
Job Communication Characterization and its Impact on Meta-scheduling
Co-allocated Jobs in a Mini-grid

William M. Jones† Louis W. Pang† Dan Stanzione‡ Walter B. Ligon III†

864-656-7367 864-656-7367 703-292-8121 864-656-1224
wjones@parl.clemson.edu plouis@parl.clemson.edu dstanzio@nsf.gov walt@parl.clemson.edu

†Parallel Architecture Research Lab ‡National Science Foundation
Department of Electrical and Computer Engineering Division of Graduate Education

Clemson University 4201 Wilson Blvd Suite 907
105 Riggs Hall Arlington, VA 22230

Clemson, SC 29634-0915
http://www.parl.clemson.edu

Abstract

In this paper, we present a bandwidth-centric parallel
job communication model that takes into account inter-
cluster network utilization as a means by which to capture
the interaction and impact of simultaneously co-allocated
jobs in a mini-grid. Our model captures the time-varying
utilization of shared inter-cluster network resources in the
grid. We compare our dynamic model with previous re-
search that utilizes a fixed execution time penalty for co-
allocated jobs. We have found that the fixed penalty model
is more generous in its prediction of job turnaround time
than our dynamic communication model. Additionally, we
see that the penalty co-allocated jobs may experience with-
out causing a severe performance degradation decreases as
the number of clusters increases.

1 Introduction

Clusters of commodity processors have become fixtures
in research laboratories around the world. In many larger
laboratories, universities, and research parks, multiple clus-
ters likely exist on the same campus. This co-location of
several resource collections naturally lends itself to the for-
mation of a mini-grid [7].

A mini-grid is distinguished from a traditional compu-
tational grid in that the mini-grid utilizes a dedicated inter-
connection network between grid resources with a known
topology and predictable performance characteristics. This
type of networking infrastructure allows for the possibil-

ity of mapping jobs across cluster boundaries in a process
known asco-allocationor multi-site scheduling. In this pa-
per, we develop a parallel job model that takes both com-
putation and communication into account as a means by
which to explore co-allocating grid schedulers that exploit
these unique architectural features. The main focus of this
paper is to present an in-depth explanation of our commu-
nication model and its associated algorithms as well as to
provide a brief study the impact of co-allocation in a mini-
grid as a function of job communication characteristics and
grid scheduling routines.

Previous work in the area of job co-allocation tends to
characterize jobs by either specifying that all communica-
tions require a fixed amount of time to travel between clus-
ters [1], [2] or by assigning co-allocated jobs a fixed penalty
[3], [4]. This type of characterization is not sensitive to the
time-varying contention for bandwidth in the inter-cluster
communication links and the impact it has on the execu-
tion time of co-allocated jobs that share network resources.
We take a different approach by considering that as jobs be-
come co-allocated or co-allocated jobs terminate, there is
a continual change in the available inter-cluster bandwidth.
Therefore, in our work, the duration of wide area commu-
nication is a function of the time-varying network band-
width utilization among clusters participating in the mini-
grid, which in turn affects the execution time of co-allocated
jobs. This research aims to extend the work presented in
[1] and [2] by replacing the static communication model
with a more dynamic view of job communication that is
bandwidth-centric.

2 Computational Mini-Grids

At first glance, mini-grids may appear to be distin-
guished from conventional computational grids only in
scope. A mini-grid is limited to a campus-wide setting, for
example, while a traditional grid is national or even global
in scope. However, upon further inspection, a mini-grid has
a distinctive architectural feature; the internal networks of
the clusters are bridged together through dedicated links.
This has several important implications. First, there exists
predictable, reliable bandwidth between grid resources, as
contrasted with Internet connected grids. This should al-
low for a scheduler capable of making better decisions in
co-allocating jobs across these resources. Additionally, the
mini-grid architecture makes finer grain control of the re-
sources within the grid more practical. When fast, low la-
tency links are available, loaning a single node or a small
number of nodes from one cluster to another is a low over-
head operation.

An example of such a grid is the Clemson computational
mini-grid (Figure1) which consists of four interconnected
Beowulf clusters, ranging in size from 64 to 256 processors.
Each node in each cluster is connected by dual fast Ethernet
connections to the cluster switch. The cluster switches are,
in turn, connected together via multiple trunked gigabit Eth-
ernet connections. Nodes can be “loaned” to other clusters
in the grid, thus allowing grid resources to be temporarily
reallocated to better meet collective needs across the grid.

The initial motivation for this research was an interest
in developing new scheduling and resource management
software for our own computational mini-grid. A discrete
event-driven simulator, known asBeosim(Section5), was
developed in order to study the effects of various schedul-
ing routines and explore the behavior of a mini-grid under a
variety of workload characterizations.

3 The Model

In this section we characterize the parallel job model as
well as the mini-grid architecture. We provide a detailed
explanation of the communication model used, as well as
a strategy to account for the time-varying inter-cluster net-
work utilization.

3.1 Mini-grid Model

We consider the mini-grid to be a collection of arbitrary
sized clusters with globally homogeneous nodes. Each clus-
ter has its own internal ideal switch. Additionally, the clus-
ters are connected to one another via a central ideal switch.
This implies that each cluster has a single dedicated link to
the central switch. We assume that each node in the mini-

grid has a single processor and a single network interface
card.

3.2 Parallel Job Model

The model used assumes that jobs are non-malleable. In
other words, each job requires a fixed number of processors
for the life of the job, and the scheduler may not adjust this
number. Additionally neither execution-time migration nor
gang-scheduling [9] is employed in mapping the job onto
the mini-grid, i.e. once the job is mapped to a particular set
of nodes, the job remains on these nodes for the lifetime of
its execution.

A job’s execution time,TE , is a function of two com-
ponents, the computation time,TP , and the communica-
tion time, TC . The initial value of these two quantities is
considered to represent the total execution time that the job
would experience on asingle dedicated clusterwith an ideal
switch. They therefore form a basis for the execution time
of a given job when it is co-allocated in the mini-grid. In
particular,TE = TP + TC . The computation portion of the
execution time does not vary, however the communication
time is considered dynamic, since the communication time
of simultaneously co-allocated jobs may be lengthened due
to the utilization of any shared inter-cluster network links.

3.3 Communication Characterization

Each job modeled in this study performs all-to-all global
communication patterns throughout its execution, and in
general, each node in a given job,j, is characterized by
an average per-processor bandwidth requirement,PPBWj .
Since jobs can be co-allocated in the mini-grid, nodes must
therefore communicate across cluster boundaries. This
communication will require a certain about of bandwidth
in the inter-cluster network links. A job’s performance will
deteriorate if it does not receive the amount of bandwidth it
requires to run at full speed. In order to determine when the
inter-cluster links become saturated, we must first identify
how much bandwidth a job will require in order to run at full
speed. The amount of bandwidth,BW j

i , required by jobj
on inter-cluster linki is given by equation1, wherenj

T is the
total number of nodes required by jobj andnj

i is the num-
ber of nodes allocated to jobj on clusterCi. The first factor
in this equation represents the fraction of the messages gen-
erated by a single node on cluster,Ci, that are destined for
non-local nodes.

BW j
i =

(
nj

T − nj
i

nj
T − 1

)
(PPBWj ∗ nj

i) (1)

The second factor is total bandwidth required by all the
nodes associated with jobj on clusterCi. Once a job

Figure 1. Clemson mini-grid Figure 2. Job co-allocation in a mini-grid

has been mapped to the mini-grid, the required bandwidth,
BW j

i , is calculated for each link,i. This amount is then
aggregated with the bandwidth required by every other job
that shares this link. Using this quantity, the co-allocated
jobs’ residual times to completion are recalculated for each
event that causes a state change in any inter-cluster links.
The details for these recalculations are provided in the sub-
sections that follow.

3.4 Job Co-allocation

We consider co-allocation (Figure2) to be the mapping
of a job across cluster boundaries. One possible reason that
a job might be co-allocated is due to the natural fragmenta-
tion that occurs within each cluster in the node dimension.
Suppose for example that a job is waiting in a cluster’s ready
queue. This job may require more nodes than are presently
available on its particular cluster, but collectively there may
be enough available nodes elsewhere in the grid to accom-
modate the job. The job would be considered co-allocated
if it were mapped onto nodes that were “borrowed” from
other clusters.

3.5 Intra-cluster Bandwidth Saturation

When jobs are co-allocated, their effective execution
times may be altered due to the inherent bottleneck that is
created in the mini-grid’s interconnection network. The de-
gree to which the job’s runtime is affected depends on sev-
eral factors. Clearly the time-varying utilization of the ded-
icated links connecting the clusters plays an important role.
Additionally, the amount of communication that each co-
allocated job produces can considerably affect not only its
own execution time, but also that of every other co-allocated
job that shares any network resources with it.

The first step in determining the impact of co-allocation
is to identify the presence and location of communication
bottlenecks in the inter-cluster links. The residual time to
completion for a particular job can change in response to
two events:

• a new job is co-allocated in the mini-grid

• a co-allocated job terminates and thus frees network
resources

Each inter-cluster link,i, is characterized by a maximum
bandwidth rating,BWmax

i . An initial measure of the sat-
uration of each link is calculated by taking the ratio of the
maximum available bandwidth to the total bandwidth re-
quired for every job that spans that link. The saturation ratio
is given by equation2

BW sat
i =

BWmax
i∑

∀j∈Ji
BW j

i

(2)

where setJi is the set of all jobs that span linki. If
BW sat

i ≥ 1.0 then link i is not saturated, otherwise if
(0.0 ≤ BW sat

i < 1.0), then link i is saturated. If a given
link i is saturated, then each job inJi will not be able to
receive the amount of bandwidth it requires to run at full
speed. In order to calculate the impact on each job due to
co-allocation, the fraction of bandwidth each job receives
compared to the amount it requires must be determined.

Each time a new job is co-allocated or when a co-
allocated job terminates, the algorithm below is applied in
order to determine the amount of bandwidth ultimately al-
loted to each job on each link. In the following algorithm,
equation3 is used to account for the residual saturation level
of the inter-cluster links due only to the jobs that have not

yet been constrained.

BWuc sat
i =

BW avail
i∑

∀j∈Juc
BW alloted

(i,j)

(3)

Step 1: Initialization - For every jobj, let BW alloted
(i,j) =

BW j
i . For every linki, let BW avail

i = BWmax
i . Let

the unconstrained set of nodes,Juc = J (set of all jobs).
Let the set,Ji be the set of all jobs that span linki.

Step 2: Saturation detection -For every link, calcu-
late BWuc sat

i . While there exists at least one
BWuc sat

i < 1.0, continue, else gotoStep 5.

Step 3: Saturation correction -Identify the link with the
smallestBWuc sat

i (most saturated link) fromStep 2,
and globally reduce the alloted bandwidth of every job
in Ji ∩ Juc by a factor ofBW sat

i .

Step 4: Update state -Remove each of the modified jobs
from the setJuc. For each of the modified jobs, re-
move their alloted bandwidth from the available band-
width, BW avail

i on each link over which they span.
GotoStep 2.

Step 5: Termination -DONE.

After this algorithm is applied, the alloted bandwidth,
BW alloted

(i,j) , for each job will either be its initially requested

bandwidth,BW j
i for full speed execution, or it will be some

fraction of its required bandwidth. If the job is alloted its
required bandwidth, it will not experience any slowdown
associated with communication for the duration of time
between the current event and the next inter-cluster state
changing event. However, if the job does not receive its re-
quired bandwidth, it will experience a slowdown in its resid-
ual communication time that is proportional to the disparity
between its required and alloted inter-cluster bandwidths.

3.6 Co-allocated Job Communication Slowdown

Each affected job’s bandwidth allotment on each link is
reduced in order to accommodate the most saturated link
over which it spans. This bottleneck uniquely determines
the disparity between the job’s required and alloted band-
widths on each link. This implies that a job’s ratio of the
alloted to required bandwidth is the same for each link over
which the job spans. Equation4 formalizes the bandwidth
slowdown associated with jobj, where linkk may be any
link over which the job spans.

BW sd
(k,j) =

BW alloted
(k,j)

BW j
k

(4)

3.7 Residual Execution Times

Now that the communication slowdown factor is known,
the residual execution time,TR

E , of a job can be calcu-
lated as a function of both the residual communication and
computation times (TR

C and TR
P respectively). Its asso-

ciated end-event can then be rescheduled in the simula-
tor to account for the state change in the inter-cluster net-
work. In particular, equations5 and 6 illustrate the cal-
culation required to determine the residual execution time
of job j, where the primed terms represent quantities from
the previous inter-cluster state changing event, while the
non-primed values represent quantities for the current state
change event.

T R
E =

T R
C︷ ︸︸ ︷

(T R′
C − T∆

C)(BW sd′

(k,j))(BW sd
(k,j))

−1 + (5)

(T R′
P − T∆

P)︸ ︷︷ ︸
T R

P

where

T∆
P =

∆T

TR′
E

TR′

P , T∆
C =

∆T

TR′
E

TR′

C (6)

The T∆
P andT∆

C terms represent the times spent doing
computation and communication respectively during the in-
terval since the last state change event. These quantities can
then be subtracted from the previous residual computation
and communication times. The communication term is then
scaled to take into account the slowdown due to its most
saturated inter-cluster network link, as seen in equation5.

When a job is initially co-allocated, its residual computa-
tion (TR

P), communication (TR
C), and execution (TR

E) times
are initialized toTP , TC , andTE respectively from its origi-
nal profile. As inter-cluster state changing events occur, the
residual times are recalculated based on equations5 and6.
Due to these recalculations, the job’s end-event can slide
forward or backward in time, reflecting either a degradation
or improvement in saturation levels of the inter-cluster links
over which it spans.

This procedure provides a dynamic view of job commu-
nication by accounting for the slowdown a job experiences
due to the time-varying utilization of the inter-cluster net-
work links.

3.8 Workload Generation

Although our simulator is capable of ingesting actual
workload trace-files, in this paper we make use of syntheti-
cally generated workloads. In particular, we assume that the
the arrival process of jobs to each cluster,Ci, has a Poisson
distribution with rateλi. Additionally, we assume that a
job’s initial service time,TE is exponential with parameter

(µi)−1. The number of nodes that a job requires is given
by a uniform distributionDnodes

i ∼ UNIF [ni
1, n

i
2]. The

fraction of the total execution timethat initially represents
computation is set to a constant,Ki, for all jobs.

4 Meta-scheduling Algorithms

In general, we consider a meta-scheduler to be the soft-
ware, or collection of software, that decides where, when,
and how to schedule jobs in a grid. A meta-scheduler is
expected to work in conjunction with the local schedulers
working on each individual cluster. In this paper, we as-
sume that the meta-scheduler is globally aware of the state
of the mini-grid. In order to address the impact of job co-
allocation on the performance of the mini-grid, the follow-
ing strategies and policies are analyzed.

4.1 Strategies and Policies

To establish a base-line performance, the first algorithm
treats the mini-grid as if it were a collection of disjoint clus-
ters (i.e., the grid didn’t exist). In this scenario all jobs that
arrive to a given cluster run in their entirety on theirhome
cluster. We refer to this strategy asNO SHARING .

The second algorithm is slightly more flexible. Although
it does not perform any job co-allocation, it does allow jobs
to run in their entirety on any cluster in the mini-grid. It will
attempt to allocate resources to a job in best fit fashion. We
refer to this strategy asMIGRATION ONLY .

The third algorithm performs job co-allocation by em-
ploying a best fit allocation of available grid resources span-
ning as many clusters as necessary to satisfy the job’s node
requirement. By employing best fit, the number of inter-
cluster links over which a given job will span is minimized.
We refer to this strategy asBFFF.

Each of the three strategies described above uses the
classicFirst-Come-First-Served (FCFS) job selection pol-
icy with a slight modification. Specifically, the queue is
traversed from head to tail looking for the first job that will
fit into the available node sets (we call thisFCFSSCAN).
Traditionally a policy commonly known asEASY backfill-
ing [8] is used in many production grid schedulers, such as
Maui [6]. This method will attempt to run jobs in FCFS
order, but in the event that the job at the head of the queue
cannotrun due to insufficient resources, it will traverse the
queue from head to tail searching for the first job thatcan
run given the currently available free resources, provided
that by doing so, the start time of the job at the head of the
queue is not delayed. This technique is typically used as a
means by which to provide a degree of flexibility in back-
filling node-time holes in the schedule, while guaranteeing
that no starvation takes place.

By making use of the bandwidth-centric communication
model, only an estimate of a job’s end event is known at any
instant in time, since a job’s end event can slide forward and
backward in time depending on the communication con-
tention in the inter-cluster network links. This makes it dif-
ficult to guarantee that the highest priority job’s reservation
in EASY backfilling will be meet, since we do not terminate
jobs. In our initial experiments, we use the FCFSSCAN
approach described above as a first pass in evaluating the
impact of communication on job co-allocation.

5 Simulation

Beosim[7] is a discrete event driven simulator designed
to model a mini-grid as a collection of (possibly heteroge-
neous) Beowulf clusters connected via a dedicated intercon-
nection network. Beosim can be driven via synthetic work-
load distributions that are characterized through the use of
randomly generated arrival and service processes. Addi-
tionally, Beosim has the capability of ingesting actual work-
load trace-files from a variety of supercomputing centers.

In order to study the effects of various scheduling rou-
tines, Beosim was designed to allow the scheduler modules
to be swapped either “on the fly”, or from run to run, in
order to compare and contrast their respective performance
impacts.

5.1 Experimental Parameters

This subsection describes the set of experimental param-
eters used in all simulations in this paper. Each cluster in
the mini-grid consists of 100 homogeneous computational
nodes and has a 1000 Mbps inter-cluster network link to
the central switch. The workload presented to each clus-
ter consists of 4,000,000 jobs. Such a large number of jobs
were required in order to achieve convergence in the job
turnaround time performance metric [5]. The number of
nodes each job requires is taken from a uniform distribution
UNIF [10, 90] (nodes). The job arrival process is Poisson
with the inter-arrival time taken from an exponential distri-
bution with parameter150 (sec). The base execution time
of each job is taken from an exponential distribution with
parameter225 (sec). For simplicity, the computation frac-
tion is uniformly set toK = 0.7 for all jobs that arrive to
the mini-grid.

In order to study to impact of communication, the
jobs must be characterized by a per processor bandwidth
PPBW . We chose to hold every job’s bisection bandwidth
constant for a particular run of the simulator. This produces
a varyingPPBW due to the varying node sizes of jobs in
the workload. We calculate thePPBW given the bisection
bandwidth,BSBW , using equation7, which is obtained
from our model in equation1.

PPWBj = BSBW

(
4(N j

T − 1)
(N j

T)2

)
(7)

5.2 Experimental Setup

For the research presented in this paper, we were inter-
ested in comparing the results obtained from our dynamic
communication model with that of previous research that
utilizes a fixed penalty for co-allocated jobs [3], [4]. Us-
ing the parameters specified in Section5.1, we conducted
three distinct simulations, a 2, 4, and 8 cluster simulation.
In each simulation the bisection bandwidth of the job work-
load is varied over a particular range, where the average job
turnaround time and average co-allocated job penalty in the
grid is measured. The penalty is calculated as the ratio of
how long the job actually ran to its original execution time.

In order to establish an upper and lower bound for
the job turnaround time metric, two baseline simulations
were conducted to identify these levels. The first is the
NO SHARING strategy described in Section4.1. The sec-
ond is the BFFF strategy with the computation fractionK
set to1, which we refer to asNO COMM PENALTY .
Since the NOSHARING strategy does not allow job mi-
gration or co-allocation, it represents a “worst-case” sce-
nario that can be seen as an upper bound for average job
turnaround time. In the NOCOMM PENALTY simula-
tions, the original execution times for all jobs that arrive
to the grid is purely computational. This implies that job
co-allocation can be performed with no impact to average
job turnaround time. This scenario essentially assumes that
the inter-cluster links have unlimited bandwidth capacities,
therefore NOCOMM PENALTY represents a “best-case”
scenario that can be seen as a lower bound for average job
turnaround time. Both the NOSHARING as well as the
NO COMM PENALTY strategies therefore appear as hor-
izontal “limits” in each of the figures, since they are unaf-
fected by a job’s bisection bandwidth.

Additionally, for each of the three primary simulations, a
third strategy,MIGRATION ONLY , is shown. This strat-
egy only performs job migration, i.e. no job co-allocation.
Jobs that are migrated do not contend for inter-cluster net-
work resources, therefore their ultimate execution times are
also unaffected by their bisection bandwidth.

6 Results

In this section, the results from the three primary sim-
ulations are presented. In each figure, the bisection band-
width (BSBW) of the jobs arriving to the grid is var-
ied over an area of interest. In particular, the BSBW
ranges were chosen to show the behavior of the aver-
age job turnaround time in the grid, as it approaches the

NO SHARING performance. The BFFF strategy is used in
conjunction with the dynamic communication model devel-
oped in this paper to generate the data associated with the
BFFF DYNAMIC COMM curve.

For each iteration of the simulation (i.e. for a partic-
ular BSBW), the average penalty co-allocated jobs expe-
rience is also calculated. This penalty in then fed into
another instance of the simulation using the fixed penalty
model, where every job that is co-allocated experiences an
increase in its original execution time by a factor equal
to the measured co-allocation penalty. The data that was
generated by using the fixed penalty model is shown as
BFFF FIXED COMM in each figure.

6.1 Observations

The first general observation we make is that in every
simulation, the use of the dynamic communication model
is not nearly as generous as the fixed penalty model. Al-
though the actual measured co-allocation penalties from the
dynamic communication runs are fed directly into the fixed
penalty model (i.e. the average co-allocation penalty is
identical in both cases), there is a significant difference be-
tween the average job turnaround times predicted with each
model. The dynamic model accounts for the time varying
utilization of the inter-cluster network links, and therefore
captures some of the essence of simultaneously co-allocated
job interactions in the network.

Additionally, in each scenario (2, 4, 8 clusters), the abil-
ity to initially migrate jobs (MIGRATIONONLY) to a re-
mote cluster provides a rather large performance gain over
NO SHARING. In fact, as the number of clusters increase,
so does the performance gain associated with simple job
migration. Certainly the gain measured here underestimates
the impact associated with activities such a data staging, etc,
but we feel that this overhead is relatively small in the mini-
grid context can can be accounted for in future work.

By plotting the co-allocation penalty versus turnaround
time, it becomes obvious that as the number of clusters in-
creases, the average penalty (using both the dynamic and
fixed communication models) that co-allocated job may ex-
perience decreases from around 1.2 to 1.25 in the two clus-
ter case, to around 1.13 to 1.2 in the eight cluster case, when
compared to the MIGRATIONONLY strategy. Addition-
ally, when compared to the NOSHARING strategy, the ac-
ceptable co-allocation penalty also decreases, from 1.35 to
1.4 in the two cluster case, to around 1.25 to 1.35 in the
eight cluster case.

7 Conclusions and Future Work

In this paper, we have presented a bandwidth-centric job
communication model that is capable of taking into account

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 600 800 1000 1200 1400 1600 1800

Jo
b

tu
rn

ar
ou

nd
 ti

m
e

(s
ec

)

Bisection bandwidth (Mbps)

Turnaround Time vs Bisection Bandwidth (2 Clusters)

Initial
Fixed

No Share
Ideal

Migration Only

Figure 3. Job Turnaround – 2 Clusters

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

Jo
b

tu
rn

ar
ou

nd
 ti

m
e

(s
ec

)

Co-allocation Penalty

Turnaround Time vs Co-allocation Penalty (2 Clusters)

Initial
Fixed

No Share
Ideal

Migration Only

Figure 4. Job Turnaround – 2 Clusters

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 300 400 500 600 700 800

Jo
b

tu
rn

ar
ou

nd
 ti

m
e

(s
ec

)

Bisection bandwidth (Mbps)

Turnaround Time vs Bisection Bandwidth (4 Clusters)

Initial
Fixed

No Share
Ideal

Migration Only

Figure 5. Job Turnaround – 4 Clusters

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

Jo
b

tu
rn

ar
ou

nd
 ti

m
e

(s
ec

)

Co-allocation Penalty

Turnaround Time vs Co-allocation Penalty (4 Clusters)

Initial
Fixed

No Share
Ideal

Migration Only

Figure 6. Job Turnaround – 4 Clusters

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 300 400 500 600 700 800

Jo
b

tu
rn

ar
ou

nd
 ti

m
e

(s
ec

)

Bisection bandwidth (Mbps)

Turnaround Time vs Bisection Bandwidth (8 Clusters)

Initial
Fixed

No Share
Ideal

Migration Only

Figure 7. Job Turnaround – 8 Clusters

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

Jo
b

tu
rn

ar
ou

nd
 ti

m
e

(s
ec

)

Co-allocation Penalty

Turnaround Time vs Co-allocation Penalty (8 Clusters)

Initial
Fixed

No Share
Ideal

Migration Only

Figure 8. Job Turnaround – 8 Clusters

time-varying network utilization as a means by which to
capture the interaction and impact of simultaneously co-
allocated jobs in a mini-grid. We have compared our dy-
namic model with previous research that utilizes a fixed ex-
ecution time penalty for co-allocated jobs. We have found
that the fixed penalty model is more generous in its predic-
tion of job turnaround time than is our dynamic commu-
nication model. Additionally, we see that the penalty that
co-allocated jobs can experience without causing a severe
performance impact decreases as the number of clusters in-
crease.

One of our primary goals is to develop intelligent meta-
schedulers that can take advantage of the unique architec-
tural features present in a mini-grid. Our future work will
include developing meta-schedulers that monitor the satu-
ration levels of the inter-cluster network in order to make
more informed decisions about when and where to map
jobs across cluster boundaries. We also plan to augment
our communication model to capture the essence of the
tree-based algorithms that are commonly used to implement
many collective communication patterns. Additionally, we
plan to study the overhead associated with job migration as
a means by which improve our job communication model.

8 Acknowledgments

This work was supported in part by the ERC Program
of the National Science Foundation under Award Number
EEC-9731680. Any opinions, findings, conclusions, or rec-
ommendations expressed in this material are those of the
authors and do not necessarily reflect those of the National
Science Foundation.

References

[1] A. I. D. Bucar and D. H. J. Epema. The Influence of Commu-
nication on the Performance of Co-Allocation. In7th Work-
shop on Job Scheduling Strategies for Parallel Processing,
pages 66–86. in conjunction with ACM Sigmetrics 2001, June
2001.

[2] A. I. D. Bucar and D. H. J. Epema. The Performance of Pro-
cessor Co-Allocation in Multicluster Systems. In3rd Interna-
tional Symposium on Cluster Computing and the Grid, pages
302–309, May 2003.

[3] C. Ernemann, V. Hamscher, A. Streit, and R. Yahyapour. En-
hanced Algorithms for Multi-Site Scheduling. InGrid Com-
puting - GRID 2002, Third International Workshop, Balti-
more, MD, USA, November 18, 2002, Proceedings, pages
219–231, 2002.

[4] C. Ernemann, V. Hamscher, A. Streit, R. Yahyapour, and
U. Schwiegelshohn. On Adgantages of Grid Computing
for Parallel Job Scheduling. In2nd IEEE/ACM Interna-
tional Symposium on Cluster Computing and the Grid (CC-
GRID’02) Berlin Germany May 21, pages 31–38, 2002.

[5] D. G. Feitelson. Metrics for Parallel Job Scheduling and Their
Convergence. InJob Scheduling Strategies for Parallel Pro-
cessing, volume 2221, pages 188–206, 2001.

[6] D. Jackson, Q. Snell, and M. Clement. Core Algorithms of the
Maui Scheduler. In7th Workshop on Job Scheduling Strate-
gies for Parallel Processing. In conjunction with ACM Sig-
metrics 2001, June 2001.

[7] W. M. Jones, L. Pang, and D. Stanzione. Computational
Mini-Grid Research at Clemson University. Technical Re-
port PARL 2002-009, PARL, Clemson University, November
2002.

[8] S. Srinivasan, R. Kettimuthu, V. Subramani, and P. Sadayap-
pan. Characterization of backfilling strategies for parallel job
scheduling. InIEEE International Conference on Parallel
Processing Workshops, pages 514–519, August 2002.

[9] Y. Zhang, H. Franke, J. Moreira, and A. Sivasubramaniam.
An Integrated Approach to Parallel Scheduling Using Gang-
Scheduling, Backfilling, and Migration. InIEEE Transactions
On Parallel and Distributed Systems, volume 14, pages 236–
247, March 2003.

	Introduction
	Computational Mini-Grids
	The Model
	Mini-grid Model
	Parallel Job Model
	Communication Characterization
	Job Co-allocation
	Intra-cluster Bandwidth Saturation
	Co-allocated Job Communication Slowdown
	Residual Execution Times
	Workload Generation

	Meta-scheduling Algorithms
	Strategies and Policies

	Simulation
	Experimental Parameters
	Experimental Setup

	Results
	Observations

	Conclusions and Future Work
	Acknowledgments

