
Arches: An Infrastructure for PSE Development

Nathan DeBardeleben Walter B. Ligon, III Ron Sass

Parallel Architecture Research Lab
Holcombe Department of Electrical

& Computer Engineering
Clemson University

105 Riggs Hall
Clemson, SC 29634-0915

{ndebard,walt,rsass }@parl.clemson.edu

Abstract

The computational problems that scientists (and engi-
neers) desire to solve are escalating to the point that both
the programs they write and the computers they use to solve
these problems are significantly more complex than the fa-
miliar, well-understood sequential model on their desktops.
While scientists could be trained to use emerging high-
performance computing (HPC) models, it is much more ef-
fective to provide them with a higher-level programming
environment that has been specialized to their particular
domain. By coupling the HPC specialist and the domain
scientists, Problem-Solving Environments (PSEs) provide
a collaborative environment that allows scientists to focus
on expressing their computational problem while the PSE
and associated tools support mapping that domain-specific
problem to a high-performance computing system.

In this paper, we describe Arches, an object-oriented
framework for building domain-specific PSEs. The frame-
work was designed to support a wide range of problem do-
mains and to be extendable in a way that allows it to tar-
get very different high-performance computing models. To
demonstrate this flexibility we describe two PSEs that have
been developed from the same framework yet solve differ-
ent problems and target very different computing platforms.
The Coven PSE supports parallel applications that need the
large-scale parallelism that is found in cost-effective Be-
owulf clusters. In contrast, the RCADE PSE targets re-
configurable computing (FPGA-based) platforms with fine-
grain parallelism. RCADE was designed to aid NASA Earth
Scientists interested in studying satellite instrument data
and who are unlikely to be schooled in low-level hardware
design.

1. Introduction

Computational Science — the use of computer simula-
tions to aid and advance our understanding of the phys-
ical world — is emerging as an important branch of sci-
ence and may soon be on par with its siblings experimen-
tal and theoretical science. However, in general, scien-
tists are not programmers and their interest and talents are
firmly located in a science domain. To address this Prob-
lem Solving Environments (PSEs) are emerging as a way
to raise the level of abstraction in which scientists program.
By utilizing problem-domain-specific information, PSEs al-
low the scientists to access high performance computing
resources, from the GRID to distributed-memory comput-
ers to custom-computing platforms. Thus PSEs are becom-
ing an integral part of modern high performance computing
(HPC) due to the increasing complexity of the types of sim-
ulations being run and the underlying problems being mod-
eled, as well as the increasing complexity of the computer
systems employed. PSEs help to manage the complexity
of modern scientific computing by hiding many of the de-
tails of the computer system, the application, or both behind
a comfortable, familiar interface. A good PSE is flexible
enough to allow the user to solve the problem yet powerful
enough to provide reasonably high performance.

Although there is a growing number of PSEs that
have been developed over a wide range of problem do-
mains, there is no standard procedure for their construc-
tion. Largely, every PSE is builtad hocand the develop-
ers incrementally improve their designs based on their indi-
vidual experiences. In this paper, we propose an object-
oriented framework [11, 9] to make the construction of
domain-specific problem-solving environments easier. To
demonstrate the flexibility and functionality of our frame-
work, we describe two independent PSEs that have devel-



oped from the same code base. Indeed, they still share the
same code base — all customizations are achieved through
inheritance in the object-oriented hierarchy. The PSEs –
Coven and RCADE — target very different hardware plat-
forms. Coven builds systems for large, distributed-parallel
computers while RCADE builds hardware designs for re-
configurable computing systems. Likewise, the problem
domains that they solve are very different one is for satel-
lite telemetry while the other is a small collection of similar
scientific codes.

The remainder of this paper is organized as follows. Be-
low, in section 2, we describe a number of PSEs that have
been developed for a variety of problem domains. Insec-
tion 3 we describe our proposed framework, Arches. To
show how two very divergent PSEs can be built from this
framework, we provide and overview of Coven and RCADE
in section 4andsection 5, respectively. We summarize in
section 6.

2. Background

Over the years, a number of widely-different PSEs have
been developed. This includes examples such as Khoros
[19], ESMF[12], OSSIM[15], Cactus[1], BioPSE and
Uintah[3] (based on SCIRun[14]), and CERSe[6] (based
on Coven[5]). The Common Component Architecture[2],
SCIRun and Coven are problem-solving environment toolk-
its that can be extended to build additional environments.
In Khoros, modules (orglyphs) are connected to form data
flow graphs. Glyphs are separate, sequential programs
which reads input from one or more files and write outputs
to one or more files. The Earth System Modeling Frame-
work (ESMF) provides a infrastructure for creating multi-
component applications targeting the earth science domain.

SCIRun and BioPSE target shared memory parallel com-
puters which projects like Coven and Uintah target dis-
tributed memory machines. The CCA defines an interface
for component writers to follow for compatibility with other
CCA products. While the CCA is growing wide acceptance
for modular software development, there has yet to emerge
a larger infrastructure for solving problems from multiple
scientific domains.

Products at different levels of the application life cycle
exist and are often added on to existing PSEs. One popular
low level trace analysis toolkit is TAU[20]. TAU is a per-
formance monitoring system which allows for instrumenta-
tion of code during compilation and execution to monitor
trace and performance statistics of programs. TAU inter-
faces with VAMPIR[18], a commercial performance and
trace visualizer. The PSE Uintah uses TAU and its own
visualization system XPARE[4]. Popular tools are often
brought together with little support infrastructure. This lack
of infrastructure makes it difficult to create tools that co-

alesce information from multiple sources. Using runtime
performance analysis and detailed information about the
underlying computer system coupled with the application
and module design is cumbersome without an underlying
infrastructure.

In contrast the the significant number of PSEs designed
to assist with high-end parallel computing, very little has
been done for hardware design or reconfigurable comput-
ing. Recently, many commercial tools have emerged with
graphical and high-level interfaces that target an applica-
tion’s programmer. However, in our albeit limited but in-
sightful conversations with users of these tools, we believe
most users employ largely generic modules. This disables
a great deal of specialization and suffers from inefficiency
concerns, which motivate the use of PSEs. Two examples
of these systems include CoreFire [17] and Viva [22].

Other high-level application development environments
are emerging as well. For example, Forge [13], which con-
verts Java source to Verilog HDL, shows great promise, and
by avoiding pragmas and other directives, it is consider-
ably more accessible to scientists and application develop-
ers. However, a drawback is that a scientist can easily make
a small change that produces dramatically different hard-
ware. Short of studying the application or pouring through
lengthy computer-generated Verilog, it can be challenging
to isolate problems. Nonetheless, we think Forge is an ex-
cellent tool, and we aim to integrate it as an alternative to
manually generating modules.

Many of the ideas for Arches originated in the CECAAD
project [21]. In addition to rewriting the implementation,
there are several key differences. Arches supports concur-
rent access to the data flow graph and directly implements
hierarchical designs. The Arches metaphor is more strongly
centered as a collaboration tool whereas PSEs created for
CECAAD were intended to support individuals. The con-
cept of abstraction levels that was major feature of CE-
CAAD has not been implemented in Arches, although it
may appear in a future version. CECAAD also supports
the use of SQL databases for non-volatile storage, whereas
Arches used XML exclusively.

3. Arches Infrastructure Overview

In itself, Arches is not a PSE. It is an object-oriented
framework [10] for building PSEs. As such, one has to un-
derstand the general model that Arches intends to support
and the underlying data structures. In this section we pro-
vide an overview of both and then conclude with a descrip-
tion of how new users might build their own PSE.



3.1. Model

There are (at least) two primary stakeholders in an
Arches-based PSE. The first are the scientists with domain-
specific applications; the others are computer engineers
with detailed knowledge of the target platform. (In some
situations, there are additional stakeholders such as technol-
ogy managers and agent-writers but their role is beyond the
scope of this paper.) An Arches-based PSE is intended to
be a multi-disciplinary collaboration tool that enables each
stakeholder to focus on the problems that they do best. That
is, it is designed to prevent the computer engineer from hav-
ing to learn the domain-specific science to help the scien-
tist map their application to the HPC system. Likewise, we
want to protect the scientist from having to learn the latest
HPC technology in order to get its performance advantage.

The main idea behind Arches-based PSEs is that there is
persistent data structure (described below) that is acted on
by several independentagents. The agents — ortools— are
expertise-adding programs that annotate the data structure.
The agents are coded by computer engineers that have a
detailed knowledge target. A PSE-specific system generator
is responsible for emitting an application (and, possibly, a
run-time system) suitable for deploying on the target HPC
system.

The agents are critical to extendable design. For exam-
ple, the spatial nature of hardware designs is one of the pri-
mary advantages of reconfigurable computing. However,
with it comes the requirement that the application know
how to relatively place components on a 2D surface. In
an Arches-based PSE, the placement expertise can be auto-
mated by developing an agent to add placement information
to the data structure. In another example, profile informa-
tion from a prior execution can be used by an agent to ana-
lyze a particular computation’s organization. The agent can
suggest or effect the reorganization. While agents are su-
perficially similar to compiler ‘passes’, this example points
out a striking difference. Our model assumes that agents are
semi-automatic; that is, agents have the option of interact-
ing with the scientists.

3.2. Data Structure

The underlying data structure is a persistent, attributed
data flow graph, which represents a hardware design. There
is a single manager object which is used to create, save, and
load data flow graphs. Each agent runs in its own thread,
and the manager arbitrates access to the designs that are
stored in shared memory. It is common, for example, to
have an editor (implemented as an agent) running with an
open design while another agent is transforming the same
design. The manager ensures that the agents remain con-
sistent. The graph itself consists of three primary entities:

nodes

link

ports

Figure 1. Arches entities in persistent data
flow graph

ArchesSet

ArchesSet(Node parent)

Iterator iterator()

Design

ArchesSet nodes()

ArchesSet links()

Entity

Entity owner()

AttrTabl at()

Port

InPort OutPort

Link

ArchesSet inputs()

ArchesSet outputs()

Node Comment

Figure 2. Arches entities in class diagram

nodes, ports, and links, as shown inFigure 1. All entities
have attribute tables that store persistent information. This
includes information that may have been determined by pre-
vious agent invocations or from prior executions of the ap-
plication. Attribute tables are themselves valid attributes
and nested attribute tables are used extensively to organize
agent-specific attributes. Similarly, there is a fourth entity
called a design which extends node and is the algorithmic
unit for holding a composition of nodes. Specifically, a de-
sign entity is a collection of nodes and links. Since it is
an extension of node, it inherits the input and output ports
of node. A more complete description of the relationships
between the Arches classes, in UML notation, is shownFig-
ure 2. Furthermore, because designs descends from node, it
can be used anywhere node can be used. Thus, complex
designs can be built hierarchically.

To get a flavor of how these classes interact, we describe
a simple example. InFigure 3(a), we show the creation of a
chain of two nodes. This might represent, depending on the
problem domain, a pipelined computation or three concur-
rent tasks. InFigure 3(b), we open a design and invoke an
Editor agent.



Design design ;
Node add1, inc ;
Port add1in0, add1in1, add1out, incin, incout ;

design = new Design("Calculate x+y+1") ;
add1 = new Node("add1") ;
add1.put("implementation","adder") ;
add1in0 = add1.add(new InPort()) ;
add1in1 = add1.add(new InPort()) ;
add1out = add1.add(new OutPort()) ;
inc = new Node("increment") ;
incin = inc.add(new InPort()) ;
incout = inc.add(new OutPort()) ;
design.add(add1) ;
design.add(inc) ;
design.link(add1out,incin) ;

(a)
(b)

Figure 3. (a) constructing a simple design (b) screen shot of editor agent

3.3. Creating a PSE

The main idea behind the Arches framework is to as-
sist a programmer in developing a new PSE. If the PSE to
be developed follows the same general model as previously
described, then much of the required infrastructure can be
supplied by the Arches package. To help the reader under-
stand the framework, we describe the general steps required
to create a PSE.

The first step in creating a PSE with Arches is determin-
ing if a data flow graph is a suitable representation for al-
gorithms in the target problem domain and platform. If the
algorithms can be componentized (into Arches nodes) and
exchange data between components using a communication
path (Arches links) then the Arches framework may be able
to supply a great deal of the base PSE infrastructure.

The PSE designer should next determine what agents are
appropriate for their problem domain. If there are any com-
mon tools that can add expertise or assist users in solving
their problems, then these should be implemented as (or
ported to) Arches agents. The relevant attributes of these
agents should be identified and supplied to Arches so that
the agents can interact with the data flow graph and other
agents.

Next, the PSE designer must determine how algorithms
will be put into the PSE and how the resulting implemen-
tation is generated. If a graphical PSE is needed, then ex-
tending the graphical editor (described above) may provide
an easy solution. However, some PSEs might simply use
a parser and a custom agent to get the algorithms into the
Arches framework. Additionally, once the algorithm has
been implemented in Arches, the designer must decide what
output they expect the PSE to provide. For example, this
might require a code generator to translate the Arches data
flow graph into the target-specific code.

Finally, runtime considerations are required. It may be
important for the runtime system implemented for the PSE
to send information back to the PSE so that it can be placed
into the data flow graph. This is common for post-analysis
agents that need to visualize data, performance, or trace
statistics. With the Arches framework, some of the tedious
tasks related to creating a PSE have been centralized into a
reusable, extensible infrastructure. Therefore, more empha-
sis can be placed on the parts of a PSE that are specific to a
particular problem domain.

4. Coven

Even with embarrassingly parallel computing applica-
tions, managing parallel codes is time consuming. The
Coven PSE is targeted to scientists with the need to run ap-
plications on distributed memory parallel computers. The
goal is to make these architectures more approachable.

4.1. Problem

With the growing availability of parallel computing sys-
tems, scientists are expanding their models and simulations
to levels of complexity which far surpass those that are fea-
sible to run on a conventional computer. Automatic paral-
lelizing compilers have proven useful for some types of ap-
plications, but many are left with suboptimal performance.
The conventional alternative lies in explicit parallelization,
often through the use of MPI[16]. Mastering the details of
explicit parallel programming is complex and often requires
a great deal of understanding of both the application and the
underlying computer system.



4.2. Coding With Parallel Modules

Coven provides an environment where the application
specialist and parallel computing specialist can collabo-
rate to solve the problem in parallel. This is accomplished
through a data flow model where user code is encapsulated
into modules with a well defined interface. Modules are im-
plemented in either C or Fortran and are connected together
to form a data flow graph.

Through intercommunicating components and a plug-
gable, modular, data flow model, the code pertaining to per-
forming the science is kept separate from the code pertain-
ing to parallelism. Thus, the scientist only needs to program
their algorithm in a collection of modules while a parallel
computing specialist programs the parallel communication
modules. Coven handles putting the modules together into a
complete runtime application. With this modular approach,
the code is not only more manageable and maintainable but
also allows for portions to be replaced very easily to test
new ideas.

4.3. Implementation

Coven is composed of two main components: a front-
end running on a user’s workstation and a back-end running
on a parallel computer. The front-end is implemented with
the Arches framework where nodes represent user supplied
modular code. The interface to the modules are depicted as
Arches ports and data flow between modules is represented
as links. Once a Coven program has been constructed us-
ing the PSE tools, the job is compiled and submitted to the
back-end for execution.

A runtime engine executes the Coven application in par-
allel, profiling trace information and reporting it back to the
front-end upon completion. The runtime engine is multi-
threaded as well as running on multiple parallel processors.
This allows modules to be grouped together on the same
thread to improve performance from asynchronous oper-
ations. Shared memory is provided behind the scenes to
quickly move data between threads running on the same
processor. Clearly, there is not enough space to discuss
Coven in detail. However we will highlight a few agents;
an interested reader can refer to [7, 8].

Coven Graphical Editor Programs are assembled using
the Coven graphical editor. Coven module source files are
imported into the design which automatically constructs a
node for the module and the appropriate ports. Module in-
puts and outputs are represented as ports and attribute tables
are filled with type information which is used in type check-
ing. Using the Coven editor, the programmer can drag and
drop module code, interconnect the pieces, specify runtime
parameters, and submit the job to be run.

Code Generator and Compiler Coven uses an interme-
diate language to represent programs. This language spec-
ifies the flow of data between modules in a textual form,
as well as containing any parameter values. Users can code
Coven applications in this language, or use the code genera-
tor agent to automatically generate a Coven language source
file from the Arches data flow graph. The code generator
agent is initiated by the Coven editor at the start of run-
time. The generated language source file is converted by
the Coven language compiler into a form which the back-
end uses to determine what modules to execute, with what
parameters, and how the modules should be threaded.

Data Visualization Agents have been created which visu-
alize application data both in real time and offline. Several
provided real time visualization agents have corresponding
modules which in parallel transmit data to be visualized
back to the agent. This is done in parallel and can provide
runtime updates of the progress of a simulation. Agents
have been created to visualize molecular interactions, heat
transfer CFD problems,n-body simulations, and satellite
remote sensing applications. These agents utilize OpenGL,
Java3D, and Java2D APIs and additional agents can be eas-
ily written for different problem domains.

Profiler Trace information about the running application
is transferred after execution to the front-end where the
profiler agent processes it. Many different visualizations
help to depict the runtime characteristics of the application,
including memory consumption, CPU utilization, module
runtime, and data flow between threads and processes. The
visualizations can be tailored to display information in a
helpful manner for either an application scientist or a paral-
lel computing specialist.

4.4. Example

Coven has been used to create applications for satellite
remote sensing, complex fluid dynamics, molecular dynam-
ics, andn-body simulations. In previous work[7, 8] we have
outlined the performance benefits from multithreading and
shared memory utilization. Due to space limitations, a com-
plete example cannot be given. However, we will discuss a
couple of screenshots from different types of Coven appli-
cations.

Figure 4is a screenshot of a complex fluid dynamics heat
transfer OpenGL 3D graphical agent which depicts how a
steel plate heats up due to an external source.Figure 5is
a screenshot of a 2D Fast Fourier Transform (FFT) applica-
tion being analyzed in the Coven profiler agent. This partic-
ular visualization is looking at the load placed on the CPU
by different modules.



Figure 4. 3D Visualization Agent Figure 5. CPU Load Profiler Agent

5. RCADE

The RCADE PSE is targeted to NASA Earth Scientists
that would like to take advantage of FPGA-based Recon-
figurable Computing (RC). An FPGA is programmable de-
vice that can be configured into any arbitrary digital circuit.
This allows the user to develop application-specific hard-
ware designs that can be downloaded to accelerate their ap-
plication. Although the technology is rapidly advancing,
programming an FPGA requires an understanding of hard-
ware design principles.

5.1. Design Quality

The fundamental problem is that fully automatic hard-
ware designs from scientific applications is not yet feasible
for RC. While a number of automatic tools have been dis-
cussed in the research community, they all generally suffer
from the fact that they make inefficient use of the resources.
Even though newer devices are significantly larger, a sim-
ple, direct mapping of the computation to the FPGA does
not achieve the performance required by the NASA scien-
tists.

To get the desired performance, the mapping of the de-
sign needs to pay attention to three quality issues: schedul-
ing, latency, and specialization. In hardware design, the
computation is arranged spatially and the designer needs
to ensure that the timing of values propagated through the
computation are correct. While handshaking can be intro-
duced to guarantee the correctness, the design takes a per-
formance hit if the timing is incorrect. Another factor of
hardware design is that clock speed is determined by the
length of longest wire. Without attention to placement,
the latency of propagating a signal through the device can
destroy the performance. Finally, one of the most valu-
able features of reconfigurable computing is that it allows

for custom designs. Replacing a general multiplier with a
constant multiplier can have an order-of-magnitude perfor-
mance improvement with a significant reduction in space.
Unfortunately, automated tools cannot make all of these de-
cisions because some require user interaction.

5.2. Typical Scenario

To understand how a PSE addresses these concerns
specifically, consider the following scenario that shows how
a scientist gets from algorithm to HPC platform.

Suppose a scientist has an algorithm that they believe
would map well to a RC board. The data set may be com-
ing from a satellite receiver or it may be an archived data
set. In either case, there is usually some pre-processing that
generates a look-up table that is referenced while processing
the data set. Since this calculation is usually a tiny fraction
of the compute time, it is easily calculated in the usual way
with either a C or Fortran program. Next there is fairly reg-
ular structure that processes the data set and performs the
calculations on the data set.

There are several ways of entering a design into RCADE.
A scientist can drag-and-drop nodes and then connect ports.
However, it is much easier to use a translator agent. Some
sample translator agents exist that translate expressions
from familiar languages such as a FORTRAN or C into
RCADE data flow graphs. In any case, part of the appli-
cation is done on the processor and part has been translated
into Arches. There are set of routine steps the scientist does
to generate hardware. The scientist would analyze the com-
putation for precision, run a pipeline balancer, and a place-
ment agent. Next the part selector would go through and
pick implementations for every part. Changes might cause
the pipeline balancer to run again. Eventually, the design is
ready for synthesis.

After synthesis the scientist might discover that the de-
sign doesn’t fit or doesn’t meet the performance goals. A



hardware engineer’s solution might result in the develop-
ment of a highly customized module for the application or,
perhaps, the recommendation to the technical manager that
a new agent be commissioned to handle this circumstance
in future designs. In the middle of this collaborative effort
is RCADE, which provides the communication tool as well
as development environment. To achieve this the RCADE
environment must not only support the conventional devel-
opment elements (user interfaces, graph transformations,et
al.) but also the ability to add agents dynamically and a
design generator that allows the discovery of modules as
described below.

5.3. Implementation

Once the design is entered, a number of agents are in-
voked. A precision tool is a semi-automatic tool that propa-
gates precision information throughout the design. A place-
ment tool can locate modules on an FPGA to accelerate
the commercial place&route times and improve the system-
level data flow paths. Other agents, such as a partitioning
tool, a reconfigurable cache tool,et al. may be invoked if
desired. All of these tools update the attributes associated
with entities throughout the design. The final step is for the
design generator to build a hardware representation.

Precision Tool Traditional hardware design using HDLs
relies on the programmer to evaluate data paths and deter-
mine the appropriate bit-widths to minimize logic, while al-
lowing enough bits for correct data transfer. As discussed
previously, designs that have undergone analysis to opti-
mize data path bit precision can be shown to have decreased
latency, as well as provide a resulting design that utilizes
less logic (smaller footprint), when compared to the origi-
nal, generic design. By providing an agent to perform data
path analysis, RCADE allows those with little hardware de-
sign experience (scientists) to generate better performance
solutions to problems and better utilize available chip space,
while freeing those familiar with hardware (hardware engi-
neers) to concentrate more on the structure of their designs.

The RCADE precision tool utilizes user-editable at-
tributes to calculate data path bit-widths. These attributes
represent the largest and smallest possible values for each
port within a design. (i.e. the range of values for the port).
Calculations are done at the node level and may be per-
formed in a forward (progressing from node inputs to out-
puts) or backward (from outputs to inputs) manner. For ex-
ample, during a forward calculation, the range information
for each input port of a node will be used in conjunction
with the node’s behavior (addition, multiplication, etc.) to
correctly determine the range of the output port(s). Once
a node’s calculation is complete, the resulting output port’s
range values are propagated to all input ports to which it

has a link. Calculations begin from all external design in-
put ports or output ports, depending on the desired direction
of calculation, and progress to all internal nodes. This pro-
gression follows the link structure of the design from port
to port until there are no more links.

The forward/backward functionality of the precision tool
is implemented in the RCADE Tile interface. This interface
provides a bridge between the hardware implementation of
a part and its software representation in RCADE. For ex-
ample, RCADE provides a node representation of an adder.
This RCADE adder node coexists with an implementation
of the Tile interface that specifies how to properly calcu-
late the input and output port bit-widths for an adder hard-
ware part. Each RCADE node, whether an adder, multi-
plier, or user designed node, must also have a tile specific to
its behavior. Inside that tile, forward and backward methods
should access the attributes associated with bit-precision,
perform calculations to minimize the data path bit-widths,
and reset the bit-precision values on ports accordingly. It is
these bit-precision values that the code generator will use to
construct hardware implementations of the final design.

Placement Tool A placement package has been created
to represent the chip and determine locations for modules
to be placed on the chip. An RCADE agent that utilizes the
package is launched from the Editor window. This agent
updates attributes of each Node to specify its location.

The Placer creates a module for each Node to be placed.
Each module’s connection information is read and a list
of its inputs and outputs are recorded. A tree is created
based on the connectivity information and the roots are de-
termined. A root is defined as a module that outputs di-
rectly to the pins of the FPGA. For each tree, the modules
are placed starting with the root in a breadth-first manner.

When all modules are placed, an implementation is cre-
ated. An implementation is a group of modules with fixed
locations. The best implementation of a set group of mod-
ules is determined by the routing cost. The routing cost
between any two modules is a function of the Manhattan
distance and number of turns. An implementation’s routing
cost is the sum of the routing costs of all its modules. If
the routing cost is above a given threshold, the placer can
run again with variations in the placement order. The vari-
ations occur by placing either the trees or module siblings
in a different order. Changing the default placement loca-
tion within an empty rectangle also produces new imple-
mentations. One or several permutations of these modifica-
tions, depending on time considerations, can me made. In
all cases, the best implementation is chosen and the module
locations are set permanently.

Pipeline Balancer Just prior to generating a hardware de-
scription of the user’s design, a pipeline balancer is in-



voked. In our system, the role of the pipeline balancer is
two-fold. First, it is responsible for inserting all passive
FERP (variable depth FIFO) parts between the active com-
putational parts. The FERP signalling maintains correct-
ness by ensuring that computation only proceeds if the data
has arrived. However, as noted earlier, parallel paths in the
data flow graph with an unequal number of pipeline stages
can destroy performance. The second responsibility of the
pipeline balancer is to traverse the graph and for each FERP
set the appropriate depth such that all converging paths have
the same latency.

This is accomplished by calculating the number of stages
needed in the FIFO. The number of additional buffers
needed,Ni along any give linki, can be determined by cal-
culating the maximum difference in latency across all of the
parallel paths converging, as shown below.

Ni = max
k

{Ek − Ei} (1)

For each one of the parallel paths, that path’s latencyEm

is governed by

Em =
∑

j

Cm
lj
tj

+ Lm (2)

where the summation is over all each componentj on that
path, the latency of componentj is lj , and the throughput of
componentj is tj . The termsLm is the number of stages in
FERPs between the components in the path andCm is the
number of components in the path.

These calculations are easily automated and this agent is
in process; however, the number of buffers needed for the
results reported in this paper were manually calculated.

5.4. Example

Although space limitations prevent us from completely
explaining an example, we believe a screenshot is helpful.
In Figure 6, a simple calculation is shown. The format is
such that both the scientist and the hardware engineer can
understand what is happening.

6. Conclusion

In this paper we have introduced Arches, an object-
oriented framework for building Problem-Solving Environ-
ments. The framework was designed with extensibility in
mind. It is generic enough to be used in a wide vari-
ety of situations while still providing several concrete ser-
vices and functionalities needed when developing problem-
solving environments. To demonstrate the aptitude of this
design, we describe two complete problem-solving environ-
ments; namely Coven and RCADE. While both PSEs have

the same goals of helping scientists map their applications
to high-performance computing systems, they are radically
different in their customizations and the support structures.
Despite their different problem domains and different im-
plementations, they both effectively reuse the Arches infras-
tructure.

References

[1] G. Allen, T. Goodale, J. Massó, and E. Seidel. The cac-
tus computational toolkit and using distributed computing
to collide neutron stars. InProceedings of the Eighth
IEEE International Symposium on High Performance Dis-
tributed Computing, pages 57–61, Redondo Beach, CA, Au-
gust 1999. IEEE Computer Society Press.

[2] R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn,
L. McInnes, S. Parker, and B. Smolinski. Toward a Com-
mon Component Architecture for High-Performance Scien-
tific Computing. InProceedings of the 1999 Conference on
High Performance Distributed Computing, pages 115–124,
1999.

[3] J. de St. Germain, J. McCorquodale, S. Parker, and C. John-
son. Uintah: A massively parallel problem solving environ-
ment. InNinth IEEE International Symposium on High Per-
formance and Distributed Computing, pages 33–41. IEEE,
Piscataway, NJ, Nov 2000.

[4] J. D. de St. Germain, A. Morris, S. G. Parker, A. D. Mal-
ony, and S. Shende. Integrating performance analysis in the
uintah software development cycle. InInternational Sympo-
sium on High Performance Computing (ISHPC-IV), pages
190–206, May 2002.

[5] N. A. DeBardeleben, W. B. Ligon III, S. Pandit, and D. C.
Stanzione Jr. Coven - a framework for high performance
problem solving environments. InProceedings of the 11th
IEEE International Symposium on High Performance Dis-
tributed Computing (HPDC-11 2002), pages 291–298, Ed-
inburgh, Scotland, UK, July 2002. IEEE Computer Society.

[6] N. A. DeBardeleben, W. B. Ligon III, and D. C. Stanzione Jr.
The Component-based Environment for Remote Sensing. In
Proceedings of the 2002 IEEE Aerospace Conference, pages
6–2661–6–2670, March 2002.

[7] N. A. DeBardeleben, V. Patil, and W. B. Ligon III. Per-
formance enhancements to coven through multithreading.
Technical Report PARL-2004-001, Parallel Architecture Re-
search Laboratory, Clemson University, 2004.

[8] N. A. DeBardeleben, V. Patil, and W. B. Ligon III. Using
coven to profile and tune parallel programs. Technical Re-
port PARL-2004-002, Parallel Architecture Research Labo-
ratory, Clemson University, 2004.

[9] M. E. Fayad. Introduction to the computing surveys’
electronic symposium on object-oriented application frame-
works. ACM Computing Surveys, 32(1):1–9, Mar. 2000.

[10] M. E. Fayad, D. S. Hamu, and D. Brugali. Editorial:
Enterprise frameworks.Software Practice & Experience,
32(8):735–736, July 2002.

[11] M. E. Fayad and D. C. Schmidt. Object-oriented application
frameworks. Communications of the ACM, 40(10):32–38,
Oct. 1997.

http://doi.acm.org/10.1145/351936.351937
http://doi.acm.org/10.1002/spe.459
http://doi.acm.org/10.1145/262793.262798


Figure 6. an example of hardware design generated

[12] R. Ferraro, T. Sato, G. Brasseur, C. DeLuca, and E. Guil-
yardi. Modeling the earth system. InInternational Geo-
science and Remote Sensing Symposium, Sep 2003.

[13] X. Inc. Forge.http://www.xilinx.com/ .
[14] C. Johnson, S. Parker, D. Weinstein, and S. Heffernan.

Component-based problem solving environments for large-
scale scientific computing.Journal on Concurrency and
Computation: Practice and Experience, (14):1337–1349,
2002.

[15] K. Melero. Open Source Software Image Map Documenta-
tion. http://www.ossim.org.

[16] Message Passing Interface Forum. Document for a standard
message-passing interface. Technical Report CS-93-213 (re-
vised), University of Tennessee, April 1994.

[17] A. Microsystems. Corefire.
http://www.annapmicro.com/ .

[18] Pallas GmbH. VAMPIR: Visualization and Analysis of MPI
Resources. http://www.pallas.de/pages/vampir.htm.

[19] J. Rasure and S. Kubica.The Khoros Application Devel-
opment Environment. Khoral Research Inc., Albuquerque,
New Mexico, 1992.

[20] S. Shende and A. D. Malony. Integration and application of
the tau performance system in parallel java environments. In
Proceedings of the 2001 joint ACM-ISCOPE conference on
Java Grande, pages 87–96, University of Oregon, Eugene,
Oregon, June 2001.

[21] D. C. Stanzione Jr. and W. B. Ligon III. Infrastructure for
High Performance Computer Systems. In e. a. Jose Rolim,
editor, IPDPS 2000 Workshops, LNCS 1800, pages 314–
323. ACM/IEEE, Springer-Verlag, May 2000.

[22] S. Systems. Viva.
http://www.starbridgesystems.com/ .

http://www.xilinx.com/
http://www.annapmicro.com/
http://www.starbridgesystems.com/

	. Introduction
	. Background
	. Arches Infrastructure Overview
	. Model
	. Data Structure
	. Creating a PSE

	. Coven
	. Problem
	. Coding With Parallel Modules
	. Implementation
	. Example

	. RCADE
	. Design Quality
	. Typical Scenario
	. Implementation
	. Example

	. Conclusion

