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ABSTRACT

Evaluating the capabilities of computer hardware has historically been a subjective and

controversial subject. The following thesis will present an overview of the I/O needs of

parallel programs, describe what systems are in place to meet those needs, and propose

an extensible framework that gathers information from an underlying parallel filesystem

to aide in the evaluation of such systems. The high performance cluster computing world

has a large range of applications that have a large range of I/O needs. From scientific

researchers who need to perform large out-of-core simulations, to engineers who need to

store large datasets, there are many ways that I/O needs differ. Consequently, the tools

used to evaluate existing systems are also quite dissimilar. In order to evaluate a parallel

filesystem, it is necessary to understand what the needs of an application are. Only then

can performance information be gathered and evaluated. The following text will propose a

suite of access pattern benchmarks that are representative of the needs of many parallel I/O

codes and attempt to reduce the degree of subjectiveness in choosing a parallel filesystem

to meet the needs that parallel applications typically have.
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Chapter 1

Introduction

Over the past few years, high performance computing has moved away from expensive,

monolithic systems and moved toward the commodity “pile-of-pc’s” approach [1]. This

technique of using many workstation class machines with a high speed interconnect has

essentially lowered the barrier of entry to high performance computing. In addition to the

use of lower cost hardware, the “open source revolution” [10] has contributed to the growth

of high performance cluster computing. Linux and a multitude of programs released under

the GNU license have provided a low cost infrastructure which has encouraged this growth.

Beowulf clusters are large groups of workstation class computers that attempt to par-

allelize large tasks by having each node work on a separate part of a very large problem.

One node is designated as the “head node” which is where users typically launch jobs. The

other nodes, which are referred to as slave nodes, are connected to the head node and the

other slave nodes through a high speed network. In theory, adding more nodes to a cluster

will increase the amount of work that can be done per unit time. However, there are many

scalability issues that must be taken into account by those who write applications, as well

as systems software programmers.

The birth of high performance cluster computing, while allowing wider access to com-

puting resources, has also led to the need for a large amount of systems software. Since
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each node in a cluster has its own separate memory and disk systems, there are a number of

issues involved in trying to make these areas appear as though they were one unified system.

Operating systems that manage resources in the traditional Von Neumann architecture pro-

vide a number of features such as process control, memory management and disk I/O [6].

In the cluster environment, these mechanisms have developed over time. Whether these

mechanisms have been addressed through formal specifications (such as message passing)

[17] or through a more ad hoc process, there is a large amount of research that is ongoing

in this area.

As systems software emerges to handle the resource management issues that are in-

volved with operating a Beowulf class machine, it is necessary to have some way to eval-

uate their performance. Without a means to measure different implementations of systems

software, vendors have no authoritative way to assert that their implementation is more

effective, and systems administrators are left without a clear idea of which tools best meet

their needs. Having a way to evaluate the performance of systems software is important in

all areas of parallel computing.

1.1 Parallel I/O

One of the important areas of research involving cluster based systems is the filesystem.

Instead of a many small segmented storage regions, it is more convenient for users to access

the aggregate disk space of all nodes in a cluster through one global namespace. The key

idea here would be that the underlying file system has to somehow split up data and figure

out how to store it on some set of nodes such that any other node can access it, and that these

accesses are speedy. This process of splitting up a file and distributing it across multiple

nodes in a cluster is known as “de-clustering.”

There are a number of parallel filesystems which provide this global namespace and

store data on multiple nodes. Some filesystems aim to provide high performance, while
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others aim to provide fault tolerance and high availability. While both approaches solve the

unified namespace issue, there is still the performance issue that needs to be addressed.

Evaluating performance of a parallel filesystem is not a straightforward task. Determin-

ing how to time events in a distributed memory machine can be troublesome due to the fact

that each node may not share the same clock. Varying propagation delays (due to topology)

and heavy utilization may cause barrier synchronizations to take a non-uniform amount of

time to complete. In addition to figuring out how to time events, it must be decided what

events should be timed in order to get a realistic view of the performance of the system on

the whole.

That being said, the only way to get an accurate idea of the I/O performance of any

system would be to run actual application code on a given system. Synthetic benchmarks

can provide some knowledge about overall performance, but obviously, running the target

application code is the only way to know exactly how well a system will perform.

1.2 File access APIs

In order to access any file on a parallel filesystem, it is necessary to have some set of

functions to manipulate files. When dealing with traditional block device filesystems, the

POSIX interface provides a set of functions for input, output, and metadata manipulation

[11]. While parallel I/O can be achieved through creative use of the POSIX interface, there

are file access APIs designed specifically for parallel I/O.

MPI-IO

One such interface is the MPI-IO standard that was described as part of the MPI-2 specifica-

tion [7, 18]. MPI-IO aims to provide a layer of abstraction for I/O and to ensure portability

across multiple architectures and filesystems. Like POSIX, MPI-IO supports the idea of

file handles, and seeking. However, MPI-IO also introduces several new concepts related
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to file access. MPI-IO provides the concept of a “File view” where the caller can specify a

virtual “view” of a file, and transparently access some set of bytes in a file without explic-

itly moving the file pointer. MPI-IO can provide behind the scene optimizations to coalesce

smaller accesses into large contiguous reads or writes. One such optimization is known as

data sieving [32]. It is also possible to provide “hints” to the MPI-IO implementation in

order to specify a communication strategy. If the MPI-IO implementation has knowledge

about the type of access beforehand, it may be able to reduce the number of intermediate

buffers it uses.

Essentially, MPI-IO provides a portable set of file access functions that provide many

capabilities to efficiently access files on parallel filesystems on a variety of systems.

Other parallel-I/O APIs

In addition to the MPI-IO specification, there are other parallel I/O standards that are used

by scientific and engineering applications. While there are a number of parallel I/O APIs

for manipulating data, many of them are built on top of MPI-IO. Since these APIs call

MPI-IO functions, any performance slowdown would be introduced by that API and not

the filesystem. These APIs are a valuable resource to see how parallel codes interact with

files. Instead of viewing files as a single linear array of bytes, they provide alternate de-

scriptions of files. Namely, they can model multi-dimensional datasets, and provide object

view capability.

1.3 Benchmarks for parallel I/O

The goal of benchmarking a parallel filesystem is to gain a complete idea of the I/O capa-

bilities of a system. As such, a benchmark should imitate the needs of a set of programs

for which the system is to be used. It is necessary to get an idea of the common I/O

needs of a parallel application, and how they are typically met on a distributed memory
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machine. How do the applications interact with files? Are they writing large buffers or

small ones. Are they accessing non-contiguous regions on disk? Is the application access-

ing non-contiguous regions in memory? What is the stride distance in the file between

consecutive accesses? What type of access pattern does a given application use? These are

only some of the questions that must be addressed in the design of a parallel I/O bench-

mark. These access pattern descriptions are key. Spatial access patterns as well as temporal

access patterns will be examined.

While there are a number of MPI-IO benchmarks to test parallel I/O, they typically

have dissimilar reporting mechanisms, as well as dissimilar timing mechanisms. Many of

the MPI-IO benchmark codes also do not get enough coverage due to a limited selection

of access patterns. While it is not necessary to implement a benchmark that covers the

entire set of possible access patterns, it is necessary to provide enough different patterns to

ensure that an accurate picture of the I/O capabilities of a parallel filesystem is returned.

In addition to a representative collection of access patterns, standardized timing and re-

porting mechanisms must also be used. Results that are not standardized and not directly

comparable to each other are obviously not helpful in evaluating I/O performance.

After a large selection of results has been gathered, it is necessary to have a framework

to interpret these results. Any tool that performs interpretation will have to exercise care in

weighting results. That is why such a framework for interpretation should merely highlight

results from the slew of results that will be returned. This type of weighting will ultimately

depend on the overall I/O needs of the specific system being evaluated. For example, if the

system under evaluation testing needs to be used to store large datasets for an out-of-core

application, the access patterns that best describes that particular simulation would need to

receive the most attention.
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1.4 Approach

With a range of possible parallel filesystems and I/O needs, it is necessary to have some way

to evaluate performance. A benchmark should provide a mechanism to gather information

about the I/O capabilities of a system, and be able to compare these results. While there

are some existing parallel benchmarks, they do not provide enough coverage in terms of

commonly used access patterns. This document will propose standard tests and procedures

for evaluating parallel I/O performance, provide a tool that automates workload simulation

with a variety of access patterns, and examine the issues inherent in evaluating I/O per-

formance. Our thesis is that the proposed standards and tool will provide a comparable,

portable, comprehensive, and objective evaluation of a parallel filesystem. The standards

that this benchmarking tool will be measured against are described in detail as follows:

� Comparability: It is key that the results taken from one system can be compared to

other systems. While not all access pattern variations are comparable to each other,

it is possible to compare performance of a certain access pattern on one system to

its performance on a different system. Comparability not only denotes the ability to

compare two distinct parallel filesystems, but to compare configuration options and

optimizations within a single parallel file system. For example, system administrators

would be able to use such a tool to explore the effects of changing the number of I/O

servers, striping sizes, or caching mechanisms. The use of standardized reporting

and timing will aid in the comparability.

� Portability: While the target of this benchmark is distributed memory Linux clusters,

it should be possible to run this tool on any machine that has a C compiler and

supports message passing. The use of these two standards are very important in

maintaining portability. By portability, we also intend for this evaluation tool to be

able to operate in a heterogeneous environment. Portable standards and interfaces

will be key in facilitating this.
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� Comprehensiveness: A multitude of access patterns will be available to ensure that a

maximum amount of information is available about the performance of a filesystem.

While it may not be possible to implement every widely used access pattern imme-

diately, the framework that we have established will allow for rapid development of

new access patterns as application programmers describe them. Standardized report-

ing mechanisms are one area that parallel evaluation tools have been lacking in the

past. In addition to simply displaying the throughput rates for a given transfer size, it

would be beneficial to have some way to highlight the access patterns that are more

relevant to a particular application. In addition to having a large collection of access

patterns, it should be easy to add new access patterns to this system. Modularity is

important as a means of achieving a large amount of comprehensive results. It should

be relatively simple to add an access pattern given a high level understanding of how

the file access is occurring. Presenting a cohesive model for I/O manipulation will

be important to rapidly adding new access patterns.

� Objectivity: This tool will provide a mechanism for the end user to independently

verify the vendor claims about the performance of a filesystem. Being able to ma-

nipulate filesystem parameters to gauge performance trends is important as is any

weighting done to judge the performance of one system relative to another. This tool

will be released to the community with the source under the GNU license should

independent parties wish to verify any weighting algorithms.

We hope that this standard will be a significant contribution to the community. The

implementation of this standard is necessary for the following reasons:

� Existing access pattern coverage in benchmarks is insufficient: While there are a

number of parallel I/O benchmarks, there needs to be more access pattern coverage

such that the most possible amount of information can be retrieved.
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� Vendors claims need independent verification: While it is useful for vendors to

describe the capability of their system software, there should be a tool available to

the public that allows these tests to be repeated by a client, on their system at their

convenience.

� I/O system tuning is dependent on the client’s needs: Depending on the applica-

tion that must run on any given system, there will be options that can be tuned to

cause that application performance to vary. The optimal settings may not be imme-

diately apparent, and this tool aims to help make subtle changes more obvious.

The tool that will be developed to meet these requirements will be able to gather a

wide range of results from a number of access pattern workloads. While performance data

can be obtained, there is still a large amount of interpretation that will need to be done

to obtain useful information about the performance at each data point. For example, it

may be possible to reduce the amount of data returned to the user to a simplified ranking.

Similarly, it may be possible to reduce the large amount of information that is gathered to

a single ranking, or classification across a category of workloads. This type of analysis of

performance data opens many questions and is will be left open for future works to explore.

Further suggestions for possible directions of analysis will be presented in the future works

section.

1.5 Thesis outline

In chapter two, this document will present an overview of the past approaches taken to

benchmark parallel I/O systems, present studies that have analyzed application needs from

a filesystem perspective, present a collection parallel filesystems that introduced new ideas,

and discuss parallel I/O abstraction trends. Chapter three will present the design of this

benchmarking standard; namely, how the design is modular and what common access pat-

terns will be studied. Chapter four will present the results of each access pattern on a
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testbed running PVFS, and discuss the effectiveness of each access pattern, against the

known characteristics of PVFS. Chapter five will examine how the results of the analyza-

tion matched up with the goals set forth in section 1.4 as well as presenting ideas for future

exploration of this subject.



Chapter 2

Background and related work

2.1 Performance evaluation of computer resources

Being able to characterize the speeds of various computer systems critically and objectively

is the basis of performance evaluation. Rating computational abilities proves to be useful

for both users and vendors of computer systems. However, benchmarking has tradition-

ally been troublesome for several reasons. Correct behavior, timing/gathering data, and

workload simulation accuracy are several areas that have spawned disagreement.

Much conjecture exists due to the difficulty in obtaining accurate data for a synthetic,

portable benchmark. There have been many benchmarking efforts that have attempted

to classify general performance of computing systems. Some of the well known general

efforts are SPEC [31], Linpack [13], and the NAS Parallel Benchmarks [21]. Each of these

benchmarks has a similar goal in mind: to gather data from a computing system because

“...an ounce of honest data [is] worth more than a pound of marketing hype” [31].

The approaches of these benchmarks differs widely depending on what they are measur-

ing. Some systems are a sequence of multiple micro-benchmarks [21, 16, 31], while others

are one large monolithic benchmark that incorporate multiple facets of a single problem

[13]. In addition to incorporating multiple micro-benchmark tests, many benchmark suites
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attempt to ensure that the functionality they are timing is something an application would

commonly do. Since all of these synthetic benchmarks simulate specific system loads it

is important that they do things that real world applications commonly do. While these

benchmarking efforts may not directly stress I/O subsystems, the approach they take to-

ward timing and reporting strategies will be useful in designing a parallel I/O benchmark.

2.2 Evaluation of serial filesystems

When evaluating I/O performance of a serial filesystem, the characteristics of this per-

formance usually resembles that of the underlying physical drive on which the filesystem

resides [25]. Access times and bandwidth vary due to the specifications of the physical

drive mechanism. Sequential access is typically quite fast due to the fact that the hard drive

head moves in a sequential manner over the platters of the physical disk. This type of serial

access is fast because that is how the drive retrieves bytes from the physical device. This

has resulted in a number of I/O benchmarks that essentially test physical disk performance

instead of filesystem performance [25]. Serial disk benchmarks are good tools for deter-

mining the performance of serial filesystems; however, these benchmarks tend to ignore

concurrent file access altogether. The plethora of serial filesystem benchmarks do not take

into account the ways that file access must be different on a parallel machine in order to

efficiently access data in parallel.

It is in this respect that serial filesystem benchmarking tools are inadequate and unable

to simulate a parallel workload which a typical parallel application may provide. Therefore,

any tool that simulates parallel I/O must take into account the methodology that parallel ap-

plications use to access files. Determining a “typical application” and a “typical workload”

is not an easy task. Since there are some similarities in how parallel codes interact with

files, it is possible to classify load in terms of access patterns. These access patterns can
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help describe which regions of a file certain processes wish to access. Each access will be

a sequence of reads or writes.

In addition to actual I/O, There is a metadata component that serial filesystems explore.

Creating directories, retrieving statistics about a file, truncating files, and deleting files are

all things that a parallel application may do. As such, these actions are also candidates to

be timed.

2.3 Existing parallel filesystem benchmarks

There are several existing parallel benchmarks that profile I/O performance on distributed

memory machines. Some benchmarks incorporate a wide range of access patterns, while

others simulate specific workloads. The following sections will introduce a few prominent

existing benchmarks.

2.3.1 b eff io

The “Effective I/O Bandwidth Benchmark” (b eff io) brings together several file access

patterns and examines the time that it takes to transfer data from a location in memory, to a

location in a file. This benchmark classifies the parameters that a parallel benchmark may

encounter into six distinct groups: application parameters, usage aspects, programming in-

terface, access methods, filesystem parameters, and statistical aspects [25]. According to

the b eff io benchmark, application parameters can be classified by things such as the way

data is organized into memory (contiguous/non-contiguous), the way data is to be written to

or read from file (contiguous/non-contiguous). Size of memory pages, size of disk blocks,

and the distribution of those blocks also fall into this category. Usage aspects involve the

number of processes used, as well as if a process is multi-threaded. The programming

interface aspect involves the choice of file access API. The b eff io benchmark uses MPI-

IO “...because it should be a portable interface of an optimal implementation on top of
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POSIX I/O or the special filesystem I/O.” [25]. The b eff io paper continues by stating

that the choice of MPI-IO as a file access API also brought up many peripheral file access

issues such as whether to use explicit offsets versus implicit offsets. Also, file locking and

asynchronous I/O were areas that were examined while they implemented their code. The

filesystem parameters classification that they define covers things such as the the number

of I/O servers, how much data is stored in a striping unit on a server, and the physical disk

block size that the I/O server uses. This benchmark also explores the issues involved in

gathering meaningful data based on statistical normalization and how multiple test runs

should be averaged together. The b eff io benchmark goes on to state that they are provid-

ing a snapshot of overall performance based upon the “coffee cup rule” (the benchmark’s

execution time should be relatively short; roughly the same amount of time to brew a cup

of coffee) [12]. They sample many important patterns, but only run enough of each pat-

tern to record the time necessary to transfer the entire contents of system memory to a file.

Many of the ideas about standardization through MPI-IO and access pattern descriptions

presented in this benchmarking effort are significant due to their novelty. However, adding

new access patterns to their framework was found to be troublesome by this author.

2.3.2 IOR

The next parallel I/O benchmark that will be examined is called IOR, which stands for

“Interleaved or Random.” It was developed at Lawrence Livermore National Laboratory

and is available in POSIX and MPI-IO flavors. IOR reads and writes contiguous buffers to

non-overlapping areas of a file [34]. At the time of this writing, the IOR web page states

that all random access has been removed from the IOR benchmark. The control flow of

IOR is as follows: a test file is created, data is written by each process at some offset into

the file, the data is then read back by a different process, the file is deleted, and throughput

information is returned. IOR provides the ability to repeat a given set any number of times,

as well as vary a number of block sizes via environment variables. IOR is different from
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b eff io in that it only tests one access pattern while b eff io tests a range of access

patterns. Also, b eff io tests a tiny amount of the access pattern, while IOR reads or

writes potentially large files, and this may take a long time to complete. Additionally, IOR

offers both POSIX and MPI-IO implementations. POSIX views files primarily as a stream

of bytes, while MPI-IO offers mechanism that allow regions of files to be represented as a

datatype transparently. Even though it is possible to provide a workload that corresponds

to a given access pattern by both methods, maintaining two versions of a benchmark that

essentially do the same thing seems repetitive.

2.3.3 mpi-tile-io

In addition to b eff io and IOR, mpi-tile-io is a benchmark that is stresses the I/O system

of distributed memory machines to simulate the needs of a real application. The mpi-

tile-io benchmark provides a workload where each process accesses a “virtual tile.” This

benchmark simulates the workload that large visualization programs provide when they

need to break up one large scene across multiple monitors (like in a video wall). Each

process is assigned a tile region to access, and accesses contiguous data in a sequential

manner. Obviously, the name of mpi-tile-io indicates that the file access API in use is

MPI-IO, and that it reads or writes tiles that are logically distributed throughout a file.

This benchmark does not explicitly dole out regions of access for each process, but lets

MPI choose the tile region which is most efficient for a given process to access [20]. This

benchmark heavily relies upon the use of complex MPI datatypes to accomplish its file

access.

2.3.4 Summary of past parallel benchmarks

Each of these benchmarks present new ideas that showcase a number of benchmark design

decisions. Using these benchmarks as an example, it would be advantageous to understand

why certain design decisions were made, so that one can come away with an understanding
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of how parallel workloads are typically measured. Common themes that are important

would be the reliance upon a standard API to perform I/O, the idea of a pattern of access,

and the repeated element of work that occurs multiple times and should be timed. However,

each of these benchmarks approaches timing differently. Timing events in a distributed

memory machine is troublesome due to propagation delay between nodes, as well as the

fact that each node uses an independent clock. Since these separate physical clocks may

drift or become inaccurate over time, timing is a component that needs to be addressed

carefully. The fact that each of these benchmarks handles timing differently is noteworthy

given that its such an integral part of benchmarking.

2.4 Parallel file systems

There are a number of parallel file systems that exist. This section will give a high level

overview of several parallel filesystems. Each of the following parallel filesystems has

presented new ways of solving the problems that parallel I/O presents:

� Vesta: The Vesta filesystem uses subfiles to achieve parallelism. For each file that

exists, there are a number of subfiles that describe portions of that file. In the Vesta

world, metadata for a file describes the mapping of the physical data contained in

a subfile to its corresponding location within the logical file that it comprises. [2].

Vesta attempts to break away from the notion of physical blocks and refers to one

or more physical blocks of a file as a “cell.” At the application level, Vesta also

offers the ability to view a file in a two-dimensional view. This is accomplished by

manipulation of the subfiles.

� Galley: While the Galley filesystem also operates with the idea of subfiles, each

subfile is managed at a higher level by an object called a fork. Forks provide an

abstraction that Galley uses to aid in the management of subfiles. For example, it

would be advantageous to group certain regions of files together depending on the
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type of access pattern that will be used to read or write data. This grouping mech-

anism optimizes accesses as requests arrive [23]. The Galley filesystem relies upon

the client/server model where each process is designated as an I/O processor or a

compute processor. The compute processors are clients and the I/O processors are

servers. The compute processors submit I/O requests to the I/O processors as needed.

The compute process interacts with the subfiles and forks directly.

� Lustre: The Lustre filesystem consists of Object Storage Targets(OST), Metadata

Servers (MDSs), and the Lustre Client File System. Each Lustre filesystem runs 2

MDSs: a primary and a fail-over. The MDS component handles metadata and lock-

ing, while the OST component handles actual file I/O. The Lustre Client which must

be loaded on each node that is performing access will contact either the MDS to per-

form metadata operations, or contact a set of OSTs. The client does this through an

abstraction layer called the Logical Object Volume Driver(LOV). The LOV driver

maintains fault tolerance in I/O operations by switching over to an OST with repli-

cated segments of a file [14].

� xFS: As part of the “Network Of Workstations” (NOW) project at The University of

California at Berkley, several researchers designed a distributed, parallel filesystem

called xFS [15]. The xFS paper [36] describes a distributed filesystem that is targeted

for use on Wide Area Networks. Since network topology dictates where servers

must run due to their bandwidth resources, this filesystem has a good deal of caching

implemented to save time on data transfers. Data is only written “on demand” [36]

which results in less bytes transfered when there is only one writer, but can result

in slower throughput in false sharing cases [15]. While xFS is more of a distributed

filesystem than a parallel one, the ideas that are presented with regards to client side

caching are novel and interesting.
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� GPFS: This filesystem is the enterprise cluster filesystem written by IBM for dis-

tributed memory Linux clusters [29]. Originally designed to run on the IBM SP [3],

this filesystem has been ported to distributed memory clusters of workstations. GPFS

achieves parallelism and high throughput by striping file segments across multiple

I/O servers [9].

� The Parallel Virtual File System: PVFS consists of 3 major components: the I/O

daemon (IOD), the Manager daemon (MGR), and a client side access library. The

MGR provides the metadata component of the filesystem. It is the ultimate authority

for everything that has to do with permissions, attributes, or directory/path informa-

tion. Strips of a file are stored on each IOD according to a striping parameter that is

provided at the time the file is created. The size of these strips is defined at compile

time. The IODs service I/O requests and provide any sections of the file that may

reside within regions that they hold. On the client side, depending on whether an

application is accessing a PVFS file via the optional kernel interface, or through the

PVFS client library, the PVFSD client side daemon may or may not be used. The

optional kernel interface uses the PVFSD client side interface, but it is possible to ac-

cess PVFS files directly without incurring the overhead of going through the kernel

[5]. PVFS stripes file segments across each IOD in the system in a round-robin dis-

tribution. Striping parameters are defined on a per file basis at creation time and may

not be changed. In addition to explicit control over striping, PVFS offers a mecha-

nism to access files in a simple strided access pattern via the client library [28]. This

feature allows a client application to make one request to read non-contiguous areas

of a file.
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2.5 Characterizations of workloads

Now that several parallel filesystems have been introduced, we must understand the work-

load that they will be asked to bear. There have been number of studies that attempt to

characterize the workload of parallel applications, and this section will highlight a few of

them.

2.5.1 The scalable I/O initiative

The scalable I/O initiative was an early attempt to characterize the I/O needs of parallel

applications. According to their publications [4, 8, 26], they sampled applications that

performed simulations in Biology, Chemistry, Earth Sciences, Engineering, Graphics, and

Physics [8]. According to Reed et al. [26] the source code of many applications was

analyzed and profiling information was gathered with the use of the Pablo performance

analysis environment. Through the use of the Pablo trace library, information was gathered

about what requests were made as well as the sizes of those requests. Although much infor-

mation was gathered, it is stated in [4] that there was too much variation in the spatial and

temporal access patterns as well as the access sizes by each of these applications to come

away with useful optimization information. However, it was interesting how they distin-

guished between spatial access patterns and temporal access patterns. This differentiation

between the relationship of the physical mapping of readers and writers to various physi-

cal locations in the file, and the relationship between accesses that are separated by time

is interesting due to the cyclic behavior of the spatial access pattern, and the intermittent

nature of the temporal access pattern. Essentially, they concluded that the applications they

studied made regularly spaced accesses to specific locations in a file, but that those requests

were made in an intermittent and non-regular manner with regards to time. Due to this ir-

regular nature of the IO requests, they suggest a reactive mechanism to handle prefetching

and cache data in order to improve performance [4].
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2.5.2 CHARISMA

The CHARISMA project was another attempt to characterize the workloads of a parallel

I/O systems. As part of the project, Nieuwejaar, Kotz, et al. recorded specific data relating

to the number, size, and types of I/O requests for various scientific applications on the CM-

5 and Intel iPSC/860. They divided all the applications that were tested into 3 divisions:

General workload, Scientific vector applications, and Scientific parallel applications [24].

Their work breaks down some of the common access patterns that many scientific appli-

cations used to interact with the filesystem. The first access pattern that they recognized

was dubbed “Simple strided” [24]. They go on to state that many of the applications they

studied actually used sequential access, which can be mathematically decomposed to the

simple strided access pattern. With a stride distance of the strip size, a simple strided ac-

cess pattern essentially becomes sequential access (see figure 3.5 in section 3.4). Secondly,

they go on to define “Nested strided” which may have any number of simple strides as the

internal access inside a stripe. In this earlier paper [22] Nieuwejaar and Kotz differenti-

ate between “sequential” and “consecutive” requests. Sequential requests are defined as a

request “...that is at a higher file offset than the previous request from the same compute

node.” Consecutive requests are defined as “...a sequential request that begins where the

previous request ended” [22]. This definition of sequential is broad enough to encompass

many types of strided access. In fact, they go on to claim that upward of 80% of their ac-

cesses were the result of a type of strided access [22]. The large number of strided accesses

led to a need for a distinction to be drawn between “simple strided” and “nested strided.”

Please see figure 3.5 for a diagram of simple strided and see figure 3.6 for a diagram of a

nested strided access [24].
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Figure 2.1: Noncontiguous data in memory, contiguous in file
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Figure 2.2: Noncontiguous data in file, contiguous in memory
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Figure 2.3: Noncontiguous data in both file and memory
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2.6 I/O abstraction trends

One of the important features that MPI-IO provides is the ability to set a virtual file view.

This feature allows a program to reduce the number of requests that it makes and transpar-

ently access areas of the file that may not be contiguous [19]. Instead of explicitly seeking

to an offset into a file and accessing a certain number of bytes, a file view can implicitly

retrieve the same data with one read or write call at the MPI-IO level [33]. MPI datatypes

can be built upon one another, such that complex structures of any size and type can be

defined. This means that one can specify virtually any access pattern via a file view and

a derived MPI datatype. As seen in figures 2.1, 2.2, and 2.3, It is possible for data to be

contiguous in file, and non-contiguous in memory; non-contiguous in file, and contiguous

in memory; contiguous in both; or non-contiguous in both. With MPI derived datatypes, it

is possible to describe describe access patterns within a file and within memory such that

the the application only needs to submit a single request to execute the I/O transfer.

2.7 Lessons learned

Given the history of performance evaluation in other areas of computational resources, the

history of performance evaluation in serial filesystems, existing parallel benchmarks, and

parallel workload studies, we are left with a several possible approaches to evaluating par-

allel filesystem performance. Benchmarking other areas of computer resources has shown

that any synthetic benchmark should mimic application performance as well as critically

timing this access. Furthermore, the issue of timing “actual performance” is not an easy

thing to classify due to the effects of caching and consistency. The effects of caching can

easily skew the results of a benchmark, but cached access can provide a real performance

boost in speed for an application. If caching data can be timed realistically with regards

to how it affects application performance, there is no reason why these effects should not

be included as a legitimate performance boost. What are things that a typical parallel ap-



22

plication does? Prior workload studies have indicated that they do a variety of things, but

that striped access patterns (both simple and nested) are important. In addition to spatial

layout within a file, parallel applications also seem to vary their accesses over time, so

temporal access patterns may make it difficult for a filesystem to cache or prefetch data. It

is important for a benchmark to test a variety of access patterns that are widely used and

showcase typical filesystem performance. Since it is possible to rapidly represent a number

of data layouts in memory and file using MPI derived datatypes, it is possible to develop a

model for I/O that can be easily timed. After defining the region of access through an MPI

datatype, all that remains is the actual call to perform access (a read or a write). Figuring

out a way to time this access within a distributed memory cluster machine is also extremely

important. It is in this regard that we can learn from previous benchmarking efforts, namely

the Linpack initiatives. Linpack times the number of floating point operations that occur

over a period of time. Since these operations are significantly more finely grained than file

access, it would be advantageous to examine the Linpack timing code. All of these factors

will influence the decisions that will be made in designing a parallel I/O benchmark.



Chapter 3

Design of a parallel I/O benchmark

3.1 High performance I/O models

As shown by multiple workload studies [4, 8, 26, 24] parallel applications vary wildly in

the access patterns they use to interact with files. Even though there is much variation in

terms of the pattern of bytes that is accessed from application to application, these studies

have shown is that there are systematic patterns by which each parallel applications will

access data as they run. In general, each application will open a file, access data via a

number of requests, and close the file. This idea of repeated accesses can be generalized

into model that will allow us to isolate these I/O requests from the computational aspect

of a parallel application. To do this, we will need to develop an abstraction that will allow

us to exclusively time the I/O calls. After these I/O requests have been timed, the results

will be presented so that performance can be evaluated. It is in the following chapter

that an extensible framework for simulating access patterns is proposed, how timing is

accomplished, and how results are to be reported.
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Figure 3.1: Benchmark layout
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3.1.1 Timing suite framework

To develop a modular framework requires the identification of certain key repeated ele-

ments that we can combine into similar functions. It is necessary to test a number of access

patterns in a manner that allows for consistent timing and reporting. In each access pattern

test, there exists a section where setup must occur, some set of operations must be timed,

and cleanup must be performed. These three operations can be isolated in a way that makes

it possible to test a large number of access patterns while maintaining uniform timing and

reporting standards.

As shown in Figure 3.1, this timing framework will need to identify key elements which

exist in multiple access patterns, and abstract those elements to a higher level where a

critical unit of work can be timed.

3.2 Architecture and implementation

For the purposes of this benchmark, we are going to generalize file access into the following

three phases: initialization/datatype step, a sequence of reads or writes (which we will refer

to as a “work unit”), and datatype deallocation/cleanup. This model assumes that the data

to be read or written has already been setup by the time work units are executed. This



25

benchmark is concerned with the transmission of data to its intended location, not the

generation of such data. The following actions are common things that an access pattern

benchmark will have to do to the file under test:

� initialization/setup: It is during the initialization that the file is opened, and any

datatypes that are needed to describe memory or file regions of access should be cre-

ated (see section 2.6 for a thorough discussion of the features MPI-IO provides for

interacting with files). Since the goal of benchmarking is evaluating performance,

less emphasis will be placed on verifying correctness and consistency of an underly-

ing filesystem.

� work units: It is necessary to come away with a generalized way to describe the

repeated I/O calls that many applications make, so in absence of a better term, this

author will refer to those as “work units.” A work unit is comprised of the amount of

data that it accesses, and the locations of the data within the file. An access pattern

module must define the regions that it intends to access, and this definition will be

in terms of MPI datatypes. It is possible to mathematically describe work units for

many access patterns, and this will be key factor that allows the implementation of a

variety of access patterns. The work unit is the most costly phase of I/O, and will be

timed.

� cleanup: During the cleanup phase, the file under test should be closed, any buffers

should be deallocated, and any MPI datatypes should be uncommitted from the sys-

tem.

The Parallel I/O benchmarking (referred to as “pio-bench” from this point forward)

suite that has been implemented as part of this evaluation standard uses MPI-IO as the

mechanism by which it accesses files. Since MPI-IO is the standard for parallel I/O it

makes more sense to write a benchmark that uses MPI-IO to ensure portability.
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Figure 3.2: Ideal way to time aggregate bandwidth
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3.2.1 Timing mechanism

Access patterns modules contain several elements that should be timed; however, timing

events that occur on multiple remote hosts in a distributed memory cluster machine is not

trivial.

In figure 3.2, the ideal way to calculate aggregate bandwidth is shown. Timing would

begin at the very beginning of the first access, and end when the last access finishes. How-

ever, synchronizing multiple distinct physical clocks is a complex problem in high perfor-

mance computing that has not been completely solved yet. The best that can be done is to

time events as follows:

aggregate time = T + S + B

2

As shown in Figure 3.3 B
1

represents the amount of time that a preliminary barrier

takes (which is not included in the calculation), S represents any startup time between the

end of the first barrier and the beginning of the first access on any process, T represents the
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Figure 3.3: How we calculate aggregate bandwidth
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Time to complete the 2nd Barrier (B  seconds)2

total amount of time that all the accesses take from beginning to end, and B
2

represents the

amount of time that a second barrier takes after each access has completed.

Since it is difficult to come up with a general case to time events that are occurring

under the watch of separate physical clocks, including the second barrier time is the only

way to known that all processes have finished executing a unit of file access.

The root process (process 0) essentially elects itself to act as the authority to determine

when all other processes have finished. The inclusion of a barrier synchronization is nec-

essary to ensure that the operation has completed on all nodes, and provides us with an

upper bound on the aggregate execution time of a given work unit. While the aggregate

time may be lower without the barrier synchronization, we are ensuring that we will not

falsely report a faster time. This way, the fastest time we report includes the time after a

barrier synchronization, and all processes have finished their work unit.
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Directive name Description of configuration directive

TestFile File name of the unit under test.

ShowAverages Instead of showing the results from each repetition of a module, this

option averages the results from each buffer size for each test in each

module.

ReportOpenTime Toggles the display of the amount of time it takes to open the file

under test.

ReportCloseTime Toggles the display of the amount of time it takes to close the file

under test.

ReportHeaderOffset Toggles the display of the amount of bytes each access pattern skips

at the beginning of a file before it begins accessing data.

SyncWrites Toggles whether each write should be flushed to disk.

Table 3.1: Global timing framework configuration options.

Directive name Description of configuration directive

<ap module>,

</ap module>

These signal the beginning and end of a module block. The 3 fol-

lowing directives apply on a per module basis.

ModuleName The name of a module as specified in the PIOB access table con-

figuration field at compile time.

ModuleReps How many times should an access pattern module run.

ModuleSettleTime Time in seconds that the harness should wait after executing an ac-

cess pattern module.

Table 3.2: Access pattern module directives.

3.2.2 Timing framework organization

The access pattern modules are organized as shown in figure 3.1. The pio-bench timing

framework handles all of the timing and reporting functionality, so the access patterns only

have to deal with actual I/O calls. Our generalized model of the phases of file I/O consisted

of three methods to achieve virtually any pattern of access with the help of MPI derived

datatypes and file views. Section 3.3.2 will detail the implementation of the access pattern

modules.

3.2.3 Configuration

Since access patterns may need many different types of pieces of information to describe

what type of access they should perform, deciding on a dynamic run-time configuration
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Example:

TestFile “/mnt/pvfs/file under test”

<ap module>

ModuleName “Simple Strided (write)”

ModuleReps 100

ModuleSettleTime 30

</ap module>

<ap module>

ModuleName “Nested Strided (re-write)”

ModuleReps 50

ModuleSettleTime 10

</ap module>

Table 3.3: Global timing harness configuration example.

mechanism was not an easy task. Existing benchmarks use a variety of methods to accom-

plish run-time parameter configurations. Some benchmarks use command line arguments

to specify how many repetitions of a test should be performed, while other benchmarks use

environmental variables to achieve this. This benchmark uses apache-style configuration

files using the Dotconf parser for the timing framework configuration, and the specific ac-

cess pattern module configuration options. There are some run time options that do not

need to change from access pattern module to another. These global options are shown in

table 3.1. In addition to the global directives, there are a number of directives controlling

which access pattern modules should be executed. These directives can be found in table

3.2. An example config file can be seen in table 3.3

3.3 Access pattern modules

This section outlines the implementation of an access pattern module. The model for sim-

ulating a generic I/O load presented in section 3.2 will be implemented with a number of

specific functions. Some of them will be timed by the harness, while others will not.
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Example:

PIOB access functions simple strided functions =

f

init simple strided module,

setup test stripes,

create stripe data,

write stripe unit work,

verify stripe was written,

cleanup stripe test,

cleanup simple strided module,

g;

Table 3.4: Access pattern module registered information.

Example:

PIOB access table simple strided table =

f

&simple strided functions,

“Simple strided (write)”,

g;

Table 3.5: Access pattern module registered information.

3.3.1 Overview

The timing harness allows for the rapid substitution of a number of different access pattern

modules. This will allow for modularity and enable the use of a standardized timing and

reporting structure. Code duplication is also kept to a minimum inside the harness since

repeated elements (such as timing infrastructure) can be included once by the main timing

harness. This eliminates the need for an access pattern to handle communication for timing,

for example. As a result, an access pattern module is free to perform file access and does

not need to be complicated with timing code. Each access pattern module must pass

certain pieces of information back to the timing harness. For example, it is necessary for

the timing harness to know the name of the access pattern module, as well as a structure

full of the function pointers to accomplish certain elements of access. See table 3.4 for

the way to build a list of functions that comprise an access pattern module. Each access
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Figure 3.4: Access pattern module flow

PIOB_access_pattern_unit_work()

PIOB_after_work_unit()

PIOB_cleanup_access_pattern_test()

PIOB_cleanup_access_pattern_module()

PIOB_init_access_pattern_module()

PIOB_describe_access_pattern_test()

PIOB_before_work_unit()

pattern module will specify at least five of the access pattern function pointers as shown

in the table. This structure must be able to be accessed by the harness. In addition to

the function pointers, the name of the access pattern module should be made available to

the timing harness. See table 3.5 for an example of this. The structure of access pattern

module functions, as well as the name of the access pattern module are the two key pieces

of information that an access pattern must provide in order for the timing harness to know

about it.

3.3.2 Methods

As shown in figure 3.4 here is an API to represent an access pattern module. Following the

model that was proposed earlier in this chapter, we have generalized file I/O into several

phases. The following methods map to portions of the phases defined above. We propose

that this model will allow maximal standardization of timing and reporting while maintain-

ing flexibility:
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� PIOB init access pattern module( ... ): This method initializes the access pattern

module, can read in options from a configuration file, can set up any files for read

tests, and must provide some basic information back to the test framework. Since

this is the first method that the timing harness calls, it is responsible for setting up

key bits of information that are required to start running access pattern tests from a

module.

An access pattern module can run multiple access pattern tests. An access pattern test

is classified as the combination of run time parameters such as buffer size, offset into

the file, and number of work units to be completed. This method is responsible for

obtaining these options from some source. Whether the run time parameters are hard-

coded, read from file, or interactively gathered by some other means, this method is

responsible for supplying them to the timing framework.

After this method has completed, the timing framework knows the buffer sizes,

header offsets, total work units per test, and number of tests that will be run. This

method is also responsible for providing MPI hints that will be used to enable op-

timizations from an MPI-IO level for each access pattern test. This method is not

timed by the harness. Please see table A.1 which is located in appendix A for the

parameter structure this method is passed.

� PIOB describe access pattern test( ... ): There can be many access pattern tests

run as part of an access pattern module, and this method is called by the timing

framework to start a new access pattern test. There can be a one to many relationship

between an access pattern module and an access pattern test. Therefore, this method

may be called multiple times after an access pattern module has been initialized.

Each access pattern test may consist of multiple “work units” which is where file

access takes place. By the time this function is called, we have a valid handle to

the file under test. This is useful should the access pattern need to setup a file view.
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Similarly, the file has been opened with any hints that were supplied by the module

initialization method.

In addition to file view management, this function is responsible for setting up any

memory buffers and MPI datatypes that the access pattern may need (IE: to describe

memory and file regions of access). Buffer size as well as whether contiguous or

non-contiguous access is to be performed will influence this setup. This method is

not timed. Additionally, this method is optional since not all access pattern modules

need to perform anything on a per work unit basis. Please see table A.1 which is

located in appendix A for the parameter structure this method is passed.

� PIOB before work unit( ... ): This method should accomplish anything that needs

to be done before the work unit, such as seeking to the correct position, resetting a file

view, or accessing other areas of the file to minimize the effects of memory paging

or caching by the underlying filesystem. This function is not timed. Please see table

A.1 which is located in appendix A for the parameter structure this method is passed.

� PIOB access pattern unit work( ... ): The work unit function performs the actual

filesystem access (a read or a write or sequence of reads or writes). This function is

strictly timed according to the scheme laid out in section 3.2.1. Since this important

element is timed, it is necessary for an access pattern test to only perform operations

that count in this method. Any blocking calls other than flushing data to disk should

be called elsewhere.

This function is responsible for respecting write flushing. The timing framework

will indicate whether the user requested data to be flushed. Since an access pattern

module is the only thing that knows whether its going to read or write, handling

flushes is not a reasonable thing for the timing framework to handle. While it could

be a useful simplification, it is best left for the access pattern module to respect
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or ignore those configuration directives. Please see table A.1 which is located in

appendix A for the parameter structure this method is passed.

� PIOB after work unit( ... ): This method is called after the timed work unit

method has completed. This execution time is not counted in the total execution

time for the corresponding work unit. This method is useful for verification, or for

cache manipulation operations that may be costly, yet should remain untimed. This

method is optional since not every access pattern module will need to perform any-

thing on a per work unit basis. Please see table A.1 which is located in appendix A

for the parameter structure this method is passed.

� PIOB cleanup access pattern test( ... ): This method is called after all the work

units for a given access pattern test have completed. It is responsible for any cleanup

required for the next access pattern test to execute. If a sequence of writes oc-

curred during this access pattern test, it may be necessary to delete the file under

test (since the next access pattern test will need to write to the same filename). The

file has been closed at this point, and any buffers used during this access pattern test

should be deallocated. Any datatypes that were used should also be released via

the MPI Type free() call. This method is not timed. Please see table A.1 which is

located in appendix A for the parameter structure this method is passed.

� PIOB cleanup access pattern module( ... ): This method is called by the timing

framework after the entire group of access pattern tests has run to completion. This

method should free any remaining memory that was used to hold configuration data.

Deleting the file under test may also be done in this method. Depending on the

access pattern module, the file under test should either be deleted by this method,

or the cleanup method described in the previous bullet. This method is not timed.

Please see table A.1 which is located in appendix A for the parameter structure this

method is passed.
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Figure 3.5: Simple strided access pattern
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3.4 Access pattern scope

In this document, when the term “Access pattern” is used, it refers to the specific mapping

that exists between an MPI process and some set of bytes within a file. The relationship

between the file and the process will be described in terms of spatial organization as well

as temporal ordering. This twofold relationship gives us a broad range to cover. Not only

must the access pattern describe the file in terms of which bytes were accessed, but also

when they were accessed. This broad definition will help to differentiate between behaviors

such as “read once” and ”re-read”. There are patterns which are similar but distinct in their

temporal ordering.

3.4.1 Spatial access patterns

Here are a number of common access patterns that have been collected for study. Each of

the following access patterns has been implemented using the model for I/O presented in

section 3.3.2:
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Figure 3.6: Nested strided access pattern
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� Simple strided: The simple strided access pattern divides sections of the file into

logical stripes where each process will access bytes at some displacement relative to

a stripe. The displacement of a process into a stripe typically is related to its rank

in the set of processes. All the regions of access within a stripe are called strips,

and the sum of the length of all the strips is referred to as the “stride distance.” Each

stripe within a file occurs regularly at some multiplier of the stride distance. Please

refer to Figure 3.5 for a graphical representation of the simple strided access pattern.

Possible applications of simple strided are unlimited as it has been shown to be the

most widely used access pattern accounting for roughly 63% of file access in several

scientific applications [24, 4].

� Nested strided: Nested strided is a complex access pattern that combines multi-

ple simple strided accesses into each striping element. Namely, each strip of access

within the nested strided access pattern is one or more stripes of access of a simple

strided access. There is an internal stride distance and an external stride distance for
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Figure 3.7: Random strided access pattern
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each region of access within a file. This type of access can be represented in two di-

mensional form as a series of tiles. Please see figure 3.6 for a graphical representation

of the nested strided access pattern. Possible applications of the nested strided access

pattern include accessing elements of a three dimensional cube inside of a file. The

X and Y dimensional offsets may be placed such that a simple strided pattern would

be unable to access any of the Z dimensions elements of a cube. Also, according to

workload studies, nested strided access accounted for roughly 33% of requests for a

variety of scientific workloads [24].

� Random strided: Random strided is categorized by having each process access

some non-zero number of bytes in an ordered round robin fashion. Since each pro-

cess is responsible for accessing an non-zero number of bytes, the stripe size for each

cycle varies. This results in a random stride distance for each iteration of accesses.

See figure 3.7 for a graphical representation of the random strided access pattern.

Possible applications that utilize the random strided access pattern would be media

encoding applications where each frame size is variable. If each process generates

a variable sized frame and then writes it out to file after the preceding frame, that

would simulate the type of access shown in this pattern.

� Sequential access: Each process opens the file and issues requests that access a fixed

size region with linearly increasing offsets for each successive request in a sequential

access pattern. The requests start at the beginning of the file, and continue until each

process reaches the end of file. Optionally, a user may specify an offset that will cause

each process to essentially time-shift its access of the same regions of the file. This
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Figure 3.8: Sequential read
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allows a process to interleave its access such that it is not accessing the same strip of

data of a file as any other process. This approach will allow for maximum throughput

for file systems that allow regions of a file to be partitioned on separate I/O servers.

This access pattern can be decomposed to a simple strided access pattern where each

process’ strip size is the same, and each process has no displacement relative to the

beginning of a stripe. Please refer to figure 3.8 for a graphical representation of a

sequential read. Sequential reading makes sense (as all processes can simply read

the same file), but sequential writing is a different issue altogether. Having multiple

writers potentially accessing the same regions of a file does not make sense due to

the fact that whatever data written would be there as the result of a race condition,

namely whatever writer was the last to write to an area is the one whose data remains

there. No real applications intentionally invoke such race conditions to the same
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Figure 3.9: Segmented access pattern
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region, so it is necessary to simulate sequential writing differently. That is why each

process writes to a different file with a sequential access pattern.

� Segmented access: The segmented access pattern divides the entire file into logical

segment ranges for as many processes as there are performing concurrent access.

These divisions are based upon logical byte ranges within the file. For example, if a

file is 4096 bytes long and there are four processes, process 0 could be assigned bytes

0-1023, process 1 could be assigned bytes 1024-2047, process 2 could be assigned

bytes 2048-3071, and process 3 could be assigned bytes 3072-4096. In this example,

each process’ region of access is determined by its rank. Ordering based upon rank

is one example of segmented access, but a segmented access pattern may dole out

regions of access by any means it chooses. Please refer to figure 3.9 for a graphical

representation of the segmented access pattern.

� Tiled: Tiled access is categorized by each process accessing an area of the file which

is viewed as a “virtual tile.” Depending on the layout of the tiles, this pattern can

either be decomposed to segmented access or simple strided access. See figure 3.10

for a graphical depiction of how processes interact with files in this access pattern.

One example of this pattern in use is displaying a large virtual screen on multiple

video devices. Since each tile can be mapped to an area of a larger unified region, this

sort of access pattern is seen when large visualization environments need to record
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Figure 3.10: Tiled I/O
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or play back data. This is the main access pattern that the mpi-tile-io benchmark

exercises [20].

� Flash I/O Kernel: The center for Astrophysical Thermonuclear Flashes (Flash cen-

ter) at the University of Chicago studies many of the effects of thermonuclear ex-

plosions on the surfaces of many types of stars. In particular, simulations related

to X-ray bursts of Type 1 supernovae provide a demanding workload for I/O re-

sources [35]. The spatial access pattern that the Flash code utilizes is non-contiguous

in memory and non-contiguous in file and has been the topic of I/O optimization

studies [27]. Essentially, the access pattern is sequence of “memory blocks” where

each memory block contains a three dimensional cube of data. Inside this three di-

mensional cube, there are areas that need to be accessed in file, and those that are

skipped over. The skipped areas are referred to as “guard cells.” While the scope of

the physics simulation that Flash aims to explore is beyond the scope of this paper,
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Figure 3.11: Flash I/O Memory Layout
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Figure 3.12: Flash I/O Disk Layout
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its I/O counterpart is definitely something that is of interest. Please refer to figure

3.11 for a graphical description of how data is laid out in memory and figure 3.12 for

a graphical description of how data is laid out in file.

� Unstructured Mesh: Applications that simulate terrain mappings, or wire-frame

engineering models typically abuse parallel filesystems when they need to store or

load their large datasets. The data that they need to store in a file is a collection of

points that comprises a large number of polygons. Since the topology of terrain, or

contour maps may vary immensely, these structures are referred to as “unstructured

meshes.” This data can be thought of as a point in three dimensional space with X,

Y, and Z coordinates. Commonly these points will also have some other value, or

structure of values for each point in space (a moment of inertia, a gravitational force,

or, other forces about an axis, etc) [30]. These types of three dimensional spatial

mappings are also seen in finite element approximations and computational fluid dy-

namics problems. Since these problems are partitioned on nodes throughout a cluster

of machines, each node is working on its own subset of the large spatial simulation.

This results in each process having to access a relatively small area for each point in

the structural analysis problem (IE: 3 floating point numbers for X/Y/Z coordinates,

and a structure describing forces on that point in space). These types of simulations

typically can be decomposed into one of the access patterns described previously in

this chapter. Namely, either a simple strided, or segmented access pattern will be

used by a parallel application when it needs to store or load unstructured mesh data

points from file.

3.4.2 Temporal access patterns

In addition to spatial access patterns, the mapping between an MPI process and a region

of file may vary with regard to time. This will cause varying performance depending on
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several timing issues. The following are common ways to vary access with respect to time,

and each may be combined with the spatial access patterns listed in section 3.4:

� Read once: This form of access is classified by retrieving a number of bytes from

some location within a file to a location in memory. The buffers that the system fills

with file data may be non-contiguous. Similarly, the file data may also be drawn from

non-contiguous areas and copied to contiguous memory buffers. This access may

be affected by caching, or prefetching, but any action as such would rely on some

predictive mechanism at the filesystem level. For the purposes of this benchmark, all

reads are assumed to be blocking. The contents of the file are assumed to have been

moved to the appropriate memory buffers in their entirety by the time the read call

returns.

� Write once: This form of access is classified by the storage of bytes from some

location in memory to a location within a file. Typically these locations in the file

are specified by an offset, and a buffer length. Since the data is in memory, and

must be copied to the location within a file, a filesystem has the option of flushing

the data to file immediately, or holding onto the data in an internal buffer until it is

convenient to write to file. There are several factors that affect this decision such as

block granularity and optimal network packet sizes. A filesystem that stores data on

a remote server more than likely will incur both of these expenses if a large number

of requests with small pieces of data are received. Forced flushing may lead to slower

performance than is seen without explicit file synchronization. However, filesystems

that offer non-blocking writes as the default may need to have data explicitly flushed

in order to ensure that it has reached the file.

� Read-modify-write: This form of access is classified by the retrieval of a number of

bytes from a specific location within a file, each of those bytes will be changed, and

then the new values will be transferred back to the location in the file from which they
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were originally read. This is the most intensive temporal access pattern due to the

fact that the filesystem has to retrieve an up-to-date copy of the file, and then push

those bytes back out to file. This is important since many out-of-core simulations

which use filesystems as their main computational space utilize this access pattern

extensively as they manipulate data. Read-modify-write can take on many forms,

such as reading the entire file in its entirety before writing, or reading each buffer

and instantly writing.

� Re-read: This form of access is classified by a process retrieving a specific number

of bytes from a specific location within a file to a memory location, and then some

time later, the same location from the file is transferred to memory again. The second

read is the only operation timed in this mode of access. Unless the region of file has

been changed by a transient write that occurred after the first read, the data in that

location of the file should be the same as it was at the time of the first read. This

would show good performance for a filesystem that is able to intelligently decide

whether to supply data from a cache, or to transfer the entire buffer from file across

the network.

� Re-write: This form of access is classified by two consecutive storages of some

set of bytes in memory to a specific location within a file. The second set of bytes

transferred to file does not need to be independent of the first set of bytes. This

access pattern will showcase any filesystems that may offer write-behind caching.

Since writes are often costly, some filesystems offer a caching mechanism that waits

for a short period of time to move the buffer from memory to file. On the other hand,

it is possible that the second write would be slower if the data is not aligned on block

boundaries.
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3.5 Summary

Using lessons learned from previous benchmarking efforts, the preceding chapter has pre-

sented the design of a performance evaluation standard that should allow for a large amount

of performance data to be retrieved from a parallel filesystem. Through the use of the

generic model of I/O presented in section 3.2, a number of access pattern modules have

been implemented. Because the timing framework calls the work unit method for each ac-

cess pattern test, each access pattern module uses the same timing code. This provides the

critical simplification to allow consistent, comparable results. This technique eliminates

disparities due to differences in timing code because the framework uses the same timing

code to monitor each access pattern module. After establishing a timing model, it was nec-

essary to figure out what should be timed. Section 3.3.2 presents the seven functions that

comprise an access pattern module. Having established a timing mechanism and a modular

framework with which to implement access patterns, section 3.4 presented a large number

of spatial access patterns. In addition to spatial access patterns, temporal access patterns

were also discussed in section 3.4.2. Furthermore, these access patterns define a relation-

ship between a process and a file, and this definition can be described in terms of time

ordering. In the following chapter, the implementation of these modules, and the timing

harness will be examined in depth.



Chapter 4

Results

4.1 Overview

This section will present actual numbers provided by this benchmark, as well as begin to

analyze the effectiveness of this implementation and its adherence to the qualities set forth

in section 1.4. The pio-bench benchmark will be examined with regards to how well it

applies to the principles of software engineering. There will be some focus on the ac-

tual results that this benchmark is capable of gathering, but only as a means to emphasize

comparability, and comprehensiveness. The following sections will describe the test en-

vironment that this benchmark ran on, what trends were returned for each access pattern

module, as well as discussing any particular implementation issues that needed to be solved

while these benchmarks were in the process of being developed.

4.2 Access pattern test results with PVFS

The following sections will report the results that were obtained from each access pattern

while running on PVFS.
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Figure 4.1: Simple strided performance

 0

 100

 200

 300

 400

 500

 600

1KB 2KB 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB 2MB 4MB

B
an

d
w

id
th

 (
M

b
y
te

s/
se

c)

Buffer Size (Kbytes)

Simple strided access pattern (with 16 processes over PVFS)

1024 2048

4096
8192

16384

32768

65536

131072

262144

524288 1048576

2097152

4194304

write
re-write

read-modify-write
read

re-read

4.2.1 Test environment

After implementing the code, it was run with each access pattern module enabled on a 16

node development cluster. Each node contains dual Intel Pentium III 1 GHz processors with

1 gigabyte of RAM and 2 Maxtor 30 gigabyte hard disks (model number 5T030H3). An

Intel Etherexpress pro 10/100 Fast Ethernet card and a high speed Myrinet network card

comprise the networking connectivity of each node. Red Hat Linux 8.0 with the Linux

2.4.20 kernel was running at the time of this testing. Version 1.5.7 of PVFS was running

with four mounted filesystems total. There were two filesystems running with 16 IODs,

one ran over Myrinet, the other over Fast Ethernet. The other two filesystems are running

with four IODs on four nodes. The head node ran one MGR process to manage all four

filesystems. The PVFS striping size for each filesystem has been set at 64 KB (65535

bytes). MPICH 1.2.5.1a was used for all of the tests. For the graphs shown below, each

access pattern test was run 50 times, and the results from each run were averaged together.
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Figure 4.2: Nested strided performance
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4.2.2 Simple strided

Figure 4.1 shows the performance that PVFS provides for read, write, read-modify-write,

re-read, and re-write with a simple strided access pattern. As the graph indicates, maximal

read performance was obtained with a buffer size of 1 megabyte. Maximal write perfor-

mance was achieved at the PVFS striping size of 64KB. Re-read performance was consis-

tent with read performance, except at the 2 MB buffer size, the second read is noticeably

slower. In the read-modify-write case, it seems that the most costly operation (the read call,

or the write call) is not the upper bounds upon the transfer speed for a given buffer size.

This can be explained by the fact that the benchmark is reading and writing, which moves

twice the amount of data. When averaged, the resulting value will be somewhere between

the upper and lower trend lines (depending on the relative difference in magnitudes). As far

as the general trends go, this access pattern is the best overall performer on PVFS, which

is no surprise given the nature of how PVFS stripes data across multiple IODs.
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Figure 4.3: Random strided performance
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4.2.3 Nested strided

Figure 4.2 shows the performance that PVFS provides for read, write, read-modify-write,

re-read, and re-write with a nested strided access pattern. As seen in the graph, the mag-

nitude of read and write throughput is not as fast as with a simple strided access pattern.

While this access pattern does not yield performance as good as simple strided, the trends

seem to indicate that same things that affect bandwidth rates with a simple strided access

pattern, also affect bandwidth with a nested strided access pattern.

4.2.4 Random strided

Figure 4.3 shows the performance that PVFS provides for read, write, read-modify-write,

re-read, and re-write with a random strided access pattern. For this access pattern test,

random strip sizes were generated for each process during each run. The random strip sizes

were bounded between regular intervals for each run (for example: test one was between

1024-2048 bytes, test two was between 2048-4096 bytes, test three was between 4096-

8192 bytes, etc). The points that are plotted on each trend line are at the average buffer size

for each test. While there are varying buffer sizes between an upper and lower bounds, this
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Figure 4.4: Sequential performance
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average strip size is the average of each strip that every process accessed. As is shown in the

graph, random stride distances appear to produce the same trends as a simple strided access

pattern even though the performance numbers are obviously not at the same magnitude.

4.2.5 Sequential

Figure 4.4 shows the performance that PVFS provides for read, write, read-modify-write,

re-read, and re-write with a sequential access pattern. While sequential access seems

straightforward, there are ways to time shift sequential access on certain nodes to alter

performance. Namely, if a filesystem has portions of the file partitioned on independent

serving devices (the way PVFS has multiple IODs managing portions of a single file) it

greatly improves performance to stagger access to the same portion of a file. This can be

seen with the contrasting performance in figure 4.5. Time shifting access to different re-

gions of the file essentially makes sequential reading as speedy as simple strided access on

PVFS. When each process is accessing the same section of file at once, each node must

contact the same IOD to retrieve that area of the file. This will result in a bottleneck at each

IOD where aggregate throughput will be limited by the maximum bandwidth that a single

node can put out. As shown in the graph, when the buffer size used to access the file grows
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Figure 4.5: Sequential performance (no interleaving)
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larger than the PVFS stripe size (64 KB), each process will be accessing regions of the file

that reside on multiple IODs. This results in a slight increase in throughput for accesses

that are larger than the PVFS striping size.

4.2.6 Segmented

Figure 4.6 shows the performance that PVFS provides for read, write, read-modify-write,

re-read, and re-write with a segmented access pattern. Segmented access involves logically

dividing up regions of a file such that each process has a certain logical range of bytes.

For filesystems that stripe files across multiple nodes, this means that in order for a process

running on a node to access each byte in its region, it will have to access several areas

that are stored on remote servers. The resulting performance of a number of non-local

accesses will be upper bounded by network performance. This behavior can be seen in the

performance graph as writes do not improve by any large amount as buffer sizes increase.
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Figure 4.6: Segmented performance
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Figure 4.7: Tiled performance
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Figure 4.8: Flash performance
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4.2.7 Tiled I/O

Figure 4.7 shows the performance that PVFS provides for read and write with a tiled access

pattern. While tiled access is similar to simple strided in how it accesses regions of files, it

has its own distinctive characteristics while performing tiled access. Tiled performance on

PVFS is not close to the magnitude of performance that simple strided access achieves. It

seems that this is due in part to the mapping of bytes in a tile to its physical location within

a file. In tiled access, each process is assigned a certain tile, or number of tiles to access.

The mapping of logical bytes within a tile to physical bytes within a file may not best fit

the striping unit that an underlying filesystem is best suited to handle. Instead of each tile

being mapped to the appropriate stripe size, the tiles are laid out logically according to their

order within the file. When these regions are mapped to an area of a file, the striping unit

that is chosen is clearly not the factor being manipulated directly by the testing harness.

While performance is somewhat better than if it had been run on a single node for higher

tile sizes, these trends may not be representative of the potential of tiled access.
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4.2.8 Flash I/O

Figure 4.8 shows the performance that PVFS provides for read and write with the Flash

I/O access pattern. Flash I/O heavily exercises the ability of a filesystem to provide non-

contiguous file access. As seen in the results, increasing buffer size results in a step-like

pattern showing an increase in transfer rates. This is due to how the flash blocks are rep-

resented in memory. Please refer to figure 3.12 for the layout of data on disk and figure

3.11 for the layout in memory. Both the file and memory datatypes are non-contiguous

for this access pattern. As the buffer sizes are increased, the contiguous area that each

process accesses varies irregularly. What we can see from the flash performance is that as

buffer sizes are increased, the throughput drops once it reaches a certain point. Transfer

rates monotonically increase for a few data points, but then decrease again. The number

of non-contiguous areas that must be accessed increases at the point where the transfer

rate decreases on the graphs. The flash blocks contain a number of cells in the X, Y, and

Z directions. In order to increase the amount of data written, one can either increase the

number of cells per memory block, increase the number of memory blocks, decrease the

number of guard cells, or increase the number of elements per cell. If more memory blocks

are added, this results in more non-contiguous areas that a filesystem has to access. On

the other hand, increasing the number of elements per cell, increasing the number of cells

per memory block, or decreasing the number of guard cells will increase the size of any

contiguous region that must be accessed. What we see is that increasing the number of

non-contiguous regions will negatively impact performance, while increasing the size of

a contiguous region will increase performance. It would be better to refer to the amount

of data written as “transfer amount” or “transfer size” or something other than buffer size.

The name buffer size leads one to believe that there is only one buffer, that it is contiguous,

and of a certain size. Since this is not the case, this is a candidate for a name clarification.
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Figure 4.9: Unstructured mesh performance
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4.2.9 Unstructured mesh

Figure 4.9 shows the performance that PVFS provides for read and write for an unstructured

mesh access pattern. Buffer sizes in this graph correspond to the number of verticies, as

well as the number of values per vertex. Since the values associated with each vertex are

packed into a contiguous buffer varying the number of verticies or values per vertex simply

increases the amount of contiguous data that should be accessed by a process. As shown

by the graph, as buffer size increases, performance also increases. The performance for

this access pattern is similar to the performance for simple strided even though the actual

pattern more closely resembles the segmented access pattern.

4.3 Implementation issues

Throughout the implementation of this system, there were multiple goals that needed to be

achieved in order to make this benchmark usable. Since the access pattern modules needed

to be able to be added in a manner that would allow many patterns, the pattern API as de-

scribed in section 3.3.2 was needed. Every access pattern was written in C and uses MPI-IO

to access files, this ensures portability from machine to machine, and portability across het-
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erogeneous environments. As shown from the large amount of graphs from the results, this

tool can produce a plethora of results from the number of access pattern modules that exist.

Configuration is done on a per access pattern basis via text files. This is advantageous for

testing multiple configurations rapidly. Since it is possible to save the module configuration

and simply comment out the lines that do not apply, there is relatively little effort involved

in choosing an arbitrary access pattern module or choosing parameters for that module.

4.4 Summary of results

In the preceding sections, the results of the pio-bench evaluation tool for parallel filesystems

have been presented. Each access pattern module that was implemented has been graphed

in section 4. These graphs make it possible to observe trends among several access patterns,

as well as understanding why accesses perform as such. In addition to providing compre-

hensive data about a number of widely used access patterns, implementation issues were

presented that illustrate some of the challenges that were overcome while implementing the

timing framework and each access pattern module.



Chapter 5

Conclusion

In the previous chapters, we have presented and analyzed a tool for evaluating parallel I/O.

The following sections will wrap up some key points and examine how this tool measures

up to the software engineering goals introduced in section 1.4.

5.1 Comparability

As shown in the results chapter, this benchmark is useful for comparing many types of

parallel access. However, this comparability is limited by the access pattern model that has

been adopted. This model works well for contiguous accesses, but extreme care must be

used when comparing file accesses that are non-contiguous. The timing framework only

understands the idea of a “buffer size” and as buffer sizes are increased, certain patterns

follow certain trends. With non-contiguous file access, it is possible to manipulate cer-

tain runtime parameters to map to the same buffer size even though the amount of data

written has nothing to do with the access pattern distribution. For example, the Flash I/O

module accesses segments of file that correspond to three-dimensional cubes with a border

(“guard cells”). The runtime parameters comprise the number of blocks in each direction,

and the number of elements that should be accessed per block. If the number of elements

accessed per block is increased, a large contiguous area is accessed. If the number of X, Y,
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or Z blocks is increased, this will result in a number of non-contiguous areas that should

be accessed. Through careful manipulation of these parameters, it is possible to construct

differences in performance with the same amount of data being transferred. Namely, ac-

cessing a large number of small, non-contiguous regions performs worse than accessing a

small number of large, non-contiguous regions. Both can be achieved with the same access

pattern module, and both map to the same buffer size. This detracts somewhat from the

comparability because it is necessary to explicitly state the run-time parameters for this

access pattern module. This caveat is primarily a terminology issue, and it requires that

“buffer size” be understood as the amount of data transferred by a work unit, rather than

the size of the segments of data that are stored within a file. This terminology choice limits

the implementation of access patterns that rely heavily on non-contiguous access patterns.

They can still be accomplished with this model, but it is necessary that the access pattern

module fully disclose what each runtime parameter controls.

5.2 Portability

As stated in the design chapter, this benchmark uses MPI for all communication, and MPI-

IO for all access pattern I/O calls. Combined with C that is GNU compliant, this benchmark

should compile on any platform that offers MPI support. The use of MPI as a communi-

cation library ensures that all messages sent to each process will be converted to a known

format before being sent over the wire. This is key to operating in a heterogeneous envi-

ronment, and it is handled by the mpi implementation (MPICH in this case).

5.3 Comprehensiveness

As shown in the access pattern results section, a large amount of data is returned about

the performance of a given filesystem. Some of the most commonly used access patterns

have been implemented, and there are many parameters that can be adjusted for each of
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these patterns. While it is obvious that these access patterns do not constitute the entire

set of possible access patterns, they are representative of the file access that is performed

by a number of parallel applications. Since benchmarking is aimed at trying to simulate

workloads without the time, energy or effort of running an entire simulation, it is sufficient

to model parallel file access as the set of implemented access patterns do. However, should

the representative file access patterns change, this tool is flexible enough to change to meet

those needs as well. Through a well defined, extensible model, we have shown that it is

possible to simulate a number of access patterns while maintaining consistent timing and

reporting standards. It is possible to add access pattern modules to increase coverage should

the need arise.

5.4 Objectivity

The access patterns gathered by this benchmarking effort have been obtained by examining

workload characteristic papers, and submissions from applications programmers. While

this benchmarking effort clearly gives more coverage to the obvious and widely used access

patterns, it is relatively easy to add new access patterns. Also, at this time, the framework

does no weighting of any of the access pattern workloads.

5.5 Future work

While this tool provides a large amount of data about the performance of a given paral-

lel filesystem under certain workloads, it does little to eliminate the subjective nature of

evaluation. At some point the results must be interpreted, and different weights should

be applied to different workloads that are consistent with the individual needs of a given

application.
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5.5.1 Expansion of access patterns

Obviously this access pattern list is not all inclusive. The access patterns that we have in-

cluded here are general access pattern cases which were gathered from the behavior of par-

allel applications that are being used by the scientific community. As well as the collection

of general use patterns, there are also 3 specialized patterns that showcase I/O performance

based upon specific application requirements. The tiled I/O, Flash, and unstructured mesh

access patterns are examples of how dissimilar access patterns have been integrated into

this common timing and reporting framework. They were submitted as case studies when

the application developers were having problems with poor performance. This type of feed-

back is the only way to accurately gauge the I/O demands of a real application. It has been

shown that this standard timing and reporting framework is capable if integrating multiple

dissimilar access patterns, and the hope is that application developers will share their I/O

requirements at a high level so that these needs can be studied and optimized. Upon receiv-

ing a high level understanding of an application’s I/O needs, it will be relatively simple to

assimilate more access patterns into this common framework.

5.5.2 Framework for interpreting results

As shown by the results section, PIO-bench is capable of gathering a large amount of data

about the performance of a parallel filesystem; however, there is still a subjective element

involved in analyzing performance. While this benchmark can presently gather a large

amount of data from an underlying filesystem, interpreting the results can be difficult to

understand at first glance.

A system to weight access patterns that are more important to specific applications

would be advantageous in that it would make results easier to view. Since different parallel

applications use a variety of patterns to access data, choosing the right filesystem/filesystem

configuration can be difficult if one is not aware of how the system will be used. Namely,

such a weighting system would stand to highlight performance of access patterns that are
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commonly used by specific applications. This feature could be more of a presentation style

issue as opposed to a feature that weighs results and averages data from multiple tests.

PIO-bench returns a deluge of quantitative information about the performance of a parallel

filesystem, but sifting through it can be troublesome.

When considering a weighting algorithm, it is necessary to consider several things.

What kind of access pattern do applications that run on the system under test typically use?

What kinds of trends can be observed in each of the patterns? Is it possible to reduce data

from each access pattern test and each access pattern module to a single numerical ranking?

How diverse is the set of access patterns that this benchmark comprises? Does the diversity

affect the ability to make generalizations about the performance?

A performance analysis component should allow for the explanation of trends that are

observed by the performance of a certain filesystem on a certain access pattern. For ex-

ample, as demonstrated in section 4.2.2, the simple strided access pattern achieves the best

throughput with buffer sizes of 64 KB. This can be explained by the fact that PVFS was

compiled with a striping size of 64 KB for these test runs. The striping size controls how

large of a strip of data is stored on each server. If the striping size were changed to 512

KB, write performance should change to reflect this. Such characteristics (striping sizes of

de-clustered regions of a file) will be evident from a visual inspection of the performance

data trend line, but coming up with a set of obvious characteristics is left open for future

work to describe.

In addition to a weighting system, there should also be a visualization system to auto-

matically make graphs of access pattern performance. This could take the form of anything

from a simple shell script to interface with gnuplot, to something that uses openGL and

displays the access pattern being executed as the results are returned. The timing harness

could easily be modified to store the results from each access pattern module to a text

file, and then have a shell script to parse the results, and plot different series via gnuplot.

This type of visualization will depend on any type of weighting and analysis interpretation.
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For example, if performance data is to be compared from multiple system across multiple

buffer/window sizes, it may not be feasible to plot data on a two dimensional series if it is

cluttered.
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Module initialization parameters Description

struct pio ap init params s f

int *mode; Mode to open the file with

(read/write/truncate).

int *communicator type; How to open the file (collec-

tive/shared).

int *num reps; How many tests are in this module?

char* file name; This is the filename provided in pio-

bench.conf.

int *use separate files; Flag to make the tests in this module

use separate files.

int *num procs participating; How many processes are doing actual

I/O.

long long *num work units; Array containing the number of work

units for each test.

long long *displacements; Array containing the amount of

header bytes for each pattern test.

long long *buffer sizes; Array containing the buffer sizes for

each access pattern test.

MPI Info *nfo array; Array containing an ordered list of

hints for each pattern test

g;

Table A.1: Access pattern module initialization parameters.

Test initialization parameters Description

struct pio datatype init params s f

long long header bytes; Amount of bytes that should be

skipped before the first I/O access.

long long buffer size; Amount of bytes that this process

should access.

long long num reps; Number of work units in this pattern

test.

MPI File *fh; File handle to the unit under test.

g;

Table A.2: Access pattern test initialization parameters.
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Work unit parameters Description

struct pio ap work unit params s f

MPI File fh; File handle to the unit under

test.

long long header bytes; Number of bytes to skip be-

fore this access.

long long buffer size; Number of bytes this access

should touch.

long long rep inst; Number of the current work

unit.

long long num work units; Total number of work units.

int rank; This process’ rank.

long long size; Number of processes.

int should flush; Flag indicating whether the

user has requested flushing.

int use collective; Flag indicating whether the

user would like to use collec-

tive I/O.

g;

Table A.3: Access pattern work unit parameters.

Cleanup parameters Description

struct pio cleanup params s f

char* file name; Name of the file under test.

g;

Table A.4: Access pattern cleanup parameters.
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