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Abstract

The interaction of simultaneously co-allocated jobs can
often create contention in the network infrastructure of a
dedicated computational grid. This contention can lead
to degraded job run-time performance. In this paper,
we present several bandwidth-aware co-allocating meta-
schedulers. These schedulers take into account inter-cluster
network utilization as a means by which to mitigate this im-
pact. We make use of a bandwidth-centric parallel job com-
munication model that captures the time-varying utilization
of shared inter-cluster network resources. By doing so, we
are able to evaluate the performance of grid scheduling al-
gorithms that focus not only on node resource allocation,
but also on shared inter-cluster network bandwidth.

1 Introduction

Clusters of commodity processors have become fixtures
in research laboratories around the world. Collections of
several co-located clusters exist in many larger laboratories,
universities, and research parks. This co-location of several
resource collections naturally lends itself to the formation
of a mini-grid.

A mini-grid is distinguished from a traditional compu-
tational grid in that the mini-grid utilizes a dedicated inter-
connection network between grid resources with a known
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topology and predictable performance characteristics. This
type of networking infrastructure allows for the possibil-
ity of mapping jobs across cluster boundaries in a process
known asco-allocation or multi-site scheduling. In this
paper, we develop several bandwidth-aware co-allocating
meta-schedulers that take into account inter-cluster net-
work utilization as a means by which to mitigate the slow-
down associated with the interaction of simultaneously co-
allocated jobs in a mini-grid. By employing a bandwidth-
centric parallel job communication model that captures the
time-varying utilization of shared inter-cluster network re-
sources, we are able to evaluate the performance of grid
scheduling algorithms that focus not only on computational
resource allocation, but also on shared inter-cluster network
bandwidth. The main focus of this paper is to provide an
in-depth explanation of our bandwidth-aware co-allocation
algorithms and to analyze their performance characteristics.

In our previous work [5], we developed a communication
model that is sensitive to the time-varying contention for
bandwidth in the inter-cluster communication links and can
be used to determine the impact on the execution times of
co-allocated jobs. Our dynamic communication model con-
trasts other models that consider the communication cost
between clusters to be fixed [1], [2], [3], [4]. We found that
schedulers designed to allocate node resources across clus-
ter boundaries resulted in poor overall performance over
a wide range of workload characterizations and mini-grid
configurations due to the interaction simultaneously co-
allocated jobs experience as they contend for inter-cluster
network bandwidth. Our current research therefore focuses
on a range of algorithms with varying levels of complexity
that attempt to mitigate this impact.



2 The Model

In this section we characterize the parallel job model as
well as the mini-grid architecture. We provide a brief ex-
planation of the communication model used, as well as a
strategy to account for the time-varying inter-cluster net-
work utilization.

2.1 Mini-grid and Parallel Job Model

We consider the mini-grid to be a collection of arbitrary
sized clusters with globally homogeneous nodes. Each clus-
ter has its own internal ideal switch. Additionally, the clus-
ters are connected to one another through a single dedicated
link to a central ideal switch. Each node in the mini-grid has
a single processor and a single network interface card. Jobs
can be co-allocated (Figure2) in a mini-grid by allocating
nodes from different clusters to the same job.

The model used assumes that jobs are non-malleable. In
other words, each job requires a fixed number of processors
for the life of the job, and the scheduler may not adjust this
number. Additionally, neither execution-time migration nor
gang-scheduling [7] is employed in mapping the job onto
the mini-grid; i.e., once the job is mapped to a particular set
of nodes, the job remains on these nodes for the lifetime of
its execution.

A job’s execution time,TE , is a function of two com-
ponents: the computation time,TP , and the communica-
tion time, TC . The initial value of these two quantities is
considered to represent the total execution time that the job
would experience on asingle dedicated clusterwith an ideal
switch. TP andTC therefore form a basis for the best-case
execution time of a given job when it is co-allocated in the
mini-grid. In particular,TE = TP + TC . The computation
portion of the execution time does not vary, however the
communication time is considered dynamic, since the com-
munication time of simultaneously co-allocated jobs may
be lengthened due to the utilization of any shared inter-
cluster network links.

2.2 Communication Characterization

Each job modeled in this study performs all-to-all global
communication patterns periodically throughout its execu-
tion. Each node in a given job,j, is characterized by an av-
erage per-processor bandwidth requirement,PPBWj , that
consists of the bandwidth needed to both send and receive
all messages associated with a node. During co-allocation,
nodes must communicate across cluster boundaries. This
communication will require a certain amount of bandwidth
in the inter-cluster network links. A job’s performance will
deteriorate if it does not receive the amount of bandwidth
it requires to run at full speed. In order to determine when
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Figure 1. Bandwidth calculation example

the inter-cluster links become saturated, we must first iden-
tify how much bandwidth a job will require in order to run
at full speed. The amount of bandwidth,BW j

i , required by
job j on inter-cluster linki is given by equation1, wherenj

T

is the total number of nodes required by jobj, andnj
i is the

number of nodes allocated to jobj on clusterCi. This equa-
tion is based on all-to-all communication, which is assumed
to dominate the communication time of the program.

BW j
i = (nj

i ∗ PPBWj)

(
nj

T − nj
i

nj
T − 1

)
(1)

The first factor in this equation is the total bandwidth re-
quired by all the nodes associated with jobj on clusterCi.
The second factor represents the fraction of the messages
generated by each node on cluster,Ci, that is destined for
non-local nodes. For example, suppose that a job consists
of six total nodes and has been mapped onto a grid con-
sisting of three clusters, as shown in Figure1. The total
bandwidth required by all nodes local to cluster 1 would be
(3 ∗PPBW ), since there are three nodes local to cluster 1.
For each all-to-all communication, each of the three nodes
on cluster 1 will generate five messages, i.e.(6−1)∗3 = 15
total messages. Of these 15 messages, only(6− 3) ∗ 3 = 9
will traverse cluster 1’s inter-cluster network link. The ratio
of the number of messages traversing cluster 1’s network
link to the total number of messages represents the percent-
age of the total bandwidth that is required by this job on
cluster 1’s inter-cluster network link, e.g.

BW j
1 = (3 ∗ PPBWj)

(
(6− 3) ∗ 3
(6− 1) ∗ 3

)
. (2)

Figure1 depicts the messages sent and received by a sin-
gle node on cluster 1; however in practice, all nodes send
and receive messages.
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2.3 Job Slowdown due to Bandwidth Saturation

The first step in determining the impact of co-allocation
is to identify the presence and location of communication
bottlenecks in the inter-cluster links. The residual time to
completion for a particular job can change in response to
two events: a new job is co-allocated in the mini-grid, or
a co-allocated job terminates and thus frees network re-
sources.

Each inter-cluster link,i, is characterized by a maximum
bandwidth rating,BWmax

i . An initial measure of the sat-
uration of each link is calculated by taking the ratio of the
maximum available bandwidth to the total bandwidth re-
quired for every job that spans that link. The saturation ratio
is given by equation3

BW sat
i =

BWmax
i∑

∀j∈Ji
BW j

i

(3)

where setJi is the set of all jobs that span linki. If
BW sat

i ≥ 1.0 then link i is not saturated; otherwise, if
(0.0 ≤ BW sat

i < 1.0), then link i is saturated. If a given
link i is saturated, then each job inJi will not be able to
receive the amount of bandwidth it requires to run at full
speed. In order to calculate the impact on each job due to
co-allocation, the fraction of bandwidth each job receives
compared to the amount it requires must be determined.

Each time a new job is co-allocated or a co-allocated job
terminates, an algorithm is applied in order to determine
the amount of bandwidth ultimately alloted to each job on
each link. The amount of bandwidth each job receives is
limited by the most saturated link over which it spans. This
algorithm is described in detail in our previous work [5]
(Figures2 and3).

Each affected job’s bandwidth allotment on each link
over which it spans is reduced in order to accommodate it’s
most saturated link. Equation4 formalizes the bandwidth
slowdown associated with jobj, where linkk may be any

link over which the job spans.

BW sd
(k,j) =

BW alloted
(k,j)

BW j
k

(4)

Now that the communication slowdown factor is known,
the residual execution time,TR

E , of a job can be calcu-
lated as a function of both the residual communication and
computation times (TR

C and TR
P respectively). Its asso-

ciated end-event can then be rescheduled in the simula-
tor to account for the state change in the inter-cluster net-
work. In particular, equations5 and 6 illustrate the cal-
culation required to determine the residual execution time
of job j, where the primed terms represent quantities from
the previous inter-cluster state changing event while the
non-primed values represent quantities for the current state
change event.

T R
E =

T R
C︷ ︸︸ ︷

(T R′
C − T∆

C )(BW sd′

(k,j))(BW sd
(k,j))

−1 + (5)

(T R′
P − T∆

P )︸ ︷︷ ︸
T R

P

where

T∆
P =

∆T

TR′
E

TR′

P , T∆
C =

∆T

TR′
E

TR′

C (6)

The T∆
P andT∆

C terms represent the times spent doing
computation and communication respectively during the in-
terval since the last state change event. These quantities can
then be subtracted from the previous residual computation
and communication times. The communication term is then
scaled to take into account the slowdown due to its most
saturated inter-cluster network link, as seen in equation5.

As inter-cluster state changing events occur, the residual
times are recalculated based on equations5 and6. Due to
these recalculations, the job’s end-event can slide forward
(later) or backward (earlier) in time (Figure4), reflecting
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either a degradation or improvement in saturation levels of
the inter-cluster links over which it spans.

This procedure provides a dynamic view of job commu-
nication by accounting for the slowdown a job experiences
due to the time-varying utilization of the inter-cluster net-
work links.

3 Meta-scheduling Algorithms

In general, we consider a meta-scheduler to be the soft-
ware, or collection of software, that decides where, when,
and how to schedule jobs in a grid. A meta-scheduler is
expected to work in conjunction with the local schedulers
working on each individual cluster. In this paper, we as-
sume that the meta-scheduler is globally aware of the state
of the mini-grid. In order to address the impact of job co-
allocation on the performance of the mini-grid, the follow-
ing strategies and policies are analyzed.

3.1 Previous Strategies and Policies

In our previous work [5], we implemented several algo-
rithms to evaluate our communication model and the impact
of co-allocating jobs in a mini-grid. A brief description of
one algorithm and two base-line configurations is provided
here. A description of our current bandwidth-aware meta-
scheduling algorithms is provided in Section3.2.

Our initial strategy performed job co-allocation by as-
signing node resources starting with the cluster with the
largest number of free nodes. It then spans as many clus-
ters as necessary to satisfy the job’s node requirement. By
employing this technique, the number of inter-cluster links
over which a given job will span is minimized. We refer to
this strategy asInitial Strategy .

In order to establish a reasonable upper and lower bound
for job turnaround time, two baseline simulations were con-
ducted to identify these levels. The first is run under the as-
sumption that the inter-cluster network links have unlimited
bandwidth capacities. This configuration,Ideal, represents
a “best-case” that can be seen as a lower bound for average
job turnaround time, since there is no slowdown associated
with job co-allocation. The second strategy is referred to
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as Migration Only . This strategy only performs job mi-
gration, i.e. no job co-allocation. Jobs that are migrated do
not contend for inter-cluster network resources. Therefore
their ultimate execution times are also unaffected by their
bisection bandwidth.

Both theIdeal as well as theMigration Only strategies
appear as horizontal “limits” in Figure5, since they are un-
affected by a job’s bisection bandwidth.

A full description of these algorithms can be found in
[5]. The results of one test from our previous work are sum-
marized in Figure5. Note that the performance of the initial
strategy suffers greatly due to the slowdown associated with
inter-cluster network saturation and quickly becomes less
effective than simple job migration with no co-allocation,
while two of our newest algorithms (A1 & B1) out-perform
our initial strategy over the entire range of tested values.
These algorithms (and others) are described in detail in the
next section.

3.2 Bandwidth-aware Meta-scheduling

In this section we describe several scheduling techniques
that attempt to mitigate the impact of simultaneously co-
allocated jobs due to inter-cluster network saturation. The
algorithms described here will be compared and contrasted
in Section4.

Each of our meta-schedulers consists of a series of mod-
ules applied in a given order. Each scheduling module at-
tempts to allocate grid resources to the given job candidate.
These modules are placed in a control loop that sequences
the modules, and handles the traversal of the global wait-
ing job queue. This control loop traverses the waiting job
queue from head to tail looking for the first job that can
make use of available resources. This contrasts a traditional
policy known asEASY backfilling[6] that is used in many
production grid schedulers, such as Maui.



Since we make use of the bandwidth-centric communi-
cation model, only an estimate of a job’s end event is known
at any instant in time. This is due to the fact that a job’s end
event can slide forward and backward in time depending on
the communication contention in the inter-cluster network
links (Figure4). This makes it difficult to guarantee that the
highest priority job’s reservation in EASY backfilling will
be meet, since we do not terminate jobs; therefore, we do
not employ EASY backfilling as a potential policy.

Each meta-scheduling algorithm has three allocation
steps. Each policy attempts to allocate nodes to a given
job in the following order: local, migration, co-allocation.
The scheduling iteration is formalized by the following tem-
plate:

Step 1: Module FCFS -While not at end of queue, continue, else
GOTOStep 5.

Step 2: Local Allocation -Apply module LA, if successful then
GOTOStep 1, else, continue.

Step 3: Migration - Apply module MIG, if successful GOTO
Step 1, else, continue.

Step 4: Co-allocate -Apply a given co-allocation module. GOTO
Step 1.

Step 5: Termination

Each module can be classified into three primary cate-
gories: 1. a mini-scheduler thatdoeshave a priori knowl-
edge of a job’s bisection bandwidth (BSBW) (class “A”), 2.
a mini-scheduler thatdoes nothave a priori knowledge of a
job’s BSBW (class “B”), and 3. a helper module. In the fol-
lowing paragraphs, each module is described in detail. Note
that the class “A” modules willNEVERsaturate any inter-
cluster network link beyond a configurable amount. These
modules achieve this ability by knowing a priori how much
bandwidth will be used by placing a given number of nodes
on a cluster during job co-allocation. Class “B” modules, on
the other hand, attempt to minimize the level of saturation
a given link will experience, but they can not guarantee that
a link will not become “over-saturated”, since they do not
have access to the job’s communication characterization.

Helper modules

Module FCFS – Module sequencer This module tra-
verses the global job queue inFirst-Come-First-Served
(FCFS) order. It returns the next waiting job to the sequence
of modules that represent the meta-scheduling algorithm.

Module LA – Local Allocation This module attempts to
allocate a given job locally by only making use of node re-
sources belonging to the cluster to which it originally ar-
rived.

Module MIG – Job Migration This module attempts to
migrate a job in its entirety (i.e. no co-allocation) to the
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Figure 6. Feasible node ranges

cluster with the fewest number of free nodes that can still
satisfy the job’s resource requirement.

Class “A” modules

Module A1 – Satisfy The first scheduling approach we
explore ensures that no inter-cluster saturation occurs dur-
ing the co-allocation phase. In order to map jobs onto the
mini-grid in such a way that completely prevents the slow-
down associated with over-saturated inter-cluster network
links, it is necessary to first determine the range of nodes
that a jobj could potentially acquire on linki as a function
of the job’s bandwidth characterization as well as the avail-
able bandwidth. By letting the left-hand-side of equation1
be equal to the available bandwidth on linki, BW avail

i , and
then the quadratic fornj

i , equation7 is obtained.

n
(i,j)
(1,2) = 1

2

(
nj

T ∓
√

(nj
T )2 − 4BW avail

i
(Nj

T
−1)

PPBWj

)
(7)

The darkened regions depicted in Figure6 indicate the
potential range of nodes that jobj could acquire on link
i without over-saturation. Formally, the initial interval of
candidate nodes is given by the union of the two regions
defined by equation7. This interval is then modified to
account for the actual number of nodes,navail

i , that are
presently available on clusteri. The resulting interval,
S

(i,j)
1 , is given by equation8. This set includes the node

ranges defined by the union of the intervals depicted in Fig-
ure 6 constrained by the actual number of free nodes on a
given cluster.

S
(i,j)
1 =

(
[0, bn1c]

⋃
[dn2e, nj

T ]
)⋂[

0, navail
i

]
(8)



Calculating these intervals for each link results in a set
of constraints that must be simultaneously satisfied in order
to determine if there exists at least one feasible mapping
solution. Collectively the set of constraints is formalized by
equation9,

Xj
i ∈ S

(i,j)
1 ,

N∑
i=1

Xj
i = nj

T (9)

where theXj
i ’s represent the number of nodes mapped from

clusteri for a given jobj. This type of system is typically
recognized to be an integer constraint satisfaction problem.
In order to solve this system, we employ a branch-and-
bound brute-force technique that can be configured to either
find the first solution that meets all constraints, or to find ev-
ery solution, depending on whether an objective function is
to be applied to find the solution that best meets an opti-
mization criterion. In our experiments for this paper, we
have elected to return from this module once the first solu-
tion has been identified.

This technique requires the foreknowledge of a job’s
bandwidth characterization in order to determine the num-
ber of nodes that can be placed on a given link during co-
allocation. This type of information may not be available a
priori. Consequently, developing additional algorithms that
do not require this information, yet provide comparable per-
formance, is useful from a practical standpoint.

Class “B” modules

Each of the class “B” modules first identifies all clusters that
have links that are saturated beyond a configurable thresh-
old. It then discounts each of these as potential candidates
for job co-allocation. These modules will continue to utilize
node resources on a given cluster for co-allocation while its
network link remains unsaturated. As soon as saturation
occurs on a particular network link, this algorithm will then
discount its respective cluster for job co-allocation. This
implies that a link can only be over-saturated to the extent
due to a single job’s bandwidth utilization. After complet-
ing these two steps, each continues as described below.

Module B1 – Largest free nodes first This module sorts
the remaining clusters in order of available nodes, and co-
allocates the given job starting with the cluster with the
largest number of free nodes, and proceeds in order from
there.

Module B2 – Least saturated link first This module
sorts the remaining clusters in order of link saturation, and
co-allocates the given job starting with the cluster with the
least saturated link, and proceeds in order from there.

Module B3 – Chunking big-small This module attempts
to co-allocate a “large chunk” (e.g. 75% of node require-
ment) onto a single cluster. If successful, it will place the
remaining nodes of the job on the remaining clusters, start-
ing with the cluster with the largest number of free nodes,
else the module returns unsuccessfully. This module is dis-
tinguished from B1 in that it will only successfully sched-
ule a job provided that a “large” partition will fit on a single
cluster; whereas, B1 will always schedule a job provided
that there are enough free grid resources, regardless of par-
tition sizes.

This module attempts to capitalize on two primary ob-
servations. Since jobs produce all-to-all communication
patterns, the individual bandwidth requirements during co-
allocation are minimized when a job is partitioned into a
few pieces: one large and perhaps a few small ones. This
is in contrast to bisecting the job which results in the max-
imum bandwidth requirement (Figure6). However, it may
not always be possible to co-allocate a job by partitioning
it into at least one “large” piece. In that event, this module
simply returns unsuccessfully.

Module B4 – Load-balancing This module attempts to
co-allocate the job as evenly as possible across the remain-
ing clusters, one node at a time in round-robin fashion.

4 Simulation

Beosim[5] is a discrete event driven simulator designed
to model a mini-grid as a collection of computational clus-
ters connected via a dedicated interconnection network. In
this paper we make use of synthetically generated work-
loads. In particular, we assume that the the arrival process
of jobs to each cluster,Ci, has a Poisson distribution with
rate λi. Additionally, we assume that a job’s initial ser-
vice time,TE , is exponential with parameter(µi)−1. The
number of nodes that a job requires is given by a uniform
distributionDnodes

i ∼ UNIF [ni
1, n

i
2]. The fraction ofthe

total execution timethat initially represents computation is
set to a constant,Ki, for all jobs.

4.1 Experimental Parameters

This subsection describes the set of experimental param-
eters used in all simulations in this paper. In our previous
work [5], we ran simulations on mini-grids sized at 2, 4, and
8 clusters; however, we found that the general trends exhib-
ited in our experiments tended to simply be exacerbated as
the number of clusters increased; therefore, in this paper,
we focus on mini-grids containing 4 clusters for the sake of
brevity.

Each cluster in the mini-grid consists of 100 homoge-
neous computational nodes and has a 1000 Mbps inter-



cluster network link to the central switch. The workload
presented to each cluster consists of 400,000 jobs, each
with a node requirement taken from a uniform distribution
UNIF [10, 50] (nodes). The job arrival process is Poisson
with the inter-arrival time taken from an exponential distri-
bution with parameter150 (sec). The base execution time
of each job is taken from an exponential distribution with
parameter450 (sec). For simplicity, the computation frac-
tion is uniformly set toK = 0.7 for all jobs that arrive to
the mini-grid.

In order to study the impact of communication, the
jobs must be characterized by a per processor bandwidth
PPBW . We chose to hold every job’s bisection bandwidth
constant for a particular run of the simulator. This produces
a varyingPPBW due to the varying node sizes of jobs
within the workload.

4.2 Experimental Setup

In order to establish an upper and lower bound for the job
turnaround time metric, two baseline simulations were con-
ducted to identify these levels:Migration Only andIdeal
(Section3.1).

These boundaries were established for the mini-grid
characterization used by all of the experiments presented
in this paper. They are displayed in Figures13, 15, and16.
In each of of our experiments, two dimensions are explored,
specifically the impact on job turnaround time due to both
job BSBW as well as the target inter-cluster link saturation
level threshold (LSLT) parameter. In the case of algorithm
A1, this percentage is used to drive the simulation during
the calculation of the potential number of nodes available
for co-allocation (Section3.2). For class “B” strategies, this
parameter represents the threshold whereby a given clus-
ter’s free nodes are discounted as being potential candidates
for job co-allocation due to link saturation.

The BSBW parameter for each experiment is swept
across a range of 200 - 900 Mbps. This range was cho-
sen because it represents an interesting range that causes
the network to be considerably stressed and thus allows
us to compare and contrast bandwidth-centric co-allocating
scheduling algorithms. Additionally, in each experiment the
LSLT is swept across a range from 40% to 120% in order
to observe the ability of each algorithm to achieve the target
LSLT.

4.3 Results and Observations

Figures7 - 12 show the performance of algorithms A1,
B1, B2, B3, and B4. (Note that each scheduling algorithm
is named after its co-allocation module.) On each graph,
the x-axis represents the workload’s BSBW characteriza-
tion specified in Mbps. The y-axis represents the LSLT

specified in percent of total link bandwidth. Note that the
LSLT is a parameter provided to the scheduling modules,
not a measured value. Finally, the z-axis represents the aver-
age job turnaround time (TAT). In order to further compare
the scheduling algorithms, Figures13 - 18 address situa-
tions of particular interest.

Figures13and14show the average job turnaround time
as a function of job BSBW while the LSLT is held fixed
at 100%. Figures15, 16, 17, and18 show the average
job turnaround time as a function of the LSLT while the job
BSBW’s are held fixed at around 300 and 800 Mbps, respec-
tively, representing both low and high levels of job BSBW.
The 2D graphs have each been plotted from the same data-
sets as the 3D graphs. The Migration Only and Ideal
schemes have been included in order to compare the per-
formance of the proposed co-allocating algorithms. In par-
ticular, a migration-only strategy results in an average job
turnaround time of 1087; whereas, in the ideal case of un-
limited inter-cluster bandwidth, the average job turnaround
time is 735.

Since algorithm A1 makes use of a job’s communica-
tion characterization as well as an integer constraint satis-
faction algorithm to determine a job mapping during the
co-allocation phase, it can guarantee that a link will never
become more saturated than the given LSLT due to job co-
allocation. Unfortunately, the calculations involved in A1
are significant and they also require accurate communica-
tion characterization of each job. Class “B” algorithms, on
the other hand, can only guarantee that once a link becomes
“over-saturated”, it will not become further saturated due to
co-allocation. When considering A1’s performance, recall
that although it can be configured to hold the saturation level
of the inter-cluster links at a specified percentage (as seen
in the related figures), it would typically be run at 100%
saturation level for maximum performance. A1 has been
run across the range of saturation levels to illustrate the dif-
ference between an algorithm (A1) that can guarantee that
a link will never be more saturated than a given threshold,
versus the class B algorithms that can onlyattemptto limit
the saturation level.

Each of the class “B” algorithms can be compared to A1
in order to determine how close they come to approximat-
ing it’s behavior. Algorithm A1 has a very well-defined and
stable response to changes in job BSBW. Although A1 can
guarantee that an inter-cluster network link will never be-
come over-saturated as a result of a job co-allocation, this
does not imply that it will always produce the best over-
all performance. In particular, a slight over-saturation of
network links can in fact be beneficial. This is especially
the case when the average waiting time in the queue can
be reduced by an amount that exceeds the average increase
in job execution time due to the over-saturation. In these
cases, job execution slowdown due to inter-cluster network
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Figure 7. Algorithm A1 – Satisfy
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B1 -- Largest free nodes
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Figure 8. Algorithm B1 – Largest free
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B4 -- Least sat. link
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Figure 9. Algorithm B2 – Least sat. link
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Figure 10. Algorithm B4 – Load-balancing
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B3 -- Big-small (70%)
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Figure 11. Algorithm B3 – Big-small chunk
(70%)
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Figure 12. Algorithm B3 – Big-small chunk
(90%)
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Figure 13. Comparison at 100% Saturation
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Figure 14. B3 Comparison at 100% Satura-
tion
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Figure 15. Comparison at Low Job BSBW
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Figure 16. Comparison at High Job BSBW
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Figure 17. B3 Comparison at Low Job
BSBW
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utilization is offset by the fact that more jobs are run earlier
due to co-allocation. Therefore, there is a sufficient reduc-
tion in queue time that ultimately results in better overall
performance in average job turnaround time.

The most interesting of the class “B” algorithms is B3
(big-small chunk). Figures11and12show the performance
of the B3 algorithm as the chunk size threshold is increased
from 70 to 90 percent respectively. Algorithm B3 is ex-
tremely stable with respect to variation in job BSBW. For
the sake of clarity, Figures14, 17, and18 have been in-
cluded to contrast the performance of B3 with respect to
chunk size threshold. Note that the B3 algorithm outper-
forms A1 in a variety of circumstances. This is due to the
fact that B3 trades over-saturation of inter-cluster network
resources for decreased waiting time in the queue. Indeed,
even when the LSLT is set to 100%, the B3 algorithms ex-
hibit better performance than A1. Note that as the chunk
size approaches 100% (i.e. the entire job) the performance
of B3 approaches that of Migration Only; a reassuring re-
sult. Additionally, as the chunk size decreases, the perfor-
mance approaches that of B1, since both co-allocate starting
with the largest partition possible. The difference is that B3
will only co-allocate a job when a large portion can fit on
a single cluster; whereas, B1 willalwaysco-allocate a job
provided that there are sufficient total resources.

It is worth noting that the B3 algorithm provides the
best overall performance compared to A1. Additionally,
it is considerably more stable than the other algorithms in
class “B” with respect to variation in job BSBW. It is also
worth noting that algorithm B4 (load-balancing) provides
the worst overall performance. This is due to the fact that
B4 co-allocates a job by spreading it as evenly as possible
across the available nodes resources, and in doing so, con-
sumes a substantial fraction of available inter-cluster net-
work bandwidth.

5 Conclusions and Future Work

In this paper, we present several bandwidth-aware co-
allocating meta-schedulers that take into account inter-
cluster network utilization as a means by which to mitigate
the slowdown associated with the interaction of simultane-
ously co-allocated jobs in a dedicated computational grid.
We make use of a bandwidth-centric parallel job commu-
nication model that captures the time-varying utilization of
shared inter-cluster network resources. By doing so, we are
able to evaluate the performance of grid scheduling algo-
rithms that focus not only on node resource allocation but
also on shared inter-cluster network bandwidth.

We find that it is challenging to design a scheduling algo-
rithm that does not have a priori knowledge of a job’s com-
munication characterization, and yet provides comparable
performance to one that does. We implemented a variety

of such algorithms and found that co-allocating jobs when
it is possible to allocate a large fraction (85%) on a single
cluster provides the best performance in mitigating the im-
pact that co-allocated jobs experience due to the slowdown
caused by inter-cluster network saturation.

Our future work will include further development of
scheduling algorithms that fall into both classes presented
in this paper. Additionally, we have made recent progress
in empirically verifying our communication model, and we
intend to follow this to it’s natural end. We plan to inves-
tigate the impact of a workload with a mixture of jobs that
have varying bisection bandwidths. We are currently ex-
ploring adapting our job communication model to include
different types of local and global communication patterns
by making use of k-ary n-cubes to model application com-
munication structure.

Acknowledgments: Special thanks to Phil Carns,
Nathan DeBardeleben, and Mike Speth.
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