
Performance Enhancements to Coven Through Multithreading

Nathan A. DeBardeleben Vishal Patil Walter B. Ligon III
864-656-5909 864-656-5909 864-656-1224

ndebard@parl.clemson.edu vpatil@parl.clemson.edu walt@parl.clemson.edu

Parallel Architecture Research Lab
Department of Electrical and Computer Engineering

Clemson University
105 Riggs Hall

Clemson, SC 29634-0915
http://www.parl.clemson.edu

Abstract

Coven is a framework for creating Problem
Solving Environments (PSEs) for parallel com-
puters. It has been used to create PSEs for satel-
lite remote sensing, molecular dynamics, n-body
simulations, and complex fluid dynamics. Coven
provides the user with a component-based, plug-
gable environment to create, run, profile, and vi-
sualize output of parallel programs.

This work presents a collection of new features
added to Coven that provide multithreading ca-
pabilities to applications without requiring addi-
tional programming by the application developer.
These capabilities stem from overlapping compu-
tation, communication, and disk I/O.

A series of studies are conducted which look at
potential performance gains this can provide as
well as what are actually provided to a real appli-
cation. It is shown that using these features can
achieve an improvement of approximately 25%
over a single threaded version of the same ap-
plication. These gains require a very balanced
workload, and for an unbalanced Fast Fourier
Transform (FFT) application it is shown that per-
formance increases as much as 18%.

Additional improvements to Coven such as
garbage collection, performance profiling, distri-
bution patterns, and several MPI-like collective
operations are presented.

1. Introduction

Problem Solving Environments (PSEs) are be-
coming an integral part of modern high perfor-
mance computing (HPC) due to the increasing
complexity of the types of simulations being run
and the underlying problems being modeled, as
well as the increasing complexity of the com-
puter systems employed. PSEs help to manage
the complexity of modern scientific computing by
hiding many of the details of the computer sys-
tem, the application, or both behind a comfort-
able, familiar interface. A good PSE is flexible
enough to allow the user to solve the problem yet
powerful enough to provide reasonably high per-
formance.

A number of PSEs have been developed in-
cluding Khoros [10], BioPSE and Uintah[3]
(based on SCIRun[8]), and CERSe[5] (based
on Coven[4]). The Common Component

Architecture[2], SCIRun and Coven are prob-
lem solving environment toolkits that can be
extended to build additional environments. In
Khoros, modules (orglyphs) are connected to
form dataflow graphs. Glyphs are separate, se-
quential programs which reads input from one
or more files and write outputs to one or more
files. In environments based on Coven, modules
are subprograms dynamically linked which pro-
cess data passed in memory.

While Coven is similar to SCIRun and CCA
in many ways, the Coven project aims to study
ways to add performance improvement to parallel
applications developed with it. In previous work
we introduced the structure of Coven and CERSe
and showed how they are used to implement par-
allel applications. Overhead was also measured
and found to be reasonably small[4]. In this paper
we consider the use of Coven’s multithreading ca-
pabilities to improve performance by implement-
ing computation/communication overlap without
requiring additional programming by the applica-
tion developer. This mechanism is enabled by a
number of features recently added to Coven in-
cluding virtualization, performance profiling, and
shared memory utilization.

In the next section we provide a brief overview
of Coven and the relevant features. In subsequent
sections we present our methods and experimen-
tal results showing speedup as a result of the ap-
plication of multithreading. While it can be ar-
gued that the optimizations made are well known
and can be implemented without the use of a PSE,
most application writers would find them com-
plex to program and Coven can provide the per-
formance improvement without extra program-
ming.

2. Coven

Coven is a framework for building problem
solving environments (PSEs) for parallel comput-
ers. With Coven, users design modular parallel
programs by writing modules in either C or For-

Figure 1. Graphical Editor Agent

tran and interconnecting them to form a dataflow
graph. Modules contain special directives placed
at the beginning of the code which describe the
interface to the module.

Modules are combined to form applications us-
ing a custom Coven language that specifies how
data flows through the modules. This language
file is called a Coven program. A Java graphi-
cal front-end (Figure 1) can be used to graphically
produce the Coven program. The Coven language
can specify portions of the application that should
run in parallel and specialized library modules ef-
fect inter-task communication. Applications are
executed by a runtime engine that sequences the
Coven language program, selecting modules to
run and managing the flow of data. Figure 2 de-
picts the relationship between these components.

The runtime engine and GUI can both be ex-
tended for target PSEs. This extensibility makes
it possible to customize Coven for a particular ap-
plication domain. Coven has been used to create
applications and PSEs in the following domains:

• Satellite remote sensing

• Molecular dynamics

• Complex fluid dynamics

• N-Body simulations

GUI Code Generator

Front−End Module Library

Tasks

Runtime System

User Interaction

Coven Program

Figure 2. Coven Architecture

Additionally, core algorithms such as the Fast
Fourier Transform (FFT) and matrix multiplica-
tion have been implemented which are not appli-
cation specific and can be used by any PSE.

Several Open-GL 3D visualizations have been
built for Coven PSEs. Figure 3 shows a visual-
ization for a fluid dynamics problem over a steel
plate. Modules have been created which send data
to this visualization at runtime or log data to a file
for offline viewing.

2.1. Internal Implementation

All user data in Coven is encapsulated in an
internal data structure called a Tagged Partition
Handle (TPH). This structure is completely trans-
parent to the user. TPHs are created by the engine,
passed in and out of modules, and contain all data
created by modules. This data is maintained in
buffers which modules programmers interact with
like arrays. Module designers do not have direct
access to TPHs, instead they program by describ-
ing the flow of data throughout their application.

Many TPHs flow through the system concur-
rently. At any instant in time TPHs can be ei-
ther processed by a module, sitting in a queue

Figure 3. Open-GL 3-D Visualization Agent

to be processed, or being sent to another task for
processing. Before a TPH leaves a processor for
another processor the TPH data structure is mar-
shaled into a sequential stream of bytes which are
transferred to the destination process using MPI
communication operations.

Coven’s runtime engine is composed of a col-
lection of MPI tasks with a single task running
on each processor. Figure 4 depicts a single pro-
cessor with a program sequencer running on it.
Modules run in each program sequencer and can
communicate with other modules on other proces-
sors. Input and output queues exist before and
after each process. TPHs are dequeued from the
input queue, processed in the user-supplied mod-
ules, and collected back to a single point on a
master process. Input queues are a recent addi-
tion to Coven and are described in Section 2.2. An
optimization to Coven involving adding multiple
program sequencers running on the same node is
addressed in Section 4.

2.2. New Coven Features

Many improvements have been made to Coven
since the version discussed in[4]. Some of the
added features allow for new types of programs
to work with Coven while others make program-
ming Coven modules and writing Coven pro-

Program Sequencer
in a Process

TPH Queue

One Processor

Garbage Collector

TPH Being Processed
by a Module

. . .Modules

TPH in Output Queue

Figure 4. Coven Runtime Driver

grams simpler.
These features include:

Loops Coven programs can now be composed of
loops of modules. The coven language sup-
portsfor andwhile loops. Loop counters
are available to modules inside of the loops.

Garbage Collection Data created by users in
modules no longer needs to be specifically
deallocated. Coven determines when a
buffer will be last used by looking at the
Coven program. After the last reference,
Coven automatically frees the buffer.

Inter-Module Communication Coven now pro-
vides module programmers with a special
MPI Communicator for use in communicat-
ing with another instance of the same mod-
ule.

Scatter and Gather Users can now more eas-
ily specify the relationship between data
and control where that data gets distributed
through the use of scatter and gather mod-
ules. Coven provides datatypes similar to
MPI datatypes for defining how data be scat-
tered or gathered. Data partitioning schemes
are available for scattering or gathering data
in non-regular patterns. Coven provides

block or cyclic schemes as well as a way for
new schemes to be easily added.

Virtualized Partitions After data has been parti-
tioned, multiple partitions may end up sched-
uled for the same processor. With virtual-
ized partitions Coven allows those partitions
to communicate. Coven provides send and
receive operations which take as argument
the partition to communicate with. Partitions
are descheduled and kept in queues waiting
pending communication operations. Once
complete, they are allowed to continue ex-
ecution on further modules. With this fea-
ture, Coven allows a module programmer to
partition data into a distribution pattern with-
out regard as to where the partition even-
tually gets placed. This creates a virtual-
ized model of execution where a program-
mer may distribute partitions in a complex
pattern but during inter-partition communi-
cation need not be concerned about where
these partitions have been physically sched-
uled.

TPH Queues Coven now maintains queues of
TPHs internally which it uses to keep TPHs
waiting for processing as well as TPHs wait-
ing to be received by another task. The
maximum depth of these queues can be con-
figured by the user which provides control
over the balance between the amount of work
each task can perform. If a task’s mod-
ules take longer than another, controlling this
queue depth can keep the shorter tasks from
getting too far ahead and keeping the more
complex modules from getting the processor.
Other than configuring the maximum queue
depths, all issues related to queues are com-
pletely transparent to the user.

These features allow many new types of appli-
cations to be implemented in Coven as well as
provide some parameters that can be tuned to im-
prove performance.

3. Performance Profiler and Debugger

Coven now includes a graphical, offline Java
profiler to analyze Coven program execution. The
profiler functions as both a debugging tool and a
performance analysis agent. When a Coven paral-
lel program is run, it generates a log file which de-
scribes the flow of the computation such as when
did the modules run, where the TPHs were at dif-
ferent points in time, and information regarding
memory usage, CPU load, and other measure-
ments. This log file is then used by the profiler
to generate visualizations for the various aspects
of the program, thereby enabling the programmer
to observe and analyze its behavior.

Coven uses the MPE (Multi-Processing
Environment)[1] for logfile generation. In
addition to logging MPI calls, using MPE it is
possible to create user defined states and log these
with additional data. Coven uses this facility to
log module calls and auxiliary events. By using
a standard logging format, other MPE logfile
visualizers (such as Jumpshot[11]) can be used.
The Coven profiler complements Jumpshot by
presenting a view of the computation to the user
in Coven-specific terms.

Currently the Coven profiler tool provides sev-
eral different visualizations. Each of these visual-
izations is explained briefly below.

TPH Lifetime This visualization displays infor-
mation regarding the flow of TPHs through
various modules of the Coven program. This
is basically a Gannt chart with the program
time in seconds, on the x-axis and the threads
on the y-axis. Module calls are represented
as colored blocks with lines connecting them
to indicate flow of a TPH through the system.
With this view is is easy to see how a TPH
flows between modules, threads, and proces-
sors.

Memory Usage This visualization displays in-
formation regarding the memory usage of
different threads in the Coven program. This

view can be helpful in identifying memory
leaks and potential memory intensive mod-
ules.

Load Information This visualization displays
information regarding the CPU load of each
Coven module call. By looking at which
modules have low CPU load, users can bet-
ter determine which modules to place into
which threads.

Collection of Bargraphs Four additional bar-
graph visualizations are provided which
graph module runtime and auxiliary event
runtime on both a per-processor and total-
system basis. This can be helpful in eas-
ily identifying which modules are most time
consuming and if any auxiliary events are
particularly costly.

A user can customize each visualization at run-
time to focus on specific events they are interested
in. These include looking at specific processors or
Coven threads, examining particular modules, or
analyzing certain Coven internal events such as
TPH queue depths.

4. Multithreading in Coven

Multithreading in Coven means running multi-
ple threads of control on the same processor. We
term theseCoven threads. Each Coven thread
on a processor runs a separate program sequencer
and processes a separate set of modules.

Many new advancements have been added to
Coven to facilitate multithreading parallel pro-
grams. Our test facility uses MPICH[7] as an MPI
implementation. MPICH is currently not thread-
safe, in that threads cannot use MPI calls to com-
municate with other threads. This feature is set to
appear in a later version of MPICH. While some
commercial implementations of MPI are thread-
safe, widely used open source implementations
such as MPICH and LAM-MPI are not.

SHMEM

One Processor

. . .

Program Sequencers
Running

Coven Threads

TPH

Figure 5. Multithreaded Runtime Engine

Figure 5 shows how the original runtime engine
has changed to facilitate multiple threads. As a
TPH flows from one thread to another the Coven
runtime engine determines on which processor
the thread runs and takes care of marshaling the
TPH and transferring the TPH to that thread for
processing. Once marshaled, a signal is sent to the
destination thread signifying a TPH is ready to be
transferred. The TPH is then placed in the output
queue of the current thread and waits there until
it has been accepted for delivery and successfully
sent to its destination.

4.1. Program Language Augmentation

The Coven program writer may specify which
thread a module runs in. A Coven program then
often looks like Figure 6.

The args string is a C-style argument list of
tags. The scatter and gather modules are exe-
cuted in one thread of the master process while
the parallel portion is executed in in two threads.

. . .
thread_A fftw_scatter(args)
PARALLEL {

thread_B fftw_comp_nd(args)
thread_C fftw_transpose(args)
thread_B fftw_comp(args)
thread_C fftw_transpose(args)

}
thread_A fftw_gather(args)

. . .

Figure 6. Thread Portion of Program

In this example the master process has only a sin-
gle thread, Thread A. At runtime the use specifies
the number of parallel processors to use, and on
each one Threads B and C are spawned.

The fftw scatter module partitions a 2D
FFT into partitions for the number of selected
parallel processes. Computation is performed
in the fftw comp nd and fftw comp mod-
ules. Thefftw transpose module is a net-
work intensive component. Results are assembled
on the master processor with thefftw gather
module. The goal here is to achieve an over-
lap between computation and communication by
scheduling these types of modules to run concur-
rently.

To achieve this overlap it is clear that the ini-
tial decomposition must schedule multiple parti-
tions of work on the same processor. In this way,
when the computation portion is complete and
the results are sent to the network communication
thread, another partition can begin processing in
the computation thread. For these types of pro-
grams, Coven provides the multithreaded capabil-
ity in an attempt to achieve benefits from overlap-
ping asynchronous operations.

4.2. Thread Implementation

Coven emulates multithreading by creating
full-weight MPI tasks and scheduling them on the
same processor. As mentioned in Section 2.2,

the Coven program sequencer maintains a user-
configurable number of non-blocking receives
which it uses to accept incoming TPHs to pro-
cess. Therefore, at steady state each Coven paral-
lel task is waiting in anMPI Waitany for any of
the receives (or possibly any non-blocking sends
it has issued) to complete. MPICH 1.2 imple-
ments this method as a busy-wait, continually
checking each request to see if it has completed.
This operation causes the process to consume the
CPU fully. This presents a performance problem
when multiple MPI processes are running on the
same processor, each at steady state sitting in an
MPI Waitany . MPICH2[9] (which is currently
in beta testing) is the next generation version of
MPICH and currently does not busy wait, thus
MPICH2 was used for the results shown here.

4.3. Use of Shared Memory

Coven uses MPI to transfer TPHs between
threads, both on the same processor and on re-
mote processors. Testing showed that for large
buffer sizes there could be a performance im-
provement by using shared memory for transfers
between Coven threads on the same processor.

MPICH can use shared memory between MPI
tasks on the same processor. When a task wants
to send data to another task on the same proces-
sor, buffers are copied out of the source task’s user
space, into shared memory, and then back into the
destination task’s user space. Coven, on the other
hand, uses the shared memory space for creating
and managing all buffers that will be communi-
cated with another Coven thread on the same pro-
cessor. With this approach, Coven saves time by
not performing costly copies of large buffers.

In an effort to demonstrate this feature a sim-
ple Coven program was created with two Coven
threads running on a single processor. Figure 7
shows a screenshot of the TPH Lifetime view of
the Coven Profiler described in Section 3. Each
Coven thread runs a single module and the threads
exchange a TPH back and forth twice. In this ex-

Figure 7. Without Shared Memory

Figure 8. With Shared Memory

ample, the TPH has a 256MB buffer in it. Notice
that after the first module there is a space of 6.5
seconds where no module is executing. It is dur-
ing this time that the TPH is being moved using
MPI between thread 1 and thread 2. The total run-
time for this program takes 33.9 seconds.

Figure 8 depicts the exact same Coven pro-
gram with the Coven runtime engine using built-
in shared memory. By using shared memory here,
the second module begins nearly immediately af-
ter the completion of the first. The total runtime
for this version is merely 14.2 seconds.

The user must specify the size of the shared
memory region for Coven to allocate. Under
Linux, this can be set with thesysctl command
using thekernel.shmmax variable. Addition-

ally, the user can set the maximum size of a buffer
may be in local memory before it is allocated into
shared memory.

Whenever a user requests to create a buffer
Coven determines if that buffer should go into
shared memory or local memory. A semaphore
is maintained between all Coven threads using
System V IPC calls. All attempts to allocate or
free data in the shared memory region are atomic
across the processes. When a TPH is transferred
from one process to the next, Coven determines
if the destination process is local to the sending
process. If it is, all buffers in shared memory are
exchanged merely by passing the pointer to the
shared memory address of the buffer. Memory
management routines are provided for using the
shared memory space.

All shared memory issues are completely trans-
parent to the user. The two sample programs
above differ merely by a flag in the Coven pro-
gram source file stating whether to use or not use
shared memory. While the user has the ability to
tune the values of the shared memory buffer sizes
and maximum local memory buffer size, a default
is provided which rarely needs to be changed.

5. Case Studies

To analyze the performance effects of Coven’s
multithreading capability two sample applications
were implemented in Coven. These applications
were run on a 16 node Beowulf cluster consisting
of nodes with one 1GHz Pentium III processor,
1GB of RAM, and connected by Fast Ethernet.
Each node of the cluster runs Red Hat Linux 8.0,
Linux kernel 2.4.20, and MPICH2 0.93. All pro-
grams were compiled with GCC version 3.2 using
maximum optimizations.

5.1. Synthetic Application

A synthetic application was constructed in an
attempt to look at several program variations and
how they effect multithreaded performance. This

application has a computation phase followed by
a network communication phase. Each phase is
implemented as a module with many tunable pa-
rameters which can be altered without effect on
the other modules. While this is not a realis-
tic application it allows the study of several in-
teresting effects. The program was designed so
that multiple units of work were assigned to the
same processor. In this way, when a thread com-
pleted work on one portion of work and handed
it to another thread it could begin processing the
next unit of work.

Using Coven’s profiler the CPU utilization of
each module was analyzed. To determine the load
each module placed on the CPU, Coven divides
the total amount of time a module was scheduled
on the CPU by the total amount of wall clock time
that passed during the execution of the module. It
was found that modules which load the CPU be-
low about 60% were good candidates for placing
into threads that run concurrently with other mod-
ules.

Additionally, the optimum performance was
seen when a pipeline could be generated where
the modules which ran in the pipeline did so for
approximately equal amounts of time. The syn-
thetic application was tuned in this way and the
timings of the program runs can be seen in Ta-
ble 1. The fourth column depicts the percentage
improvement that using multiple threads was able
to achieve. The gain ranges from about 24% to
28% for this application. The performance drops
in the higher number of processors case due to
the network communication phase increasing its
load on the CPU. In particular, for this applica-
tion the load for the communication module grew
from 30% in the 2 processor case to 35% in the
16 processor case. Timings for 1 processor are
not given since to do this study, interprocess com-
munication was required.

Figure 9 shows a profiler screenshot of the sin-
gle threaded version of this application running
on 5 processors (1 master process and 4 slave pro-
cesses). The computation module alternates with

Table 1. Synthetic Application Timings

Procs # Threads Execution % Improv.
Time (secs)

2 1 231.81 -
2 2 167.42 27.7%
4 1 117.08 -
4 2 85.82 26.7%
8 1 59.15 -
8 2 44.06 25.5%
16 1 32.42 -
16 2 24.61 24.1%

Figure 9. Synthetic Application Single-
threaded

the communication module and it can be seen that
the blocks take approximately the same amount of
time.

This same application was placed into mul-
tithreaded mode by simply changing the Coven
program language source file. A resulting pro-
filer screenshot appears in Figure 10. In this case,
the computation module ran in one thread while
the communication module ran in another thread.
Data passed between the two threads in a regu-
lar pattern. The total runtime of the application
dropped from 117.08 seconds to 85.82 seconds,
an improvement of 26.7%.

The balance between execution time and CPU

Figure 10. Synthetic Application Multi-
threaded

load of modules is important for determining un-
der which threads modules should run and if the
application will even benefit from multithreading.
With careful balance, on this architecture Coven
can provide a performance improvement to an ap-
plication of about 25%.

5.2. 2D Fast Fourier Transform

For a second application the 2D Fast Fourier
Transform (FFT) was chosen. The 2D-FFT is
used in a many applications and is often consid-
ered representative of workloads that operate on
matrices that are distributed across the nodes of a
parallel machine.

In an additional effort to demonstrate the sim-
plicity of porting an existing application to Coven,
an existing FFT library was linked in to Coven
and a series of modules were created using it to
perform a 2D-FFT. The Fastest Fourier Transform
in the West (FFTW)[6] was developed by MIT
and is considered one of the fastest FFT imple-
mentations available. The FFTW is open source
and portable, unlike many vendor implementa-
tions. Complex double-precision floating-point
numbers are used in the version considered here.

This algorithm is composed of the following
four steps:

 0

 1

 2

 3

 4

 5

 1 2 4 8 16

S
pe

ed
up

Number of Processors

Ideal
FFTW
Coven

Figure 11. FFT Speedup - Coven vs. FFTW

• compute the 1D-FFT for each row

• transpose the matrix (redistribution of data)

• compute the 1D-FFT for each row

• transpose the matrix (redistribution of data)

These steps were translated directly into Coven
modules, each containing no more than 3 lines of
calls to FFTW libraries. The FFTW provides an
MPI parallel implementation and this was used as
a comparison application in these tests.

Firstly, a relatively small 4,000 x 4,000
2D-FFT was processed in parallel to compare
the FFTW native implementation versus FFTW
wrapped in Coven modules. Coven imposed an
overhead between 1% to 5% of the total runtime
for this application. Figure 11 shows the speedup
curve for this application.

Next, a large 10,000 x 10,000 2D-FFT was con-
sidered. The resulting parallel portion of this FFT
is too large to run on a small number of nodes on
our system and so 8 and 16 nodes were chosen for
testing. First, a single FFT was processed using
FFTW and also a port of the application running
in Coven. The results are shown in the first two
rows of Table 2. Coven imposed an overhead of
6.6% in the 8 processor case and 5.1% in the 16
processor case.

Next, 3 FFTs of 10,000 x 10,000 size were pro-
cessed. The timings for the single FFT case using

Table 2. 10,000 x 10,000 Element FFT Timings

8 Procs. 16 Procs.

1 FFT - FFTW 63.7s 42.9s
1 FFT - Coven 68.2s 45.2s

3 FFTs - FFTW
Back-to-Back 191.1s 128.7s
Concurrent 173.2s 111.6s

Improvement 9.3% 13.3%

3 FFTs - Coven
1 Thread 204.0s 137.1s
2 Threads 161.1s 105.2s

Improvement Over
Back-to-Back FFTW 15.7% 18.2%
Improvement Over
Concurrent FFTW 7.0% 5.7%

FFTW was tripled to get the resulting time in row
3 of Table 2. Three separate instances of FFTW
were then spawned concurrently in an attempt to
let the operating system try and overlap computa-
tion and communication. The results are shown in
row 4 of Table 2 which produce an improvement
of between 9.3% and 13.3% over running 3 FFTs
of this size back to back using FFTW.

Finally, Coven was used to process the 3 FFTs.
First, in the single threaded case row 6 of Table 2
shows that Coven performs more poorly than ei-
ther approach using FFTW. However, when 2
threads were used in Coven, rows 7 and 8 of Ta-
ble 2 show an improvement of between 15.7%
and 18.2% over the back-to-back execution of 3
FFTs in parallel and between 5.7% and 7.0% over
concurrent execution of 3 FFTs using FFTW.

Concurrently running multiple FFTW MPI par-
allel programs seems like a simple solution to pro-
cess multiple FFTs but it has some drawbacks.
For instance, while the operating system does an
acceptable job of scheduling 3 FFTs concurrently,
it is unlikely to handle 10 with the same effi-
ciency. Furthermore, insufficient memory prob-

Figure 12. FFT Application Single Threaded

lems are likely to surface with this many large
FFTs. Coven, on the other hand, uses a queue sys-
tem described in Section 2.2. With this approach,
the user can set it so that no more than 3 FFTs
are being processed concurrently. Therefore, as
one exits the system and the memory associated
with it is freed, Coven can begin processing an-
other FFT. The FFTW MPI implementation could
be augmented to do something similar, however
once an application is written in Coven, the pro-
grammer gets these features automatically.

The FFTW Coven application did not perform
as well as the synthetic application. The reason
for this is that the computation phase for this size
2D-FFT takes 5 seconds, while the communica-
tion phase takes nearly 30 seconds. This 1 to
6 ratio is no nearly as balanced as was the syn-
thetic application. It is this reason that the FFTW
Coven application does not approach the higher
performance increases that are possible when us-
ing Coven’s multithreaded capabilities.

Figure 12 contains a screenshot of the profiler
for the 8 processor, single threaded version of this
Coven application. The small blocked regions are
the computation modules while the much wider
regions are the communication modules.

Figure 13 contains a screenshot of this applica-
tion running in multithreaded mode under Coven
on 8 processors. After the first FFTs computation
module, the FFT is handed to the second thread

Figure 13. FFT Application Multithreaded

which begins a parallel transpose. The transpose
operation on the multithreaded version takes be-
tween 33 and 34 seconds which is around 10%
longer than the single threaded version. However,
during this time the other two FFTs complete their
1-D computation. This overlap allows the appli-
cation to achieve the performance gain described
above.

Through careful scheduling of which modules
execute concurrently, the multithreaded Coven
version of the FFTW application was able to per-
form better than the naive execution of multiple
FFTW MPI programs concurrently. Rather than
have 3 FFTs competing for the CPU to perform
computations concurrently, Coven lets one FFT
get to the communication phase before it lets an-
other into the computation phase.

6. Conclusions and Future Work

Many improvements have been made to Coven.
Some improvements help the programmer by
making applications easier to develop and de-
bug while others make applications perform bet-
ter. Multithreading parallel programs can lead to
improved performance but requires applications
which contain portions of code which release the
CPU while waiting on an operation to complete.
Network communication and disk I/O are two ex-
amples of such operations. If these phases are suf-

ficiently lengthy so that another task can accom-
plish some work concurrently, then performance
benefits can be seen.

It was shown that a performance gain of around
25% can be achieved using Coven’s multithread-
ing capabilities if the application contains a bal-
ance between modules that load the CPU and ones
that utilize the processor considerably less while
waiting on an operation to complete. A powerful
FFT library was easily wrapped in Coven mod-
ules and achieved between a 5.7% and 18.2% im-
provement in performance.

Problem solving environments and runtime
systems generally add some sort of overhead to
applications implemented in them over a conven-
tionally coded application. However, if the sys-
tem can provide optimizations or features which
are easy to use yet would be complex for the pro-
grammer to implement in every application, then
more application developers would seek to use
these sorts of environments.

In the future, additional optimizations will be
looked at to see if Coven can transparently pro-
vide a way for programmers in this environment
to gain increased parallel program performance.

7. Acknowledgments

This work was supported by the ERC Program
of the National Science Foundation under Award
Number EEC-9731680. Any opinions, findings,
conclusions, or recommendations expressed in
this material are those of the authors and do not
necessarily reflect those of the National Science
Foundation.

References

[1] Anthony Chan and William Gropp and
Ewing Lusk. User’s Guide for MPE: Ex-
tensions for MPI Programs. http://www-
unix.mcs.anl.gov/mpi/mpich/docs/mpeman/mpeman.htm.

[2] R. Armstrong, D. Gannon, A. Geist, K. Keahey,
S. Kohn, L. McInnes, S. Parker, and B. Smolin-

ski. Toward a Common Component Architec-
ture for High-Performance Scientific Comput-
ing. In Proceedings of the 1999 Conference
on High Performance Distributed Computing,
pages 115–124, 1999.

[3] J. de St. Germain, J. McCorquodale, S. Parker,
and C. Johnson. Uintah: A massively parallel
problem solving environment. InNinth IEEE
International Symposium on High Performance
and Distributed Computing, pages 33–41. IEEE,
Piscataway, NJ, Nov 2000.

[4] N. A. DeBardeleben, W. B. Ligon III, S. Pan-
dit, and D. C. Stanzione Jr. Coven - a frame-
work for high performance problem solving en-
vironments. InProceedings of the 11th IEEE
International Symposium on High Performance
Distributed Computing (HPDC-11 2002), pages
291–298, Edinburgh, Scotland, UK, July 2002.
IEEE Computer Society.

[5] N. A. DeBardeleben, W. B. Ligon III, and D. C.
Stanzione Jr. The Component-based Environ-
ment for Remote Sensing. InProceedings of
the 2002 IEEE Aerospace Conference, pages 6–
2661–6–2670, March 2002.

[6] M. Frigo and S. G. Johnson. FFTW: An adaptive
software architecture for the FFT. InProceed-
ings of International Conference on Acoustics,
Speech and Signal Processing, volume 3, pages
1381–1384, Seattle, WA, May 1998.

[7] W. Gropp, E. Lusk, N. Doss, and A. Skjellum.
A high-performance, portable implementation
of the MPI message passing interface standard.
Parallel Computing, 22(6):789–828, Sept. 1996.

[8] C. Johnson, S. Parker, D. Weinstein, and S. Hef-
fernan. Component-based problem solving en-
vironments for large-scale scientific comput-
ing. Journal on Concurrency and Computa-
tion: Practice and Experience, (14):1337–1349,
2002.

[9] MCS Division, Argonne National Lab-
oratory. MPICH2. http://www-
unix.mcs.anl.gov/mpi/mpich2.

[10] J. Rasure and S. Kubica.The Khoros Appli-
cation Development Environment. Khoral Re-
search Inc., Albuquerque, New Mexico, 1992.

[11] C. E. Wu, A. Bolmarcich, M. Snir, D. Wootton,
F. Parpia, A. Chan, E. Lusk, and W. Gropp. From

trace generation to visualization: A performance
framework for distributed parallel systems. In
Proc. of SC2000: High Performance Networking
and Computing, November 2000.

