can no longer

facilitate their application, either due to exorbitant program runtime (often on the order of

days or weeks) or due to limited resources (such as memory or disk space). Therefore,
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PSEs for parallel computers must not only provide the set of features important to sequen-

tial PSEs but also assist in performance analysis and tuning as well as providing features

that are important to parallel computing.

1.3 Parallel Computing Optimizations and Features

Simply implementing an application in parallel does not always provide the type of perfor-

mance enhancement required. In these cases, code optimizations are often employed to see

if they can potentially result in additional performance improvements. While PSEs, APIs,

and frameworks are often used to help ease the task of parallel programming, optimizing

parallel applications presents another level of complexity. Because of this difficulty, few

environments exist that can assist a user in performing complex parallel computing opti-

mizations.

There is a wide range of optimizations that are often employed to increase the per-

formance of a parallel application. Examples include adjusting memory access patterns,

prefetching data from a storage device, overlapping computation and communication, and

balancing the workload distributed to each parallel process. Researchers are constantly in

search of new optimizations and are trying to employ well known techniques in their ap-

plications to achieve as much performance as possible from their parallel computers. Due

to the expense of parallel computers, the most important goal generally is to minimize an

application’s execution time.

In many parallel applications the processor must request data from some external

device such as a storage system or another node through an interconnection network. De-

pending on the latency and bandwidth of the networking infrastructure, the processor may

often stall waiting for the data to arrive. Researchers have turned to multitasking operat-

ing systems and multi-threading as a potential way to address this problem. With multi-

threading, when a process (or thread) stalls waiting for data arrival, another task takes over

the processor in an attempt to keep it busy. Writing multi-threaded applications is complex,
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requiring an understanding of libraries that vary from system to system and also of ways to

partition an application into concurrently executing tasks.

Another common optimization deals with balancing the workload between each

parallel task through careful distribution of the work. For some applications this can be

done statically before the program runs while others require a more dynamic solution. The

goal of load balancing is to minimize the time the parallel tasks stall waiting for other tasks.

For some applications this stalling is periodic during program execution, while for others

it only occurs once at program completion.

In a multiuser environment, parallel applications are often alloted a time window in

which the code can run. After the time has elapsed, the program must be stopped so that

another user’s application can access the machine. Since many parallel applications run for

extremely long periods of time, it is imperative that an application can stop its execution

and then resume at a later time. The operation of stopping a program, saving its state, and

resuming its execution from that state is commonly known as checkpointing. Checkpoint-

ing has other uses such as migrating programs from one cluster to another, saving progress

for runtime data analysis, or recovering after application or hardware failure.

There are many potential optimizations available to parallel computing applications.

While each optimization is applicable in certain situations, it is not always clear which op-

timizations will be the most beneficial to a particular application. Furthermore, recognizing

the characteristics that warrant a particular optimization often requires expertise in parallel

computing. The fact that optimization implementation is often challenging further hinders

their usefulness to those without detailed parallel computing expertise. This in turn limits

the potential performance that most application domain specialists can expect to receive

from a parallel implementation of their application.
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1.4 Proposed Solution

Operating systems have long been used to incorporate common functionality into a central,

reusable location. If the functionality (or features) can be generalized so as to be usable

by a wide range of applications, then the operating system can remove the complexity

of implementing these features in applications. Generalizing and incorporating features

helps provide a standard interface to those features and allows their implementation to be

abstracted away from the applications that utilize them. This is particularly important with

respect to functionality that is often reused.

In the world of modern operating systems, we find more and more functionality

being incorporated into the OS or in tightly coupled API libraries. These include mem-

ory management, disk I/O, external device I/O, multi-threading, atomic locking, and many

other features. In much the same way, PSEs can be seen asmiddleware— a term used

to describe software that resides between an application and a lower layer such as an op-

erating system that provides a meta-environment, or virtual operating system in which the

application context executes.

Many PSEs are specialized to a specific class of applications. With specialized

PSEs, the environment often has some knowledge of the application’s structure due to as-

sumptions with respect to that application domain. Conversely, those environments which

allow a more general class of application to be implemented suffer from having little knowl-

edge of the application’s structure. This lack of knowledge limits the ability of the environ-

ment to make optimizations on the application.

This work details a new model of computation called the Coven model. The Coven

model is implemented by the Coven PSE framework and enables a large class of applica-

tions to be implemented in the PSE and at the same time reveals key information about the

structure of the application to the PSE. This information includes application data types,

access patterns, control flow, trace information, data decomposition, and locality. Much
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like an operating system, this then allows the PSE middleware to incorporate a number of

important functions and optimizations into the PSE itself.

Given this new model of computation, this work attempts to answer the follow-

ing questions:Does this model facilitate the encapsulation of common parallel computing

features and optimizations? If so, do these features provide competitive performance com-

pared to conventional, hand-coded approaches?To answer these questions, the model is

first explained in detail and is then followed by a description of a PSE that implements the

model. Then, three common, powerful, yet complex to program parallel computing code

optimizations are implemented in the PSE and utilize the model. Specifically, these op-

timizations are multi-threading, load balancing, and checkpoint/recovery. We analyze the

performance of these optimizations utilizing a trace and debug tool which itself is encap-

sulated within the PSE. Furthermore, the model facilitates the implementation of this tool

and a number of other features.

The PSE which implements this unique model of computation is called Coven. By

employing the model to incorporate many common optimizations, features, and functional-

ity into Coven, we show that the model can effectively and efficiently simplify many tasks

of parallel application development. Furthermore, Coven is a PSE that not only addresses

the needs of parallel program development, execution, data visualization, and performance

analysis but also performance tuning and checkpointing. This work shows that, through the

use of a new model of computation, a PSE can be used to leverage common optimizations

and features while providing them in a way that is easily accessible by average users.

1.5 Outline

The rest of this thesis is devoted to proving the utility of this model of computation for

PSEs. Chapter 2 presents the Coven model of computation and then introduces the Coven

PSE that utilizes this model. Coven is shown with a sampling of the applications that have
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been created with it to date. A number of common features which are facilitated by the

Coven model are provided. These include:

• garbage collection,

• data serialization,

• data partitioning,

• data joining,

• task virtualization,

• data communication between parallel tasks,

• trace analysis,

• and performance debugging.

We then study the types of applications that can be implemented within Coven and

demonstrate its generality with a range of sample applications. The modular programming

interface is presented and we show that existing application code requires little augmen-

tation to be converted into a Coven application. Additionally, a graphical user interface

complete with a drag-and-drop program creation is shown. The graphical tool includes a

performance debugger and trace analyzer which utilizes the model to gather its statistics.

To study the power of the model we implement three common yet complex to

program parallel computing optimizations. These optimizations are encapsulated within

Coven and employ the model to provide the optimizations efficiently, elegantly, and with

little effort on the part of the application programmer. The specific optimizations studied

are multi-threading, load balancing, and application checkpoint and recovery.

In Chapter 4 the multi-threading optimization is presented. Utilizing multiple threads

of control, tasks are able to concurrently execute on a compute node while sharing appli-

cation data (state). Both a synthetic and a real application are implemented and analyzed
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to compare the performance of a Coven implementation versus a hand-coded parallel im-

plementation. We show a performance improvement on the order of 25% to 30% for the

applications tested. Furthermore, the implementations are studied to compare the pro-

gramming complexity. We show that using Coven’s multi-threading feature is trivial while

implementing multi-threading in a parallel application by hand is error prone, tedious, and

complex.

Chapter 5 studies the use of dynamic load balancing (DLB) within Coven. We

present two different forms of DLB which are applicable in different types of applications.

One of the DLB approaches is completely transparent to the application programmer and

the other requires simply inserting a pre-built module into their data flow graph. Both

approaches are analyzed and shown to provide a performance improvement of around 15%

for the applications tested. We study the complexity involved in implementing DLB within

a hand-coded parallel application and conclude that Coven can provide the optimization

with minimal cost.

An application checkpoint and recovery optimization is analyzed in Chapter 6. This

optimization is shown to provide checkpointing in Coven with minimal effort on the part

of application programmer. Due to the unique properties of the Coven model presented in

Chapter 2, unlike similar checkpointing systems Coven’s implementation does not require

users to “tag” data that must be checkpointed. This makes adding checkpointing to an

existing application trivial.

In Chapter 7, we conclude with a discussion of unique contributions.



CHAPTER 2

COVEN

In this chapter we present a new model of computation for PSEs called the Coven model.

We then present the Coven PSE framework which implements this model. The modular

programming paradigm used by application programmers in Coven is discussed in Sec-

tion 2.3. The implementation of the Coven model and the resulting PSE middleware is

presented in Section 2.4. The graphical front-end is then described as well as how a user

goes about implementing a Coven application. We conclude with an overview of the appli-

cations that have been written using Coven.

2.1 The Coven Model of Computation

A PSE or middleware environment for parallel computing can be designed so as to abstract

away some common complexity from applications. However, the amount of functionality

which can be abstracted from the application and incorporated into the environment itself is

limited by the environment’s lack of detailed information about the application’s structure.

If the application exposes some of its internal structure to the environment, then the PSE

is able to encapsulate some of the application’s functionality. This is exactly what the

Coven model of computation provides and it does so with minimal change to the original

application’s code.

In the Coven model, a program is defined as a tuple< I,D > whereI is a set of

instruction components (modules), andD is a set of data components. TheI components

are simply program code, without any program state. TheD components are programstate.

In the simplest case, anI-component and aD-component is a sequential program. Under

the Coven model,I consists of a set of codes or modules. A target application program
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is decomposed into a number of modules. The critical aspect being that modules cannot

contain state, thus all relevant data must be passed in or out of a module.

Whenever a module executes with aD-component, the result is termed a task. A

program execution consists of a number of tasks executed in order based on dependencies

between the tasks. If data output by one task is input by another, a data dependency exists

between the tasks. Similarly, output dependencies and antidependencies can exist between

tasks as per the standard definitions. The dependencies define a partial order between the

tasks that must be satisfied for a correct execution.

The singleD-component of a sequential program can be partitioned, replacing the

original state with multiple smaller ones. The data contained in the original state may

also be contained in the smaller ones. Some data may be distributed among the smaller

partitions and other data may be replicated. WhenD-components are partitioned, the tasks

that were defined for the sequential program must be redefined as multiple tasks. In this

case, it becomes possible to execute more than one task at a time, potentially as many as

there are partitions.

There are a great many data flow model extensions [52], most of which are slight

variances on the central theme. The Coven model is similar in that much of the basic idea

derives from data flow programming. A similarity also exists with process networks (PNs)

where asynchronous messages are used to communicate data between components. These

channels implement data flow but PNs are often considered awkward for specifying control

logic.

One of the key concepts of the Coven model is the separation of an application’s

code from its state. State in terms of the model is some high level construct which maintains

a portion of the application’s data. One of the key differences of the Coven model is the

ability of tasks to modify state. As state flows between modules (I components), those

components may add to, delete from, split, join, or do many other similar operations to

the state. The ability for state to be split or joined is unique from the perspective of the
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model as well. This concept marries themes from parallel programming and enables many

parallel optimizations. Another point is that aD-component generally contains more than

one buffer of data. This means that asD components are used as input toI components,

theI-component is able to pick and choose the data that are needed. While the differences

are slight, they enable some of the optimizations and features which will be shown in later

chapters.

Tasks may create new data in the state, remove data, replace data, and other similar

operations. One key operation in the Coven model is that of state partitioning and joining.

To partition a state involves creating new output states from an original input state. These

output states may be strict partitions of the original state, duplicate portions of the state, or

any combination thereof. Conversely, joining states takes as input an arbitrary number of

states and reduces them to a single output state.

With state being partitionable into sub-states and the stateless feature of code (mod-

ules), the model allows more than one task to execute concurrently at a time. The advantage

of this model is that by decoupling the state of an application from the code, the application

unknowingly exposes information about its structure to the environment. The environment

then is free to use this to optimize the application and provide features which can be en-

capsulated in the environment. This then alleviates the burden of implementing these opti-

mizations and features in the application. There are potentially numerous benefits including

quicker application development, less error prone applications, more reusable application

code, and many others.

In developing the Coven model of computation we employ some data flow princi-

ples and apply them at a macro level but aim to cause the least augmentation to existing

application code. In the realm of high performance computing, programmers are most used

to the imperative (procedural) programming paradigm. Converting code to the data flow

model requires a fundamental shift in the way applications are programmed. This is why
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the Coven model separates the state from the data to allow the code to remain relatively

unchanged and at the same time utilize a component programming paradigm.

In the following chapters this model is studied to analyze its effectiveness. Sec-

tion 2.2 presents Coven, a PSE that implements the Coven model of computation. Chap-

ters 4, 5, and 6 study three complex parallel computing optimizations and how they can be

encapsulated within Coven through utilization of the model. The study of these optimiza-

tions includes case studies of sample applications, performance analysis, and comparison

with conventional hand-coded approaches.

2.2 The Coven Problem Solving Environment Framework

Coven is a problem solving environment framework for parallel computers that implements

the Coven computational model. By abstracting the common ingredients of many PSEs

and placing them into the Coven framework, custom PSE creation in a target problem

domain is simplified. Applications are developed within a Coven PSE through the use of

modular, component programming. Coven modules expose their interface, and through this

the system is able to gather information about the underlying application. This information

is then used to also abstract away the complexity of many common operations which would

normally require a programmer to explicitly code.

At a high level, Coven is composed of three main components: a module library,

a front-end, and a parallel runtime system/engine back-end [31]. Figure 2.1 gives a brief

overview of the Coven system architecture. Users implement modular code utilizing a

module library repository (Section 2.3). Many pre-built modules exist which can be used

directly or modified to fit the needs of a particular application.

Interacting with the front-end, a Coven user implements his application as a data

flow graph. Modules are selected from the library and interconnected to describe how data

will flow between them. A graphical user interface (Section 2.5.1), or GUI, is available

to assist in this task and provides a familiar drag-and-drop interface. A code generator
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Figure 2.1: Architecture Overview

translates the data flow graph into a custom language (Section 2.5.3). Advanced users can

program directly in this language if desired.

Once the data flow graph has been compiled, it is transferred with the chosen mod-

ules to the runtime system (Section 2.4). This component runs on a parallel computer

back-end and executes the application and its modules in parallel. Each parallel process

executes one Coven model task at a time with the parallelism coming from multiple pro-

cesses each executing tasks on separate state partitions. Results can be sent back to the

front-end for visualization and post mortem analysis.

2.3 Module Library

At the heart of writing Coven programs is decomposing applications into modules. Coven

modules are pieces of C code that contain special directives describing the interface to

the module. These directives are similar to a C function header and, while no automatic
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conversion system was built, it should be possible to translate from C source directly to a

Coven module interface description.

With modular code design the programmer is able to insulate segments of code

from others. This has the benefit of making the code more reusable. Much like a method

in a library, a module (or collection of modules) can be used in many pieces of unrelated

code. For example, a module can be implemented which multiplies a matrix by a vector to

produce a vector easily by defining the matrix and vector as inputs and the vector as output.

This module will find uses in very different applications.

Coven modules are contained in their own source file, generally with the.cov

extension. A parser translates the module file into a C source file by replacing the Coven-

specific directives with Coven library macro and method calls. These Coven calls include

the use of many Coven internal data structures and a library API that we want to shield the

user from having to understand. With this approach, the user can focus on describing the

interface to their module. Additionally, by creating this layer it allows the Coven engine to

change and as long as this layer remains the same, existing module code will continue to

function.

Once translated into pure C, the modules files are transferred to the parallel com-

puter and compiled into shared objects. Coven dynamically loads the modules at runtime,

calls them in the order the user specified, and handles passing all data between modules.

Since the modules are shared objects, Coven does not need to be recompiled each time a

module file is changed. Additionally, it is possible to switch a module out at runtime for

debugging purposes.

Modules can be broadly split into one of two categories:application modulesand

system modules. While there is no distinction in the implementation, it is helpful to catego-

rize these classes of modules in this way to understand how Coven can facilitate collabora-

tion between the application domain specialist and the parallel computing specialist. The

following sections describe these classes of modules.
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2.3.1 Application Modules

Application modules are those that deal with solving the implemented application and have

little or nothing to do with parallel computing. The idea behind application modules is that

they are easy to implement for the domain specialist and could run with or without parallel

computing. This feature of Coven can be used to implement sequential code which runs

entirely without the use of MPI or multiple processes.

With application modules, the user can specify parts of an algorithm without con-

cern for how the data arrives at the algorithm. An example is the Normalized Difference

Vegetation Index (NDVI) [22] algorithm, implemented as a Coven module and shown in

Figure 2.2. The NDVI is a common satellite remote sensing algorithm. The module takes

as input two arrays containing calibrated satellite channel data and produces as output the

NDVI array. Notice that the module is self-contained in that the calibrated data arrays can

be of any length, from any portion of any satellite image. This lends itself well to paral-

lelism as at runtime this module may run on many parallel processors, each operating on a

different portion of the calibrated data array.

2.3.2 System Modules

By contrast to application modules, system modules deal with issues related to partitioning

data and transporting it between parallel processors. Programming this style of module of-

ten requires a more in depth understanding of the targeted architecture and some of Coven’s

more advanced functionality. Coven attempts to hide the complexity but to allow complete

control; methods relating to data partitioning, distribution, and reassembly are provided to

system module programmers.

Keeping with the modular programming approach, the goal of system modules is

to allow a parallel computing specialist to design and implement code which handles ef-

ficient transportation of data to the application modules. Through well defined module



18

COVEN_Module sat_ndvi
(

input buffer float cal_c1[num_cal],
input buffer float cal_c2[num_cal2],
output buffer float ndvi[num_cal]

)
{

int i;

for (i=0; i<num_cal; i++) {
ndvi[i] = (cal_c2[i] - cal_c1[i]) /

(cal_c2[i] + cal_c1[i]);
if (ndvi[i] > 0.7) ndvi[i] = 0.7;

}

}

Figure 2.2: NDVI Calculation Application Module

interfaces, the parallel computing specialist needs only understand what data to provide to

which modules and not be concerned with the science behind the module.

Figure 2.3 is a system module which distributes point mass bodies to parallel Coven

processes. Rather than schedule one group of bodies on each processor, this module uses

the input scalarnum partitions per slave to put multiple groups of bodies on each

parallel node. The parallel computing specialist implemented the system module in this

way in an attempt to gain benefits from multi-threading. Programming this module requires

an understanding of a number of advanced Coven functions. Behind the scenes, Coven is

placing the bodies into internal data structures and scheduling them to run on parallel Coven

processes.

As with any modular programming approach, the goal is to make a module appear

as a “black box.” This not only makes the module more usable in many applications, but

also precisely specifies what the module does so that collaborative software development

is simplified.
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#include "medea.h"

COVEN_MODULE nbody_scatter_multiple
(

const int num_partitions_per_slave,
inout buffer MEDEA_BODY my_bodies[total_num_bodies]

)
{

int num_slave_procs = COVEN_get_num_slave_processors();
int num_data_chunks = num_slave_procs * num_partitions_per_slave;
int target_num_bodies = ( int )ceil(( double )total_num_bodies /

( double )num_data_chunks);

int i, total_assigned_bodies;
COVEN_size *array_of_blocks, *array_of_displacements;
COVEN_Type body_type, scatter_type;

COVEN_Type_contiguous( sizeof ( struct Medea_Body), COVEN_BYTE,
&body_type);

total_assigned_bodies = 0;
i = 0;

array_of_blocks = (COVEN_size*)COVEN_malloc(num_data_chunks*
sizeof (COVEN_size));

array_of_displacements = (COVEN_size*)COVEN_malloc(num_data_chunks*
sizeof (COVEN_size));

while (total_assigned_bodies < total_num_bodies) {
/* try and fit this many bodies */
int num_bodies = target_num_bodies;
/* starting at how many we’ve assigned so far */
int start_body = total_assigned_bodies;

total_assigned_bodies += num_bodies;
/* if we’ve assigned more than we have, then back off by that

* amount */
if (total_assigned_bodies > total_num_bodies)

num_bodies -= (total_assigned_bodies - total_num_bodies);

/* now num_bodies is the number of bodies for this TPH to take */
array_of_blocks[i] = num_bodies;
array_of_displacements[i] = start_body;
i++;

}

/* now that we have our displacements and blocks setup we can make
* the MPI data type */

COVEN_Type_indexed(num_data_chunks, array_of_blocks,
array_of_displacements, body_type, &scatter_type);

{
struct COVEN_Collective_Action *col_action;
struct COVEN_Distribution dist;

col_action = ( struct COVEN_Collective_Action*)malloc(1*
sizeof ( struct COVEN_Collective_Action));

COVEN_Create_Scatter_Action(&(col_action[0]), scatter_type,
"my_bodies");

COVEN_Create_Blocked_Distribution(&dist, num_slave_procs,
num_data_chunks / num_slave_procs);

COVEN_Scatter_Distribution(num_data_chunks, col_action, 1, &dist);
free(col_action);

}

COVEN_free(array_of_blocks);
COVEN_free(array_of_displacements);

}

Figure 2.3: Data Distribution System Module
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2.4 Runtime Engine

Coven’s runtime engine is the component responsible for executing the user’s application.

Often referred to as a back-end component, the runtime engine executes on a parallel com-

puter. Technically speaking, there is no requirement that the architecture be parallel, just

that it have an MPI implementation.

Many individual components make up the runtime engine (also called the runtime

system). Each component handles a portion of the task of executing a user’s application,

including such operations as: data encapsulation, module execution, work queues, mem-

ory maintenance, and transportation of data around the system. The runtime system is

described in detail in the following sections but an overview first is helpful.

Figure 2.4 depicts a very detailed view of the entire Coven system. The portion

outlined in black, markedDRIVER, represents the segment contained in the runtime engine.

The figure describes how TPHs (units of work, Section 2.4.1) are created by the memory

manager, put into input TPH queues for processing on the parallel processes (program

sequencers), and how the program sequencers then process the TPH by passing it through

modules. Notice the modules are loaded dynamically by the module loaded from a module

library. Modules are placed in the module library after having been created for use in this

program. The library may contain other general purpose modules including those from

other applications. The TPHs interact with local memory and, upon completion, TPHs are

sent back to a component (the reassembler) that reassembles the data, or at least completes

the application.

These components, as well as some important concepts, are described in the fol-

lowing sections.

2.4.1 Tagged Partition Handle

Tagged Partition Handles (TPHs) are one of the core and most original concepts of Coven.

TPHs are a completely internal data structure used by the Coven environment to implement
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Figure 2.4: Detailed Architecture Overview

the stateless feature required by the Coven model. Transparency from the user means that

implementation details and complexity can be hidden. Additionally, the TPH abstraction

layer hides the complexity of the data structure behind an easy to use interface and allows

a programmer to interact with the TPH transparently.

All data in Coven that passes between modules and Coven tasks is contained inside

of a TPH. When a module reads data as input, it is reading it from a TPH. When it creates

new output, it is creating it inside of a TPH. TPHs can contain any number of buffers

(arrays) and scalars. All the common C data types are valid types in TPHs and users can

even create their own data types and store them inside of TPHs.

TPHs can be thought of as a way to keep related information together. Imagine

an image file that is split into four segments, each segment being contained within its

own TPH. As those TPHs flow through the application’s modules, new data is likely to

be created by using the image file segment as input. This new information is attached

to the original segment. This means that as a TPH moves through the system it keeps

related information about that image segment together. This fact simplifies the concept
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Figure 2.5: Tagged Partition Handle Example

of transferring TPHs through the system, as generally speaking, all needed information is

self-contained within that TPH.

One can liken TPHs to packets in a network. Much like packets, TPHs contain

arbitrary data and are wrapped up into a data structure that flows around the system. Header

information details where the TPH (and packet) is destined as well as hints to what kind

of information is contained within. Similarly, much as a packet flows around a network

between hosts, TPHs pass between modules and parallel processes.

Figure 2.5 depicts what a TPH might look like at some point during an application.

The TPH shown in the figure represents one from a satellite remote sensing application.

The M depicts a buffer attached to some memory location. Beside each buffer is thetag

name. The TPH initially was empty, then was defined to constitute some portion of the

image. As the application progressed, more and more buffers were created by modules.

Those modules read previous buffers as input in order to calculate new output. Since inputs

may be necessary to later modules, it is not possible to free a buffer once it is used but

instead Coven must determine when the buffer will be last used. This is discussed in

Section 2.4.5.

The TPH is the central and most important data structure in Coven. All application

data is contained within TPHs and, through Coven’s comfortable API, modules transpar-
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ently manipulate data within TPHs. By encapsulating all application data within TPHs,

Coven is able understand many properties of the data. These properties include data type,

number of elements, size (in bytes), usage pattern, memory location, and others. Using

this information, Coven is able to incorporate many common data operations and paral-

lel application optimizations into the runtime engine itself. For instance, each buffer has

stored with it the name, type, size (in bytes), and number of elements. This makes it easy

for Coven to marshall it and send it elsewhere. Marshalling in Coven is the act of tak-

ing a TPH data structure containing many pointers and many separately allocated memory

regions and folding it into a single, sequential stream of bytes which can be used to com-

pletely replicate the TPH. This is useful for sending the TPH across the network, or writing

it to disk.

The TPH enables the environment to move, allocate, deallocate, save, and restore

partitions of an application’s state. The tagged nature of TPHs is not required by the Coven

model and is employed to simplify the application building procedure [26]. Fundamentally,

by having users describe their applications and data explicitly, Coven is able to determine

the structure of the application. Then, optimizations and features common in parallel com-

puting can be abstracted away from the user and placed into Coven itself, simplifying the

implementation issue of applications and broadening the usability of these features and

optimizations.

2.4.2 Program Sequencer

The Coven runtime engine executes each module sequentially. Parallelism comes from

having multiple runtime engines each executing modules on different TPHs. This concept

is often known as programming with parallel components. As each module is executed, a

TPH (representing a portion of the data) is passed into the module. The TPH holds both

input and output buffers. The Coven component responsible for calling the modules and

passing the TPHs between them is called aprogram sequencer. Each parallel task executes
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a single program sequencer. Later, in Chapter 4 when multi-threading is discussed, each

Coven Thread will be shown to execute its own program sequencer.

At startup, each program sequencer examines the Coven program file (data flow

graph) and determines which modules it is assigned to process. Each then dynamically

loads these modules and maintains pointers to them in an internal data structure.

Due to the sequential ordering of the modules, TPH flow is simplified. When a

TPH arrives for processing, the program sequencer merely calls each module in sequence,

passing the TPH into each module as an argument. Figure 2.6 represents a simplified view

of a program sequencer. This example includes five modules (represented as circles) and

at least four visible parallel tasks, each with their own program sequencer. Each program

sequencer has a TPH (represented as a small square) flowing through it. In the first and

second program sequencer, the TPH is being processed by a module. In the third program

sequencer the TPH has just exited one module and is about to be passed into the next one

in sequence. Finally, in the last program sequencer shown, the TPH is leaving the program

sequencer as it is destined for another parallel task.

Coven users can use loop structures in the data flow graph and the program se-

quencer is responsible for implementing this functionality. A series of modules may be

grouped together to form the body of a loop. The user specifies the loop parameters, such

as start value, increment value, and end value. The program sequencer implements the

loop, checking break conditions at the borders of the module group. Therefore, while the

module order is sequential in nature, the program sequencer is able to move TPHs around

in any arbitrary order.

2.4.3 TPH Queues

Each program sequencer may have assigned to it at any time a number of TPHs that are

pending to be processed. Coven implements this through a FIFO queue of input (to be

processed) TPHs. When idle, the program sequencer dequeues a TPH from this queue if



25

. . .

Program Sequencer 3

Program Sequencer N

Program Sequencer 2

Program Sequencer 1

Figure 2.6: Program Sequencer

any are available. The TPH is then passed through modules as described in the previous

section.

Generally speaking, once a TPH has been processed through all modules, it is

scheduled to be sent to another parallel task. Usually this is some master process which

coalesces all the data together into a final result. There are, however, other instances where

TPHs may flow between parallel slave tasks. To address this, each program sequencer has

its own output TPH queue as well. TPHs are placed there awaiting transfer to a destination

process. Figure 2.7 depicts this queue system.

Coven’s input queue is implemented through a collection of asynchronous MPI

receive calls. A program sequencer issues a number ofMPI Irecv instructions, saving

the request handle of each. It then goes to sleep waiting for any of the receive messages

to arrive, signifying that a message is incoming. Messages usually contain marshalled

(serialized) TPHs but may also contain control messages. Once a TPH is received and is

demarshalled it is placed in the TPH input queue awaiting processing.
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Figure 2.7: Program Sequencer With TPH Queues

The output queue is implemented similarly. As TPHs arrive in the output queue,

an asynchronous MPI send is issued containing the TPH data and a control header. The

program sequencer keeps track of this send operation just as it monitors the asynchronous

receive calls for the input queue. Using the handle to the send operation, MPI notifies the

program sequencer once the operation has completed. In MPI, this notification does not

necessarily mean that a destination process has received the message but more specifically

means that the data contained in the message may be deallocated.

2.4.4 Flow of Messages and TPHs

Figure 2.8 depicts Coven’s message flow state diagram. Each program sequencer follows

this same graph. The first thing to notice is that if there are no pending messages and no

TPHs queued pending processing, then the program sequencer goes to sleep awaiting a

message. This is implemented as anMPI Waitany which releases the CPU and puts the

program sequencer to sleep until a message arrives. Coven uses anMPI Waitany because

there are many asynchronous parallel receives it has started and needs to be alerted if any

of them complete.
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This model causes every program sequencer to immediately go to sleep waiting on

work to arrive. Therefore, the system needs an operation to kick start it. This is accom-

plished by having the master task inject an empty TPH into the first module in the system.

As long as there are pending messages incoming, Coven prioritizes processing of

those messages over processing TPHs. Once there are no messages currently available for

processing, Coven attempts to dequeue a TPH from the input TPH queue. If there are any

TPHs available, the TPH is dequeued and processed. Afterwards, the program sequencer

returns to the initial state where it checks for pending messages.

While Figure 2.8 depicts how Coven transitions between states with respect to mes-

sage flow, it is an over simplification. The processing of a TPH generally results in the

TPH being placed into an output queue, having been marked for transfer to another Coven

task. This causes asynchronous MPI send operations of both control and data to the desti-

nation task. Coven then includes those messages in its list of those that it is waiting on for

completion. Similarly, theProcess Message state in Figure 2.8 includes a large number
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of operations. These include demarshalling incoming TPHs, inserting TPHs into the input

queue, removing received TPHs from the output queue, and a number of “bookkeeping”

operations.

2.4.5 Garbage Collector

As TPHs flow throughout the runtime engine they are passed into and out of modules.

Those modules use input data contained in the TPH to create new output buffers in the

TPH. This can lead to buffers that, once used, are never needed again for the lifetime of the

program. Rather than provide a way for users to free buffers themselves, Coven employs a

garbage collection mechanism.

Coven’s garbage collector determines the last point when each buffer will be used

by examining the program source file, the arguments to each module, as well as the module

interface. The garbage collector then recognizes when a buffer will be last used as input to

a module and schedules it to be freed at that point.

Automatic garbage collection helps keep memory usage down while at the same

time removing the burden from the programmer of having to free their own buffers. Fur-

thermore, in a modular system where modules are intended to be self-contained, knowing

when to free a buffer requires constructs at a higher level. The program source language

(described in Section 2.5.3) is where a user specifies the modules to execute, parameters to

pass them, and in what order. This is the level at which a user would be forced to deallo-

cate unneeded memory. The Coven garbage collector can relieve a user of this burden by

automating this process.

2.4.6 Intermodule Communication

While Coven simplifies the operation of partitioning work, distributing that work to par-

allel tasks, and reassembling that work, a vast majority of parallel applications must use

additional communication to function properly. The runtime engine uses MPI internally,
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Figure 2.9: MPI Communicators

and the Coven modules are free to use MPI themselves. There are, however, several issues

which module developers must be aware of.

Firstly, Coven operates under amaster / slavemodel. Even for applications that do

not need a sequential, master portion, Coven molds the user’s application into this model.

The result of this is that parallel operations must be aware that they are not the only MPI

tasks in the system. To address this, Coven provides an MPI Communicator other than

the defaultMPI COMMWORLDfor use in parallel communication. This communicator,

namedMPI COMMTHIS PARALLELTASK, is structured so that each parallel task is a

member of the group. Figure 2.9 provides an explanation of the organization of these

communicators.

The use of this new communicator makes it easier for module writers to implement

MPI code because it functions more likeMPI COMMWORLDdoes in an application that is

not forced into a master / slave model. Additionally, this makes it considerably easier to

port existing MPI code to Coven modules, merely requiring changingMPI COMMWORLD

references toMPI COMMTHIS PARALLELTASK.
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2.4.7 Scatter and Gather

Coven provides a mechanism to break a TPH into an arbitrary number of TPHs and then

distribute those TPHs to the parallel tasks. This operation in Coven is called ascatter.

When scattering a TPH, the user can choose from simple, built-in data distribution patterns

or describe their own, more complex, distribution. For this complex distribution, Coven

employs a mechanism very similar to MPI data types. Users familiar with MPI user defined

data types will find the interface very similar as well.

WhenN TPHs are created by a scatter, by default each TPH contains1
Nth of the

initial data in the TPH. For instance, if a TPH contained several buffers with different size

images contained in them then each TPH after the scatter would contain a separate portion

of the data. Technically, Coven does not require that the data be split into equal,1
Nth sizes.

However, it is easier to understand conceptually.

Once each TPH is created by the scatter, they are distributed to the parallel tasks

either using a round robin fashion or through a TPH to parallel task mapping. This mapping

is discussed in more detail in Section 2.4.8. Arriving in a parallel task’s input TPH queue,

each TPH awaits processing.

It is generally useful to rejoin the parallel TPHs back into a single TPH. This is

common in applications that divide the work and then need to reassemble it into a single

solution before (for instance) writing the result to disk. In Coven, we call this rejoining

of TPHs agatheroperation. There are instances where gathering is not necessary, such

as when the parallel TPHs handle writing the final solution to disk in parallel. This is

still possible in Coven, but the functionality is provided to help alleviate the programming

burden if it is necessary in an application.

The gather operation works essentially like the opposite of the scatter. A data parti-

tioning pattern can once again be described and used to gather the data into a single TPH.

It is important to note that this pattern may be different from the way it was initially scat-
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tered. Once gathered, theN TPHs form one TPH and that TPH continues on from the

gather module.

Both scatter and gather must be contained within Coven system modules. The

Coven distribution provides several that are easily reused for an application or modified

to suit an application’s particular needs. The goal of these functions is to provide a drop-

in solution for partitioning and rejoining parallel data so that the user does not need a

detailed knowledge of how to do it. While Coven has many pre-built examples (blocked

partitioning, blocked cyclic, etc.), the application programmer has the power to devise

much more complex distribution patterns to suit their needs.

2.4.8 Virtualization

Coven encourages programmers to implement their Coven applications so as to be irrespec-

tive of the number of compute nodes where the application will eventually run. This makes

the code easier to reuse and port between architectures with different configurations. Ad-

ditionally, programming in this manner can lend itself to some of the optimizations we will

explore in later chapters (such as dynamic load balancing). The user implements their code

assuming a certain processor configuration and then maps that to the physical configuration

that they chose to execute on. This is termedvirtualization in Coven.

Dataparallel C [47] had a concept of what was termedvirtual processors. The

Dataparallel C program was written with directives which created virtual processors. These

virtual processors were then mapped to physical processors. In many ways this simplifies

the implementation and can improve performance of an application. For instance, it is

very easy to change grain size by merely creating more or fewer virtual processors. This

can ease implementation of applications that otherwise would have required out-of-core

computation techniques.

There are other benefits, specifically with respect to load balancing. In a system

where some of the processing elements execute faster than others, virtualization makes it
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easier to use a small grain size and schedule multiple data segments to run on the faster

processors, leaving the slow processors only a few data segments. With this approach, a

faster processor might get four times as much work as the slower. Coding this without using

virtual processors would require modifying the application so that the code was designed

for different size segments.

It may be more complex for some users to think about implementing code using

the concept of virtual processors. Coven allows applications to be written in either man-

ner. Both approaches (using virtual processors or not) are viable and useful in different

circumstances. The idea is to make both available to Coven users so that they can choose.

One key problem with virtualization is how to address the issue of communication

between virtual processors. Figure 2.10 depicts a dataset divided into 64 segments which

are to be mapped onto four processors. The gray upper right-hand-side region is selected

to be mapped to processor P3. In this example, the user has chosen 64 virtual processors.

In Coven, each of the 64 segments will be represented by its own TPH.

The interesting case arises when the segments need to communicate with other

segments. This is very common, for instance, in an application that needs to calculate

its value based on values of its neighbors. Remember that, in this example, the 16 TPHs

assigned to each parallel task end up in FIFO order in the TPH input queue. Therefore, it is

likely that P3 will begin by computing segment 5 (from the figure). Segment 5 might then

issue one send to 4, 6, and 13 (west, east, and south of itself respectively) and also a receive

from those. The problem resides in the fact that segment 5’s response from segment 6 (and

13 for that matter) cannot arrive until the TPH responsible for segment 6 is dequeued and

processed.

To facilitate this, Coven allows programmers to communicate between virtual pro-

cessors by simply specifying a TPH number to communicate with. These messages are

implemented behind a Coven API which issues an asynchronous send to the target TPH.

In the above example, when segment 5 posts a send to 6 (and 4 and 13) the TPH is marked
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as unable to proceed until those messages arrive. Coven then places the TPH into a hold-

ing location, awaiting the conclusion of those communication transactions. In the example

posed in Figure 2.10, TPH 6 would then be scheduled. This would post sends and receives

to 5, 7, and 14. The exchange with TPH 5 would complete on both ends, but until each of

the communications has completed, the TPH cannot proceed. This pattern continues until

there are no more pending communications associated with each TPH.

The above scenario is complex and, in many cases, would result in poor perfor-

mance if the choice of grain size is too small. However, the concept remains valid and the

above reasons mentioned still make it useful in some instances. In particular, virtualizing

in this way can make dynamic load balancing possible as will be shown in Chapter 5.

Finally, the scatter and gather functionality presented in Section 2.4.7 handles a

great deal of the complexity involved with creating and rejoining virtual tasks. Specifically,

the scatter Coven library call allows the user to specify a virtual processor topology and

creates TPHs to map to that topology. Then, the distribution functionality maps those TPHs

to physical processors — creating the mapping between virtual and physical processors.

2.5 Front-End

Coven’s front-end system is used to construct a data flow graph, initialize, and start the par-

allel computation. Users can employ a graphical data flow editor or a custom programming

language to design their applications. The following sections describe these components in

detail.

2.5.1 Graphical User Interface

The easiest way to assemble Coven programs is to use the graphical user interface (GUI).

Coven’s GUI is written entirely in Java and is composed of approximately 60 interacting

classes. Figure 2.11 is a snapshot of the GUI representing a Coven N-Body application.
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Figure 2.11: Graphical User Interface

Users select Coven modules from a tree-based interface and drag and drop them

onto the canvas. The modules are parsed as they are inserted and Coven automatically

creates a graphical component to represent the module. This component includes input

and output ports based on the module interface. Additionally, required module parameters

(such as the gravitational constant, initial mass, and other constants) are input using a pop-

up window. Modules are interconnected to define data flow by simply clicking on a pair of

input and output ports. Coven then draws a line between the module’s ports to express the

flow of data.

Some segments of a Coven application are sequential, while others are parallel.

Modules that execute on the master task are sequential while those that run on the slave

tasks are parallel modules. This is represented in the GUI by placing modules into a con-

tainer. In the screenshot (Figure 2.11), the large rectangle in the middle is one such con-

tainer. This container has five modules in it. Containers can be thought of as black boxes,
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as they encapsulate modules and can be closed (or minimized) to simplify the view of the

program.

The user employs the GUI to construct their application, defining data flow and

setting initial parameters. Once the application is complete, the user clicks a ‘go’ button

which transfers the job to the runtime engine to execute in parallel. This process involves

first translating the code into a custom programming language and compiling it. This lan-

guage is discussed in more detail in Section 2.5.3.

2.5.2 Arches

Coven uses the Arches framework for creating the GUI. Arches is a project which was de-

veloped to be a reusable framework for PSE creation. The project extended from the Clem-

son Environment for Computer Aided Application Design (CECAAD) [78, 77] project.

The main idea behind Arches-based PSEs is that there is a persistent data structure (de-

scribed below) that is acted on by several independentagents. The agents — ortools —

are expertise-adding programs that annotate the data structure. A PSE-specific system gen-

erator is responsible for emitting an application (and, possibly, a run-time system) suitable

for deploying on the target HPC system.

The agents are critical to extensible design. For example, profile information from a

prior execution can be used by an agent to analyze a particular computation’s organization.

The agent can suggest or effect the reorganization. While agents are superficially similar to

compiler “passes,” this example points out a striking difference. Our model assumes that

agents are semi-automatic; that is, agents have the option of interacting with the user.

The underlying data structure is a persistent, attributed data flow graph, which rep-

resents a program design. There is a single manager object which is used to create, save,

and load data flow graphs. Each agent runs in its own thread, and the manager arbitrates

access to the designs that are stored in shared memory. It is common, for example, to have

an editor (implemented as an agent) running with an open design while another agent is
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transforming the same design. The manager ensures that the agents remain consistent. The

graph itself consists of three primary entities: nodes, ports, and links, as shown in Fig-

ure 2.12. All entities have attribute tables that store persistent information. This includes

information that may have been determined by previous agent invocations or from prior

executions of the application. Attribute tables are themselves valid attributes and nested

attribute tables are used extensively to organize agent-specific attributes. Similarly, there is

a fourth entity called a design which extends node and is the algorithmic unit for holding a

composition of nodes. Specifically, a design entity is a collection of nodes and links. Since

it is an extension of node, it inherits the input and output ports of node. A more complete

description of the relationships between the Arches classes, in UML notation, is shown

Figure 2.13. Furthermore, because design descends from node, it can be used anywhere

node can be used. Thus, complex designs can be built hierarchically.

In [28] we demonstrate how Arches has been used in Coven and RCADE. RCADE

is a PSE for creation of FPGA-based reconfigurable computing applications. RCADE ap-

plications are composed of FPGA components implemented in a hardware definition lan-
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guage which are then synthesized. On the other hand, Coven applications are composed

of modular C code which is compiled, dynamically loaded, and run by a parallel run-

time engine using MPI on a parallel computer. These two PSEs are radically different in

the problem domains they address but reuse much of the PSE infrastructure provided by

Arches to ease PSE implementation.

2.5.3 Coven Language and Code Generator

A Coven user has two ways to enter their application; either through the graphical user

interface, or using a custom source code language. The GUI was described previously in

Section 2.5.1. When the user completes assembly of their application using the GUI, the

data flow graph is translated into the custom source code language. Therefore, the GUI can

be seen as an interface which simplifies creation of this text file that specifies the data flow.

The Coven language file lets the user specify the modules and their interfaces. Next,

variables and constants are declared including their types and initial values. Finally, the data

flow (call order) is declared using a C-like syntax that includes the arguments to each mod-

ule. The multi-threading extension described in Chapter 4 augments this syntax to allow
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a user to specify which threads a module executes within. The Coven Program Writer’s

Guide [26] describes the Coven language in detail and includes an example.

Before the application is transferred to the runtime engine running on a parallel

machine, the modules must be translated. Users program Coven modules in C, but specify

the interface to the module using a custom set of directives. Coven translates this into a

collection of C macro calls. In essence, this acts as an abstraction layer which helps to

simplify module programming. The Coven Module Writer’s Guide [25] describes how

modules are programmed and explains these custom directives. The Coven Tutorial [27]

explains how to use the GUI to generate the Coven language file, compile both the language

file and modules, and begin execution of a parallel Coven job.

2.5.4 Performance Profiler

An important aspect of parallel programming is the ability to do performance analysis and

tuning as well as simply observe the steps an application took at runtime. Debugging

parallel programs is notoriously difficult. This is due to many factors including few quality

open source parallel debuggers. Even using debug print statements can be misleading as the

order in which they eventually propagate out cannot be assured in parallel. Additionally,

most parallel computers do not use global clocks as the cost to synchronize them can be

very high. This makes debugging through time-based print statements error prone as well.

Since Coven is aimed at easing parallel application development, particularly for the non-

parallel computing specialist, we must look for ways to assist the user in analyzing the

execution of a Coven application.

While at this time Coven does not provide a debugger, it does have a trace analy-

sis Arches agent. This trace analysis agent analyzes log files post-mortem from a Coven

application and displays the information in a number of dynamic formats.

Because of the way that the Coven model causes the application to expose its struc-

ture to the environment, the Coven profiler is able to gather statistics with amazing detail.
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Figure 2.14: Profiler Screenshot - 16 Parallel Coven Tasks

TPHs are examined as they pass between modules and execute. The profiler is able to log

statistics regarding the type, size, and usage information of data contained within TPHs. It

is also able to log information about modules such as their runtime and CPU utilization.

During job execution, Coven’s runtime engine logs trace information about the run-

ning job. The logging facility provided by MPE [7] is used for this purpose. MPE is a

well known add-on to MPI which provides an automatic logging facility. Coven extends

MPE’s set of events that can be logged and adds Coven specific data to the log file. This

allows the Coven profiler to access information such as memory usage, CPU usage/load,

Coven thread statistics, module statistics, and more. Using this information, the profiler

presents a number of different visualizations (or views) which the user can interact with to

analyze trace and performance data. While there are many profiler views, Figure 2.14 de-

picts a single Gantt chart view of 16 processors performing an image processing algorithm

in parallel.

The profiler has some built-in intelligence which analyzes a log file and attempts to

suggest performance enhancements. These enhancements specifically are directed towards
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multi-threading (Chapter 4) and dynamic load balancing (Chapter 5). In the future, we

hope to make the profiler more of anexpert agent, suggesting a number of optimizations

and possibly even automating the changes.

Throughout this thesis the profiler will be used to reveal performance problems,

optimization suggestions, and then show improved performance after an optimization.

2.6 Sample PSEs and Applications

Coven has been used to create several different classes of applications. These applications

were implemented to stretch the limits and test the capabilities of Coven. They demonstrate

the versatility of design and help to argue against the numerous PSEs that exist that are only

able to implement certain classes of applications.

In the next sections, we quickly introduce a few of the PSEs that Coven has been

used to implement. This includes a description of the problem domain they target and a

sampling of the Arches agents that are available to make their use easier.

2.6.1 CERSe

CERSe stands for the Component-based Environment for Remote Sensing [29, 30, 32]

and is a PSE targeting satellite remote sensing and telemetry applications. Created for

NASA, many AVHRR [22] (Advanced Very High Radiation Radiometer) algorithms have

been implemented in CERSe. These algorithms include NDVI (Normalized Difference

Vegetation Index) which calculates a relative “lushness” of the earth, SST (Sea Surface

Temperature), and cloud detection / masking. Additionally, core AVHRR algorithms have

been implemented, such as georectification, satellite calibration, and the Brouwer Lydanne

orbital model.

One CERSe agent allows users to select a region of interest (Figure 2.15) over a

map. Another agent (Figure 2.16) then interfaces with a relational database to let the user

constrain the data by a number of parameters, such as which sensor, year, month, day, etc.
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Figure 2.15: CERSe Latitude and Longitude Selection Agent

Figure 2.16: CERSe Database Agent
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Satellite data files are rectangular, but due to the curvature of the earth, represent a

non-rectangular region on the ground. Therefore, the images have to be georectified onto

some chosen coordinate system. CERSe allows the user to select from half a dozen, and

more could easily be implemented. When run in parallel, the data files are partitioned

into segments by rows (also calledscanlines). Each partition is represented by its own

TPH. Processed sequentially, a TPH flows through the series of modules and the result is

reassembled on the output. In many cases, the output is a composite image including many

data files over the selected region and period of time. Each output file is composited into a

single image using an algorithm, such as a pixel averaging. Figure 2.17 is a screenshot of a

visualization agent that serves this purpose. The output interactively fills up this image and

the image evolves over time as more and more data is composited into the final result.

CERSe originated as its own PSE and the limitations of that PSE spawned many of

the concepts of Coven. Specifically, its inability to handle constructs such as loops, inter-

process communication, and other similar functionality in Coven resulted in the creation of

Coven. CERSe was then re-implemented in Coven to demonstrate that Coven truly was a

superset of CERSe.

2.6.2 Medea

Coven was used to build an environment which targeted particle computations. The en-

vironment was named Medea and used to implement N-Body applications as well as one

molecular dynamics program. Medea only has one custom agent which is used for visual-

ization of the data. Figure 2.18 is a screenshot of that agent.

The agent is written in OpenGL, a high performance graphics library. This provides

the user a full three dimensional view of the data, complete with the ability to move the view

and zoom in or out to observe the data better. The visualization tool works in either realtime

or post mortem mode. In realtime mode, a module is inserted into the application data

flow graph which instructs data to be sent, in parallel, back to the visualization application
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Figure 2.17: CERSe Output Visualization Agent
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Figure 2.18: Medea OpenGL Visualization Agent

running on a specific port. In post mortem mode, the user inserts a module which writes

the current state of the data to disk into a rolling replay file. This can then be used by the

visualizer to replay the simulation graphically.

2.6.3 Hecate

The final PSE that Coven was used to create is named Hecate. This environment targets

applications that are organized into ann-dimensional grid. It includes modules to help

determine and communicate with neighbors, for applications such as was shown in Fig-

ure 2.10.

Hecate was used to create a complex fluid dynamics (CFD) application. This CFD

program initializes a steel plate to a constant value, applies a steady new temperature to

predefined locations on the plate, and then iterates forward until steady state has occurred.

A visualization program written in OpenGL (Figure 2.19) helps the user visualize the com-

putation. For the CFD application this data does not represent intermediate values (mean-
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Figure 2.19: Hecate OpenGL Visualization Agent

ing what the user sees does not correspond to how the steel plate would heat over time).

Instead, it can be helpful in debugging and provides another way to visualize the data.

2.6.4 Additional Applications

Coven has been used to create a number of other applications. These include a fast Fourier

transform (FFT), Cannon’s matrix multiplication, a fractal generator application, and inte-

ger sort.

The FFT was implemented to demonstrate how simple it is to insert existing, legacy

code into Coven. A popular FFT library, FFTW [40], was used and Coven modules were

created which included only a few source code lines each with calls to the FFTW library.

The application was trivial to build (since FFTW implemented all of the functionality) but

it was possible to run it in Coven and get many of the benefits of the environment. These

include multi-threading (as discussed in Chapter 4) and profiling tools.
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Cannon’s matrix multiplication is a relatively complex implementation of a com-

mon algorithm requiring a great deal of specialized exchange with different parallel tasks.

This was easily translated into Coven modules.

One of the primary goals of Coven is to allow a wide range of applications to be

implemented in it. With the wealth of environments which are specialized to one problem

domain, we believe this goal to be important. The numerous, very different applications

described in this chapter help to demonstrate the variability of the Coven PSE.

2.7 Summary

Coven is a large and complex problem solving environment composed of a graphical front

end and a parallel runtime engine back end. Each piece is detailed with a number of their

own components. The goal of Coven is to provide a toolkit where all phases of a parallel

application’s life cycle are addressed. These include development, debugging, performance

analysis and tuning, as well as maintenance and reusability of code.

This chapter introduced Coven in as complete a form as was possible. Each aspect

of Coven was aimed at either making the application easier to implement, perform better,

or both. It is important to remember that Coven’s target user is an application domain

specialist with need for parallel computing performance.

Through the use of built-in Coven functionality, Coven helps to alleviate the need

for problem domain specialists to be experts at parallel computing to achieve its perfor-

mance gains. Additionally, when parallel computing expertise is required, the modular

nature of Coven applications helps to separate the code which deals with the application

from that which deals with the parallelism.



CHAPTER 3

RELATED WORK

During the 1990’s the National Science Foundation held a series of workshops on Problem

Solving Environments (PSEs). The goals of these workshops were to determine and address

the needs of the PSE community. A definition of PSEs came out of the 1995 workshop and

was given as:

A problem solving environment (PSE) is a computer system that provides all

the computational facilities necessary to solve efficiently a target class of prob-

lems. Moreover, PSEs use the language of the target class of problems, so

users can solve them without specialized knowledge of the underlying com-

puter hardware, software or algorithms. The facilities include advanced solu-

tion methods, automatic or semi-automatic selection of solution methods, and

ways to easily incorporate novel solution methods. They also include facilities

to automatically or semi-automatically select computing machines, to view or

assess the correctness of solutions, to check the formulation of the problem

posed, and to manage the overall computational process. Overall, PSEs are to

be a framework that is all things to all people; they solve simple or complex

problems, support rapid prototyping or detailed analysis, and can be used in

introductory education or at the frontiers of science. [72]

Gallopoulos et al. [41] propose that there are many areas of PSEs that are open

research problems. These include the areas of PSE architecture, kernel, interface technol-

ogy, and scientific interface. The architecture of a PSE deals with how components are

organized and how the system allows for growth and evolution (extensibility). The kernel

pertains to the internal structure of the PSE more than to the structure of the algorithms that
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a user develops using it. Ways in which components interact with the PSE through data

structures and protocols are issues of interface technology. The scientific interface involves

the way in which users should communicate with the PSE (ease of use).

In [74], the authors point out that PSEs are by nature domain specific but that there

is much infrastructure that is common across problem domains. While PSEs have histori-

cally been built from the ground up to solve a particular class of problems, little work has

been done in building a reusable framework which is common to a wide range of problem

domain specific PSEs. Coven specifically aims to provide this type of common infrastruc-

ture, including optimizations common to many potential problem domains.

3.1 The Common Component Architecture

Component-based software development is an evolutionary step from object-oriented soft-

ware development. Much like an object-oriented approach, component software defines an

interface to a piece of code that is often treated as a black box. The component is meant

to be pluggable into a framework to cooperate with other components to form a program.

Another important concept of component programming is the ability to wrap existing ap-

plications into a component and allow them to easily cooperate with other components.

The software industry defined a number of component standards including CORBA,

Microsoft’s COM, and JavaBeans. While some high performance computing researchers

have found these standards acceptable in the HPC field, these standards were not built with

HPC in mind and are often not completely appropriate. Some environment developers have

extended these standards to specialize them to the HPC field where appropriate. The Com-

mon Component Architecture (CCA) Forum [1] was created by collaborators at many U.S.

Department of Energy laboratories and universities to specifically address the need for a

component standard for software development in the field of high performance computing.

The CCA was motivated by the need of researchers at physically disparate institu-

tions to collaborate on software development. Often, these different researchers had legacy
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applications written in different languages and meant to run on certain HPC architectures.

The CCA was brought about as a means to allow these applications to run as components

and easily interoperate with other components without the need to worry about language,

operating system, or architecture differences.

Each CCA component exposes its inputs and outputs using thescientific interface

definition language (SIDL)[8]. The CCA defines a collection of programming interfaces

which must be present in an application framework for the framework to be considered

CCA compliant. These interfaces make it possible for CCA components to register them-

selves, find other components, and exchange data with other components. The CCA re-

quires thatports are provided that marshall and unmarshall (demarshall) data going into

and out of CCA components. This is used to translate data into a form that will be us-

able by the component and allow it to interact with other components written in different

languages.

In [61] a hydrodynamics simulation toolkit is presented that employs the CCA

for the component model. Utilizing existing hydrodynamics code in C and Fortran77,

legacy applications were wrapped into CCA components. The result is a set of components

which can be configured to create several different Structured Adaptive Mesh Refinement

(SAMR) hydrodynamics applications. The authors found the CCA to be easy to implement

and implement components with. Additionally, they found the overhead imposed by the

CCA approach was negligible.

DCA [10] is a framework for distributed CCA component computing based on MPI.

While the CCA has evolved extensively with respect todirect connectcomponents, dis-

tributed components still present many challenges. Direct connect components are those

running on a parallel machine that can be directly connected with each other and are simi-

lar to Coven modules. Distributed components, on the other hand, allow encapsulation of

entire parallel programs in some cases which exchange data with other distributed com-

ponents. The primary, well documented problem with this is referred to as the “M × N
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problem”. This problem deals with a parallel program running onM processors commu-

nicating with another running onN processors. This is increasingly more common in the

Grid environment (discussed in Section 3.5). The DCA prototype framework proposes a

solution to theM ×N problem that relies on MPI communicator groups.

The CCA addresses the needs of the HPC community to merge applications from

different languages and computing platforms. While it can certainly be used to develop

homogeneous interoperating components, it is not clear how much overhead the approach

will impose on application performance. In many cases, however, without the CCA many

applications would have little hope of being componentized and used in a single applica-

tion. Its importance is clear, as the HPC community has resoundingly adopted the standard.

For a system like Coven, however, it may not be an approach that provides the kind of per-

formance we seek. However, Coven has no support for interoperability between languages

and disparate computing systems so there certainly are some things that Coven could gain

by adopting the CCA.

At the time that Coven, and its predecessor CERSe, were being designed the CCA

was not well accepted. While it was growing in acceptance, the standard was very much in

fluctuation and we chose to use our own module standard rather than adopt the CCA. This

approach was very common at the time. The rest of this chapter outlines related PSEs and

frameworks, some of which use the CCA and some of which do not. At this time, the CCA

has grown to be widely accepted and many frameworks, PSEs, and toolkits are emerging

that adopt this standard. In many cases, older PSEs are being modified into new versions

that use the CCA as well. Along these lines, a future advancement of Coven should be to

look into using the CCA for Coven modules.

3.2 Domain Specific PSEs and Toolkits

The Extensible Computational Chemistry Environment (Ecce) [11, 74] is a very detailed

and successful PSE for solving advanced computational chemistry problems. The Ecce
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PSE provides many tools common to chemistry applications which are integrated through

anevent-based component architecture. This architecture uses a publish/subscribe system

where components can subscribe (or listen) to certain data and as the data changes (is

published) the subscribers are notified and can adjust accordingly. Ecce is a PSE for parallel

computers and employs ParSoft [9], which is a suite of parallel computing libraries and

tools. After a decade of use, Ecce has been improved to support Grid services including

job management and monitoring.

Cactus [6, 5] is a problem solving environment initially designed to solve astro-

physics problems. In Cactus, users develop modular code calledthorns. The thorns are

plugged into the Cactusflesh, which is essentially a driver for the application. Cactus

runs on a wide variety of supercomputers including their operating systems, languages,

and compilers. Cactus has support for interactive computational steering and monitoring

as well as data visualization. Several parallel solvers and support for a few parallel I/O

subsystems mean that Cactus relieves the user from being burdened with implementing

these features. Furthermore, Cactus runs on the Grid and operates with the Globus Toolkit

[37]. While initially aimed at solving applications whose data could be represented as an

N-dimensional mesh, Cactus appears to have evolved into a more generic PSE. Still, its

primary user base is in the astrophysics community and, within that community, Cactus is

extremely successful.

The field of satellite remote sensing has always been a candidate for parallel com-

puting due to the large number, size, and arrival rate of satellite data files. CERSe [29,

30, 32] (a project that Coven evolved from) focused on this field and provided a problem

solving environment for implementing parallel remote sensing applications. A similar en-

vironment is the Open Source Software Image Map (or OSSIM) [69]. OSSIM is developed

by the company ImageLinks and focuses on leveraging existing open source tools to pro-

vide a PSE for remote sensing, image processing, and Geographical Information Sciences

(GIS) analysis. Like many other PSEs, OSSIM wraps existing applications into a form that
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allows interoperability between each other. In OSSIM, datasets are partitioned intotiles

and passed down animage chainwhich executes the algorithm. The parallelism is entirely

focused on data parallelism through partitioning of satellite data sets. As such, the usability

of OSSIM outside of the image processing realm is questionable. Furthermore, while the

goal of OSSIM is to run on parallel computers, parallelism was forced onto the PSE after

it was already built. No concrete performance numbers exist yet as the project is still in

development.

SCIRun [54] is a popular PSE toolkit that has been used to build two main environ-

ments: BioPSE and CSAFE. BioPSE is an environment aimed at biological systems such

as studies of the brain, heart, and other similar applications. CSAFE is an environment

aimed at fire detection using satellite imagery. Both BioPSE and CSAFE have a rich set

of professional visualization tools which are truly impressive. Users of the environments

implement code in SCIRun utilizing a shared memory paradigm. Modules are created and

interconnected to form a programnetwork. This application can be composed of compu-

tational and visualization components which interact to solve a problem. SCIRun (and its

PSEs) also allows for computational steering and runs on a wide range of desktops and

supercomputers.

Uintah [24] is a PSE from the same group who developed SCIRun [54] and BioPSE.

While SCIRun targeted shared memory computers, Uintah addresses the need for a PSE

in the distributed computing realm. Users of Uintah implement applications as CCA com-

ponents and execute them within the Uintah environment. Uintah provides the user with

performance and trace analysis tools. TAU [75] (a popular performance monitoring system)

and XPARE [23] provide the basis for Uintah’s performance analysis suite. With XPARE,

users can track performance of an application through its development cycle. It can then

be used to identify negative shifts in the performance of the application due to changes in

the code.
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SCIRun and Uintah both use their own component model. In an effort to conform

with a growing trend in the community, the developers of SCIRun are creating the next ver-

sion of SCIRun, SCIRun2 [91], which will employ the CCA component model. SCIRun2

is currently in the early stages of development, but the creators aim to not only support CCA

components but also SCIRun (version 1), CORBA, and Microsoft COM components. Us-

ing a bridge system, SCIRun2 will allow these components to interoperate and be used in

the same application. Support for distributed computing as well as parallel computing will

be available. With distributed computing components, components can execute on sepa-

rate machines but communicate together to solve an application in parallel. In contrast,

parallel components will be the same components executing in parallel but operating on a

different portion of the data. Since SCIRun2 is still in development, performance of the

system can only be speculative. The developers believe that the PSE will provide com-

petitive performance but the bridge technology may prove to be sufficiently complex and

hinder application performance.

The Earth System Modeling Framework (ESMF) [49] is a collaborative project to

build a complex PSE for implementing parallel earth science applications. ESMF collabo-

rators are located at NASA, NOAA, the DOE, and many universities. It was seen as neces-

sary as the share of algorithms and data between different institutions has historically been

very difficult. Researchers have often developed large and complex code using tightly cou-

pled software systems. ESMF attempts to provide a standards-based open-source solution

where users develop components that can interact and are easily exchangeable. Relying

on Fortran, C++, and MPI, ESMF provides a suite of classes which developers can em-

ploy to assist in parallelism. These include classes to grid data, distribute, reassemble, and

communicate with other parallel tasks. As there are many important earth science codes

in existence, ESMF encourages developers to wrap them into ESMF components. Addi-

tionally, both SPMD (like Coven) and MPMD applications are possible in ESMF. MPMD

is particularly useful in task parallelism and helps utilization of existing earth science soft-
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ware. ESMF specifically targets earth science applications and has many helper classes

which make implementation of this type of application easier.

3.3 General Purpose Frameworks and Programming Paradigms

Perhaps the closest framework/PSE to Coven is the Asynchronous Buffered Computation

Design and Engineering Framework Generator (ABCDEFG) [21] or FG for short. FG is

a framework from Dartmouth university that makes users program in C or C++ functions

calledstages. Stages are organized into apipeline to create a program. Each pipeline is

automatically placed into its own thread and FG handles all issues of thread maintenance

(such as creation, destruction, atomic access to shared variables, etc). Additionally, FG

manages the application’s buffers as they pass through the pipeline and stores information

about each buffer in athumbnailrecord. This is similar to Coven’s method of maintaining

buffers inside of TPHs with detailed information about each buffer. Furthermore, the pro-

gramming paradigm is very similar between the two projects. FG has built-in functionality

to assist in looping (much like Coven does) by tagging a buffer as thecaboose, or final

buffer to go through a pipeline stage. The authors use the ChaMPIon/Pro MPI implemen-

tation, a commercial package that allows multiple MPI threads to make MPI calls. While

FG uses true pthreads because of the availability of the ChaMPIon/Pro MPI implementa-

tion, Coven simulates threads with Coven Threads (discussed in Chapter 4). FG definitely

has some similarities to Coven, particularly in the way programs are designed from a user’s

perspective. Coven, however, has additional features which do not appear to be present

in FG. These include task virtualization, a graphical user interface, graphical profiling and

trace debugger, dynamic load balancing, automatic program checkpointing, and others.

ParoC++ [71] is an object-oriented parallel programming environment with focus

on data intensive computing. ParoC++ users implement their applications using a series of

C++ classes. Through a mechanism calledpassive data access, ParoC++ tries to improve

performance by overlapping computation and data retrieval (communication). Data often
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is distributed, and retrieving it can be costly and time consuming. ParoC++ has pre-built

classes and methods for specifying a portion of the data that is required and the data is

automatically retrieved from the distributed source. During this retrieval time, the applica-

tion can continue execution. Only once the application can go no further without having

the data does it potentially block awaiting data arrival. ParoC++ is mostly a collection

of helper C++ classes which make programming data intensive applications simpler in a

distributed environment. Coven has relatively few similarities to ParoC++ including being

implemented in C, rather than C++, and having no specific optimizations for data intensive

applications.

A similar framework is Dynamic Parallel Schedules (DPS) [42]. DPS provides a

set of C++ classes that are extended, overloaded, or modified to perform parallel computa-

tion and communication. Users create applications by programming separate C++ classes

that are combined into a directed acyclic graph (DAG). Similar to Coven, DPS hassplit

andmergeconstructs. In DPS, the user can extend a split or merge class to create a data

distribution pattern. DPS executes the code in separate threads, to attempt to achieve ben-

efits from overlapping computation and communication. While some aspects of DPS are

similar to Coven, these mainly are with respect to the programming paradigm. In particu-

lar, the projects share the concept of a component-based programming model where data is

distributed in an SPMD fashion and computed on in parallel.

3.4 Miscellaneous

Condor [63, 84] is a project dating back into the early 1980’s from the University of

Wisconsin-Madison. It enables gathering collections of computers intoprocessor pools

and then utilizing these pools to execute parallel codes. Initially designed to efficiently use

idle workstations at the university, Condor has evolved through Condor-G into a toolkit for

the Computational Grid (see Section 3.5). As processors become idle, they add themselves

to the processor pool. Condor has support for process migration so that executing applica-
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tions may be halted and moved to other processors in the process pool. This is particularly

common when a previously idle processor becomes unidle (for instance when a user sits

down at his workstation in the morning).

In Condor, aproblem solverprovides a programming model, such asmaster-worker

and directed acyclic graph manager. The problem solvers rely on the Condor agent to

handle issues with respect to error handling, migration, and job execution and instead focus

on the user’s computation. In the master-worker problem solver, the master spawns work

out to the workers that are provided to it by Condor. As workers appear and disappear,

the problem solver must be able to adjust. The user is provided with a collection of C++

classes which must be extended to implement their specific functionality in the model.

Charm [56, 57] is a language and runtime system for parallel application develop-

ment and execution. Charm is implemented in C and the code implemented by users must

also be in C. Charm++ is an extension of Charm which supports C++. In Charm, achareis

a construct which declares a computation and the data of that computation. Charm sched-

ules chares in parallel and uses a message driver system to execute chares once all input

data is available. A chare may produce data as output, and this likely causes a message to

be sent to another chare elsewhere, possibly causing that chare to execute.

Like Coven, support for load balancing and packing of data is provided by Charm.

Also like Coven, Charm employs queues where messages (data) are queued up waiting pro-

cessing. Charm supports quiescence detection so as to detect load and adjust the number

of control messages in order to take advantage of idle tasks as well as not interfere during

a heavily loaded computation. Many Charm applications have been developed including

VLSI/CAD applications, a Prolog compiler, parallel molecular dynamic program, parallel

cell placement, and others. In [57] it is shown that on a single processor Charm imposes

an overhead of less than 5% when compared to a sequential C implementation. Charm

executes on a large number of parallel machines and has many features which simplify par-
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allel application development. In many ways its goals and even some of the implementation

approaches are similar to Coven.

Triana [83] is a programming environment for Java applications. Users program

unitswhich are modular pieces of Java code, conforming to a specific interface and utiliz-

ing a set of parent classes. Triana units are then interconnected to form a program. Each

unit runs in its own Java thread and this is scheduled on a parallel node. Triana employs task

parallelism, rather than executing the same unit on multiple processors where each proces-

sor has a segment of the data (data parallelism). The focus with Triana is on Grid services

including spawning Triana applications on the Grid, steering computation remotely, and

distributed visualization. Triana has been used to develop galaxy formation simulations,

though it could likely be used in other similar application domains.

3.5 Grid Computing

Grid Computing is rapidly emerging as a powerful force in the parallel computing realm.

The concept of Grid Computing is that distributed computing resources can be intercon-

nected into large supercomputers. These are then available for use by other researchers.

This has two main advantages: it allows researchers with smaller parallel computers to

get access to larger parallel computers, and potentially it can result in better utilization of

resources. Oftentimes a parallel computer might go unused for some period if it were not

on the Grid. As part of the Grid, however, during this low utilization period the machine

might be utilized by researchers around the globe. The whole Grid concept is built upon

the idea of sharing.

As one might imagine, Grid Computing has introduced a massive number of chal-

lenges that must be addressed. These include running parallel jobs on machines whose

nodes are distributed around the world, differences in operating systems, transportation

of data, visualization, steering of computation, and many more. The Global Grid Forum

(GGF) was created to attempt to steer the study of these problems and help encourage so-
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lutions and collaborative research. One of the most recent advancements is the Open Grid

Services Architecture (OGSA) [38, 82]. The OGSA attempts to standardize some set of the

Grid services so that researchers can begin building products that can interoperate.

Legion [44, 43, 51] and its predecessor systems have since the beginning focused

on Grid applications and services. Legion attempts to provide a toolkit, programming

framework, and runtime environment for Grid applications. Support for PVM, MPI, C,

Fortran, C++, Java, and CORBA help the widespread use of Legion. By creating a virtual

machine for Legion applications to run on, Legion helps to abstract away the underlying

computing system. This is particularly important when the parallel nodes being utilized by

an application may include several different operating systems and hardware architectures.

Clearly, the Legion back end must be ported to many systems but the designers seem to have

done this and there is a great deal of community support for the project. Legion evolved into

Legion-G which was essentially a port of Legion to run on top of the Globus Toolkit [37].

Globus included a number of early Grid services, such as GridFTP and security protocols.

With the emergence of OGSA, the Legion team has begun focusing on OGSI.NET, an

attempt to utilize the .NET Framework (from Microsoft) in the Grid context.

The Padico [33] software infrastructure leverages existing technology to help solve

many complex problems in the realm of Grid Computing. Wrapping legacy code, language

interoperability, code maintainability, and security are all complex problems on the Grid.

Padico employs the CORBA Component Model [45] to extend the distributed component

programming concept of CCM and provide facilities for improved performance in the HPC

realm. CCM has rich support for security, versioning (addressing maintainability), and

interoperability across many operating systems, architectures, and languages. In CCM,

components have facets (output ports) and receptacles (input ports) that specify what data is

produced and required by the component, respectively. GridCCM extends the CCM further,

adding concepts of parallelism and parallel components. CORBA is a very successful

and well understood standard for creating software. As such, Padico benefits from this
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and is able to leverage CORBA’s successes and bring it into the Grid Computing field.

Support for wrapping legacy applications into CCM components is an important aspect

of Padico and allows legacy parallel applications to be easily “ported” to Padico. Padico

and GridCCM is most similar to the CCA but, unlike the CCA, GridCCM has support for

parallel components. However, while the CCA is widely in use, at this time GridCCM is

still a work in progress and so far GridCCM’s performance is not promising.

The CCA Toolkit (CCAT) [15] is an implementation of the CCA specification de-

signed to operate with Globus and other Grid frameworks. CCAT includes several means

to design applications. In CCAT, the application design facilities are calledbuilders. A

graphical user interface, Python interface, Matlab interface, and a web-based interface pro-

vide many means for building applications in CCAT. Much like Coven’s GUI, the CCAT

graphical builder provides a familiar drag-and-drop interface for building applications by

interconnecting components.

The Component Component Architecture (CCA) was not initially designed to be

compliant with Grid standards. The OGSA standard does not directly propose a compo-

nent standard for the Grid. XCAT3 [59] is a framework that merges the two standards,

allowing CCA components to be accessible by portal-based Grid clients. This project was

motivated by the successes and wide acceptance of both the CCA standard and the Grid

computing movement. XCAT3 is implemented in Java and uses the Babel tool to gener-

ate Java interfaces for CCA components from the SIDL component specification. Then,

XCAT3 uses the GSX toolkit to present the component ports and the component itself as

Grid services. These two toolkits help XCAT3 merge the two standards.

3.6 Summary

The field of Problem Solving Environment research is very active, particularly with respect

to high performance (parallel) computing. Users of these complex systems are seeking

ways to incorporate software practices from the sequential world. These include software
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reuse, modularity, extensibility, and interoperability. Many of these are being addressed

through the use of component-based (modular) software development. The HPC field,

however, by its very nature is driven by the need for performance, something that often

makes conventional sequential software practices and techniques not applicable in the par-

allel field.

Standards like the CCA have helped to unite the field in many respects and provide

a common ground to develop PSEs. Similarly, the interest in Grid Computing has produced

many standards and toolkits which PSE developers and designers are incorporating in next

generation environments.

Much of the PSE research is focused on a particular problem domain. This usu-

ally comes about from assumptions and simplifications in the programming model which

simplify application construction within that domain. A consequence often is that this ap-

proach limits widespread usability in different scientific computing fields.

In the following chapters we explore several common parallel computing optimiza-

tions and features that have been incorporated within Coven. We discuss their design,

implementation, and study the impact on applications implemented in Coven. A study

of related works in the field of these optimizations and features is left for the appropriate

chapters that follow.
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MULTI-THREADING

Software, and parallel computing applications in particular, frequently have periods of exe-

cution where data must be accessed outside of the CPU. Disk, memory, and network access

are all common examples of such operations. With processor speeds increasing, the devices

which feed the CPU are struggling to keep up.

In parallel computing, network latency and bandwidth have long been major issues

in parallel program performance. Similarly, data intensive applications, even those that use

a parallel file system (such as PVFS [18, 60] or GPFS [55]) more often than not cause the

processor to stall while waiting for data to arrive.

With parallel computing becoming more widely used in government, education,

and business, there is an ever-increasing need to obtain better performance from parallel

codes. Organizations often rent supercomputer access time and those who own them find

that, due to the expense of the machine, they are sharing time and resources with other

individuals who seek to achieve the massive program performance that these machines can

provide.

Therefore, providing processors data at as fast a rate as it can consume is the goal

and any progress in this direction is important. While much effort has gone into the process

of speeding up disks and networks, there are other approaches. A common approach is to

hide latency through the use of a multitasking operating system and schedule concurrently

running processes. The idea being that while one process is waiting on data to arrive

from (for example) some remote processor’s memory, the other process is operating on

data that has previously arrived. This is generally termedmulti-threadingor asynchronous

programming.
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Both approaches have strengths and weaknesses. While using fast networks and

disks is an extremely simple solution (requiring often little to no program augmentation),

it is extremely costly and still might not eliminate the offending latency. Multi-threading,

on the other hand, is complex to implement well in application code but requires no spe-

cial hardware or additional monetary costs. Multi-threading is also an effective mechanism

to hide latency due to remote data access and interprocess communication by switching

quickly between ready threads. Certainly there is a tradeoff between simplicity (high mon-

etary cost) and complexity (low monetary cost).

Multi-threading is common and has great potential to be usable by a wide range

of applications. As such, the optimization is a good candidate for incorporating within a

PSE so that the PSE’s applications can utilize the optimization. This chapter studies the

addition of the multi-threading optimization within Coven and how the Coven model of

computation both facilitates the easy implementation as well as results in a high perfor-

mance optimization.

Since the Coven model separates the application code from the application state,

it makes it simple to schedule tasks to execute in parallel. TPHs are moved around to

combine with modules to form a task, and this task can execute anywhere in the system at

any time. In the same manner, the Coven multi-threading implementation utilizes multiple

threads of control concurrently executing on the same parallel node. These threads can be

assigned any module and as TPHs arrive they form tasks which execute concurrently with

other threads.

In Section 4.1.1 we study an optimization that transparently uses shared memory for

state when necessary. This occurs when a TPH will be utilized by multiple threads sharing

a central memory. The runtime engine is able to make this optimization by utilizing the

Coven model of computation to determine how state will be used during the life cycle of

an application. By analyzing where a TPH is destined, the runtime engine can efficiently

utilize shared memory or local memory as appropriate.
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Two case studies are performed to analyze the performance of the multi-threading

optimization. The first experiment is detailed in Section 4.3 and is shown to provide an

improvement ranging from about 25% to 28% on the system tested. This experiment is

synthetic and designed to test the range of the improvement offered by multi-threading.

The second experiment is presented in Section 4.4 and studies multi-threading the Fast

Fourier Transform (FFT) utilizing a popular FFT library. The FFT is much less well bal-

anced than the first experiment but performance improvement of as much as 18% was seen

on the system tested. Each experiment includes a complexity analysis of a hand-coded

implementation of the multi-threading optimization.

By utilizing the Coven model of computation, the multi-threading optimization is

provided to Coven users with no augmentation to existing application code. This means

that multi-threading can be experimented with in an application and studied to see if it

will be beneficial without the cumbersome task of implementing it in each application.

Additionally, we present a Coven expert system which analyzes trace performance data

to suggest multi-threading as well as suggest which modules to schedule for concurrent

execution. This expert system processes trace data which was automatically collected by

Coven at runtime and includes state, module, and task information.

4.1 Multi-Threading Implementation

While Coven can work with any implementation of MPI, the environment under which

this research was conducted used the implementation MPI Chameleon, or MPICH [67].

This version is free, open source, and relatively complete, conforming to most of the MPI2

specifications. One particular area which MPICH is not complete is with regard to thread-

ing. Threading in MPICH is allowed only if only one thread associated with a process

issues any MPI calls. This is a very limited version of threading and was not acceptable for

multi-threading in Coven.
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Figure 4.1: Choosing a Thread Number With GUI

To address this problem, Coven uses full weight MPI tasks and schedules them

on the same processor rather than use conventional threads. This produces concurrently

running processes on the same node,however the processes cannot access shared memory

data. This concept of accessing shared data is outside the scope of Coven’s programming

model, so does not present an issue.

In Coven, this style of “threading” creates processes which we termCoven Threads.

Each Coven Thread runs a program sequencer and looks much like a single threaded ver-

sion of Coven. In fact, with the introduction of Coven Threads, the only difference between

single and multi-threaded Coven programs is the number of Coven Threads. All modules

are assigned a Coven Thread under which they will run. This is done using the graphical

user interface (Figure 4.1) or the Coven program language (Figure 4.2). Figure 4.1 shows

a graphical representation of a module namednbody compute forces.cov . This

module has two inputs and two outputs (represented by arrows). The white box contains

an integer which is the Coven Thread number under which this module will run.

When the runtime engine starts up, multiple MPI tasks are scheduled to run con-

currently on the number of nodes the user specifies. Each of these tasks is a Coven Thread.

Each Coven Thread looks at the program language specification and dynamically loads the

modules which are scheduled to run under that thread. Figure 4.3 shows a sample thread-

ing scheme. In this figure, there are five slave processors being used to solve a problem

in parallel. Each of the slave processors has three Coven Threads (depicted as different
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. . .
thread_A fftw_scatter(args)
PARALLEL {

thread_B fftw_comp_nd(args)
thread_C fftw_transpose(args)
thread_B fftw_comp(args)
thread_C fftw_transpose(args)

}
thread_A fftw_gather(args)

. . .

Figure 4.2: Sample Coven Program Language Threading Scheme

colored circles) executing on it. On a processor, TPHs travel between Coven Threads as

each thread is assigned separate modules to run.

Threads can communicate with other parallel instances of themselves. For example,

in Figure 4.3, the slave Coven Thread 1 on processor 1 can communicate using MPI with

the same thread running on any of the other processors. Coven’s runtime engine creates

special MPI Communicators to assist in this task. Since the Coven Threads in Figure 4.3

are actually full weight MPI tasks, the runtime engine initializes as an MPI program with

seventeen parallel tasks. It then schedules the tasks in the order represented in the figure to

create a thread-like environment.

The runtime engine handles transparently transferring data between Coven Threads.

The user has defined a dataflow graph constructed of interconnected modules and these can

be assigned in any threading scheme. The runtime engine handles moving data between

Coven Threads on the same processor and other processors seamlessly. Since all data is

encapsulated in TPHs, moving data is simple and occurs using the TPH queuing system.

During the course of testing multi-threading using MPICH1, it was found that

MPICH1 performs poorly when multiple MPI tasks are scheduled to run concurrently.

As mentioned in Section 2.4.3, Coven uses two TPH queues where it waits on incoming

TPHs and outgoing TPHs. This is implemented by using a dynamically sized array of
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Processor 1 Processor 2 Processor 3 Processor 4 Processor 5

Master Coven Thread 1

Master Coven Thread 2

Master Processor

Slave Coven Thread 1

Slave Coven Thread 2

Slave Coven Thread 3

Figure 4.3: Example Coven Thread Organization

MPI Request structs, which in this case are handles to pending asynchronous MPI trans-

actions. Each Coven Thread then “sleeps” while waiting for any of these to complete using

the callMPI Waitany . While we might expect this operation to release the CPU while

waiting for a transaction to complete, under MPICH1 this is not the case. Instead, the call

repeatedly checks each element of the array for completion, amounting to a busy wait. The

problem is that if multiple MPI tasks are scheduled on the same node, then each task is

competing for the CPU. Ideally, a task waiting on communication to complete should re-

lease the CPU and idle waiting for notification of a completed message. This competition

for the CPU keeps a Coven Thread with work to do from getting full access to the processor.

This is a well known problem with MPICH1 and is addressed by using MPICH2

[68]. At the time these experiments were conducted, MPICH2 was in beta testing and not

complete. In particular, it lacked the shared memory extensions which improve perfor-

mance of intercommunication MPI tasks running on the same processor.
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4.1.1 Shared Memory

TPHs are transferred between Coven Threads using MPI. The runtime engine automatically

takes the complex TPH data structure and copies the data contained in its many pointers

and buffers into a sequential stream of bytes. This is termed marshalling in Coven. Once

marshalled, the TPH is transferred using MPI and is unmarshalled on the receiving end

back into a TPH for processing.

Experimentation showed that transferring TPHs between Coven Threads on the

same processor resulted in poor performance. While the TPH source and destination

threads were on the same processor, MPI was used to transfer the data. For large TPHs

(on the order of five or more megabytes), this was found to slow performance down by a

noticeable amount.

Figure 4.4 is a screenshot of the Coven profiler demonstrating the problems with

transferring TPHs between Coven Threads on the same processor. Time is represented on

the x-axis while the y-axis shows two separate Coven Threads. This simple example shows

a single processor running two Coven Threads. These are represented by the two lines,

labeledSlave 1 / Thread 1andSlave 1 / Thread 2. T For this application, a single TPH is

passed back and forth between Thread 1 and Thread 2. The performance problem lies in

the fact that after a module has completed (the end of a rectangle in the figure), the next

module does not start for a large block of time. In this example, that transfer time is roughly

seven seconds for a TPH which encapsulated 256MB of user data.

As MPICH2’s shared memory functionality was not complete, an extension to

Coven was added which provides shared memory between MPI tasks on the same pro-

cessor. Through sharing memory, concurrently executing Coven Threads can exchange

TPHs by simply exchanging a handle to where the TPH resides in the memory which is

accessible by both parties.

Users declare a memory size that Coven can use for a shared memory region.

Through theshmget , shmat , shmctl andshmdt calls, Coven creates and manages
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Figure 4.4: Without Shared Memory

this memory region. Access to the region is controlled by a semaphore, shared by all

Coven Threads on the same processor. All interaction with shared memory is transparent

to the user.

As modules create new data in a TPH, the runtime engine determines where the

TPH will be destined for after it leaves the current Coven Thread. This can be determined

by examining the dataflow graph. The runtime engine uses this information to decide what

type of memory will be used for storing the data contained within a TPH: shared memory

or local memory.

Coven employs a memory management system which essentially provides a malloc-

style interface to manipulating the shared memory region. While this is used only by driver

code, it greatly eases programming as the shared memory calls mentioned earlier merely

allocate one large piece of memory. Coven imposes on top of this a memory management

scheme that finds the first fit for a new memory allocation. This system is changeable and
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conforms to a simple interface. Therefore, enhancements to this scheme can be imple-

mented and plugged into Coven with ease.

From a user’s perspective it is essentially transparent where Coven is storing TPHs.

While the user can set values for the requested maximum size of the shared memory re-

gion, Coven maintains a default which allocates a portion of the total memory. The point

of using shared memory is that transporting TPHs between Coven Threads on the same

processor is costly if they are large. This operation involves several copies from one Coven

Thread’s memory into the destination Coven Thread. The runtime engine automatically

places buffers into local memory that are considered too small. There is certainly a tradeoff

when using the shared memory system as it requires a synchronization with the other Coven

Threads on a processor. This is only beneficial in the case where the memory contained in

it is considered large. This size, of course, varies from system to system and Coven allows

a user to specify it or use the default if he is unsure.

With the shared memory extensions built into Coven, the same application depicted

in Figure 4.4 was re-run. Figure 4.5 is the profiler screenshot of the application using the

built-in shared memory extensions. The time to transfer a TPH between Coven Threads

running on the same processor is reduced to a barely measurable amount. In this simple

example, it causes the program runtime to decrease from 34 seconds to 14 seconds.

This shared memory extension to Coven allows the runtime engine to transfer TPHs

between Coven Threads on the same processor rapidly. Without this ability, performance

improvements from multi-threading due to overlapping computation and communication

would be overshadowed by merely transferring data between threads.

4.1.2 Expert System

The Coven profiler has a built-in expert system that offers suggestions to the end user in

order to decrease the parallel program runtime. The expert system is a rule engine based

on JESS (Java Expert System Shell) [39]. After analyzing runtime trace information, the
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Figure 4.5: With Shared Memory

expert system is able to offer several possible performance improvements. Of interest to

this chapter is its analysis of where multi-threading would be useful.

CPU load information is gathered with the executing Coven application. The expert

system analyzes this information looking for modules which place a low load on the CPU

and constitute a large enough portion of the total program runtime. These are then marked

as candidates for appearing in another thread. We have empirically found on our system

that a module loading the CPU less than 35% is a good candidate for multi-threading.

Future work will entail determining this value for different systems automatically.

4.2 Working Environment

To analyze the performance effects of Coven’s multi-threading capability two sample ap-

plications were implemented in Coven. These applications were run on a 16 node Beowulf

cluster consisting of nodes with one 1GHz Pentium III processor, 1GB of RAM, and con-

nected by Fast Ethernet. Each node of the cluster runs Debian Linux 3.0r2, Linux kernel
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2.4.24, and MPICH2 0.93. All programs were compiled with GCC version 3.3.2 using

maximum optimizations.

4.3 Synthetic Application Case Study

A synthetic application was constructed in an attempt to analyze several program variations

and how they affect multi-threaded performance. This application has a computation phase

followed by a network communication phase. Each phase is implemented as a module

with many tunable parameters which can be altered without affect on the other modules.

While this is not a realistic application it allows the study of several interesting effects. The

program was designed so that multiple units of work were assigned to the same processor.

In this way, when a thread completed work on one portion of work and handed it to another

thread it could begin processing the next unit of work.

The CPU utilization of each module was analyzed using Coven’s profiler. To de-

termine the load each module placed on the CPU, Coven divides the total amount of time

a module was scheduled on the CPU by the total amount of wall clock time that passed

during the execution of the module. It was found that modules which load the CPU below

about 35% were good candidates for placing into threads that run concurrently with other

modules.

Additionally, the optimum performance was seen when a pipeline could be created

where the modules which ran in the pipeline did so for approximately equal amounts of

time. The synthetic application was tuned in this way and speedup was found to range

from 25% to 28% as the number of processors was varied from two to sixteen.

Figure 4.6 shows a profiler screenshot of the single threaded version of this appli-

cation running on eight processors. The screenshot represents the trace of the application’s

lifetime using a Gantt chart. On the x-axis time is represented and each parallel task is

depicted on the y-axis. The alternating shaded blocks represent modules executing. Each

block has a start time, end time, and a width which gives the total execution time for that
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Figure 4.6: Synthetic Application Single-threaded

module. In Figure 4.6, the darker shaded blocks are the computation module while the light

shaded blocks are the communication module. The computation module alternates with the

communication module and it can be seen that the blocks consume approximately the same

amount of time. In Figure 4.6 the expert system is suggesting that “Multi-threading (is)

suggested.”

This application was then placed into multi-threaded mode by simply toggling a

switch in the Coven GUI to place the communication module into a different thread from

the computation module. A resulting profiler screenshot appears in Figure 4.7 and is scaled

to be comparable with Figure 4.6. Since each of the eight parallel tasks are running in dual-

threaded mode, the eight horizontal lines from the previous figure are now represented by

16 lines. In this case, the computation module (dark box) ran in one thread while the

communication module (light box) ran in another thread. Data passed between the two

threads in a regular pattern. The total runtime of the application dropped from 768 seconds

to 554 seconds, an improvement of 28%.
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Figure 4.7: Synthetic Application Multi-threaded

The balance between execution time and CPU load of modules is important for

determining under which threads modules should run and if the application will even ben-

efit from multi-threading. For applications that exhibit extremely well balanced operations

(such as depicted in this synthetic application), on this architecture Coven can provide a

performance improvement ranging from approximately 25% to 28% with the use of multi-

threading.

4.3.1 Non-Coven Comparison

A common concern with regard to PSEs is how much overhead the environment imposes

on applications written within it. Due to the programming benefits present in PSEs, an

overhead of as much as 15% is common in many PSEs. With Coven, we have found this

overhead to be negligible — on the order of one to three percent for applications that are of

sufficiently large grain size. This is true for most of the applications in this thesis. Chapter 6

outlines a fine grain application that does suffer more overhead due to Coven. To provide a
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performance and complexity comparison, we implemented the synthetic application with-

out using Coven.

Multi-threading MPI programs present a great challenge. Part of this challenge lies

in the normal challenges of threaded applications, such as the use of posix threads, condi-

tion variables, semaphores, and mutex locks. Additionally, most open source MPI libraries

are not thread safe which makes utilizing the MPI library complex and cumbersome. For

MPICH, thread safety can be maintained if at most only one thread ever makes an MPI

call. The non-Coven multi-threaded synthetic application was implemented to allow for

multiple threads of control where one thread was designated thecommunication thread.

This implementation requires and includes:

• a series of queues so that the threads can pass data between each other,

• condition variables so that the threads can release the CPU while waiting for data to

arrive,

• awkward flow control as threads must hand all MPI communication tasks to one

thread and await the results,

• mutex locks around the shared queues and other shared data structures,

• and a host of posix thread library calls.

Figure 4.8 depicts graphically this complicated series of intercommunicating com-

ponents. An important thing to recognize from the figure is that the dark circles represent

that actual application code. These are represented as functions in C and do the work of the

application. These functions were literally taken directly from the Coven implementation,

with just the Coven-specific header information changed to standard C style. These func-

tions are the only pieces that are needed for the Coven version, as all the other operations

depicted in Figure 4.8 are transparent to the Coven user and have been abstracted into the

runtime engine.



76

Mutex Locks

MPI Thread

by MPI Thread, Results
Sent Back to Non−MPI
Thread

All MPI Calls Handled

Modules/Functions − Code
That Performs the "Work"
of the Application

MPI Program

Atomic Access Region

and Shared Queue

pthread_create() calls

Mutex Locks

Single Threaded

Shared Variables

Non−MPI Thread

Figure 4.8: Non-Coven Multi-threaded Application Diagram

A second approach would be to use more MPI tasks than necessary, scheduling

them to run concurrently on the same node to emulate threading. This would allow each

task to make MPI calls freely, but would also require a series of queues between MPI

“threads” using asynchronous MPI calls and CPU-releasing wait calls.

Either implementation involves substantial programming complexity, especially when

considering one target Coven user is a domain specialist with more expertise in his prob-

lem domain than in programming. Coven implements something similar to the second

approach, but all the complexity is hidden from the user.

The non-Coven, multi-threaded, synthetic application using the first approach (with

POSIX threads) was found to be approximately one to two percent faster than the Coven

version. The code complexity is considerably larger, however. Our version included ap-

proximately 400 lines of multi-threading code. While the modules were taken directly

from Coven, this additional multi-threading code was tightly-coupled and would require

additional work to generalize it to be usable in a wide range of applications.
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No profiling screenshot is presented here as the MPE log files are unaware of the

non-MPI threads. This is due to the fact that only the communication thread was ever

able to make MPI calls. Profiling and debugging of this type of application are therefore

complicated further with this approach. We argue that Coven provides these features to

any application implemented in it without need to retrofit multi-threading on top of each

existing parallel application.

4.4 2D Fast Fourier Transform

For a second application the 2D Fast Fourier Transform (FFT) was chosen. The 2D-FFT is

used in many applications and is often considered representative of workloads that operate

on matrices that are distributed across the nodes of a parallel machine.

In an additional effort to demonstrate the simplicity of porting an existing applica-

tion to Coven, an existing FFT library was linked in to Coven and a series of modules were

created using it to perform a 2D-FFT. The Fastest Fourier Transform in the West (FFTW)

[40] was developed by MIT and is considered one of the fastest FFT implementations

available. The FFTW is open source and portable, unlike many vendor implementations.

Complex double-precision floating-point numbers are used in the version considered here.

This algorithm is composed of the following four steps:

• compute the 1D-FFT for each row

• transpose the matrix (redistribution of data)

• compute the 1D-FFT for each row

• transpose the matrix (redistribution of data)

These steps were translated directly into Coven modules, each containing no more

than 3 lines of calls to FFTW libraries. This results in a port of the FFTW MPI code to

Coven modules and demonstrates the ease of wrapping existing code in Coven modules.
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Figure 4.9: FFT Speedup — Coven vs. FFTW

The FFTW provides an MPI parallel implementation and this was used as a comparison

application in these tests.

Firstly, a relatively small4, 000× 4, 000 2D-FFT was processed in parallel to com-

pare the FFTW native implementation versus FFTW wrapped in Coven modules. Coven

imposed an overhead between 1% to 5% of the total runtime for this application. Figure 4.9

shows the speedup curve for this application.

Next, a large10, 000 × 10, 000 2D-FFT was considered. The resulting parallel

portion of this FFT is too large to run on a small number of nodes on our system and so 8

and 16 nodes were chosen for testing. First, a single FFT was processed using FFTW and

also a port of the application running in Coven. The results are shown in the first two rows

of Table 4.1. Coven imposed an overhead of 6.6% in the 8 processor case and 5.1% in the

16 processor case.

Next, three FFTs of10, 000 × 10, 000 size were processed. The timings for the

single FFT case using FFTW were tripled to get the resulting time in row 3 of Table 4.1.

Three separate instances of FFTW were then spawned concurrently in an attempt to let the
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Table 4.1: 10,000 x 10,000 Element FFT Timings

8 Procs. 16 Procs.

1 FFT — FFTW 63.7s 42.9s
1 FFT — Coven 68.2s 45.2s

3 FFTs — FFTW
Back-to-Back 191.1s 128.7s
Concurrent 173.2s 111.6s

Improvement 9.3% 13.3%

3 FFTs — Coven
1 Thread 204.0s 137.1s
2 Threads 161.1s 105.2s

Improvement Over
Back-to-Back FFTW 15.7% 18.2%
Improvement Over
Concurrent FFTW 7.0% 5.7%

operating system try and overlap computation and communication. The results are shown

in row 4 of Table 4.1 which produce an improvement of between 9.3% and 13.3% over

running 3 FFTs of this size back to back using FFTW.

Finally, Coven was used to process the 3 FFTs. First, in the single threaded case

row 6 of Table 4.1 shows that Coven performs more poorly than either approach using

FFTW. However, when 2 threads were used in Coven, rows 7 and 8 of Table 4.1 show an

improvement of between 15.7% and 18.2% over the back-to-back execution of 3 FFTs in

parallel and between 5.7% and 7.0% over concurrent execution of 3 FFTs using FFTW.

Concurrently running multiple FFTW MPI parallel programs seems like a simple

solution to process multiple FFTs but it has some drawbacks. For instance, while the oper-

ating system does an acceptable job of scheduling three FFTs concurrently, it is unlikely to

handle 10 with the same efficiency. Furthermore, insufficient memory problems are likely

to surface with this many large FFTs. Coven, on the other hand, uses a queue system de-

scribed in Section 2.4.3. With this approach, the user can set it so that no more than 3

FFTs are being processed concurrently. Therefore, as one exits the system and the mem-
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Figure 4.10: FFT Application Single Threaded

ory associated with it is freed, Coven can begin processing another FFT. The FFTW MPI

implementation could be augmented to do something similar, however once an application

is written in Coven, the programmer gets these features automatically.

The FFTW Coven application did not perform as well as the synthetic application.

The reason for this is that the computation phase for this size 2D-FFT takes 5 seconds,

while the communication phase takes nearly 30 seconds. This 1:6 ratio is not nearly as

balanced as was the synthetic application. It is this reason that the FFTW Coven application

does not approach the higher performance increases that are possible when using Coven’s

multi-threaded capabilities.

Figure 4.10 contains a screenshot of the profiler for the 8 processor, single threaded

version of this Coven application. The small blocked regions are the computation modules

while the much wider regions are the communication modules.

Figure 4.11 contains a screenshot of this application running in multi-threaded

mode with Coven on 8 processors. The figure is scaled for easy comparison with Fig-
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Figure 4.11: FFT Application Multi-threaded

ure 4.10. After the first FFTs computation module, the FFT is handed to the second thread

which begins a parallel transpose. The transpose operation on the multi-threaded version

takes between 33 and 34 seconds which is around 10% longer than the single threaded ver-

sion. However, during this time the other two FFTs complete their 1-D computation. This

overlap allows the application to achieve the performance gain described above.

Through careful scheduling of which modules execute concurrently, the multi-

threaded Coven version of the FFTW application was able to perform better than the naive

execution of multiple FFTW MPI programs concurrently. Rather than have 3 FFTs com-

peting for the CPU to perform computations concurrently, Coven lets one FFT get to the

communication phase before it lets another into the computation phase.
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4.5 Related Work

Multi-threading has been utilized in a wide range of computing systems and programming

environments. We next look at several related multi-threading projects and how they relate

to Coven’s multi-threading implementation.

EARTH (Efficient Architecture for Running THreads) [50] is a multi-threaded pro-

gram execution model which aims to support latency tolerance through fine-grained paral-

lelism. Using EARTH synchronization operations, code is partitioned into threads. Each

process consists of anExecution Unit(EU) and aSynchronization Unit(SU). The EU ex-

ecutes the thread and the SU handles operations requested by the thread. The MANNA

(Massively parallel Architecture for Numerical and Nonnumerical Applications) multipro-

cessor platform uses EARTH, a RISC processor for the EU and a custom piece of hardware

for the SU. The MANNA system uses Threaded-C and custom EARTH primitives to aid

in multi-threaded programming. Unlike Threaded-C, Coven multi-threading applications

are normal C modules without any threading API. As such, it is simple to convert existing

applications into Coven modules and trivial to experiment with different threading schemes

to study the potential performance improvements.

Tian et al. [86] studied the affect of multi-threading applications on the EARTH-

MANNA system, particularly how sensitive performance was to data locality. They defined

measures to quantify the sensitivity of data locality to performance. These measures were

the Multi-Processor Locality Sensitivity Indicator (MLSI) and the Locality Sensitivity Indi-

cator (LSI). Using a synthetic benchmark and a Matrix-Multiplication program, they found

that on the EARTH-MANNA system, the multi-threaded programs could achieve as much

as 20% better performance than their single threaded counterpart. They concluded that for

performance-tuning, programmers and compilers must expend significant effort to improve

data partitioning in an attempt to better cut down on the latencies involved with accessing

remote data. Multi-threading provides an easier solution where computation and commu-
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nication can be overlapped and the system can more easily tolerate communication and

synchronization latencies.

A multi-threaded Fast Fourier Transform (FFT) was studied in [85] using the EARTH-

MANNA system. Using special EARTH primitives and taking advantages of the MANNA

hardware, they were able to design a complex threading scheme which proved to be capa-

ble of providing high performance. In particular, they achieved near linear speedup when

using very fine-grained multi-threaded parallelism and very good performance improve-

ments when using a more coarse-grained approach. These results were obtained using an

EARTH-MANNA simulator called SEMi and were closely tied into the EARTH-MANNA

hardware and software primitives. Furthermore, the simulation assumed there was no op-

erating system to multitask between other operations. This multi-threaded FFT study was

performed in a simulator of a system with a custom software and hardware system. The

multi-threaded FFT experiment detailed in this chapter was performed on a conventional

Beowulf cluster and was written in standard C.

The Asynchronous Buffered Computation Design and Engineering Framework Gen-

erator (ABCDEFG) [21], or FG for short, is a parallel computing framework which focuses

on multi-threading. In FG, each module (called a stage) is executed inside of its own thread.

Threads are implemented using the POSIX thread interface, and FG handles all aspects of

thread maintenance so the user is relieved of the burden. The most widely used, open

source MPI implementation is MPICH [67]. MPICH is currently not thread safe, and this

chapter will discuss how Coven’s multi-threading deals with this. In FG, however, the de-

velopers turned to a commercial MPI implementation, ChaMPIon/Pro. While similar to

Coven in some ways, FG places every module inside its own thread. In Coven, the user

is given the choice to group related modules into similar threads. Where in Coven a 20

module application might use two or three threads, an FG approach would have 20. This

can be a major hindrance to the operating system and potentially could cause slow downs
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passing data back and forth between threads when the modules have little chance of being

able to run asynchronously.

A similar C++ framework that places modular user code into their own threads

is DPS [42]. While the specified goal of this approach is to achieve performance im-

provements from overlapping computation and communication, neither DPS nor FG (men-

tioned previously) have been used to demonstrate an actual performance improvement us-

ing multi-threading. In particular, this would amount to demonstrating a parallel applica-

tion that can achieve benefits from asynchronous operations as well as showing how the

frameworks perform in single threaded mode.

4.6 Summary

The multi-threading extension to Coven provides a simple way to achieve benefits from

overlapping computation, communication, and external I/O. While not all applications can

benefit from this performance enhancement, it is provided with Coven and can be turned

on by simply specifying which thread to run each module within.

A real application was tested and shown to be able to achieve a good improvement

in performance by using multi-threading. Through a benchmark with many tunable param-

eters, it has been shown the range of performance that an application can hope to gain from

multi-threading. While these particular results are specific to the environment on which the

tests were run, they demonstrate the real possibility of improving performance through the

use of multi-threading. The fact that multi-threading can improve application performance

even in the realm of parallel computing is nothing new. What is new is the ability to abstract

away many of the complexities with multi-threading and place them into the environment

itself. This expands the ease of implementing multi-threaded applications in particular due

to the lack of coupling the threading code with the application code.

The Coven model of computation simplifies the multi-threading implementation in

many ways. Transferring data between threads in a hand-coded system can be complex,
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requiring the use of queues, shared memory, and atomic locks around the data. In Coven,

application state is encapsulated within TPHs and Coven already employs TPH queues.

Furthermore, by analyzing where a partition of state will travel during its lifetime, Coven

efficiently utilizes shared memory for data that will flow between threads sharing a memory.

This is empowered by the state model and its property of separating application state from

code.

Work is ongoing in studying if a smart agent (in this case, the Coven profiler) can ex-

amine trace information from a program run and automatically suggest a threading scheme

that is likely to improve performance.



CHAPTER 5

LOAD BALANCING

Many types of parallel computing applications exhibit workload characteristics which cause

a variable amount of work to be done by each parallel task. This presents a problem because

usually there exist at least one point where some set of all parallel tasks must synchronize.

Commonly this is the end of the program, or every iteration. Regardless, this presents time

where parallel tasks are idle, having completed their work, and waiting for other tasks to

catch up. This is termed aload balancingproblem.

5.1 Introduction

With the cost of parallel computing systems and computing cycles so high, developers seek

to fully utilize the resources at their disposal. Not only do applications with load balancing

problems fail to use all available resources, but this by definition means there exists a

potential performance improvement if the application could be adapted to a more balanced

workload.

There exists a class of applications that the amount of computation to be performed

is dependent on the data. In these applications, it is difficult (sometimes impossible) to

predict how much work will be required to compute a partition of the data. Therefore,

these applications present major load balancing problems. Examples include ray tracing,

N-Body simulations, structured adaptive mesh refinement (SAMR), and many others.

While data-dependent workload applications like these are common load balancing

applications, load balancing can be applied to any application when run on a heterogeneous

parallel computer. Even the most naturally parallel program can, and usually does, have

less than optimal utilization on a heterogeneous computer. It is not uncommon in clus-

ters of workstations (COWs) to have machines which are of a wide range of processing
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power. The clustering tool Condor [63, 84] (discussed in Chapter 3) creates just this type

of heterogeneous cluster, piecing together different speed workstations as they are idle.

Load balancing solutions can be divided into one of two broad categories: static

load balancing (SLB) and dynamic load balancing (DLB). In SLB, data is preprocessed

before assigning to a parallel task. An algorithm then balances the work to be done between

the tasks.

SLB is generally performed on a single processor and sometimes is not included

in the performance results of an application. This can make direct comparisons between

the two approaches difficult. Using a SLB approach on a heterogeneous parallel computer

is complex as it is difficult to balance based on the work to be done while taking into

consideration differences in processors, memories, networks, and disk systems.

In DLB, the application is left to run and at runtime the parallel tasks exchange

units of work in an attempt to better balance their load. Two popular approaches for DLB

are random stealing (RS) and random pushing (RP) [87]. With random stealing, a parallel

task requests more work once it has completed all it was assigned. The request is often

implemented as a broadcast, where other parallel tasks respond when they are able by

transferring a portion of their work to the requester. With random pushing, parallel tasks

have a maximum amount of pending work that they are willing to keep and once that

number is reached, they send additional work to another random parallel task. Since RS

waits until there is no work left to process before seeking out additional work, there is a

period of time while waiting for new work to arrive when the parallel task sits idle. RP

does not suffer from this, but under high workloads it saturates the network with pushes to

tasks which already have work to do.

While static load balancing is useful in many types of applications, those applica-

tions generally are of a class where the operations are both well defined (regular) and well

known. One approach to achieving SLB in a general purpose environment is through gath-

ering and assimilating trace data from multiple application runs. This approach is similar
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to SPEEDES [88, 89] and could employ an expert system to recognize how the different

runs varied. Performing SLB in a general purpose application can be complex without a

detailed understanding of both the application structure and the system on which it will run.

Due to Coven’s model of computation, the application structure is provided to the environ-

ment which would facilitate SLB. At this time, we have chosen not to focus on static load

balancing and instead look at a more dynamic approach (DLB) in hopes of it being more

applicable to a wider range of applications.

This chapter presents two dynamic load balancing optimizations available to Coven

applications. The first DLB algorithm transparently moves TPHs between parallel tasks as

less loaded tasks run out of TPHs to process. This is enabled by the Coven model which

separates application state from code and makes it simple to move state partitions to execute

wherever is deemed most useful. We present a sample application with load imbalances,

employ Coven’s random stealing DLB algorithm, and then analyze the results. We find

that the random stealing algorithm results in the expected improvement in performance

and processor utilization.

There are some applications which cannot directly benefit from Coven’s random

stealing DLB algorithm. For applications of this type we present an explicit DLB algo-

rithm for Coven. This less transparent DLB scheme merely requires inserting a single,

pre-built system model into a user’s application. We study an application experiencing

regular and then random external load which causes the load to change dynamically at

runtime. Coven’s second DLB algorithm gathers runtime statistical information about the

TPHs and uses this to determine the current load. Coven then determines if an imbalance

exists and instructs specific parallel tasks what other tasks to offload some of their work to.

This is facilitated by the Coven model because related state can be maintained together and

that state tagged with its runtime load statistics. State partitions can then be independently

analyzed to determine how they affect the overall load of the system.
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5.2 Approach

Recall that in Coven, all units of work are encapsulated in an internal data structure, trans-

parent to the application programmer, called a Tagged Partition Handle (TPH). This struc-

ture is indirectly controlled by a user through system modules which partition, scatter,

gather, and reform TPHs. Each parallel Coven Thread operates on a single TPH at a time,

while maintaining queues of TPHs to be processed and to be sent on. We call these in-

put and output queues. After processing a TPH the program sequencer returns to its input

queue to retrieve the next one. TPHs arrive in this input queue from another Coven Thread

which sends the TPH on to another program sequencer to process.

By employing the TPH queuing system, we are able to readily identify how many

units of work are present on each parallel Coven Thread. This enables Coven to deter-

mine and monitor the amount of work scheduled for computation throughout the system.

Given the work queuing system, the most relevant DLB algorithms are random pushing

and random stealing. Random pushing was found to be unstable in environments with high

workload [87] while random stealing (RS), on the other hand, proves to be much more sta-

ble and regular. Coven’s DLB approach focuses on using random stealing to allow parallel

tasks to request additional work when they are lightly loaded.

While similar algorithmically to the work done by Nikolopoulos [87] on random

stealing, Coven brings this technology to a parallel problem solving environment. Unlike

many load balancing approaches which target a very specific application domain, Coven

has been used to implement a wide range of applications with varying workload character-

istics. With this approach, dynamic load balancing becomes available toall applications

written in Coven. The application programmer receives this benefit for no effort on their

part, as Coven already enforces a data partitioning scheme which places data into bundled

units of work (TPHs).

Random stealing requires each parallel task to be assigned more than one portion

of the data. This requires splitting data into more partitions than there are parallel tasks.
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Coven’s model of computation addresses this point and the split/join features of the Coven

PSE detailed in Chapter 2 facilitate this. Partitioning of data into more segments than

there are parallel tasks has some advantages. For instance, this approach increases the

rate at which results appear at the output of the algorithm. While the total results should

come through no faster (and often a tad slower), this approach does lend itself well to load

balancing. The idea being, if the work is divided into more segments than there are tasks,

then faster tasks can “steal” work from slower tasks if the need arises.

This chapter illustrates two types of dynamic load balancing inside of Coven. Both

approaches rely on the concept of partitioning data into more segments than there are par-

allel tasks. This presents an interesting problem when sending messages between segments

which may be queued for processing on another (or even the same) parallel task. To ad-

dress this problem, Coven’s virtualization feature (Section 2.4.8) makes it easy to send and

receive data by specifying which state partition to communicate with.

The first DLB approach presented in this chapter is useful in algorithms which are

non-iterative. It utilizes random stealing by having a Coven task send out a “steal request”

message once it runs out of TPHs (work) to process. Heavily loaded tasks can then choose

to respond by sending a portion of their work to be processed by the stealer.

The second DLB approach presented in this chapter is less automatic. It requires

the user to insert a Coven system module which attempts to do load balancing. This ap-

proach uses a more sophisticated load balancing algorithm which analyzes TPH throughput

through each parallel task and employs a centralized algorithm to determine better TPH

balance through all parallel tasks.

The following sections explain the rationale for these dynamic load balancing al-

gorithms as well as the changes to Coven which were required. Experiments are provided

which analyze the performance and study the usefulness of each DLB approach.
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Figure 5.1: Message Flow State Transitions With Random Stealing

5.3 Random Stealing Implementation

In Chapter 2, Figure 2.8 introduced how messages and TPHs flow through Coven. To

handle dynamic load balancing through random stealing, the state diagram is augmented as

shown in Figure 5.1. Figure 5.1 includes the new states surrounded by dotted lines. Once a

program sequencer realizes that there are no incoming messages and no TPHs queued for

processing, the random stealing algorithm is initiated.

Coven’s random stealing implementation involves the use of several control mes-

sages which are exchanged between the parallel tasks in order to communicate information
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about the DLB operation. These control messages are briefly defined below and assume

that TaskA is requesting work and TaskB is responding to the request.

Steal Requestmessage sent from TaskA to all other parallel tasks signifying that addi-

tional work is requested

Steal Responsemessage sent from TaskB to a requesting TaskA signifying thatN TPHs

(pieces of work) are being sent

Steal Response Notificationmessage sent from TaskB to all tasks exceptA (and itself)

signifying that TaskB has fulfilledN requests from TaskA

Each parallel task is allotted a certain number of TPHs defined by the application

and the user’s specification. Each task is required to process that number of TPHs before

requesting additional work. This addresses a race condition where tasks have no work

initially and flood the network with steal requests before their allotted work has arrived.

Only once a task has processed their allotted number of TPHs may it request additional

work from other, heavily loaded tasks.

Coven uses a load balancingscore boardto keep track of which tasks have re-

quested to steal work and which tasks have responded to their requests. Each Coven task

maintains their own score board. The score board is implemented on each task as an integer

array with each element corresponding to the load balancing requests from a parallel Coven

task. Each element in the score board is referred to as aslot.

As a steal request arrives at Coven taskB from Coven taskA, B increments a

counter in the score board slot corresponding to taskA. Coven processes control messages

before dequeuing and operating on any queued TPHs. In this manner, we assure that all

arrived steal request messages have been incorporated into the score board before the re-

ceiving task begins processing another TPH. Once taskB has received any pending DLB

control messages, it then analyzes the score board at its TPH input work queue. TaskB

then attempts to evenly distribute its TPH input queue between all tasks which have pos-
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itive slot values in its score board. For each task thatB sends TPHs to it issues a steal

response notification to all the other tasks. Additionally, it decrements the slot value in the

score board corresponding to the task that it transferred work.

When a steal response notification arrives at a taskC that message signifies that

some taskD has fulfilled a request for another taskE. TaskC then decrements the slot

value in its score board corresponding to slotE. This may cause the slot value to become

negative and can occur when a steal response notification arrives before the initial steal

request message.

This score board is required in order to deal with potential race conditions which

were seen to occur empirically. The following series of steps would be possible if not for

the use of a slot value whose positive or negative status signifies the number of unfulfilled

steal requests.

1. TaskA sends asteal requestto all other tasks.

2. TaskB receives thesteal requestmessage, sends asteal responseand some TPHs

to TaskA, and asteal response notificationmessage to all other tasks notifying that

TaskB has responded to TaskA’s request.

3. TaskC receives thesteal response notificationmessage from TaskB before thesteal

requestmessage from TaskA.

4. TaskC receives thesteal requestfrom TaskA and sends some TPHs to TaskA.

5. TaskA is now likely overloaded and the total load is likely imbalanced.

In the above simple scenario, TaskC would have assigned the value of−1 in its

score board in the slot for TaskA when it received the request fulfilled message from Task

B. Then, when the request from TaskA arrived, this value would have been incremented

by one to0. TaskC would then have chosen not to send any TPHs.
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Figure 5.2: Load Balancing Score Board

Figure 5.2 depicts graphically how the score board might appear in an example with

more tasks. In this figure, processes are represented on the x-axis ranging fromP1 through

P8. This figure might represent a snapshot of the score board as seen fromP6’s perspective

at some point during the application.

When sending TPHs to a stealer, Coven employs an algorithm which attempts to

evenly divide number of TPHs between all the stealers. In the previous example (Fig-

ure 5.2), the number of queued TPHs will be divided betweenP1, P2, P5 (those slots with

positive values), and the sender (P6). The sender will then dequeue, marshall, and transfer

the necessary number of TPHs to each stealer, send out request fulfilled messages to all

other tasks, and then decrement the value of the appropriate element in its score board.

To study the random stealing implementation we next present an experiment that

benefits from the optimization. We analyze the performance improvement it provides and

compare the complexity (from a user’s perspective) of using the optimization within the

environment with the difficulty of implementing DLB by hand.

5.4 Random Stealing Case Study

To study the Coven implementation of the random stealing DLB optimization we next

present an application with imbalanced workloads. This application is the calculation of

the Mandelbrot fractal set which is commonly used as an example of an application that

needs DLB. Figure 5.3 is a sample image of a fractal generated by this application. A

fractal is a geometric shape that generally has the property of self similarity, meaning bits
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Figure 5.3: Sample Fractal Image

of the fractal look like the whole. Additionally, they generally are independent of scale and

look similar regardless of how close one zooms in.

The Mandelbrot set is a set of complex numbers defined by Equation 5.1. In

Equation 5.1,C is the set of all complex numbers andZn is a recursive function

defined by Equations 5.2 and 5.3.

M =
{

c ∈ C | lim
n→∞

Zn 6= ∞
}

(5.1)

Z0 = c (5.2)

Zn+1 = Z2
n + c (5.3)
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Figure 5.4: Sample Fractal Image Partitioning

If the value ofZn(c) is not infinite whenn approaches infinity, thenc belongs

to the set [2].

Like most image processing applications, the fractal is calculated by dividing the

image into regions. Each region is distributed to a parallel task which is responsible for

computing a portion of the fractal over that region. This particular application isnaturally

parallel, meaning there is no communication required between the parallel tasks except (in

this case) to reconstitute the solution into a final image.

Figure 5.4 depicts one partitioning of this fractal region. In this example, the image

is partitioned into four segments in the X and four segments in the Y, creating a total of

16 segments. This is then distributed among N parallel tasks using the round-robin fashion

depicted in the figure.

Calculating the Mandelbrot set requires that an association be made between pixel

coordinates and complex numbers. Then, for each pixel we determine if the corresponding

complex number belongs to the Mandelbrot set by evaluatingZn from Equation 5.3. Since
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we cannot loop to infinity in practice, we must choose some maximum value to bound the

loop — we call this thedepth. In [2], it is proven that if “the absolute value ofZ ever gets

bigger than2 it will never return to a place closer than2 but will rapidly escape to infinity.”

This means that the recursiveZn function can abort if, for a given complex number, the

function’s value increases beyond2.

For each complex number (related to the pixel coordinate), the number of iterations

required to determine if that number is part of the Mandelbrot set is variable. This means

that it is essentially impossible to determine how many computations will be required to

calculate the Mandelbrot set over a set of pixels. This makes it impossible to balance

the work of calculating the fractal by partitioning the image into equal sizes. For these

reasons, calculating the Mandelbrot set is a prime example of an application that has load

imbalances.

We next present the Coven modules that implements the Mandelbrot set algorithm.

We then analyze the application’s runtime behavior, showing the effects of the load im-

balance and then evaluate the use of Coven’s random stealing optimization to reduce the

imbalance. Coven’s profiler is employed to graphically depict the load imbalances as well

as the more balanced work load after optimization.

5.4.1 Module Decomposition

The fractal algorithm was decomposed into a series of only a few Coven modules. These are

shown in the Coven data flow graph editor in Figure 5.5. Three modulesfrac scatter ,

frac gather andfrac write reside in the sequential design. The parallel portion of

this application is only one module,frac comp.

The application requires the user to set parameters for the image dimensions and

how detailed (thedepthmentioned in the previous section) the fractal will be. The image

is partitioned into NX by NY segments, where NX and NY are also input parameters. The

scatter module then creates TPHs each assigned to a different partition and then scatters the
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Figure 5.5: Fractal Data Flow Graph

TPHs in a round-robin fashion to as many parallel slave tasks as requested. Each parallel

task then computes the fractal over that region, executing thefrac comp module. Results

are then gathered and written to an image PNG file in the final two modules.

Figure 5.6 is a source code listing of the fractal parallel computation module. There

are five constants used as input to the module; these are set by the user before the appli-

cation runs. A four-tuple of input integers represents the region information. The mod-

ule creates an output buffer of necessary size and names itsubdata . The body of the

frac comp module is three nestedfor loops which compute the fractal over the subim-

age. Notice the most innerfor loop which counts up todepth but can short circuit

execution if a condition is met. This part represents the portion of the code that is data de-

pendent and causes each point in the image to take a variable amount of time to compute.

The fractal is a mathematical entity which is believed to be found in nature. One

of its properties is that it is infinitely “zoomable,” meaning that as one delves deeper and

deeper into the image created by the Mandelbrot set, it continues to expand. The fractal

algorithm goes through afor loop of configurable max depth in search of a solution. If no
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#include <coven.h>
#include <unistd.h>
#include <math.h>
#include <stdlib.h>

COVEN_Module frac_comp
(

const int depth;
const int tot_width;
const double ymax;
const double xmax;
const double xmin;

input int start_width;
input int end_width;
input int start_height;
input int end_height;

output buffer unsigned int subdata[(end_width - start_width) *
(end_height - start_height)];

)
{

int index, i, j, k;
unsigned int z;
double x, y, c_re, c_im, re, im, re2, im2;

for (i=start_height; i<end_height; i++) {
y = ymax - ((xmax - xmin)/( double )tot_width) * ( double )i;
for (j=start_width; j<end_width; j++) {

index = (i - start_height) * (end_width -
start_width) + (j - start_width);

x = (( double )j/( double )tot_width) * (xmax - xmin) + xmin;

re = x;
im = y;
re2 = re * re;
im2 = im * im;
c_re = x;
c_im = y;

for (z=0; z<depth; z++) {
im = 2.0 * re * im + c_im;
re = re2 - im2 + c_re;
re2 = re * re;
im2 = im * im;
if ((re2 + im2) > 4.0) break ; // solution found, short circuit loop

}

if (z == depth) z = UINT_MAX;

subdata[index] = z;
}

}
}

Figure 5.6: Fractal Computation Module

solution is found, the pixel is marked undefined (or black in the image). Thefor loop short

circuits and aborts once a value has been found, and the number of iterations it takes to find

the value corresponds with the color in the image. A small maximum depth thefor loop

can go results in faster fractal generation, but considerably less detailed. Therefore, since

for each point in the image the fractal algorithm makes a variable number of computations,

it exhibits major load imbalances.

We next examine how the fractal application performs in Coven with and without

dynamic load balancing.
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5.4.2 Performance Without Load Balancing

The fractal application outlined in the previous sections was used to generate a large, de-

tailed fractal image (the same one shown in Figure 5.3). The final image was5000× 3759

and over8.5 megabytes in size. The application was executed in parallel, but shown here

on merely four processors for simplification and easy visualization of performance data.

This helps to illustrate the need for load balancing and the issues addressed in this chapter.

First, in order to analyze the load imbalances of the application we ran it with one

partition of the image assigned to each parallel task. Figure 5.7 is a screenshot of the

Coven profiler visualization depicting the time it took to process each partition. In the

figure, time is represented on the X-axis, ranging from program start (zero) in this case

up to 176.123 seconds. The Y-axis represents each parallel task. In this case, there are

four parallel slave tasks and a master controlling task, which is being used to distribute and

coalesce the fractal data. The rectangular boxes in the figure represent individual portions

of the fractal image, similar to as was shown in Figure 5.4 except there are only four large

partitions of the fractal, rather than many small ones. Each portion is described entirely by

a single TPH. The boxes are numbered to correspond to unique internal TPH identifiers,

and colored using a unique mapping between color and identification number.

Table 5.1, column two (original†) presents additional performance data from this

application. The percent utilization is the sum of the time each parallel task spent unidle

divided by the total application runtime. The average wait time is the average amount of

time each parallel task was idle waiting on new data or for the application to complete.

For this experiment, we found a utilization of 64.11% and an average wait time of 62.23

seconds.

In this example, since the fractal image was partitioned into only one segment per

parallel task, dynamic load balancing is completely prohibited with Coven. The screenshot

includes a dialog box overlayed from the Coven expert system which, after analyzing the

data, has determined that load balancing might provide a performance improvement. Note
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Figure 5.7: Four Processor Fractal No DLB Possible

Table 5.1: Fractal Performance Comparison

orig. no LB† partitioned no LB? RS DLB♦

run time (secs) 176.12 sec 181.74 sec 154.61 sec
percent utilization 64.11% 62.53% 73.51%
avg. wait (secs) 62.23 sec 67.81 sec 40.56 sec

† From Figure 5.7 — original application, no LB
? From Figure 5.8 — original application with partitioning, no LB

♦ From Figure 5.9 — application using random stealing DLB
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that the runtimes for each parallel task have a great deal of variance. Before load balancing

can be performed, the application data must be partitioned into more segments, so that

Coven’s random stealing algorithm can move around TPHs to better balance the load.

Next, in order to measure the overhead of using multiple smaller partitions we repar-

titioned the data and reran the application. The repartitioning scheme created many smaller

partitions which were scheduled so that each parallel task was responsible for multiple par-

titions. The total amount of work each task was assigned remained the same, but the work

was now split into smaller packets.

Figure 5.8 depicts this version of the application with four partitions assigned to

each parallel task, totaling 16 partitions. In this example, dynamic load balancing is still

not enabled. Notice that the runtime increases from 176 seconds to 181 seconds, an increase

of about 3%. This can be accounted for with the increased decomposition of the data into

more segments than there are parallel tasks. In this case, this type of decomposition results

in a worse runtime. However, this decomposition scheme facilitates load balancing, and

the goal is to show that after using DLB, the runtime is cut to less than 176 seconds (the

default case shown in Figure 5.7).

As previously stated, the amount of computation of each segment varies and there-

fore load balance cannot be assured. Notice in Figure 5.8 the parallel task on the top (Slave

1) processes its alloted four pieces very quickly whileSlave 4(the one below it) is the last

to finish, taking nearly four times as long. By looking at the post mortem analysis of this

application, it is clear thatSlave 1andSlave 2(on the bottom) could have been assigned

additional work to do.

Table 5.1, column three (original partitioned?) presents additional performance data

from this application. Notice that when compared with the original† results from column

two, the utilization decreased and the average wait time increased. This is due to the over-

head incurred by splitting the data into smaller partitions but not using load balancing.
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Figure 5.8: Four Processor Fractal Without DLB

In Figure 5.8 the profiler’s expert system dialog box states “(l)oad balancing sug-

gested.” This is determined using a heuristic and the relative runtimes of each parallel task.

This dialog box also prints the total time the CPU was utilized by each parallel task. It is

also easy to tell from here that tasks 1 and 2 were idle for a large portion of the program.

5.4.3 Performance With Random Stealing DLB

The same fractal application with the same input parameters was then run using Coven’s

dynamic load balancing (DLB) random stealing algorithm. Each task was required to have

received and handled their allotted TPHs, in this case four. By handled we mean either

process that segment themselves or send it to another task for processing, through a random

stealing operation.

In random stealing, the outcome will vary greatly depending on the specific global

state of the system when one task issues a steal request. Figure 5.9 is a screenshot of the

Coven profiler doing post mortem analysis on the fractal application after dynamic load

balancing had been enabled. Notice thatSlave 1processed its allotted four portions and
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Figure 5.9: Four Processor Fractal With Random Stealing DLB

then sent out a steal request. The first parallel task to receive the request wasSlave 2, as

Slave 2finished processing its TPH before the other slaves.Slave 2recognized that it had

two TPHs left, #16 and #20 (see Figure 5.8 for evidence of the TPHsSlave 2was allotted).

Half of its work (one TPH) was then transferred toSlave 1.

Slave 2itself then requested additional work, since after processing TPH #20 it was

idle. There was a relatively long idle period while the task waited for work to arrive, in

this case fromSlave 4. During this time,Slave 1requested even more addition work and

this time its request was fulfilled bySlave 3. Notice thatSlave 2requested additional work

beforeSlave 1’s second request butSlave 3satisfiedSlave 1’s request rather thanSlave 2.

This is because whenSlave 3was ready to handle steal requests, it had requests from both

Slave 1andSlave 2and it randomly chose one to satisfy.

Figure 5.9 has been scaled to make it easily comparable to the non-load balanced

version in Figure 5.8. The total runtime of the DLB version was 154.55 seconds, which is

approximately 12.25% faster than the version where DLB was not possible (Figure 5.7),

and 15% faster than the previous example (Figure 5.8). Notice in the expert system dialog
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box there is no suggested optimization. Furthermore, the runtimes for each parallel task

are considerably more balanced, having a great deal less variation. This results in a better

utilization of the computing resources through faster application runtime.

In the dynamic load balanced version of the application shown in Figure 5.9, the

more heavily loaded parallel tasks (Slave 4andSlave 3) were able to hand off a portion of

their work to other tasks, in particular, bringingSlave 1more into balance with the other

parallel tasks by having that task process 50% more work than was allotted to it.

Table 5.1, column four (random stealing♦) presents additional performance data

from this application. Not only does the total runtime decrease to 154.61 seconds, but the

percent utilization increases and the average wait time decreases. This results in quicker

application runtime as well as less processor idle time and better utilization of the compu-

tational resources.

Dynamic load balancing through random stealing is a transparent way users can

achieve better load balancing in their Coven applications. It requires that an application

be partitioned into more TPHs than necessary and this granularity definitely can affect

application performance. A too fine granularity would mean more time was spent handling

transportation of TPHs and bookkeeping rather than performing the computation, however,

too coarse of a granularity would prohibit proper load balancing.

5.4.4 Non-Coven Performance and Complexity Comparison

A non-Coven implementation of the fractal application in parallel using random stealing

would likely result in the same results seen elsewhere in this thesis; the performance would

be slightly (1% to 3%) better than the Coven version but the programming complexity

would be much larger. Instead of implementing the non-Coven version, it was instead

decided to implement a version of the fractal application that used a different type of load

balancing.
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This new form of load balancing comes from where each application is assigned

only a single piece of the fractal, though the fractal is still segmented into many more

pieces than there are parallel tasks. When a task completes processing its segment, it sends

a request to the “master” task which then sends over another segment to work on. This is a

fairly common method of dynamic load balancing, specifically being the method of choice

for MPI Povray [3], a parallel image rendering application.

There are advantages and disadvantages, of course, with this form of DLB as well.

One advantage is that a segment is only sent to a parallel task when it will be executed there,

as opposed to random stealing where a segment can be moved from task to task responding

to dynamic load. One major disadvantage is that the task that hands out work becomes a

bottleneck, particularly being a performance concern as the number of parallel tasks goes

up. Another disadvantage is true of either the random stealing or this other DLB approach

— the code to implement either is non-trivial.

A non-Coven random stealing implementation would be particularly complex to

implement. It would require workload queues and only when no additional incoming work

was available would a task being processing an element. The system would need to use both

data message (to exchange fractal segments) and control messages (to exchange random

stealing requests).

The master distribute load balancing algorithm is a little simpler to implement.

Each task merely goes to sleep waiting for data to arrive. Once they receive that data, they

process it, and send it back for reassembly. Upon sending it back, the master recognizes

that the task is no longer busy and sends another segment. This continues until there are

no segments left to distribute. While this version is certainly simpler to implement than a

non-Coven random stealing application, the argument still stands that the Coven version of

the fractal application hasno dynamic load balancing code present at all. Any addition of

DLB to the non-Coven version is purely extra code that would have been handled by the

environment in a Coven version of the application.
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As with the other non-Coven applications, the lack of a profiling library makes it

difficult to analyze the trace information. While MPE and Jumpshot provide some view

of application runtime, the fact that the fractal segments have no representation in MPE

makes it difficult to establish what is going on. This is just another example of a feature

that is transparently provided by Coven.

The non-Coven version of the master distribute DLB algorithm was implemented.

The exact same four processor test was performed as was seen in the previous sections. The

hand coded version performed about 7% faster than the Coven implementation. This is a bit

better than the other hand coded implementations seen elsewhere in this thesis, but a portion

of that performance is due to the particular decomposition of the fractal. To demonstrate

this fact, the application was divided into a very small grain size. Instead of four segments

per processor the fractal region was divided into twenty segments per processor. This

version performed better in the Coven implementation due to the fact that when random

stealing was initiated, many segments were transferred at once to the stealer. The master

distribute DLB version, however, overloaded the master task with many requests for small

segments which were rapidly processed.

Obviously this version could be optimized further to perhaps transport multiple

segments together, or even use a mixture of random stealing and master distribute DLB.

The point still remains that the hand coded version used the exact code from the Coven

modules, but additionally required a great deal of handshaking, control, and DLB code.

The advantage of Coven is that these operations, common to many parallel applications,

have been incorporated into the environment so that the user can steer and control them

without having to implement the features.

5.4.5 Discussion

Clearly dynamic load balancing through random stealing can be useful to Coven applica-

tions. A sample application was presented which shows an imbalanced workload and how
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through the use of Coven’s built-in random stealing functionality, the program runtime was

cut by a good amount. An important fact to recognize is that a user is able to try random

stealing in Coven by simply toggling a flag.

There are many instances of the fractal application where the workload can be bal-

anced, through different parameter choice or different processor configuration. While these

configurations would result in little or no benefit from DLB, the user can try it out for “free.”

Clearly, implementing random stealing by hand (as discussed in Section 5.4.4) can be very

complex, especially when compared to the ease of toggling random stealing on or off in the

Coven version.

While this style of DLB is very successful inside of Coven, we want to study another

more complicated approach. This first version of DLB is useful mainly in naturally parallel

applications, or applications whose parallel tasks do not require much (or any) communica-

tion. While a large class of problems conforms to this, many problems do not and we want

to make DLB possible to those less naturally parallel applications implemented in Coven.

While this study looked only at a homogeneous computing system, it is also appli-

cable to parallel computers where the nodes vary in performance. This would result in the

time it takes to process each TPH (fractal segment) varying not only based on the fractal

data, but also on hardware limitations. Additionally, in a multitasking machine, parallel

nodes may be competing for the processor with other tasks. This would additionally aug-

ment the time it takes to process a TPH. While this aspect was not explored in this study,

the next study of less naturally parallel applications will address this issue.

5.5 Explicit Load Balancing Implementation

While the random stealing algorithm described previously is useful in a large class of ap-

plications, iterative applications who are processing a set of data over and over again have

a more difficult time taking advantage of Coven’s random stealing implementation. This

is due to the fact that the RS algorithm initializes once a parallel task has no TPHs left to
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process. In an iterative operation, especially one that uses inter-task communication, load

balancing issues can arise due to slow parallel tasks while each task still has TPHs left to

process.

Therefore, we implemented what we termed explicit load balancing inside of Coven.

The user initiates this by placing a system module into his data flow graph at the end of an

iteration. The following sequence of events describes how this system module works:

1. Each TPH, in sequence, arrives at the DLB system module

2. Once a TPH arrives, the DLB system module calls COVENBarrier Balance()

3. This function halts the TPH, stopping it from proceeding (looping back around)

4. The TPH is placed into a holding queue

5. Once all TPHs arrive at a parallel task, that task communicates with a leader task,

informing the leader the wall clock time each TPH spent executing modules

6. An algorithm is performed on the leader which determines if the system is in balance

within some threshold

7. If not, the leader instructs the chosen parallel tasks to transfer work to other chosen

parallel tasks in an effort to improve balance

8. The TPHs are released from their queues, reloop, and this occurs again the next

iteration

The user can configure how often load balancing occurs, such as every N iterations.

While this DLB algorithm is costly (requiring a complete synchronization, global commu-

nication, and then TPH reshuffling), it is often more costly to remain in an imbalanced state

— particularly for long running applications.

As with random stealing, explicit load balancing requires the data be partitioned

into more TPHs than there are processors. This, of course, is so that the TPHs can be
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shifted around from more loaded processes to less loaded ones. Additionally, since explicit

load balancing specifically is designed to address instances where modules communicate

with other parallel modules, virtualization is required. Process virtualization was explained

in Section 2.4.8.

By using virtualization, modules (processing TPHs) can communicate with other

parallel modules by specifying which segment of the data they are trying to communicate

with, rather than which parallel task. This is important in explicit DLB, since Coven will

be moving TPHs between processors. Without being able to specify which data partition

the user wanted to communicate with, they would have toknowwhere that partition resided

and use MPI communication operations to communicate with a specific MPI task. Since

Coven is handling the DLB for the user, it must also provide a way for them to communicate

with a TPH without specific knowledge of where that TPH resides. This functionality is all

provided in Coven and is utilized in the following example.

5.6 Explicit Load Balancing Case Study

An N-Body application was developed in Coven as a demonstration application for explicit

load balancing. This application uses a Coven system module which handles the dynamic

load balancing. Figure 5.10 is a code listing of this extremely short system module. This is

intended as a module that can be dropped into any existing application to achieve explicit

DLB. The application must be iterative, as described in the previous section.

The N-Body application is a program which models point-masses in three dimen-

sional space and how they interact due to gravitational forces. There are N individual

point-masses (bodies) which are divided between the parallel tasks. The N-Body applica-

tion is iterative, moving forward in timesteps. In the most complete case of N-Body, for

each iteration each body must compute the forces applied on it by each other body. This

requires in a parallel system that each body eventually reach each parallel task. Other N-

Body algorithms, such as Barnes Hut, attempt to improve on the performance by assuming
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COVEN_MODULE load_balance
(

input int max_iterations,
input int current_iteration

)
{

if (current_iteration != max_iterations) {
COVEN_Barrier_Balance();

}
}

Figure 5.10: Explicit Load Balancing Module

that bodies far away have no force affect on each other. With this assumption, it is not nec-

essary for each body’s forces to be computed with each other body’s forces and, therefore,

not all bodies will need to be transported to each parallel task.

For this example, the application was implemented in such a way that the bodies

were divided into groups and those groups were passed around in a ring until each parallel

task had received them. After receiving a portion of the bodies, each task computes the

partial forces those bodies apply to the bodies it is responsible for. Only after every task

has computed all partial forces does the application have a global solution for the current

timestep. Time then advances to the next iteration.

Figure 5.10 depicts the simple Coven system module which performs the explicit

DLB for this application. This module was available in Coven’s module library and merely

dropped in after the last module to execute in an iteration. This version of the DLB module

tries to perform load balancing every iteration except the last.

5.6.1 Performance Without Load Balancing

The N-Body application is perfectly balanced because there are a predefined number of

calculations that are required to compute the new force applied to each body. In an effort to

experiment with load imbalances with this type of application we introduce external load.
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We define external load as some force other than the application which causes the appli-

cation to execute with an imbalance. Examples of external load are hardware differences

between parallel nodes, and load imposed due to external sources such as concurrently ex-

ecuting applications. While both causes will exhibit very similar behavior (with respect to

Coven DLB mechanisms), we chose to study how the N-Body application performs when

competing for resources with another long-running application.

For simplicity of visualization, we show the N-Body application running on only

two parallel processes and for a very short number of iterations. These choices make vi-

sualizing the behavior of the application easier and it is clear how the application would

perform under longer runs.

To demonstrate the need for load balancing under these conditions, the N-Body

application was executed while one of the processors was heavily loaded with another

application. This other application caused the Coven parallel task to only get access to the

CPU about 50% of the time. Therefore, this portion ran half as fast as the other parallel

task. Figure 5.11 is a screenshot of the Coven profiler which depicts this application. The

first process (Slave 1) is the one competing for CPU.Slave 2can be seen to be idle for a

large portion of the runtime, due to delays waiting on the other parallel task.

The rectangles represent Coven modules where the left edge depicts the start of

the module and the right edge depicts when the module exited. CPU load is depicted by

shading the rectangles. Notice that the rectangles forSlave 1are shaded half full, meaning

that the modules executing under that parallel task were receiving only 50% access to the

CPU. On the other hand, the modules forSlave 2are completely shaded meaning that this

parallel task had complete access to its processor. The rectangle widths for the second

parallel task are smaller and this time spends much time idling (depicted by empty space

between rectangles when no modules were executing). This is due to the task having to

wait for the slower, externally loaded,Slave 1. The dialog box overlayed on top of the

screenshot confirms this, showing that the second task was executing only 37.4 seconds
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Figure 5.11: N-Body Without Load Balancing With Constant External Load

compared to the first task which executed for 74.1 seconds. This amounts to the second

task running for only about 50% of the time that the first task was.

5.6.2 Performance With Load Balancing

Once again, before DLB is possible, the application must be partitioned into more pieces

than there are parallel nodes. The groups of bodies are contained within TPHs which can

then be moved around at will. Using a Coven scatter operation and a distribution pattern

(both described in Chapter 2), the bodies were easily partitioned into three segments per

processor. Coven’s DLB functionality was then enabled in an effort to move a portion of

the work away from the parallel task that was competing for CPU.

Figure 5.12 shows the profiler screenshot for this application. Notice that initially,

the second task was idle for a portion of the work. This was because, again, the first task

was competing for CPU with an external process. In the screenshot, each TPH is uniquely

shaded. Notice that when compared with Figure 5.11, the rectangle widths are considerably
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Figure 5.12: N-Body Explicit Load Balancing With Constant External Load

smaller. This is due to the data being partitioned into one third smaller pieces on each task

and the modules then are able to process each partition about a third as fast.

The DLB module was called at around 9 seconds in the application. At this time,

Coven recognized an imbalance between the two parallel tasks due toSlave 1’s external

load and instructedSlave 1to send some work toSlave 2. A black line at around 9 seconds

depicts the transfer of one TPH fromSlave 1to Slave 2. Notice in Figure 5.12 the dark

shaded TPH that was assigned toSlave 1initially is moved toSlave 2around 9 seconds

and then resides there throughout the lifetime of the application. After the TPH is moved

the first task was processing two TPHs (portions of the bodies) while the second task has

four TPHs. Throughout the rest of the application’s life cycle, no additional TPHs were

transferred, signifying that the balance had been achieved.

Not only did the application runtime decrease by 31%, but (as seen from the di-

alog box overlay) the tasks reached a balance between their individual runtimes. When

compared with the previous example (without DLB, Figure 5.11),Slave 1’s runtime went

from 74.06 seconds to 46.98 seconds andSlave 2’s runtime went from 37.43 seconds to
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Figure 5.13: CPU Load of Application in Figure 5.12

48.92 seconds. To visualize the varying load, Figure 5.13 is presented. Notice the shaded

rectangles forSlave 1that depict the approximately 50% CPU utilization throughout the

application.

5.6.3 Random External Load Example

Finally, to study the flexibility of Coven’s explicit DLB algorithm we provide an example

where the load placed onbothprocessors varies over time. Figure 5.14 is a screenshot of

this example. Notice the numerous lines representing TPHs being moved between pro-

cessors as the system attempts to deal with fluctuations produced by concurrently running

applications.

Figure 5.15 presents a zoomed-in version of the previous screenshot with an analy-

sis of CPU load. Each task can be seen to be loaded differently over time as other programs

compete for the processor. Finally, Figure 5.16 depicts the same zoom but with a view of

how the TPHs are moving between processors due to the previously shown load.
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Figure 5.14: N-Body Example With Random External Load and DLB

Figure 5.15: Zoomed in for CPU Load Detail of Figure 5.14
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Figure 5.16: Zoomed in for Detail of Figure 5.14

This example demonstrates how Coven’s explicit DLB mechanism responds dy-

namically to changes in the system. Here, each parallel task was competing for the CPU

with other processes, at times getting no more than 50% of the processor. When a task

began to run slowly, TPHs were migrated off to other tasks which were not experiencing

as much load due to competition for resources. The randomness of this example helps

to illustrate the versatility of this approach and demonstrates not only how Coven helps

with DLB under random loads, but also makes clear how Coven would assist in DLB on

heterogeneous parallel computers.

5.6.4 Non-Coven Performance and Complexity Comparison

A hand coded version of the N-Body, explicit DLB application was not implemented. The

explicit DLB algorithm would be the same as described in Section 5.5. Throughout this

thesis it has been shown that a Coven implementation performs approximately 1% to 3%

slower than a hand coded version which implements the same algorithm.
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As with previous hand coded versions, this version would include a great deal of

code that is present in Coven’s runtime engine. Besides all the previously stated reasons for

using a Coven implementation over a hand coded version, it is important to reiterate that

a hand coded version here would likely be tightly coupled to the N-Body implementation.

This would cut down on the reusability of the explicit DLB code and subsequent applica-

tions implemented in this manner would need to decouple the DLB code from the N-Body

application in order to modify it to the new application.

5.7 Related Work

Research in load balancing optimizations can be found in many different areas. These

include parallel file systems, load balancing specific applications, environments, and li-

braries.

In a similar study to Nieuwpoort’s [87], Blumofe and Leiserson [12] look at work

stealing versus work sharing in the context of a multi-threaded environment. In work shar-

ing, whenever a processor generates a new thread it attempts to find an underutilized pro-

cessor to transfer the thread to. With work stealing, however, the initiative to seek out more

work is left to the processor that is underutilized. The authors show that work sharing sat-

urates the network with DLB operations before it is really necessary. Furthermore, in a

dynamically changing environment, the early transfer of work to an initially underutilized

processor may not prove useful later in the application should that processor begin to be

loaded by some external force (for instance, another program contending for resources).

Scheuermann et al. [73] developed a DLB parallel file system to minimize the

average wait time for requests by balancing the requests across all the disks. Data is moved

at runtime fromhot (very frequently accessed) disks tocold (less frequently accessed) disks

in an effort to adapt to the current application being run.

Boukerche et al. [14] studied dynamic load balancing on parallel simulations using

CPU-queue length data. Queue length data is compiled by sending a token from processor
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to processor in a virtual ring topology. Once complete, a global load balancer determines

when to move which process to what destination. This is a form of process migration to

achieve load balancing.

Mills et al. [70] used a cluster of workstations (COWs) and a relatively different

type of load balancing to try and evenly balance a parallel eigensolver on heterogeneous and

time shared machines. Their code adjusts the preconditioning phase of the eigensolver so

that it preconditions for a certain length of time, rather than to some iteration. Therefore, if a

processor is too loaded then it will not take up the other processors’ time by preconditioning

fully. This value of time is adjusting dynamically during computation and is related to the

time it takes the fastest processor to complete a phase. As processors become more or less

loaded in a time shared, heterogeneous environment then the preconditioning time value

adjusts itself accordingly.

Zoltan [34] is a project that provides a DLB library that any application can use.

The application must provide callback functions that Zoltan can call to tell it how many

objects (elements, particles, etc.) are on a processor, the coordinates and/or connectivity of

the objects, and the computation load of the objects. Zoltan collects this data and makes

decisions about how to rebalance load but does not actually do the rebalancing itself. It

can be used with any application and supports both geometric and graph-based partitioning

algorithms. Another project, DRAMA [64], functions in much the same way but is limited

to finite element applications. Due to this restriction, the interface is easier to use than

Zoltan but obviously is useful to solve less types of problems. The goal of these projects

is to provide a means so that load balancing code can be separated from application code.

This makes it easier to add to many applications as the load balancing code is less tightly

coupled than in most custom load balancing solutions.

In [20] dynamic load balancing strategies are studied in the context of a parallel lin-

ear system solver. DLB is achieved by redistributing rows of the matrices from overloaded

processes to underloaded ones. The authors propose four distinct DLB approaches all us-
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ing different types of asynchronous communication and distributed redistribution of rows.

Their results showed that all approaches worked about as equally well, and DLB definitely

was beneficial to improving performance in their system.

Hamdi and Lee [46] created a system for dynamic load balancing of data parallel

applications. In this system, a master hands out work to slaves. This task periodically

asks the slaves how loaded they are and adjusts the amount of work destined for each

slave accordingly. In this way, the system dynamically adjusts to varying workloads. This

research, like many other load balancing research, was conducted on time shared clusters

of heterogeneous workstations.

Nieuwpoort, Keilmann, and Bal [87] developed a Java programming environment

for solving divide and conquer applications on wide area networks arranged hierarchically.

They studied a series of load balancing algorithms that took into account different opti-

mizations, such as communication, idle time, WAN communication, LAN communication,

and latency hiding. These algorithms all performed differently under different conditions

and they outline ways to choose which would best fit each work environment.

Henrichs [48] created a new programming model in which programs were aug-

mented with new keywords. These keywords essentially allow for the creation of virtual

processes. Multiple virtual processes are scheduled on the same processor. The context

for this research was metacomputing, where heterogeneous machines and supercomputers

are connected together. The goal of the research was to allow for programmers to identify

pieces of code that would better perform on a certain architecture and have the underlying

system handle the details. For instance, if one part of the code uses a type of operation that

is more optimized on a Cray, then that part can run on the Cray while, concurrently, some-

thing else is running on a Paragon. The researchers looked into load balancing schemes for

this complex system but did not accomplish much.

SPEEDES [88, 89, 90] is an environment for parallel discrete event simulations.

Wilson, et al. created a central load analyzer which determines load on parallel SPEEDES
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tasks. This operation requires user intervention to describe the “complexity factor” of each

event on a scale of 1 to 10. The load analyzer then determines which (if any) tasks are too

loaded and then takes care of routing their work to another task. While this is most certainly

DLB, SLB was looked at in SPEEDES as well. For SLB, load data from previous runs of

SPEEDES on a particular architecture was saved and, before another run, the data was

statically load balanced. They found generally good results but that, of course, it didn’t

account for applications where the load varies due to changes in the algorithm or in the

system.

5.8 Summary

Load balancing problems arise in many parallel applications and an environment which

intends to ease parallel program implementation and use should attempt to address this

issue. We have presented two different styles of dynamic load balancing (DLB) which are

easily used within Coven. The first method, random stealing, initiates when a Coven task

runs out of TPHs (work) to process. When this occurs, it informs other tasks that it is idle

and waits for potential work to arrive. With the second method, explicit DLB, the user

inserts a DLB system module into their data flow graph. This module then analyzes TPH

throughput on each task and, if the load is deemed imbalanced, instructs certain Coven

tasks to offload TPHs to a less loaded Coven task.

Both of these optimizations were shown to be easy to add to an existing Coven

application and improve performance over leaving the system imbalanced for the applica-

tions tested. Hand-coded versions which included DLB were shown to be complex, but (as

expected) perform slightly better than Coven. This is expected in a PSE and is due to the

overhead imposed by the environment on the application. This overhead was shown to be

less than 10%, well within common expectations of PSE overhead.



CHAPTER 6

CHECKPOINTING

Checkpointing is a feature common to parallel applications, particularly large simulations,

and involves saving the state of a program to disk. This has many uses such as recovering

after a failure, intermediate analysis of data, or migration. While there has been much

research in checkpointing, it still remains complex to implement in generic applications.

6.1 Introduction

The study of checkpointing often includes related topics, such as fault tolerance and task

migration. Fault tolerance is the idea that an application should be able to recover from

a hardware or software fault. These include compute nodes failing, being disconnected,

network disconnections, and numerous potential software issues. While fault tolerance

in itself has not necessarily been a primary focus for the parallel computing community,

the present trends towards clusters of commodity workstations has reduced the mean-time-

between-failures (MTBF) of these systems. As such, fault tolerance is becoming even more

important.

The study of task migration involves the concept of stopping a task mid-execution

and moving it to another processing element. There are many reasons to do this, including

load balancing and freeing up a node that needs to be shut down or reallocated to some

other purpose.

These related topics often include application checkpointing at some point in their

implementation. For fault tolerance, often periodic checkpoints are performed (either to

disk or a large memory) and if a node is found to have failed, the work that node was

doing is merely spawned off to a backup reserve node. Similarly, task migration generally
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involves saving state of an application to disk, transferring this state to another processing

element, and then restarting the application on this new processing element.

Broadly speaking, there are three main forms of checkpointing: non-transparent,

semi-transparent, and transparent. Non-transparent checkpointing means that the check-

pointing facilities are entirely evident to the programmer. Generally speaking, this means

that the application handles all issues regarding marking data for being saved, saving state,

recovering from a fault, etc. This approach is obviously difficult to implement and of-

ten tightly coupled with a particular application. Moreover, non-transparent (obtrusive)

checkpointing is usually done by hand, without the assistance of any helper environment

or library. This is specifically the case that we are trying to avoid with Coven, as do other

checkpoint environments and libraries.

Semi-transparent checkpointing relies on hiding most of the checkpointing diffi-

culty behind an API and/or an external checkpointer helper application. With this approach,

the user must generally specify information about their program through source code mod-

ifications. These include tagging which data must be saved, what points in the computation

a checkpoint is possible, and other similar constraints.

Transparent checkpointing refers to an approach where the checkpointing facility is

able to checkpoint/restart code without any assistance from the programmer. This generally

means it requires no source code modifications or tips as to when a checkpoint is possible.

Transparent checkpointing is the most desirable, as it is usable by the widest range of indi-

viduals for the least effort. One particular problem with transparent checkpointing is that it

is usually implemented using assistance from the operating system and is often tightly cou-

pled with that architecture. Transparent checkpointing, since it has no understanding about

the application being checkpointed, requires that the entire system state be saved so that it

can be recovered. This usually results in massive checkpoint files, having register dumps,

snapshots of the heap, local and global variables, etc. While easiest to use, its usefulness

may be limited to homogenous computing systems and limit portability because of the tight
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coupling to the operating system. Transparent checkpointing is often called system-level

checkpointing or core-image checkpointing.

Checkpointing has been a very active topic in the field on parallel and distributed

computing over the last several decades (see Section 6.5 for related work). The usefulness

of checkpointing is likely to increase, as larger and larger machines are being constructed

with very low MTBF. For example, the 8000 node Google cluster claims to have a MTBF

of merely 36 hours. Therefore, a PSE designed to aid implementation and expand the user

base of parallel computers should aim to provide checkpoint and recovery features.

This chapter presents Coven’s checkpoint and recovery feature. We explore how

the Coven model of computation, particularly the separation of state and code, facilitates

checkpointing. This property makes it possible for Coven to keep track of all state in the

system. Coven then is able to signal a global checkpoint and write each TPH to disk.

Coven’s computational model further makes it trivial to reload these TPHs on recovery,

insert them into queues, and begin processing again.

We study the use of checkpointing in a complex fluid dynamics application and

show its effectiveness at recovery after failure. We show that unlike most existing check-

pointing systems, Coven’s model makes it transparent for the user to tag which data must be

checkpointed. This feature makes checkpointing unobtrusive to the user and requires barely

any application code modifications. We show that the checkpointing feature of Coven is a

logical stepping stone to task migration. Task migration is explored and we study how the

Coven model can further simplify this powerful optimization.

6.2 Approach

Section 2.4.5 detailed a feature of Coven called thegarbage collector. This runtime en-

gine component analyzes the data flow graph and TPHs to determine when a data value

will be last used. It then frees the memory associated with that data automatically. This

feature plays an important roll in making checkpointing within Coven as transparent as the
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system-level checkpoints, but save the minimum amount of application data like in manual

checkpointing systems. The following facts facilitate checkpointing in Coven:

• All application data in Coven is maintained within TPHs

• Coven knows the location of all TPHs at all times

• Coven’s garbage collector frees data at the point where it is last used (no down-stream

modules will need it)

There are many potential problems with checkpointing running applications. These

include, but are not limited to, the use of static variables, open file pointers, and remote

procedure call (RPC) handles. While some related checkpointing suites attempt to address

aspects of these (in particular, open file pointers by saving the file name and file offset),

the general approach is to disallow these features or ignore them when it comes to check-

pointing. This certainly augments the checkpoint recovery operation of some applications

as they would then require startup code to move values back in static memory, open files,

and restart RPC handles. While Coven’s checkpoint/recovery system could be augmented

to allow for these features, we chose to focus on the core functionality at this time and leave

these issues for future work.

A user initiates a checkpoint in Coven by placing the Checkpoint system-module

into their data flow graph at the point where they wish checkpointing to occur. Figure 6.1

depicts this module. The user can easily modify this module to checkpoint at other inter-

vals, such as periodically based on a wall clock.

The COVENCheckpoint method is implemented similarly to the explicit dy-

namic load balancing method from Section 5.6, Figure 5.10. A global synchronization is

required to perform the checkpoint in Coven. While this is not necessarily required by

some checkpoint implementations, for many reasons it is with Coven. The most obvious

reason that many checkpoint systems require a global synchronization is so that all tasks

agree they have reached the same point before checkpointing. One example of this is a race
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COVEN_MODULE checkpoint
(

input int max_iterations,
input int current_iteration,
input int checkpoint_interval

)
{

if (current_iteration != max_iterations &&
current_iteration % checkpoint_interval == 0)

{
COVEN_Checkpoint();

}
}

Figure 6.1: Checkpoint Module

condition that can occur if two tasks A and B are both checkpointing and communicating.

If A reaches the checkpoint before B, checkpoints, reloops (in the case of an iterative ap-

plication), and transfers more data to B all before B reaches its checkpoint, then task B’s

checkpoint may contain data from a communication with A before B had itself relooped.

Often this can be addressed through the use of clever logic. The way Coven handles mes-

sages makes this very difficult to get around without a global synchronization. This global

synchronization makes checkpointing within Coven expensive (roughly between 10ms and

10 seconds depending on problem size and number of parallel tasks). This expense varies

with the amount of data to be checkpointed, due to disk write times, as well as the number

of parallel tasks, due to the global synchronization. The following section details some

empirical results seen using Coven’s checkpointing feature and the overhead incurred.

Figure 6.2 is a diagram explaining the global synchronization operation of Coven’s

checkpoint feature. In this example, there areN tasks which must synchronize to be certain

all TPHs are accounted for. Once each task has reached the barrier synchronization, Coven

knows that no other TPHs are being transferred and that the location of all TPHs is now

known. These TPHs may reside in input or output queues and are written to the checkpoint
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GLOBAL SYNC

CHECKPOINT

. . .

Task1

Task4

Task3

TaskN

Task2

Disk Disk Disk Disk Disk

TPH Queue TPH Queue TPH Queue TPH Queue TPH Queue

Figure 6.2: Checkpoint Global Synchronization

file so that they can be reloaded in the same order. Each TPH is then written to disk and

the task continues.

Coven is equipped to read checkpoint files and restart an application at that point.

This can either be done at program execution by supplying a flag and a link to the check-

point files to load, or at runtime. If initiated at runtime, Coven abandons all TPHs in the

system by freeing all memory associated with them and then loads the checkpoint files.

All modules are dynamically loaded, and since all program state is contained within TPHs,

Coven merely injects the TPHs back into their queues in the appropriate order. Each Coven

task then recognizes the arrival of new TPHs (work) and begins processing them. TPHs are

marked with their progress through the data flow graph and are reinserted into that graph

where they left off.

It is important to note that the checkpoint module (Figure 6.1) only synchronizes

everycheckpoint interval iteration. If the periodicity of checkpointing is too small,

then the overhead due to checkpointing will become a greater portion of the application

runtime. This requires a careful balance, saving state often enough so that too much work
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does not have to be redone but at the same time not decreasing application performance too

much due to checkpointing too frequently.

In the next section we describe the application chosen to test checkpointing within

Coven. Then we study how this application performs and demonstrate fault recovery using

checkpointing.

6.3 Finite Difference Application

A finite difference application was chosen for the checkpoint/recovery case study. This ap-

plication was selected due to its use of the MPI processor topology functionality, something

not previously demonstrated in Coven. For this application, a steel plate is set to an initial

temperature and then at the start time another temperature is applied to one side of the plate.

The simulation iterates as the heat transfers into the plate, calculating values of grid points

based on the value of neighbor points on the previous iteration. Figure 6.3 is a OpenGL

visualization agent which plots the values of the computation. The two-dimensional plate

is shaded to represent the temperature and the third-dimension shows the temperature value

as height.

The implementation of this simulation requires the plate be gridded and then the

grid partitioned between the parallel tasks. The plate is represented by a collection of

grid points, such as512× 512. Data decomposition is determined by using a MPI process

topology where the number of processors in theX andY dimensions are specified. The ap-

plication is designed so that it can only operate on power of two size number of processors

as well as a power of two number of elements in each grid partition.

The initialization phase of the simulation determines the number of iterations which

will be required. This value can be calculated based on the chosen size of the grid. Itera-

tively, each parallel process exchanges boundary regions with its neighbors and then cal-

culates the updated values of its grid points based on the values of the previous iteration.

Since the number of iterations for this application vary based on the grid size and the grid
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Figure 6.3: Finite Difference OpenGL Visualization

size affects the data size it makes comparing parallel runs difficult except when the grid

size is held constant.

A hand-coded MPI version of this application was provided by Dr. Richard S.

Miller, Mechanical Engineering, Clemson University. This version was then adapted into

Coven modules. With large grid sizes, the number of iterations required to perform the

simulation can be more than 100,000 iterations. Maintaining the data in memory on our

working cluster with 1GB of RAM requires pairing a large grid with large number of par-

allel tasks. As such, the time each task executes each module is relatively small when

compared with the number of iterations which are performed. Many modules in this exam-

ple run for only a few milliseconds.

Thus far, we have not presented any Coven applications with this fine a granularity.

As expected, Coven imposes an overhead on the application with the many function calls,
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TPH manipulations, and queue operations. This performance degradation was between 5%

and 15% and varied with the grid granularity.

6.4 Checkpoint/Recovery Case Study

The finite difference application described in the previous section was used as a sample

program to demonstrate application checkpoint and recovery within Coven. Since Coven

uses a global synchronization before writing all TPHs to disk, the time it takes to perform

a checkpoint varies depending on the number of parallel tasks and the size of the data grid.

Experiments were run on this application using varying grid sizes and processors.

For the larger grids, the memory requirements were large enough that a small number of

processors was impossible to use without using swap space or out of core computation.

Checkpoint cost was measured as compared to not using the module at all. Therefore,

included in the cost was the module call, global synchronization, writing all TPHs to disk,

queue operations, and releasing the TPHs to resume processing. It was seen that checkpoint

cost varied between 10ms and 10 seconds, a large range. The faster times resulted from

very small grid sizes (such as16 × 16 grid points) on only 2 parallel tasks. The longer

times were seen for much larger grid sizes (such as512 × 512 grid points) and for 8 or

16 parallel tasks. While this checkpoint time seems large, considering it in relation to the

total program runtime is important. The time to perform one checkpoint was found to be

between 1% and 2% of total application runtime for this application. Comparatively, this is

small. This number does not account for the fact that generally multiple checkpoints need

to be performed in long running applications to effectively cut down on the cost to restart.

In an effort to demonstrate Coven’s checkpoint and recovery feature the following

experiment was performed. The finite difference application was run without checkpoint-

ing and with two checkpoints using a grid size of512 × 512 and using eight processors.

Figure 6.4 presents these results as the first two bars. The checkpoint version ran about
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Figure 6.4: Checkpoint/Recovery Example

18 seconds slower than the version without a checkpoint. Each checkpoint operation took

about 9 seconds for this data size.

For this data size, the application needs104, 857 iterations to complete. The check-

points were run every50, 000 iterations (so at50, 000 and100, 000 iterations). For the next

test, we caused the checkpointing version to fault around iteration70, 000. The third bar in

Figure 6.4 presents the runtime of this operation (as the first rectangle) combined with the

cost of rerunning the entire application. The resulting time is 1324.83 seconds and depicts

the total runtime that would have occurred if the application had faulted at70, 000 iterations

and was rerun from the start, without checkpointing.

For the final test we provide an example using checkpointing. Once again, at70, 000

iterations a fault occurred but a checkpoint had been performed at50, 000 iterations. The

application was restarted from this point, having lost20, 000 iterations and then allowed to

run to completion. This results in a total runtime of 971.33 seconds.

There is certainly a tradeoff between the time it takes to perform a checkpoint and

the time a user is willing to lose due to a restart. For example, if a checkpoint were be-
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ing performed every1, 000 iterations in our example, we would have lost a mere1, 000

iterations and restarted from iteration69, 000. However, the cost involved with this many

checkpoints would have, in this applications case, caused the program runtime to effec-

tively double.

Something commonly seen in checkpoint algorithms is the ability to checkpoint

based on time, rather than iteration count. With this approach, a checkpoint can be made

(for example) every hour. Then, at worst case only an hour’s worth of work would be lost

if a recovery was required.

6.4.1 Non-Coven Performance and Complexity Comparison

The original MPI finite difference application was augmented to do checkpointing. For this

application, checkpointing was very easy as there are only a few very large arrays and a

handful of global variables.

At the end of an iteration, each parallel task determines if it is time to checkpoint

using the same method as was used in the Coven version of the application. A simple

MPI Barrier operation proceeds a function which handles the checkpointing. This func-

tion opens separate checkpoint files and dumps the values of the arrays and global variables

and then the simulation continues.

For a grid size of512 × 512 and running on 8 processors the Coven checkpoint

operation consumed roughly 9 seconds. This version consumed a mere 1.5 seconds. While

this is considerably faster, there are several things to consider here. The implementation of

this is simplified here due to the small number of large arrays, which makes clear precisely

what needs to be saved. The implementation is also coupled to the finite difference applica-

tion and would require changes to be ported to new applications. Furthermore, as changes

occur in the finite difference program, they would have to be reflected in the checkpoint

code.
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Coven’s implementation, while slower due to the overhead imposed by TPH ma-

nipulation, numerous function calls, and several queue operations, is more portable to other

applications. In Coven, it would be trivial to checkpoint TPHs that had been virtualized,

where a hand-coded version would require its own queue or holding area to hold data until

synchronized. As with the other hand-coded applications presented, it is faster than the

Coven implementation but is coupled to the application which reduces its reusability.

The following section examines some of the related work in the field of checkpoint-

ing and the related topics of fault tolerance and task migration.

6.5 Related Work

There are a number of core-image checkpointing systems which include CoCheck [79],

CLIP [19] and many others. Generally speaking, each of these environments makes check-

pointing both transparent and easy but are limited to a particular operating environment and

have large checkpoint files. The large checkpoint files have several limitations. Not only

do they require a long time to collect and write to storage, they similarly take a long time

to migrate and restart. Specifically, this can hinder task migration (through checkpointing)

in order to achieve a better load balance. This is particularly true when attempting to load

balance fine grain applications.

Coven’s checkpointing features, described in the following sections of this chapter,

are not tied to a specific operating system. While not transparent, Coven’s implementation

is not particularly obtrusive. This is achieved through Coven’s ability to understand what

data is being passed around the system (remember that all data is represented in TPHs

and Coven has a total knowledge of all data in all TPHs). Rather than focusing on the

related work in core-image checkpointing systems, we now look at some semi-transparent

environments.

Li [62] presented a checkpoint algorithm for the DEC Firefly shared memory com-

puter. The algorithm works by employing a separately running program which, upon
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checkpoint initialization, copies the memory space to be checkpointed into a buffer area

and then writes the checkpoint to disk. Once the data is buffered, the application breaks

free from the checkpoint barrier and then, concurrently, the checkpoint program performs

its task. The algorithm relies heavily on heap and page manipulation, most of which is spe-

cialized code for the Firefly but could likely be ported to other similar platforms. Addition-

ally, the algorithm only functions on a shared memory architecture where it has complete

knowledge and view of the entire memory of the application to be checkpointed. Since this

approach uses an externally running checkpoint program that hooks into an application, it

is transparent to use in any application.

ParaSol [66] is a parallel discrete event (PDE) simulator (mentioned in Chapter 3).

In [65], a state-saving algorithm for Parasol is presented. In this algorithm, parallel Parasol

threads work on the simulation but due to the nature of the problem domain it is common

for causality errors to occur. Causality errors occur when a thread at simulation timetn

receives a late transaction with timestamptp < tn. The computation must then be rolled

back and restarted from a previously saved checkpoint such that the new time is less than

tp. Threads must then checkpoint their state periodically and the overhead involved in this

operation is shown to be as high as 18% on a SPARC 5 cluster and 29% on an Intel Paragon.

While costly, this type of checkpointing is required by the PDE simulator. Parasol provides

the user with transparent checkpoint and recovery mechanism. This is facilitated by the fact

that Parasol can be only used to implement PDEs and, due to that constraint, the system is

aware of a great deal about the underlying application.

Bronevetsky [17, 16] introduces a software layer which assists in checkpointing

MPI applications. This layer resides between the MPI layer and the application, making

it usable by any application and any MPI implementation. Rather than use an expensive

system-level checkpoint approach, this system has users add source code into their appli-

cation which assists the checkpointer at runtime. A pre-compiler analyzes the code as well

and inserts additional code to describe the state that needs to be saved. This helps the
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user in that the added coding complexity is relatively minimal, requiring just a few library

calls in proper places. One advantage of Bronevetsky’s approach is that it is able to check-

point simple MPI point-to-point communication (something commonly available in similar

systems) but can also handle complex MPI collective operations.

Starfish [4] is another MPI checkpointing project which provides a user level API

assisting the user in controlling checkpoint and recovery. Starfish does a simplistic check-

point for trivial MPI applications or, through the API, sends messages to the parallel tasks

instructing them to handle their own checkpointing at appropriate times. While for simple

applications Starfish may be sufficient, more complex applications are given little assis-

tance except for being notified when the system has reached a checkpoint and that it should

be now performed.

MPICH-V [13] is an adaptation of the MPI Chameleon implementation that focuses

on providing support for volatile hardware. The authors note that with ever decreasing

mean-time-between-failure (MTBF), MPI applications more than ever need to be able to

handle hardware and software failures. These failures make the parallel nodesvolatile, by

their definition. MPICH-V has facilities for redundancy and checkpoint/restart including

task cloning and migration. MPICH-V uses a distributed logging feature where messages

are logged into a memory buffer and remain there until disk-based checkpoint occurs. This

has the usual drawbacks of having difficulties handling very communication intensive ap-

plications and, potentially, scalability concerns. While MPICH-V appears to transparently

deal with fault tolerance issues with regard to the MPI portion of a parallel application, it is

unclear how application data is stored. Presumably, this is left up to the user to address or

is deemed unnecessary, assuming that the application can regenerate its data from what it

is sending in messages. While this may be true for some applications, many others would

require additional checkpoint assistance, such as system-level checkpointing of memory.

Dynamite [53] is a project for PVM that adds a dynamic load balancing feature

through process migration. The migration is essentially transparent to the user and is im-



136

plemented in user space. A set of functions are provided that users can call in their applica-

tion to force a task to be migrated to another processor. Much like the PVM daemon which

runs concurrently with each PVM task, Dynamite uses a monitoring task which interfaces

with the PVM daemon on each node. This monitoring task gathers statistical information

and makes decisions about load balancing, though how this decision is made is not entirely

clear. One use of process migration in this form is to free nodes that need to be taken down

for service or expand the computation to include more newly available nodes. Presumably,

the authors are implying each parallel node is overloaded with PVM tasks. Dynamite is im-

plemented for a specific version of PVM, Linux or Solaris, libc, and glibc. As new versions

of these systems come out, the authors note that Dynamite must be ported. Additionally,

considering MPI has become considerably more widely used than PVM, Dynamite would

likely need porting to MPI to be widely usable.

CUMULVS [58] is an infrastructure for parallel scientific programs and supports

checkpoint and recovery operations. CUMULVS achieves this by making the user iden-

tify which data must be saved to achieve a consistent checkpoint. Additionally, the user

marks places in his code (through source modifications) where checkpoints may occur.

CUMULVS requires that no messages be currently in transit, having all been resolved.

Since the user chooses what data must be saved, CUMULVS is able to write checkpoint

files which are considerably smaller than system-level checkpoints. With each segment of

data that is saved, information regarding its type, name, storage allocation, and decompo-

sition is saved as well. This makes it possible to translate it from one system to another,

which allows CUMULVS to checkpoint, migrate, and restart in a heterogeneous computing

environment.

6.6 Summary

Checkpointing was implemented in Coven as an additional feature that is both common and

essential in long running parallel applications. Since all user data is encapsulated within
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TPHs and Coven has complete knowledge of the way that data is organized, Coven’s check-

pointing is practically transparent to the user. Furthermore, due to the garbage collector

feature of Coven, only data that will be needed later in the computation is saved during

a checkpoint. These aspects combine to make checkpointing in Coven unobtrusive and

produce minimal size checkpoint data files.

While checkpointing has been studied for many years, the solutions generally are

at either end of a spectrum ranging from simple (in terms of program augmentation to use)

but costly (in terms of checkpoint file size) to obtrusive but inexpensive. Due to the nature

of the Coven programming model and the way in which data is encapsulated, Coven’s

checkpoint and recovery feature possesses the benefits of both approaches with little of the

drawbacks.

The checkpointing feature is a stepping stone to other optimizations and features

which could be implemented in Coven. For instance, migration is a common companion

to checkpointing and involves moving an application from one set of machines to another.

The ability to halt an application, save its state, and recover from that point is an integral

part of migration. It should be possible to easily move from a set of machines withN

processors to a set of machines with the same number of processors.

A more complex, but equally interesting operation involves migrating to a parallel

computer with adifferentnumber of processors than the application was checkpointed on.

Due to the structure of TPHs and the scatter/gather functionality, it should be possible to

takeN TPHs and combine them intoM (whereM < N ) larger TPHs in order to runM

processors. Similarly, each TPH should be able to be split intoQ (whereQ > N ) smaller

TPHs in order to run onQ processors. This would allow a Coven application to shrink and

grow as it was migrated to different size parallel computers. This may additionally have

importance in systems where resources are constantly changing and new nodes are rapidly

becoming available while others are disappearing (such as Condor). While migration sup-

port is not explicitly provided by Coven at this time, checkpointing plays an important first
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step in that feature and this chapter has presented the implementation and demonstration of

its usefulness in an application.



CHAPTER 7

CONCLUSION

Generally speaking, parallel programming is still difficult for application domain specialists

who are often skilled at sequential Fortran programming. Not only is parallel implemen-

tation daunting, but almost as important is parallel application performance tuning. Users

have long sought to properly utilize computational resources and this is unlikely to change

in the near future.

A PSE for high performance computing needs to assist and ease parallel program-

ming. This can occur through many means including programming models and languages,

easing application porting such as by wrapping legacy code, and providing stock reusable

parallel computation “kernels.” While many PSEs address or aim to address these issues,

we believe a HPC PSE must also assist in performance optimization as well as provide

important features. These optimizations and features should be designed and built so that

they are reusable by a wide range of applications using the environment.

The Coven PSE aims to ease parallel programming and performance optimization.

Through a unique method of encapsulating the data passed between modules, the environ-

ment is able to maintain knowledge about the data and how the modules intend to use the

data. This allows Coven to garner knowledge about the application it is executing thereby

being able to ease the programming load and complexity to the user.

We have presented the Coven model of computation for parallel application envi-

ronments. The benefits of the model have been detailed and an example environment which

employs the model, the Coven PSE, was implemented and presented. Due to the way the

Coven model causes an application to expose its structure to the environment, many fea-

tures were able to be incorporated into the PSE. We have shown through three experiments
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that advanced parallel computing optimizations and features can be incorporated in the

environment and this process is facilitated by the Coven model.

The first two experiments studied the optimizations of multi-threading and dynamic

load balancing. These optimizations are usable by Coven applications with little effort on

the part of the application programmer. Both optimizations are important to the parallel

computing field and are found in many real applications.

Chapter 4 presented Coven’s multi-threading optimization, studied two applications

which benefit from multi-threading, and analyzed the performance improvement seen due

to multi-threading. In Coven, multiple threads of control are created and Coven sched-

ules tasks to execute concurrently within those threads. Data passes seamlessly between

threads and modules — the user only has to specify which thread each module should

execute within. All issues of thread creation, communication, and use of shared memory

between threads are handled by Coven for the user. Implementing multi-threading in an

existing parallel application by hand is considered complex and Chapter 4 studied the diffi-

culties involved in this process. Using Coven, multi-threading is trivial as the complexity is

encapsulated in the environment. The Coven computation model enables multi-threading

through its strict separation between application state and code. This enables Coven to

freely schedule tasks to execute within separate threads of control while transporting the

application data between threads in the system.

Chapter 5 presented two different dynamic load balancing optimizations which

were incorporated within Coven. The two DLB optimization algorithms are “random

stealing” and “explicit load balancing” and are usable in different classes of applications.

Random stealing is most applicable in applications which are naturally parallel and non-

iterative. The second algorithm, explicit load balancing, uses real time data throughput

analysis to determine load imbalances and is most useful in iterative applications. Each

algorithm was presented and studied using different types of applications. Performance

results were analyzed and both algorithms were shown to improve the overall utilization
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of the system as well as cut down on application runtime. The Coven model establishes a

separation between the state of an application and the code. This fact makes it possible to

seamlessly move application data between parallel processors to attempt to create a more

balanced workload. Furthermore, since the Coven model causes an application to expose

its structure to the environment, the Coven PSE is able to transparently serialize and move

data from one node to another without any user intervention.

Finally, in Chapter 6, we presented a checkpoint and recovery feature of Coven

which is incorporated in the environment and usable by any Coven application. By simply

inserting a pre-built system model into a user’s dataflow graph, an existing Coven appli-

cation is able to checkpoint. Unlike conventional checkpointing schemes which require

a programmer to explicitly tag data that needs to be saved, the Coven model allows the

environment to inherently know each piece of data that needs to be saved. Saving an appli-

cation’s state to disk is trivial as the Coven model enables the environment to know where

all application data is at all times and exactly how to save it. Furthermore, recovery after

fault is easy because the application’s state can be simply reloaded and the system restarted

where it left off. The separation of state and application code as well as a built-in work

queuing system simplifies this.

7.1 Contributions

Throughout this work, our contributions are:

• the Coven model of computation for parallel applications,

• the implementation of a PSE that employs this model,

• the implementation of three built-in optimizations and features which are enabled by

the model,

• and the study and analysis of these optimizations.
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The Coven model is unique in the way it separates an application’s state from the

code. This was shown to enable an implementing environment to understand details about

the application’s structure without the application having to explicitly express it. Program-

ming in an environment which implements the Coven model is easy as existing legacy code

can be readily inserted as-is into Coven modules. Furthermore, once the environment has

been made aware of the application’s structure, it is possible to incorporate many common

features, facilities, and optimizations directly within the environment. This in turn simpli-

fies implementing applications using the environment as many common tasks are provided

transparently and the programmer does not have to implement them in each application

they write.

The Coven PSE is a working environment which has been used to implement a

wide range of applications. It includes graphical tools for application building as well as

performance / trace analysis. Many mundane and common place operations from parallel

computing have been encapsulated within the Coven PSE. These include memory man-

agement, garbage collection, shared memory utilization, data transportation, application

profiling, task virtualization, data partitioning, and data distribution. Each of these features

are available to all Coven applications and make application building simpler as the pro-

grammer can focus more on the science and less on the tasks which make the application

run efficiently on a parallel system.

The optimizations presented are well understood and common in many parallel

computing applications. While some are present in related environments, we know of no

environment that incorporates this many optimizations. Furthermore, the Coven model of

computation is unique and enables these optimizations to be implemented elegantly.

7.2 Future Work

There are many future research directions within Coven which may be addressed. Up to this

point, Coven has been used as a research tool and has no real end-users. Users would prove
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invaluable in demonstrating the implementation of real applications using the environment.

Additionally, the recent widespread acceptance of the CCA component model and Grid

computing mean that future Coven focus needs to look at these technologies.

Further optimizations are likely facilitated with the Coven model. Of particular

interest is task migration through the use of checkpoint and recovery. Coven provides

facilities to merge and split TPHs and it is possible that these could be used to migrate

transparently between machines with different numbers of processing nodes. The perfor-

mance profiler may prove to be useful in automatically recognizing performance problems

and suggesting appropriate optimizations. These include data granularity size problems,

memory leaks, and issues with module granularity. Already we have begun to demonstrate

the ability of the profiler to recognize opportunities for multi-threading and dynamic load

balancing. A potential future feature might be the ability of the profiler to not only recog-

nize the problem, but automate fixing of it. Similarly, using a benchmark suite the profiler

may be able to tune Coven’s runtime engine for a particular platform and a particular ap-

plication.

Regardless of the future directions taken in Coven, we feel the contributions have

been made. In particular, we have demonstrated that through a unique model of parallel

computation and a centralized data encapsulation technology it is possible to abstract the

complexity of implementing three common parallel computing optimizations and features.

Data flow programming through the use of parallel components has been popular for many

years and component programming is beginning to gain even more acceptance. Many

systems do little more than provide the “glue” between parallel components and modules.

By having the programmer expose his application’s structure transparently by employing a

new computational model, the Coven PSE is able to optimize that application to perform

better. This is a step beyond existing PSE work and makes the approach presented in this

thesis unique.
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