
De
ember 13, 2002

To the Graduate S
hool:

This thesis entitled \Design and Implementation of the System Interfa
e for

PVFS2" and written by Harish Rama
handran is presented to the Graduate S
hool

of Clemson University. I re
ommend that it be a

epted in partial ful�llment of the

requirements for the degree of Master of S
ien
e with a major in Computer Engineer-

ing.

Walter B. Ligon III, Advisor

We have reviewed this thesis

and re
ommend its a

eptan
e:

Ron Sass

Harlan Russell

A

epted for the Graduate S
hool:

Design and Implementation of the System

Interfa
e for PVFS2

A Thesis

Presented to

the Graduate S
hool of

Clemson University

In Partial Ful�llment

of the Requirements for the Degree

Master of S
ien
e

Computer Engineering

by

Harish Rama
handran

De
ember 2002

Advisor: Dr. Walter B. Ligon III

Abstra
t

As Linux
lusters emerged as an alternative to traditional super
omputers one

of the problems fa
ed was the absen
e of a high-performan
e parallel �le system

omparable to the �le systems on the
ommer
ial ma
hines. The Parallel Virtual

FileSystem(PVFS) developed at Clemson University has attempted to address this

issue. PVFS is a parallel �le system
urrently used in Parallel I/O resear
h and as a

parallel �le system on Linux
lusters running high-performan
e parallel appli
ations.

An important
omponent of parallel �le systems is the �le system interfa
e whi
h

has di�erent requirements
ompared to the normal UNIX interfa
e parti
ularly the

I/O interfa
e. A parallel I/O interfa
e is required to provide support for non-
ontiguous

a

ess patterns,
olle
tive I/O, large �le sizes in order to a
hieve good performan
e

with parallel appli
ations. As it supports signi�
antly di�erent fun
tionality, the in-

terfa
e exposed by a parallel �le system assumes importan
e. So, the �le system

needs to either dire
tly provide a parallel I/O interfa
e or at the least support for

su
h an interfa
e to be implemented on top.

The PVFS2 System Interfa
e is the native �le system interfa
e for PVFS2 - the

next generation of PVFS. The System Interfa
e provides support for multiple in-

terfa
es su
h as a POSIX interfa
e or a parallel I/O interfa
e like MPI-IO to a

ess

PVFS2 while also allowing the bene�ts of abstra
tion by de
oupling the System Inter-

fa
e from the a
tual �le system implementation. This do
ument dis
usses the design

and implementation of the System Interfa
e for PVFS2.

Dedi
ation

To my family who have supported and always en
ouraged me to a
hieve my goals.

A
knowledgments

I would like to thank my advisor Dr.Walt Ligon for his guidan
e and support. I would

also like to thank Phil Carns for his invaluable help.

Table of Contents

Page

TITLE PAGE . i

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGMENTS . iv

LIST OF TABLES . viii

LIST OF FIGURES . ix

1 Introdu
tion . 1

1.1 Clusters . 1

1.2 Parallel File Systems . 2

1.3 PVFS2 - The Next Generation 3

1.4 The System Interfa
e . 5

1.5 Approa
h . 7

2 Ba
kground . 11

2.1 Parallel File Systems . 11

2.1.1 PIOUS . 11

2.1.2 Vesta . 12

2.1.3 PPFS 1 . 14

2.1.4 Galley . 15

2.1.5 PPFS 2 . 16

2.1.6 PVFS . 18

2.2 Spe
ialized Interfa
es . 19

2.2.1 MPI-IO . 19

2.2.2 SIO low-level API . 20

2.3 Lessons from prior work . 20

3 Design of the System Interfa
e . 22

3.1 Introdu
tion . 22

3.2 File system obje
ts . 22

3.2.1 Meta�les . 23

3.2.2 Data�les . 24

3.2.3 Dire
tories . 24

3.2.4 Symboli
 Links . 25

vi

3.2.5 Colle
tion . 25

3.3 Ar
hite
ture . 25

3.4 System Interfa
e Con
epts . 27

3.4.1 Handle . 27

3.4.2 Pinode . 27

3.4.3 Pinode Referen
e . 27

3.4.4 Bu
ket . 28

3.4.5 Credentials . 28

3.5 System Interfa
e Fun
tion Spe
i�
ation 28

3.5.1 Interfa
e management operations 29

3.5.2 Obje
t
reation, query and destru
tion operations 30

3.5.3 I/O operations . 36

3.5.4 Obje
t lo
king operations . 37

3.5.5 File system query operations 37

3.6 System Interfa
e Implementation 39

3.7 Server Request Proto
ol . 41

3.7.1 Lookup Path . 43

3.7.2 Get Attributes . 44

3.7.3 Set Attributes . 44

3.7.4 Get Con�guration . 45

3.7.5 Make Dire
tory . 45

3.7.6 Remove Dire
tory . 46

3.7.7 Create Dire
tory Entry . 46

3.7.8 Remove Dire
tory Entry . 46

3.7.9 Create . 47

3.7.10 Remove . 47

3.7.11 File System Statisti
s . 47

3.7.12 Readdir . 49

3.8 Related Interfa
es . 49

3.8.1 Pinode
a
he . 49

3.8.2 PVFS Dire
tory Entry
a
he 50

3.8.3 Con�guration Management Interfa
e 51

3.9 Summary . 54

4 Evaluation . 55

4.1 System Interfa
e Implementation 55

4.2 Evaluation of the System Interfa
e 57

4.2.1 Abstra
tion(Data hiding) . 58

4.2.2 Support for multiple interfa
es 59

4.2.3 Flexibility and Modularity . 60

4.2.4 Des
ription of
omplex I/O patterns 60

4.2.5 Clearly de�ned semanti
s . 61

4.2.6 Thread Safety . 62

4.2.7 The PVFS2 dire
tory
a
he 62

vii

4.2.8 The PVFS2 pinode
a
he . 63

4.3 Summary . 64

5 Con
lusion and Future Work . 65

5.1 Future work . 66

5.1.1 Performan
e Results . 66

5.1.2 Implement the remaining fun
tions 66

5.1.3 Provide features to in
rease
exibility 66

BIBLIOGRAPHY . 68

List of Tables

Table Page

1.1 Comparison of PVFS1 and PVFS2 4

3.1 Lookup Path Request . 43

3.2 Lookup Path Response . 44

3.3 Get Attributes Request . 44

3.4 Get Attributes Response . 44

3.5 Set Attributes Request . 44

3.6 Get Con�guration Request . 45

3.7 Get Con�guration Response . 45

3.8 Make Dire
tory Request . 45

3.9 Make Dire
tory Response . 46

3.10 Remove Dire
tory Request . 46

3.11 Create Dire
tory Entry Request . 46

3.12 Remove Dire
tory Entry Request . 46

3.13 Create Request . 47

3.14 Create Response . 47

3.15 Remove Request . 47

3.16 Statfs Request . 47

3.17 Statfs Response . 48

3.18 Contents of PVFS serv statfs . 48

3.19 Contents of PVFS mserv stat . 48

3.20 Contents of PVFS ioserv stat . 48

3.21 Readdir Request . 49

3.22 Readdir Response . 49

List of Figures

Figure Page

1.1 PVFS2 Ar
hite
ture . 6

3.1 PVFS2 File System Obje
ts . 23

3.2 System Interfa
e Ar
hite
ture . 26

3.3 Server request and response for lookup path 43

4.1 Modular System Interfa
e vs. monolithi
 PVFS1 interfa
e 58

4.2 Sta
king of interfa
es in PVFS1 . 59

Chapter 1

Introdu
tion

1.1 Clusters

The availability of high-speed networks and in
reasingly powerful
ommodity pro-

essors at low pri
es have enabled the development of low-
ost
lusters. Clusters

typi
ally used in parallel pro
essing are
olle
tions of independent
omputers
on-

ne
ted by a network and dedi
ated to parallel pro
essing. The
luster as a whole uses

ommer
ial-o�-the-shelf(COTS) hardware and is managed as a single administrative

entity thus easing system
on�guration. Sin
e
lusters themselves
onsist of o�-the-

shelf parts they have also been able to utilize the software and hardware developed

for broad use. An upside to using broad based
omponents is that the
luster
an

bene�t from the advan
es in te
hnology and pri
e
u
tuations of the
omponents un-

like super
omputers whi
h often use
ustom-built
omponents. All these advantages

translate into a
onsiderable redu
tion in the overall
ost of building and maintaining

a
luster.

The usage of
ommodity
omponents in
lusters has provided lots of
exibility

for system
on�guration. This along with the emergen
e of open sour
e software has

helped resear
hers in high-performan
e
omputing experiment with various options.

2

While low-
ost industrial standard hardware has been abundant, the software systems

and tools for
lusters have evolved more slowly. One su
h area where
lusters have

la
ked a
omparable option to super
omputers is parallel �le systems.

1.2 Parallel File Systems

S
ienti�
 appli
ations typi
ally use multipro
essor
omputers to satisfy their
ompu-

tational needs. Many of them, however, also deal with large amounts of data su
h

as data from satellites,
he
kpointing output, and visualization output. In addition,

some appli
ations may need to work with data too large to �t in main memory, need-

ing virtual memory support. In all the above
ases, the I/O system is the bottlene
k

due to the disparity between pro
essor speed and disk speed. The UNIX derived

�le systems largely in use for parallel
omputing are unsuited for parallel, s
ienti�

workloads[12℄. They fail to address the I/O bottlene
k in parallel
omputing as they

are not designed for
on
urrent data a

esses by multiple pro
esses. In the UNIX

model, a �le is
onsidered as a linear, addressable sequen
e of bytes and read/write

requests a
t on that sequen
e of bytes. As the entire �le is lo
ated on a single disk,

all a

esses are serialized even though they don't involve the same bytes. In this
ase,

�le a

ess is a bottlene
k that a�e
ts the bandwidth of I/O operations. Hen
e, the

appli
ation is unable to harness the pro
essing power available in the
luster. Thus,

parallel �le systems have been developed that are able to support a s
ienti�
 workload.

A parallel �le system s
atters the blo
ks of ea
h �le a
ross multiple disks(de
lusters),

enabling parallel a

ess to the �le. This parallel a

ess lessens the e�e
t of the bot-

tlene
k due to the slow disk speed and larger bandwidth
an be obtained for I/O

operations. Some of the other features of su
h �le systems are
on
urren
y with

guaranteed
onsisten
y, user
ontrollable data distribution parameters, and multiple

I/O interfa
es.

3

Most of this development, however has been done in
ommer
ial �le systems that

are spe
i�
 to the vendor's platform or are restri
ted to resear
h prototypes. As

lusters begin to repla
e super
omputers in s
ienti�
 appli
ations, there is la
k of a

high-performan
e produ
tion �le system for
lusters. The parallel virtual �le sys-

tem(PVFS) has �lled the void ni
ely and serves to provide high-speed a

ess to �le

data for parallel appli
ations in a produ
tion environment. Features of PVFS are a

onsistent namespa
e a
ross the
luster,
ontrol of �le distribution by the user, and

a transparent user spa
e.

1.3 PVFS2 - The Next Generation

PVFS2, a
ollaboration between Clemson University and Argonne National Labora-

tory, is the next generation of the parallel virtual �le system. PVFS2 is the result

of a total redesign that has
ome about mainly due to
hanges in te
hnology, both

hardware and software, and also short
omings in the previous design. PVFS2 seeks to

address both te
hni
al and design issues in the new version so that it
an maintain its

goal of being a vehi
le for parallel I/O resear
h and a produ
tion quality �le system

for Linux based
lusters. As of the time of this writing, PVFS2 is a work in progress

and some of the ideas being dis
ussed are still evolving and have not yet assumed their

�nal form. Table 1.1 shows a
omparison of several design issues between PVFS1 and

PVFS2.

One of the important lessons from the previous system's software ar
hite
ture

was the need for separation of fun
tionality. This has resulted in a modular design so

that modules
an be repla
ed as needed. Also, the implementations have been hidden

behind abstra
tions and
lear interfa
es de�ned to a

ess the individual
omponents.

Although a software engineering issue, the design framework is nevertheless important

4

Issue PVFS1 PVFS2

Software Ar
hite
ture Monolithi
 Layered

Modular

I/O requests Strided Completely general

List-based MPI Datatype based

Data distribution Striping Modular distribution
ode

Networking TCP/IP Abstra
t network layer(BMI)

Storage UNIX �les Abstra
t storage layer(Trove)

Servers Stateful Stateless

Separate metaserver Combined metaserver

Interfa
es POSIX-based with extensions Low-level System Interfa
e

Others layered Repla
eable user interfa
es

Table 1.1: Comparison of PVFS1 and PVFS2

to ensure easy maintenan
e and ability to modify modules for resear
h purposes,

additional features, or performan
e improvements.

Parallel s
ienti�
 programs often need to a

ess non-
ontiguous regions of a �le.

Thus, we want the I/O des
ription
apability provided by PVFS2 to be as expressive

as possible. The idea is to en
apsulate as many a

ess patterns as possible using

the I/O des
ription. This would allow it to support parallel I/O interfa
es su
h as

MPI-IO[5℄ and SIO[9℄ that require the underlying system to support non-
ontiguous

a

esses in a
onvenient manner. The older PVFS1 requests were limited as to what

they
ould express.

In PVFS1, the default distribution is striped. A �le striped on N I/O nodes has N

�les, one on ea
h I/O node,
ontaining the �le's data. PVFS2 has a modular distribu-

tion me
hanism that
an support multiple distributions. In addition, PVFS2 allows

new distributions to be added without
hanging the major �le system
omponents.

Thus, it allows the distribution to be tuned to the �le a

ess pattern of an appli
ation.

The PVFS1
lient library was designed to use TCP/IP for network
ommuni
a-

tion. The network transfer layer in PVFS2 provides an abstra
t interfa
e that allows

the �le system design to be independent of the networking me
hanism used. The net-

5

work transfer layer uses an abstra
tion
alled BMI[3℄ to handle both short and long

messages with equal eÆ
ien
y and to support a wide range of proto
ols and devi
es.

PVFS2 has a storage layer
alled Trove[17℄ that abstra
ts the storage of data.

This allows the details of the storage me
hanism to be hidden from the rest of the

design. Thus, the servers
an use raw disk, native �le system, or relational databases

for storage implementation.

In PVFS1, the servers keep up with the state of open �les. This has resulted in a

lot of
omplexity as the servers end up having to re
over to a
onsistent state after a

rash. In PVFS2, the servers are stateless. This will hopefully redu
e the
omplexity

and ease the design of multi-pro
ess servers.

In PVFS1, the
lient interfa
e was intended to be a repla
ement for the standard

POSIX interfa
e. This interfa
e la
ks many features
riti
al to use in parallel appli-

ations. Parallel I/O interfa
es su
h as MPI-IO had to be implemented as a layer

on top of the interfa
e. The PVFS2 System Interfa
e is designed at a lower level

than a user interfa
e. It has a full set of features for parallel
omputing, though it

is very
omplex. Several di�erent user interfa
es
an be neatly implemented on top

of it in
luding POSIX and MPI-IO. In addition, this interfa
e is designed to intera
t

with the Linux VFS to fa
ilitate kernel implementations.

1.4 The System Interfa
e

Figure 1.1 shows the overall system ar
hite
ture for PVFS2. It is seen from the

�gure that the System Interfa
e is the layer between the user level interfa
e and

the job or networking abstra
tion layer. This interfa
e de�nes the logi
al operations

supported by the underlying �le system. There are two parts to the System Interfa
e

where it merges with the PVFS2 ar
hite
ture. One is the top part of the interfa
e

where it meets the user interfa
e or PVFSD. This represents the API de�ned by the

6

User
Level

Interface
Kernel VFS

CLib

PVFSD

BMI

JOB

DCACHE

APPLICATION

 SERVER

JOB

FLOW

TROVEBMI

REQUEST PROTOCOL

CLIENT SERVER

SYSTEM INTERFACE

PCACHE

Figure 1.1: PVFS2 Ar
hite
ture

System Interfa
e that allows user-level appli
ations to a

ess the parallel �le system.

The lower part of the System Interfa
e is responsible in dealing with the network

abstra
tion layer(job layer). The design goals for the System Interfa
e are outlined

as follows.

� Abstra
tion: The �le system needs to export a standard interfa
e that
an be

used by the high-level appli
ation interfa
es. This would also provide the ne
es-

sary abstra
tion by de
oupling the interfa
e from the �le system implementation

details.

� Flexibility: To allow parallel �le systems to maximize their performan
e, the �le

system interfa
e needs to be as
exible as possible. This means that appli
ations

need to be able to exer
ise a measure of
ontrol on the �le system parameters

through the interfa
e. This would enable appli
ations to tune the �le system

poli
ies to a
hieve the best �t for themselves.

7

� Support for user-level interfa
es: This refers to the ability of the parallel �le

system interfa
e to support multiple high-level interfa
es. The high-level inter-

fa
es should support as mu
h of the fun
tionality as possible and the �le system

interfa
e should only provide the ne
essary support for the high-level interfa
es

by de�ning primitives to enable non-
ontiguous a

ess and read-write with high

throughput.

� Robustness: Any appli
ation using the �le system interfa
e expe
ts that errors

during exe
ution of operations are handled gra
efully and the system interfa
e

shuts down
leanly. Error and if possible debugging information needs to be

returned by the system interfa
e to the appli
ation.

� Performan
e: The design of the �le system interfa
e plays a major part in the

overall performan
e of the �le system. The interfa
e design needs to make use

of optimizations wherever possible and also make eÆ
ient use of the underlying

subsystems to a
hieve the best possible performan
e.

1.5 Approa
h

We propose the System Interfa
e in PVFS2 as a solution to meet the demands made of

a parallel �le system interfa
e. Our obje
tive in proposing this interfa
e is to provide

a
exible and eÆ
ient interfa
e that meets our stated goals. In this thesis, we present

the design and implementation of the PVFS2 System Interfa
e. After dis
ussing the

design goals in the previous se
tion, we list the features of the PVFS2 �le system

interfa
e whi
h are as follows.

� �le abstra
tion

� abstra
t distribution

� non-
ontiguous �le a

ess using
omplex I/O patterns

8

� stateless design

�
ontrol over distribution and
a
hing

� extensible attributes

� extensible request format

� prote
tion of �le system data stru
tures

� thread safety

In this se
tion we dis
uss how the System Interfa
e is designed to provide the

features listed previously while meeting the design goals. File abstra
tion is provided

by presenting the user library with a single logi
al �le even though the a
tual �le is

de
lustered over multiple servers. The distribution is abstra
ted as a string identi�er

at the user library with the System Interfa
e handling the details using the distri-

bution module. The availability of a well-de�ned API provides �le and distribution

abstra
tion to the user library. The API implementation hides �le-system spe
i�

details from the user while at the same time providing
ontrol through the API pa-

rameters. It is intended that
hanging the �le system implementation does not heavily

impa
t the API itself. The design of the well-de�ned API helps a
hieve the goal of

abstra
tion along with providing the desired features.

System Interfa
e features su
h as
ontrol over distribution parameters, support

for
omplex I/O patterns,
ontrol over
a
hing
onsisten
y, and extensible attributes

add
exibility to the System Interfa
e. Control over distribution parameters is needed

to mat
h the distribution to a

ess patterns. This is ne
essary for the appli
ation to

realize the performan
e bene�ts from de
lustering. The distribution parameters are

dependent on the distribution used but usually in
lude the �le lo
ations on disk and

disk lo
ations in the
luster. For a striped distribution they
ontain the
ount of I/O

nodes a
ross whi
h the �le is striped, the �rst I/O node, and the unit(in bytes) by

9

whi
h the �le is divided among the various I/O nodes. These parameters
an be set

during the �le
reation. The System Interfa
e supports an I/O request format that

an en
apsulate any MPI based derived datatype for non-
ontiguous I/O a

esses

whi
h are a frequent o

urren
e in parallel appli
ations. The
a
he
onsisten
y is

ontrolled by using a timeout based s
heme and
a
hing
an even be disabled by

making the timeout zero. The ability to add new attributes is provided by the sup-

port for extended attributes in all attribute related fun
tions. Other features that

make the System Interfa
e
exible are the stateless design and extensible requests.

Extensible requests are made possible by the spe
i�
ation of the server request pro-

to
ol whi
h de�nes ea
h System Interfa
e operation as a
olle
tion of server requests

and responses. Adding a new request in this s
enario would entail just adding a few

server requests. The de�nition of the interfa
e as a low-level API providing primitives

rather than semanti
s has led to a stateless design. Thread safety has been provided

in the interfa
e by removing dependen
e on global system variables and using lo
ks

to arbitrate a

ess.

In addition to the features des
ribed above, the PVFS2 interfa
e has been imple-

mented to address the goals of robustness and performan
e. The implementation of

the interfa
e handles gra
eful re
overy from error
onditions and uses an error han-

dling me
hanism that aggregates the information from ea
h subsystem to return error

and debugging information to the appli
ation. The above features add to in
reased

robustness. After the addition of features to the interfa
e it is also ne
essary to add

optimizations to ensure that good performan
e is a
hieved for operations those take

the most time and also o

ur frequently. In our
ase, we have identi�ed network

requests to fet
h metadata and the obje
t handle in the above
ategory. Two design

features that speed them up are the pinode
a
he and PVFS dire
tory entry
a
he.

The pinode
a
he performs attribute
a
hing thus preventing attribute requests over

10

the network. The PVFS dire
tory entry
a
he allows the �le name to handle mapping

to be
a
hed. This saves lookup requests from going over the network.

In this se
tion, we listed the major features to give an idea of the issues involved

and what we have to implement. This outlines what we plan to do in this thesis. The

remainder of this do
ument is organized as follows. In Chapter 2, we present a review

of parallel �le systems and their �le system interfa
es that served as a ba
kground

for the design of the system interfa
e. Chapter 3 details the design details of the

system interfa
e and its related interfa
es su
h as the PVFS d
a
he interfa
e, pinode

a
he interfa
e and
on�guration management interfa
e. An out
ome of the system

interfa
e design in PVFS2 is the server request proto
ol. The server request proto
ol

is a standardization of the request ex
hange me
hanism between the
lient(the system

interfa
e) and the servers. This
hapter also
ontains a dis
ussion of the server request

proto
ol. Chapter 4 presents the evaluation of the System Interfa
e and gauges its

usefulness as the �le system interfa
e for PVFS2. Chapter 5
on
ludes this do
ument

by presenting the
on
lusions and suggesting the dire
tion for future work.

Chapter 2

Ba
kground

2.1 Parallel File Systems

This se
tion dis
usses parallel �le systems and dedi
ated interfa
es for parallel I/O

that
over related work and served as ba
kground for the design of PVFS2 and the

System Interfa
e.

2.1.1 PIOUS

Goals

The basi
 goal of the Parallel Input/Output System(PIOUS) is to provide s
alable

bandwidth in a parallel environment using a framework built on the idea of de
lus-

tering of data[13℄.

Design

The main
omponents of PIOUS are a set of data servers, a servi
e
oordinator, and

a library to link with the
lients. The data server runs on ea
h ma
hine used for

de
lustering and enables a

ess to �le data. Ea
h server is independent and uses

the lo
al �le system for data storage. The independen
e of the data servers allows

12

asyn
hronous operation and in
reased parallelism. The servi
e
oordinator initiates

major system operations but is not involved in general �le a

ess. The library provides

an API for the
lients to use the servi
es of the parallel �le system. PIOUS uses a

transa
tion based model to guarantee
onsisten
y semanti
s.

File System Interfa
e

The library in PIOUS is the interfa
e provided to the
lient appli
ations. This allows

the �le stru
ture and sele
ted logi
al views of a de
lustered �le to be spe
i�ed to the

lient.

2.1.2 Vesta

Goals

Vesta distinguishes itself as a �le system that
aters to shared �le a

ess by multiple

pro
esses. Thus, it is di�erent from a traditional distributed �le system that either

o�ers weaker
on
urren
y semanti
s or o�ers
on
urren
y with
ostly syn
hronization

me
hanisms. The goal of Vesta is to provide shared �le a

ess to I/O intensive

s
ienti�
 appli
ations while keeping performan
e in mind[7℄.

Design Overview

The Vesta parallel �le system
on
entrates on 3 aspe
ts to work towards its goals

of providing high-performan
e - parallelism, s
alability, and layering. Vesta provides

parallelism by de
lustering of �les. However, in
ontrast to its peer systems Vesta

allows the user to view the parallel nature of the �les. Compared to its peer systems

that abstra
t the de
lustered nature from the users, Vesta allows its users to adjust the

�le de
lustering based on the I/O a

ess patterns by allowing partitioning of �le data

among the various pro
esses. Vesta uses a hashing s
heme to lo
ate �les to minimize

on
i
t on high-level dire
tories. This is done to in
rease the s
alability of the �le

13

system. The design also prevents serializing of operations for purposes of
on
urren
y

ontrol and uses de
entralized lookups during �le a

esses. This allows dire
t a

esses

to the I/O servers
ontaining the metadata or data without any intera
tions between

the nodes themselves. Vesta provides the abstra
tions ne
essary to
reate and manage

the parallel views of the �les.

The a
tual implementation details of Vesta are brie
y des
ribed as follows. Vesta

is implemented as 2 units - a
lient library linked to the appli
ation and a server that

runs on the I/O nodes. Vesta uses a hash based s
heme to lo
ate the �le instead

of the name server or path traversal approa
h. The �le obje
ts are �les,
ells, and

Xrefs(instead of dire
tories). A hash on the �lename lo
ates the server
ontaining

the metadata. The metadata is distributed a
ross all I/O servers and needs to be

looked up prior to data a

ess. Partitioning parameters are spe
i�ed during a �le

open. This allows multiple pro
esses to share a �le without any syn
hronization

provided the partitions are disjoint. Con
urren
y
ontrol is provided by a token-

passing me
hanism among the I/O nodes that guarantees atomi
ity a
ross all nodes

while providing sequential
onsisten
y among requests.

File System Interfa
e

The Vesta
lient library also a
ts as the �le system interfa
e. The major idea in

Vesta is the two-dimensional stru
ture of �les. The two dimensional �le stru
ture

allows multiple pro
esses to separate the �le into non-overlapping segments using the

fa
ility of partitions provided in Vesta. This in turn allows the pro
esses to extra
t

maximum parallelism during �le a

ess. Also, disjoint partitions eliminate the
ostly

syn
hronization me
hanisms otherwise needed to arbitrate a

ess.

14

2.1.3 PPFS 1

Goals

The prin
ipal goal of PPFS1 is to be a tool to explore and experiment with various

system poli
ies in parallel input/output systems. To su

essfully experiment with the

poli
ies the user needs to have broad
ontrol over �le management poli
ies. PPFS1

aims to provide a
exible API, the ability to explore poli
ies su
h as
a
hing, distri-

bution, prefet
hing, and the ability to dynami
ally adapt the poli
ies to mat
h the

a

ess pattern[8℄.

Design Overview

PPFS1 is designed as a user library in order to avoid making frequent
hanges to the

system software that are time-
onsuming and also be
ause of the in
reased
exibility

provided by working in user spa
e. The basi
 software
omponents in PPFS1 are the

lients, servers, metadata server, and the
a
hing agents. PPFS1 uses a
lient/server

model. A PPFS1
lient
onsists of the user appli
ation along with the lo
al
a
hing

and prefet
hing software used to a

ess the �le system. The server a
tually resolves

the requests made by the
lient and is made up of the server
a
he, prefet
hing engine,

and the storage me
hanism whi
h handles data and metadata storage. The metadata

servers servi
e open and
lose requests for �les in PPFS1. They maintain state for

ea
h open �le. Clients
an also dire
tly ex
hange metadata without involving the

metadata server. The
a
hing agents are shared
a
hes that serve multiple
lients

and all requests to the shared �le pass through the
a
hing agent rather than dire
tly

to the I/O servers. The
a
hes ensure the
oheren
e of the data provided to the

lients. All the poli
ies in use su
h as prefet
hing or
a
hing
an be
ontrolled by the

user and aid in the sear
h for the best �t for ea
h parti
ular appli
ation.

15

File System Interfa
e

The �le system interfa
e in PPFS1 is an API that tries to let the appli
ation advertise

its information and also
ontrol the system poli
ies that will ultimately a�e
t I/O

performan
e. The API
ontains fun
tions to allow the appli
ation to spe
ify its

a

ess patterns,
ontrol data distribution over servers,
ontrol
a
hing poli
ies at

lients, servers, and
ontrol prefet
hing poli
ies at
lients, servers.

2.1.4 Galley

Goals

Galley attempts to make use of studies of parallel appli
ation workloads and perfor-

man
e evaluations of
ontemporary parallel �le systems[14℄. Galley's goals in
lude

the following

� give appli
ations
ontrol over de
lustering

� handle various a

ess patterns and sizes

� provide s
alability

� transfer spe
i�
 fun
tionality to libraries implemented on top of Galley instead

of making them part of the �le system

� obtain good performan
e.

Design Overview

The Galley parallel �le system
onsists of sets of
lients and servers. Pro
essors

are dedi
ated either to
omputing or I/O. Clients run on the
ompute pro
essors

and the servers run on the I/O pro
essors. A Galley
lient is an appli
ation linked

to the Galley library and passes on �le system requests after
onverting them to

16

messages to the servers. Ea
h
lient is independent of the others. Galley's I/O

servers are
omposed of multiple units -
ompute threads, a
a
he manager, and

the disk manager. A
ompute thread handles only requests from a spe
i�

ompute

pro
essor and passes on the list of disk blo
ks needed to satisfy the request to the
a
he

manager. The
a
he manager maintains a separate blo
k list for ea
h thread and also

implements the
a
he repla
ement poli
y. For any blo
k not in the
a
he, the
a
he

manager makes a request to the disk manager. The disk manager servi
es requests

from the
a
he manager by relying on the underlying system to provide these servi
es.

Ea
h Galley �le has a 3-dimensional stru
ture. Ea
h �le
onsists of sub�les whi
h in

turn
onsist of forks. Ea
h sub�le is pla
ed on a disk and provides I/O parallelism.

The number and pla
ement of sub�les
an be
ontrolled by the appli
ation. A sub�le

ontains one or more forks whi
h are named, addressable, and linear sequen
es of

bytes. Forks allow related information to be stored logi
ally together but a

essed

separately.

File System Interfa
e

Galley provides a spe
ialized interfa
e to the appli
ation. The interfa
e provides for

operations on �les, operations on forks, standard data a

ess primitives, and support

for strided a

ess patterns. Galley supports three stru
tured strided requests and one

unstru
tured request. These strided requests allow grouping of multiple requests to

minimize network overhead and also allow for eÆ
ient disk s
heduling de
isions.

2.1.5 PPFS 2

Goals

Computational grids involve resour
es that are not always available and also appli-

ations with
omplex and varying demands. The motivation for PPFS2 is to
reate

a adaptive
ontrol system that uses the
urrent state of the system to adjust system

17

poli
ies spe
i�
ally related to the I/O system. This is expe
ted to tailor poli
ies to

appli
ation needs and hen
e yield maximum performan
e[15℄.

Design Overview

PPFS2 uses the Globus distributed system framework as the basi

ommuni
ation

ar
hite
ture among the various
omputational grids. Over Globus it uses the Au-

topilot real-time adaptive
ontrol system. The metadata manager and I/O servers

perform their usual fun
tions whi
h is managing metadata and data respe
tively. Au-

topilot
ontains performan
e sensors to
apture raw performan
e data, and de
ision

pro
edures to
hoose a poli
y and set its parameters and a
tuators (to implement

poli
y de
isions). In addition to the quantitative data, the adaptive system uses a

neural network to perform a

ess pattern
lassi�
ation. The de
ision server uses both

the �le a

ess pattern and the data to make a de
ision on
hoosing the striping and

a
hing poli
ies for the �le. PPFS2 uses the relation between inter-requests intervals

and striping as a fa
tor in its poli
y sele
tion. In addition to the adaptive me
hanism,

there is a feature for user steering of poli
ies. Some other ideas being experimented

with in PPFS2 are related to predi
ting a

ess patterns and trends. This information

an then be used to prefet
h data.

File System Interfa
e

PPFS2 uses the S
alable I/O initiative's low level API. Other high level libraries
an

be implemented on top of this interfa
e. The SIO interfa
e allows easy des
ription of

omplex parallel I/O patterns and in
ludes spe
i�
ation of hints regarding the a

ess

patterns.

18

2.1.6 PVFS

Goals

PVFS is designed as a produ
tion level parallel �le system for Linux
lusters. The

design goals of PVFS are[4℄

� high-speed
on
urrent read/write with multiple pro
esses

� support for multiple APIs

� ability to run
ommon UNIX
ommands like ls,
p

� ability to a

ess the �le system with utilities developed using the UNIX I/O

API

� robustness

� ease of use

Design Overview

PVFS is a user spa
e implementation. It is a
lient-server system with 2 types of

servers. A metadata server that handles metadata operations involving permission

he
ks, open, and
lose. The metadata server does not take part in I/O operations.

The I/O server provides a

ess to the data using the native �le system for data

storage. An I/O server runs on ea
h I/O node. The I/O nodes have disks atta
hed

to them. Ea
h �le is distributed a
ross the disks on I/O nodes. The appli
ations

intera
t through the
lient library.

File System Interfa
e

PVFS supports multiple API's that in
lude the native PVFS API, the UNIX/POSIX

API, and MPI-IO. The other API's are built on top of the native PVFS API. The

19

native API supports UNIX like
ontiguous read/write and uses a partitioned-�le

interfa
e for simple strided a

ess patterns. The partitioning allows a non-
ontiguous

request to be made in a single
all whi
h would otherwise take multiple
alls to the

�le system. Support for MPI-IO was provided so that the full range of MPI-IO's

non-
ontiguous a

ess patterns
ould be used. But, it has been sin
e realized that

the partitioned interfa
e only supports a subset of a

ess patterns possible through

MPI-IO.

2.2 Spe
ialized Interfa
es

2.2.1 MPI-IO

MPI-IO is an API spe
i�ed by the MPI forum to aid portable parallel programming.

The need for MPI-IO is be
ause a normal UNIX like API is not suitable for par-

allel I/O. So, MPI-IO provides fun
tions those enable I/O parallelism, portability,

and good performan
e. ROMIO is a portable implementation of MPI-IO. To ensure

portability ROMIO uses an interfa
e
alled the abstra
t devi
e interfa
e to separate

the ar
hite
ture dependent and independent parts. ADIO is just a
olle
tion of fun
-

tions to enable parallel I/O. As long as ADIO is implemented for ea
h �le system, any

parallel I/O API
an be implemented on top of ADIO. Some of the features of MPI-IO

are
olle
tive I/O, non-
ontiguous a

esses, and non-blo
king I/O. To provide better

support for MPI-IO Thakur, et. al.[18℄ have proposed a list of features for �le systems

to provide. They in
lude
on
urrent high- performan
e read/write, data
onsisten
y

and atomi
ity semanti
s, an interfa
e supporting non-
ontiguous a

esses, large �le

support, and
ontrol over �le striping.

20

2.2.2 SIO low-level API

This API[9℄ has been proposed by the S
alable I/O Initiative, a
onsortium of uni-

versities and
ompanies. The main obje
tive of this API is to de�ne primitives so

that the full potential of high-bandwidth network and storage devi
es
an be realized.

The do
ument proposing the API states that the �nal goal after rea
hing a
onsensus

on the interfa
e is standardization of a parallel I/O interfa
e. This interfa
e
hooses

performan
e and parallelism over ease of use. Some of the features of this interfa
e

are appli
ation
ontrols over
a
he
onsisten
y, appli
ation hints about a

ess pat-

terns, s
atter-gather,
olle
tive I/O, and asyn
hronous operations. Ultimately, many

of these ideas have been merged in the MPI-2 spe
i�
ation to
reate the MPI-IO

interfa
e.

2.3 Lessons from prior work

After looking at the work done in various parallel �le systems and also at the various

spe
ialized interfa
es for parallel I/O it is
lear that there is no parti
ular solution

that deals with all parallel appli
ations. Experien
e with parallel �le systems has also

made
lear that there is no
lear
onsensus on the �le system interfa
e or stru
ture of

parallel �le systems[12℄. So, the key is
exibility in
on�guration. It is required that

an appli
ation make the
hoi
e of its interfa
e and also be able to
ontrol the data

distribution. This makes it essential that a native parallel �le system interfa
e only

provide the primitives essential for parallel a

ess with good performan
e and leave

the fun
tionality details to higher-level appli
ation libraries.

At the same time, our experien
e with PVFS1 has taught us that abstra
tion is

ne
essary for
exibility so that
hanges
an be made without disrupting the normal

fun
tioning of a produ
tion �le system. The presen
e of a well-de�ned interfa
e also

makes a distin
tion between the fun
tionality and implementation so that appli
ations

21

need not
hange their
ode if the implementation
hanges. We believe that the system

interfa
e in PVFS2 provides the right mix of abstra
tion and
exibility for parallel

appli
ations in a produ
tion environment.

Chapter 3

Design of the System Interfa
e

3.1 Introdu
tion

The System Interfa
e is the low level
lient side interfa
e that intera
ts with appli-

ations that want to a

ess the Parallel Virtual File System. The System Interfa
e

is the native �le system interfa
e of PVFS2. This interfa
e resembles the Linux VFS

interfa
e
losely so as to enable PVFS2 to be supported as a �le system under Linux.

The System Interfa
e de�nes the operations that
an be requested of the parallel vir-

tual �le system. Most of the System Interfa
e operations a
tually a
t on �le system

obje
ts whereas the remaining few a
t on the �le system as a whole su
h as retrieving

statisti
s from the �le system.

3.2 File system obje
ts

PVFS2 has �ve �le system obje
ts - meta�les, data�les, dire
tories, symboli
 links,

and
olle
tions. The various �le system obje
ts ex
ept the symboli
 links are shown

in �gure 3.1. As mentioned earlier the System Interfa
e provides an API for the

appli
ation to manipulate the system obje
ts. The �gure shows the �le system obje
ts

23

datafile for

Handle : h1

IOD 4

IOD 3

IOD 2

IOD 1

datafile for

h4

type: DIR
7000
1362

0
7

atime:

Handle Info:
perms:

uid:
gid:

0

Handle : h3

datafile for

Sta
tfs

R
eaddir

Lookup/ G
etattr/ S

etattr

Looku
p/ G

etattr
/ S

etattr

Read/ W
rite

Read/ Write

Read/ Write

A
pp

lic
at

io
n

Directory /parl

foo2
foo1
foo

Metadata for directory /parl

file /parl/foo

file /parl/foo

file /parl/foo

Metadata for file /parl/foo

S
ys

te
m

 In
te

rf
ac

e

Collection ID (file system ID) : 1

Handle : h4

Handle : h2

type: FILE

h1, h2, h3

Handle Info:
7

6000
1361

atime:
perms:
gid:
uid:

Figure 3.1: PVFS2 File System Obje
ts

and System Interfa
e fun
tions to manipulate them. A detailed explanation of the

�le system obje
ts follows.

3.2.1 Meta�les

Metadata
an be des
ribed as properties of a group of data in a �le system and allows

the group of data to be treated
olle
tively as a �le. It typi
ally
ontains information

su
h as uid, gid, permissions, a

ess time,
reation time, modi�
ation time, type of �le

system obje
t, and the distribution parameters. The System Interfa
e allows meta-

24

data a

ess or modi�
ation through fun
tions getattr and setattr. The logi
al entities

that store the metadata are referred to as the meta�les. Meta�les are implemented

as Trove obje
ts whi
h in turn may be implemented as �les if the Linux �le system

stores the metadata or data spa
es if a database is used to store the metadata. The

�gure shows meta�les for a PVFS2 �le and dire
tory. Fun
tions to a

ess meta�les

are also shown.

3.2.2 Data�les

A data�le refers to the logi
al entity
ontaining the a
tual data that makes up a

�le. The data�le
ould be a �le in Linux or a data spa
e in a database. A data�le in

PVFS2
ontains part of the data of the original �le along with attributes ne
essary for

a
ting on the data�le. Hen
e, a logi
al �le in PVFS2 is de
lustered and may
onsist of

several data�les as shown in the �gure. The way in whi
h the �le is de
lustered into

data�les is de
ided by the distribution used. The System Interfa
e de�nes operations

on �les like read, write,
reate, and remove that may eventually end up as operations

on individual data�les.

3.2.3 Dire
tories

A dire
tory is a �le that
ontains dire
tory entries. The dire
tory spe
i�
 operations

supported by the System Interfa
e are
reating a dire
tory, removing a dire
tory, and

reading a dire
tory. Besides these, operations su
h as lookup to get the dire
tory

handle and getattr/setattr to read/modify the attributes
an also a
t on dire
tories.

A dire
tory is not de
lustered and I/O is not allowed on dire
tories.

25

3.2.4 Symboli
 Links

Symboli
 links are spe
ial �les that are just pointers or short
uts to other �les. These

�les
ontain no data. Symboli
 links are
urrently not supported.

3.2.5 Colle
tion

A
olle
tion is an abstra
tion for a �le system or group of �le systems. A
olle
tion

en
ompasses all the �le system obje
ts mentioned earlier. To di�erentiate the �le

system obje
ts belonging to a parti
ular
olle
tion ea
h obje
t is asso
iated with a

olle
tion ID. The
olle
tion ID is a unique identi�er for a
olle
tion. It is guaranteed

that the handle spa
e within a
olle
tion is unique. The System Interfa
e provides a

fun
tion to query the
olle
tion(�le system) statisti
s
alled statfs.

3.3 Ar
hite
ture

The overall ar
hite
ture is shown in �gure 3.2. The System Interfa
e is designed as

a set of fun
tions that allow an appli
ation to intera
t with PVFS2. These fun
-

tions only provide primitives to a

ess the parallel �le system. Further fun
tionality

needs to be layered on top of the System Interfa
e by de�ning appli
ation libraries.

Examples of su
h libraries
ould be a POSIX library or a parallel I/O library like

MPI-IO. PVFS2
an also be in
orporated as a �le system under Linux as the System

Interfa
e tries to
losely resemble the Linux VFS interfa
e. Hen
e, all that would

need to be done to support PVFS2 under Linux is to develop a layer under the kernel

VFS interfa
e that uses the fun
tions of the System Interfa
e for all operations on

PVFS2 �les. Apart from the System Interfa
e API, there are other interfa
es that

the System Interfa
e depends on. The pinode and dentry
a
he interfa
es provide the

PVFS2 interfa
e with
lient side
a
hing and minimize network traÆ
. The
on�gura-

tion management interfa
e is used to a

ess
on�guration parameters. This interfa
e

26

PVFS DIRECTORY CACHE

NETWORK ABSTRACTION LAYER

POSIX API MPI−IO
VFS LAYER

I/O SERVER 2I/O SERVER 1

STORAGE STORAGE
SUBSYSTEM

STORAGE
SUBSYSTEM

STORAGE
SUBSYSTEMSUBSYSTEM

SYSTEM INTERFACE LAYER

CONFIGURATION

MANAGEMENT

INTERFACE

PINODE CACHE

LINUX KERNEL

I/O SERVER 3 I/O SERVER N

Figure 3.2: System Interfa
e Ar
hite
ture

prin
ipally
onsists of bu
ket table related fun
tions that query and manipulate the

mappings between bu
kets and servers.

The System Interfa
e
ommuni
ates with the �le system servers via the request

proto
ol. This proto
ol de�nes a set of request and response messages that operate

on the �le system obje
ts de�ne in 3.2. In turn, the interfa
e provided to the user

library
onsists of a set of request/ response pairs that operate on a logi
al �le. Thus,

the System Interfa
e must intera
t with the �le system abstra
tions and implement

those for the user library.

27

3.4 System Interfa
e Con
epts

3.4.1 Handle

A handle in PVFS2 uniquely identi�es a �le system obje
t within a
olle
tion. A

handle and a
olle
tion identi�er are required to identify the obje
t a
ross
olle
tions.

The handle is visible at the System Interfa
e layer but not to the user library. The

System Interfa
e manages the handles of the �le system obje
ts and provides the user

library with a single abstra
t handle.

3.4.2 Pinode

A pinode in PVFS2 is equivalent to a Linux inode but its visibility is restri
ted to

the System Interfa
e. It is used as a me
hanism to aggregate information about a

PVFS2 �le system obje
t for a parti
ular
lient. It
an also be
onsidered as linking

a handle to its metadata. A me
hanism is also in pla
e in ensure the
onsisten
y of

pinodes.

3.4.3 Pinode Referen
e

A pinode referen
e is an opaque type that a
ts as a unique identi�er to a PVFS2 obje
t

a
ross all �le systems. All referen
es to a PVFS2 obje
t at the system interfa
e level

are either in terms of the obje
t name or the pinode referen
e. A pinode referen
e

is
urrently implemented as a
ombination of the meta�le obje
t handle and the

olle
tion id. The pinode referen
e is passed out of the System Interfa
e to the

appli
ation and the appli
ation uses it to refer to an obje
t thereafter.

28

3.4.4 Bu
ket

A bu
ket
an be thought of as a virtual disk. The basi
 idea is to asso
iate �le system

obje
ts with bu
kets rather than physi
al disks. This way obje
ts
an be de
oupled

from the a
tual storage details. This allows bu
kets to be moved from one physi
al

disk to another or even be dupli
ated on multiple disks as the need arises without

needing to
hange the meta�les of the
ontained obje
ts. The relation between a

logi
al �le in PVFS2 and a bu
ket is as follows. A �le in PVFS2 is de
lustered into

bu
kets a

ording to the spe
i�ed distribution. The de
ision as to whi
h I/O server

the bu
ket is pla
ed on is made separately.

3.4.5 Credentials

Credentials
olle
tively refer to the permission and owner information for a PVFS

obje
t. The idea is to use this to verify permissions for a

ess.

3.5 System Interfa
e Fun
tion Spe
i�
ation

The System Interfa
e API
an be organized into 5 groups.

� Interfa
e management operations

� Obje
t
reation, query and destru
tion operations

� I/O operations

� Obje
t lo
king operations

� File system query operations

29

3.5.1 Interfa
e management operations

The parameters to most of the System Interfa
e API fun
tions
ontain a request

and response stru
ture. A few fun
tions though, have only a request stru
ture and

have no response. The request stru
tures
ontain the inputs to the request and the

response stru
tures
ontain the data returned after the request is servi
ed by the

server. We show the �elds of the request and response stru
tures for the System

Interfa
e fun
tions below.

� PVFS sys initialize(pvfs mntlist mntent list)

The parameters for PVFS sys initialize are shown below. The pvfs mntlist

stru
ture
ontains a
ount of the number of mount entry stru
tures and a pointer

to the mount entry stru
tures.

The �elds of the pvfs mntlist stru
ture are

{ int nr entry // number of entries in pvfstab

{ pvfs mntent *ptab p // pointer to entries in pvfstab

{ gen mutex t *mt lo
k // mutex lo
k

The �elds of the pvfs mntent stru
ture are

{ PVFS string meta addr // metaserver address

{ PVFS string serv mnt dir // root mount point

{ PVFS string lo
al mnt dir // lo
al mount point

{ PVFS string fs type // �le system type

{ PVFS string opt1 // options

{ PVFS string opt2 // options

PVFS sys initialize initializes the system interfa
e data stru
tures. Its param-

eter is a stru
ture
ontaining
on�guration information either from a pvfstab

30

�le or the mount
ommand line. PVFS sys initialize needs to be
alled before

alling any other system interfa
e fun
tion. It initializes the BMI and
ow mes-

saging interfa
es. It also makes a GETCONFIG request to the server to obtain

on�guration information and set up the re
eived information to be a

essed by

the
on�guration management interfa
e. This fun
tion is also responsible for

initializing and setting up the pinode and dire
tory entry
a
hes.

� PVFS sys �nalize(void)

PVFS sys �nalize shuts down the System Interfa
e. This fun
tion needs to be

alled after all system interfa
e operations are �nished. It deallo
ates memory

referen
ed by the system interfa
e. It also
loses down all other interfa
es su
h

as the BMI interfa
e,
ow messaging interfa
e, pinode
a
he interfa
e, and

dire
tory
a
he interfa
e.

3.5.2 Obje
t
reation, query and destru
tion operations

� PVFS sys lookup(PVFS sysreq lookup *req, PVFS sysresp lookup

*resp)

The parameters for PVFS sys lookup are shown below.

The �elds of the request stru
ture are

{ PVFS string name // obje
t name

{ PVFS fs id fs id // �le system id

{ PVFS
redentials
redentials // uid, gid, permissions

The �elds of the response stru
ture are

{ pinode referen
e pinode refn // handle, �le system id

PVFS sys lookup returns the pinode referen
e for a �le, dire
tory or symlink

given the obje
t name and �le system id. It is the equivalent of the namei fun
-

31

tion in Linux that translates a �le name to an inode number. Lookup employs

path traversal to obtain the pinode referen
e while also doing permission
he
ks

for the entire path traversed.

� PVFS sys getattr(PVFS sysreq getattr *req, PVFS sysresp getattr

*resp)

The parameters for PVFS sys getattr are shown below.

The �elds of the request stru
ture are

{ pinode referen
e pinode refn // handle, �le system id

{ PVFS bit�eld attrmask // attributes to be fet
hed

{ PVFS
redentials
redentials // uid, gid, permissions

The �elds of the response stru
ture are

{ PVFS obje
t attr attr; // attributes fet
hed

{ PVFS attr extended extended // extended attributes

The �elds of the attr stru
ture in the response are

{ PVFS uid owner

{ PVFS gid group

{ PVFS permissions

{ PVFS time atime // a

ess time

{ PVFS time mtime // modi�
ation time

{ PVFS time
time //
reation time

{ int objtype // type of �le system obje
t

{ The �elds below are part of a union

{ PVFS meta�le attr meta // meta�le spe
i�
 attributes

32

{ PVFS data�le attr data // data�le spe
i�
 attributes

{ PVFS dire
tory attr dir // dire
tory spe
i�
 attributes

{ PVFS symlink attr sym // symlink spe
i�
 attributes

PVFS sys getattr obtains the properties of the �le, dire
tory or symlink iden-

ti�ed by the pinode referen
e passed as input. There is an option to obtain

attributes other than the generi
 information su
h as owner, permission infor-

mation,
reation, a

ess, and modi�
ation times by spe
ifying attribute masks.

Attribute masks enable getting attributes su
h as size or obje
t spe
i�
 infor-

mation su
h as distribution and data �le handles.

� PVFS sys setattr(PVFS sysreq setattr *req)

The parameters for PVFS sys setattr are shown below.

The �elds of the request stru
ture are

{ pinode referen
e pinode refn // handle, �le system id

{ PVFS obje
t attr attr // new attributes

{ PVFS bit�eld attrmask // attributes to be modi�ed

{ PVFS
redentials
redentials // uid, gid, permissions

{ PVFS attr extended extended // extended attributes

PVFS sys setattr allows the manipulation of the properties of a �le, dire
tory,

or symlink spe
i�ed by the pinode referen
e input. As in PVFS sys getattr,

an attribute mask may be used to narrow the attributes to be modi�ed.

� PVFS sys mkdir(PVFS sysreq mkdir *req, PVFS sysresp mkdir *resp)

The parameters for PVFS sys mkdir are shown below.

The �elds of the request stru
ture are

33

{ PVFS string entry name // dire
tory entry name

{ pinode referen
e parent refn // handle, fs id of parent dire
tory

{ PVFS obje
t attr attr // attributes of new entry

{ PVFS bit�eld attrmask // attribute mask

{ PVFS
redentials
redentials // uid, gid, permissions

The �elds of the response stru
ture are

{ pinode referen
e pinode refn // handle, �le system id

PVFS sys mkdir
reates a dire
tory with given attributes and obtains a pinode

referen
e to the
reated dire
tory. An entry for the newly
reated dire
tory is

added to the parent dire
tory.

� PVFS sys rmdir(PVFS sysreq rmdir *req)

The parameters for PVFS sys rmdir are shown below.

The �elds of the request stru
ture are

{ PVFS string entry name // dire
tory entry to be removed

{ pinode referen
e parent refn // handle, fs id of parent dire
tory

{ PVFS
redentials
redentials // uid, gid, permissions

PVFS sys rmdir removes the dire
tory indi
ated by the obje
t name, parent

dire
tory, and �le system id. A dire
tory
an be removed only if it
ontains

no obje
ts. The entry for the removed dire
tory is deleted from the parent

dire
tory.

� PVFS sys
reate(PVFS sysreq
reate *req, PVFS sysresp
reate

*resp)

The parameters for PVFS sys
reate are shown below.

34

The �elds of the request stru
ture are

{ PVFS handle entry name // name of �le to
reate

{ pinode referen
e parent refn // handle, fs id of parent dire
tory

{ PVFS obje
t attr attr // attributes of new obje
t

{ PVFS bit�eld attrmask // attribute mask

{ PVFS
redentials
redentials // uid, gid, permissions

The �elds of the response stru
ture are

{ pinode referen
e pinode refn //handle, �le system id

PVFS sys
reate
reates a new �le with spe
i�ed attributes and obtains a pin-

ode referen
e to it. This involves
reating both the metadata and also
reating

the data�les on the various I/O servers.

� PVFS sys remove(PVFS sysreq remove *req)

The parameters for PVFS sys remove are shown below.

The �elds of the request stru
ture are

{ PVFS string entry name // name of �le to remove

{ pinode referen
e parent refn // handle, fs id of parent dire
tory

{ PVFS
redentials
redentials // uid, gid, permissions

PVFS sys remove removes the �le spe
i�ed by the obje
t name, parent dire
-

tory and �le system id passed as input. This involves removing all the data�les

from the I/O servers, removal of the meta�le, and deleting the dire
tory entry

from the parent.

� PVFS sys rename(PVFS sysreq rename *req)

The parameters for PVFS sys rename are shown below.

35

The �elds of the request stru
ture are

{ PVFS string old entry // old name of entry

{ pinode referen
e old parent referen
e // old entry's dire
tory

{ PVFS string new entry // new name of entry

{ pinode referen
e new parent referen
e // new entry's dire
tory

{ PVFS fs id fs id // �le system id

{ PVFS
redentials
redentials // uid, gid, permissions

PVFS sys rename renames an existing �le or dire
tory given the old and new

obje
t names along with the old and new parent pinode referen
es and the �le

system id.

� PVFS sys symlink(PVFS sysreq symlink *req, PVFS sysresp symlink

*resp)

The parameters for PVFS sys symlink are shown below.

The �elds of the request stru
ture are

{ PVFS string name // name of link

{ PVFS fs id fs id // �le system id

{ PVFS string target // name of �le link points to

{ PVFS obje
t attr attr // attributes of link

{ PVFS bit�eld attrmask // attribute mask

{ PVFS
redentials
redentials // uid, gid, permissions

The �elds of the response stru
ture are

{ pinode referen
e pinode refn

36

PVFS sys symlink
reates a symboli
 link to a �le or dire
tory.

� PVFS sys readlink(PVFS sysreq readlink *req, PVFS sysresp readlink

*resp)

The parameters for PVFS sys readlink are shown below.

The �elds of the request stru
ture are

{ pinode referen
e pinode refn

{ PVFS
redentials
redentials // uid, gid, permissions

The �elds of the response stru
ture are

{ PVFS string target

PVFS sys readlink reads out the
ontents of a symboli
 link.

3.5.3 I/O operations

� PVFS sys read(PVFS sysreq read *req, PVFS sysresp read *resp)

PVFS sys read reads data from a �le given the pinode referen
e and the I/O

request pattern.

� PVFS sys write(PVFS sysreq write *req, PVFS sysresp write *resp)

PVFS sys write writes data to a �le given the pinode referen
e and the I/O

request pattern.

� PVFS sys allo
ate(PVFS sysreq allo
ate *req, PVFS sys resp allo
ate

*resp)

PVFS sys allo
ate is not yet implemented. The fun
tion allo
ates spe
i�ed

size of data for �le on the I/O servers indi
ated by the pinode referen
e passed

in as input.

37

� PVFS sys dupli
ate(PVFS sysreq dupli
ate *req, PVFS sysresp dupli
ate

*resp)

The parameters for PVFS sys dupli
ate are shown below.

{ pinode referen
e old referen
e // entry to dupli
ate

{ PVFS string new entry // name of new entry

{ pinode referen
e new parent referen
e // new dire
tory

The �elds of the response stru
ture are

{ pinode referen
e pinode refn // new handle, �le system id

PVFS sys dupli
ate is not yet implemented. The fun
tion
reates a new �le

with name as spe
i�ed in input and with the same distribution and attributes

as �le indi
ated by the pinode referen
e passed in as input.

3.5.4 Obje
t lo
king operations

� PVFS sys lo
k(PVFS sysreq lo
k *req, PVFS sysresp lo
k *resp)

PVFS sys lo
k is not yet implemented. The fun
tion obtains a lo
k on the �le

spe
i�ed by the pinode referen
e passed in as input.

� PVFS sys unlo
k(PVFS sysreq unlo
k *req, PVFS sys resp unlo
k

*resp)

PVFS sys lo
k is not yet implemented. The fun
tion removes the lo
k on the

�le spe
i�ed by the pinode referen
e passed in as input.

3.5.5 File system query operations

� PVFS sys statfs(PVFS sysreq statfs *req, PVFS sysresp statfs *resp)

The parameters for PVFS sys statfs are shown below.

38

The �elds of the request stru
ture are

{ PVFS fs id fs id // �le system id

{ PVFS
redentials
redentials // uid, gid, permissions

The �elds of the response stru
ture are

{ PVFS statfs statfs // �le system statisti
s

The �elds of the PVFS statfs stru
ture are

{ PVFS meta stat mstat // metaserver statisti
s

{ PVFS io stat iostat // I/O server statisti
s

The �elds of the PVFS meta stat stru
ture are

{ PVFS
ount32 �letotal // total number of meta�les

The �elds of the PVFS io stat stru
ture are

{ PVFS size blksize // �le system blo
k size

{ PVFS
ount32 blkfree // number of free blo
ks

{ PVFS
ount64 blktotal // total number of blo
ks available

{ PVFS
ount32 �letotal// maximum number of �les

{ PVFS
ount32 �lefree // number of free �les

PVFS sys statfs obtains the statisti
s for a �le system spe
i�ed by the �le

system id passed in as input. The information obtained regarding the �le system

is organized as meta server info and I/O server info.

� PVFS sys readdir(PVFS sysreq readdir *req, PVFS sys resp readdir

*resp)

The parameters for PVFS sys readdir are shown below.

39

The �elds of the request stru
ture are

{ pinode referen
e pinode refn // dire
tory to read entries from

{ PVFS token token // token passed in

{ PVFS
ount32 pvfs dirent in
ount // number of entries to read

{ PVFS
redentials
redentials // uid, gid, permissions

The �elds of the response stru
ture are

{ PVFS token //token returned

{ PVFS
ount32 pvfs dirent out
ount // number of entries returned

{ PVFS dirent *dirent array // entries returned

PVFS sys readdir reads spe
i�ed number of dire
tory entries from dire
tory

indi
ated by the pinode referen
e passed in as input. This fun
tion
an be

alled repeatedly on a dire
tory with the token returned ea
h time passed in as

input the next time. The number of dire
tories returned is spe
i�ed separately

in
ase the number of dire
tory entries requested is greater than the a
tual

number of entries present.

� PVFS sys fhdump(PVFS sysreq fhdump *req, PVFS sys resp fhdump)

PVFS sys fhdump is not yet implemented.

3.6 System Interfa
e Implementation

The usefulness of the System Interfa
e lies in the fun
tionality a�orded by the in-

terfa
e. The role of the implementation is to make sure that the fun
tionality is

implemented in a way so as to a
hieve good performan
e. The interfa
e a�ords us an

abstra
tion by whi
h we
an modify the implementation to re
e
t our understand-

ing of the underlying issues involved in improving PVFS2. At the same time, the

40

appli
ations need not
hange to bene�t from the
hanges made for the better. Ulti-

mately, we expe
t that any
hanges made will only improve on the performan
e and

produ
tion level standards of the overall �le system. Other issues we need to
onsider

in the implementation are thread safety and robustness. It is possible that multiple

lients may simultaneously use the system interfa
e. So, the system interfa
e must

implement thread safety by making all global data stru
tures it uses thread safe. The

robustness of a produ
tion level �le system depends on the robustness of its
ompo-

nents. As the �le system is a

essed through the system interfa
e there must be a

provision in the interfa
e to handle errors gra
efully and return debugging info to the

user appli
ation. The system interfa
e attempts to provide robust error handling and

debugging ability to the appli
ation by handling operations so that an error does not

leave the system in an in
onsistent state. This does not mean that the system is fault

tolerant.

The system interfa
e fun
tions implement their fun
tionality by
onstru
ting a re-

quest, sending the request to the server and pro
essing the response from the server.

This pro
ess is repeated as many times as it is needed. The request ex
hange me
ha-

nism between the
lient(in this
ase, the system interfa
e) and the servers is standard-

ized in the form of the server request proto
ol. This also ensures stateless working of

the server. The
ommuni
ation me
hanism from the
lient to the server is abstra
ted

by the network transfer layer and hen
e is transparent to the
lient. The
lient just

hands o� the requests to the network layer and
olle
ts responses from it. This frees

up the
lient from a lot of
omplexity.

To minimize network traÆ
 due to
lient requests and responses the system inter-

fa
e utilizes the pinode
a
he. It is the responsibility of the
lient to ensure that the

data obtained from the
a
he is
orre
t. To prevent traversing the path ea
h time to

obtain the
orresponding pinode referen
e the
lient uses the PVFS d
a
he. So, in

short the
lient �rst looks up information in the above
a
hes and only if ne
essary

41

onta
ts the server. The
on�guration management interfa
e is used by the
lient

to asso
iate the �les to their lo
ation both while
reating or performing any other

operations on them.

Full path permission
he
king is handled only during lookup but obje
t level per-

missions are veri�ed during ea
h operation by passing on the
redentials information

to the server. Lookup also uses an optimization to lookup multiple path segments in

a single server request.

3.7 Server Request Proto
ol

The server request proto
ol standardizes the
lient/server request ex
hange me
ha-

nism. The proto
ol is a
ombination of the stateless server design and the design of

the system interfa
e in PVFS2. The
lient/server ex
hanges usually
onsist of pre-

de�ned server request or response stru
tures. In most
ases, the ex
hange starts o�

with a request by the
lient spe
i�ed using a server request stru
ture. The I/O trans-

fer whi
h is in raw bytes is an ex
eption to the above des
ribed method of passing

requests and responses. It is to be noted that the request or response stru
tures in

the proto
ol do not exa
tly parallel those in the system interfa
e as some obje
ts are

not visible at the system interfa
e level and vi
e versa.

The server request and response stru
tures are shown below. The union in the stru
-

tures depends on the parti
ular request or response being sent.

stru
t PVFS_server_req_s {

PVFS_server_op op;

PVFS_size rsize;

PVFS_
redentials
redentials;

union {

PVFS_servreq_lookup_path lookup_path;

42

...

} u;

};

stru
t PVFS_server_resp_s {

PVFS_server_op op;

PVFS_size rsize;

PVFS_error status;

union {

PVFS_servresp_lookup_path lookup_path;

...

} u;

};

We now illustrate the methodology to
onstru
t a server request and response for

lookup path and the way in the server request and response are laid out
ontiguously

for transfer over the network.

As shown in �gure 3.3, the a
tual request parameters for lookup path are pre
eded

by the generi
 parameters listing the request id, the size of the entire request, and the

redentials information. As the pathname is a string, a
ontiguous bu�er is allo
ated

that totals the sizes of the server request stru
ture and the path name string. The

server request parameters are �rst �lled in and at the end of that the pathname string

is
opied in. In the
ase of the response the handle array and the attribute array are

variable length quantities. The
ontiguous bu�er for the response is allo
ated taking

into a

ount the maximum amount of data that
ould be returned. This would

be in the event of the handle and attribute information for all the path segments

being returned. The networking layer uses the allo
ated bu�er to �ll in the response

returned from the server. In a similar way, the other requests and responses
an be

onstru
ted.

43

SIZE = sizeof(struct PVFS_server_req_s)

’/0’

’/’

’m’

’t’

’l’

’r’

’a’

’p’

’o’

’o’

’f’

’p’

 ATTR_GENERIC

 path

SERVER REQUEST FOR LOOKUP_PATH

+ strlen("/parl/tmp/foo") + 1

 sizeof(PVFS_handle) * 3

 SIZE

 0

handle_array

attr_array

3

+ sizeof(PVFS_object_attr) * 3

+ sizeof(PVFS_handle) * 3

SIZE = sizeof(struct PVFS_server_resp_s)

SERVER RESPONSE FOR LOOKUP_PATH

in /parl/tmp/foo
path segments
number of

S
IZ

E

sizeof(PVFS_object_attr) * 3

PVFS_SERV_LOOKUP_PATH

S
IZ

E

 1

 UID, GID, Permissions

 SIZE

PVFS_SERV_LOOKUP_PATH

Figure 3.3: Server request and response for lookup path

The server request proto
ol spe
i�
ation follows. We show only those �elds spe
i�

to ea
h request.

3.7.1 Lookup Path

Type Name Des
ription

PVFS handle starting handle Handle of starting dire
tory in path

PVFS string path Full path to be traversed

PVFS fs id fs id File system identi�er

PVFS bit�eld attrmask Mask to spe
ify desired attributes

Table 3.1: Lookup Path Request

44

Type Name Des
ription

PVFS handle* handle array Ordered array of handles per segment traversed

PVFS obje
t attr* attr array Array of obje
t attributes

PVFS
ount32
ount Count of number of handles returned

Table 3.2: Lookup Path Response

3.7.2 Get Attributes

Type Name Des
ription

PVFS handle handle Handle of obje
t to fet
h attributes for

PVFS fs id fs id File system identi�er

PVFS bit�eld attrmask Mask to spe
ify desired attributes

Table 3.3: Get Attributes Request

Type Name Des
ription

PVFS obje
t attr attr Attributes of the obje
t spe
i�ed in request

PVFS attr extended extended Extended attributes

Table 3.4: Get Attributes Response

3.7.3 Set Attributes

Type Name Des
ription

PVFS handle handle Handle of obje
t to set attributes for

PVFS fs id fs id File system identi�er

PVFS obje
t attr attr Attribute values to be set

PVFS bit�eld attrmask Mask to spe
ify desired attributes

PVFS attr extended extended Extended attributes

Table 3.5: Set Attributes Request

45

No response for setattr

3.7.4 Get Con�guration

Type Name Des
ription

PVFS string fs name Name of �le system to get
on�g info for

PVFS
ount32 max strsize Max string size allowed for response mappings

Table 3.6: Get Con�guration Request

Type Name Des
ription

PVFS fs id fs id File system identi�er

PVFS handle root handle Root handle for the �le system

PVFS
ount32 meta server
ount Number of metaservers in system

PVFS string meta server mapping Ordered list of metaservers

PVFS
ount32 io server
ount Number of I/O servers in system

PVFS string io server mapping Ordered list of I/O servers

Table 3.7: Get Con�guration Response

3.7.5 Make Dire
tory

Type Name Des
ription

PVFS handle bu
ket Bu
ket to asso
iate obje
t with

PVFS handle handle mask Number of bu
ket bits in handle

PVFS fs id fs id File system identi�er

PVFS obje
t attr attr Attribute values of new obje
t

PVFS bit�eld attrmask Mask to restri
t attributes to be set

Table 3.8: Make Dire
tory Request

46

Type Name Des
ription

PVFS handle handle handle of new dire
tory
reated

Table 3.9: Make Dire
tory Response

3.7.6 Remove Dire
tory

Type Name Des
ription

PVFS string entry name Name of dire
tory to remove

PVFS handle parent handle Handle of parent dire
tory

PVFS fs id fs id File system identi�er

Table 3.10: Remove Dire
tory Request

3.7.7 Create Dire
tory Entry

Type Name Des
ription

PVFS string name Name of dire
tory entry to
reate

PVFS handle new handle Handle of obje
t

PVFS handle parent handle Handle of dire
tory to add entry to

PVFS fs id fs id File system identi�er

Table 3.11: Create Dire
tory Entry Request

3.7.8 Remove Dire
tory Entry

Type Name Des
ription

PVFS string entry Name of dire
tory entry to remove

PVFS handle parent handle Handle of dire
tory to remove entry from

PVFS fs id fs id File system identi�er

Table 3.12: Remove Dire
tory Entry Request

47

3.7.9 Create

Type Name Des
ription

PVFS handle bu
ket Bu
ket to asso
iate PVFS obje
t with

PVFS handle handle mask Number of bu
ket bits in handle

PVFS fs id fs id File system identi�er

int type Type of PVFS obje
t

Table 3.13: Create Request

Type Name Des
ription

PVFS handle handle Handle of �le
reated

Table 3.14: Create Response

3.7.10 Remove

Type Name Des
ription

PVFS handle handle Handle of PVFS �le to remove

PVFS fs id fs id File system identi�er

Table 3.15: Remove Request

No Response for remove

3.7.11 File System Statisti
s

Type Name Des
ription

int server type Metaserver or I/O server

PVFS fs id fs id File system identi�er

Table 3.16: Statfs Request

48

Type Name Des
ription

PVFS serv statfs stat File System Statisti
s

Table 3.17: Statfs Response

Type Name Des
ription

PVFS mserv stat mstat Meta server statisti
s

PVFS ioserv stat iostat I/O server statisti
s

Table 3.18: Contents of PVFS serv statfs

Type Name Des
ription

PVFS
ount32 �letotal Total number of �les

Table 3.19: Contents of PVFS mserv stat

Type Name Des
ription

PVFS size blksize File system blo
k size

PVFS
ount64 blkfree Number of free blo
ks

PVFS
ount64 blktotal Total number of blo
ks available

PVFS
ount32 �letotal Maximum number of �les

PVFS
ount32 �lefree Number of free �les

Table 3.20: Contents of PVFS ioserv stat

49

3.7.12 Readdir

Type Name Des
ription

PVFS handle handle Handle of dire
tory to read entries from

PVFS fs id fs id File system identi�er

PVFS token token Current position in dire
tory

PVFS
ount32 pvfs dirent
ount Number of entries to read

Table 3.21: Readdir Request

Type Name Des
ription

PVFS token token Updated token re
e
ting
urrent position

PVFS
ount32 pvfs dirent
ount Number of entries a
tually read

PVFS dirent* pvfs dirent array Array of entries read

Table 3.22: Readdir Response

3.8 Related Interfa
es

In this se
tion we talk of the various interfa
es the System Interfa
e depends on in

its implementation. These interfa
es provide fun
tionality for
a
hing of pinodes,

a
hing of dire
tory entries, storing of
on�guration parameters, and mapping of

bu
kets to servers. The System Interfa
e is the only layer that makes use of them

and the appli
ation
annot dire
tly a

ess these APIs.

3.8.1 Pinode
a
he

The role of the pinode
a
he is to serve as a shorter path to the metadata for the
lient.

Instead of making a server request for the metadata ea
h time and in turn in
urring

network overhead for the request, the
lient �rst looks in the pinode
a
he. If the entry

is found in the
a
he, it is tested for validity. Fet
hing the pinode is handled by the

50

pinode helper fun
tions layer whi
h provides a pinode fet
h and validate me
hanism.

The validate is done using timestamps instead of a
a
he-
oheren
e proto
ol. This

layer refreshes the pinode by getting the attributes and �lling in the pinode. The

appropriate timestamp is also updated. The pinode
a
he implementation is thread

safe. Currently, we have implemented a simple sta
k based
a
he. The various pinode

a
he operations supported are as follows.

� p
a
he initialize(p
a
he *
a
he)

p
a
he initialize initializes the pinode
a
he interfa
e and also sets up the
a
he

data stru
tures.

� p
a
he �nalize(p
a
he *
a
he)

p
a
he �nalize shuts down the pinode
a
he interfa
e.

� p
a
he lookup(p
a
he *
a
he, pinode referen
e refn, pinode *pin-

ode ptr)

p
a
he lookup sear
hes for a spe
i�ed pinode in the
a
he and returns the pin-

ode if found.

� p
a
he insert(p
a
he *
a
he, pinode *pnode)

p
a
he insert adds/merges a pinode to the
a
he. The merge operation merges

2 pinodes based on the timestamps of their
ontents.

� p
a
he remove(p
a
he *
a
he, pinode referen
e refn, pinode **item)

p
a
he remove removes a spe
i�ed pinode from the
a
he and returns the re-

moved item.

3.8.2 PVFS Dire
tory Entry
a
he

The purpose for the PVFS Dire
tory Entry
a
he is to prevent lookup operations on

�les traversing the network ea
h time. The idea is to
a
he already resolved �le names

51

so that the next time the resolution of the name to the pinode happens in the
a
he

itself. The
a
he implementation for the PVFS d
a
he is
urrently quite similar to

the pinode
a
he. The d
a
he operations supported are as follows.

� d
a
he initialize(stru
t d
a
he *
a
he)

d
a
he initialize initializes the d
a
he interfa
e and also sets up the
a
he data

stru
tures.

� d
a
he �nalize(stru
t d
a
he *
a
he) d
a
he �nalize shuts down the d
a
he

interfa
e.

� d
a
he lookup(stru
t d
a
he *
a
he,
har *name, pinode referen
e

parent, pinode referen
e entry)

d
a
he lookup sear
hes for a spe
i�ed dire
tory entry in the
a
he and returns

the entry if found.

� d
a
he insert(stru
t d
a
he *
a
he,
har *name, pinode referen
e

entry, pinode referen
e parent)

d
a
he insert adds an entry to the
a
he if not already present. If the entry is

already present, just updates its timestamp and returns su

essfully.

� d
a
he remove(stru
t d
a
he *
a
he,
har *name, pinode referen
e

parent, unsigned
har *item found)

d
a
he remove removes a spe
i�ed entry from the
a
he.

3.8.3 Con�guration Management Interfa
e

The Con�guration Management Interfa
e exports fun
tions to the system interfa
e

to manage all server related
on�guration information mainly obtained through the

Get
on�g server request. Most of the interfa
e is now dedi
ated to handling the

bu
ket to server mapping and vi
e versa. We know from the de�nition of a bu
ket

52

that the data�le or meta�le of a �le system obje
t is asso
iated to a bu
ket and not

the a
tual server. This bu
ket identi�er is embedded in the obje
t handle. So, to

determine the bu
ket and in turn the server that holds the meta�le or data�le for

an obje
t, it is required that given a handle we be able to �nd the bu
ket identi�er.

This is the reason that the
on�guration management interfa
e provides fun
tions to

determine the server given a bu
ket identi�er. It is expe
ted that other fun
tions not

dire
tly related to bu
kets would be added later on and listed under the
on�guration

management interfa
e. The interfa
e exports the following fun
tions.

�
on�g bt initialize(pvfs mntlist mntlist list)

on�g bt initialize initializes the interfa
e related data stru
tures.

�
on�g bt �nalize(void)

on�g bt �nalize shuts down the interfa
e by deallo
ating the interfa
e related

data stru
tures.

�
on�g bt get next meta bu
ket(PVFS fs id fsid, PVFS handle *bu
ket,

PVFS handle *handle mask)

on�g bt get next meta bu
ket takes a �le system identi�er as input and re-

turns the bu
ket, handle mask, and the metaserver to use while
reating a new

PVFS system obje
t.

�
on�g bt get next io bu
ket array(PVFS fs id fsid, int num servers,

har **io name array, PVFS handle **bu
ket array, PVFS handle

*handle mask)

on�g bt get next io bu
ket array takes a �le system identi�er and the num-

ber of servers as input and returns the requested number of bu
kets, handle

masks, and I/O servers needed to
reate data�les for a PVFS �le.

�
on�g bt map bu
ket to server(
har **server name, PVFS handle

bu
ket, PVFS fs id fsid)

53

on�g bt map bu
ket to server takes a bu
ket and �le system identi�er as

input and returns the server name whi
h is asso
iated with the bu
ket.

�
on�g bt map server to bu
ket array(
har **server name, PVFS handle

**bu
ket array, PVFS handle *handle mask)

on�g bt map server to bu
ket array takes a server name as input and re-

turns the bu
kets and their handle masks asso
iated with the server.

�
on�g bt get num meta(PVFS fs id fsid, int *num meta)

on�g bt get num meta takes the �le system identi�er as input and returns

the metaservers in the �le system.

�
on�g bt get num io(PVFS fs id fsid,
har **io server array)

on�g bt get num io takes the �le system identi�er as input and returns the

ioservers in the �le system.

�
on�g fsi get root handle(PVFS fs id fsid, PVFS handle *fh root)

on�g bt get root handle takes the �le system identi�er as input and returns

the root handle for the �le system.

�
on�g fsi get io server(PVFS fs id fsid,
har **io server array, int

*num io)

on�g fsi get io server takes the �le system identi�er as input and returns the

I/O servers for the �le system.

�
on�g fsi get meta server(PVFS fs id fsid,
har **meta server array,

int *num meta)

on�g fsi get meta server takes the �le system identi�er as input and returns

the meta servers for the �le system.

54

�
on�g fsi get fsid(PVFS fs id fsid,
har *mnt dir)

on�g fsi get fsid takes the mount dire
tory of a �le system as input and re-

turns the �le system identi�er for the �le system.

3.9 Summary

We have presented the design of the System Interfa
e in this
hapter. Initially, we

dis
ussed the overall design and how the individual �le system obje
ts �t into the

design. We then introdu
ed terms those were frequently used and relevant to the

dis
ussion. Subsequently, we presented the fun
tions in the a
tual interfa
e grouped

by fun
tionality followed by details of the implementation
overing various issues su
h

as name resolution,
a
hing, and permissions. After the implementation, we moved

on to an overview of the request proto
ol used in the ex
hanges between the System

Interfa
e and the servers. Finally, we mentioned the various related interfa
es used

for
lient side, name resolution
a
hing, and
on�guration management.

Chapter 4

Evaluation

The System Interfa
e was primarily designed to serve as a �le system interfa
e for

PVFS2 and at the same time allow us to further our resear
h on parallel I/O. The

obje
tive of this resear
h was twofold.

� To utilize the experien
e gained from the implementation of PVFS1 in the im-

plementation of a more powerful �le system interfa
e. This would help address

de�
ien
ies in the earlier �le system interfa
e as well as provide newer features

that would allow PVFS2 to be used e�e
tively.

� To evaluate the new design and determine the degree of su

ess we have a
hieved

in our goals

4.1 System Interfa
e Implementation

As des
ribed in the System Interfa
e Spe
i�
ation[
h.3℄ 14 out of the 19 fun
tions

in the System Interfa
e have been implemented. In addition, the pinode and PVFS

dire
tory
a
hes have also been implemented along with the
on�guration manage-

ment interfa
e. The 19 fun
tions are part of the System Interfa
e API spe
i�
ation,

whereas the other parts like the pinode and PVFS dire
tory
a
hes are underlying

56

modules used by the API. Please refer
hapter 3 for details on any of the above

interfa
es. This makes up the �rst implementation of the System Interfa
e.

As full-s
ale testing
ould not be done, the fun
tions have been evaluated with

a test harness that simulates the working of the job interfa
e(the networking layer)

and also the server. This testing only
overs
orre
tness and usability. No pro�ling

or performan
e spe
i�
 testing is planned until a working prototype of a full-
edged

PVFS2 system is ready. The role of the testing using the harness was to verify that

the API exposed the right primitives to the appli
ation using it and that the amount

of
omplexity involved in the
alling
ode was manageable. The
omplexity of the

appli
ation
ode would help us determine if the API provided the
orre
t level of

abstra
tion to the higher layers.

The role of the test harness is to test if the System Interfa
e works with the

job interfa
es and the server request proto
ol. This involves
he
king arguments

that are passed to the job layer and subsequently to the server part of the harness.

After the testing, it is expe
ted that when the System Interfa
e links to the a
tual

job layer it would be able to send requests and re
eive responses
orre
tly. In the

implementation this is done by �rst
he
king the parameters to the job layer in turn

handed over to the server portion of the harness. The server portion of the harness

validates the parameters passed by the System Interfa
e and then using a simple

implementation returns the requested information though the response stru
tures of

the Server Request Proto
ol. The returned information is then interpreted by the

System Interfa
e to de
ide the next a
tion. The a
tion
ould
onsist of either further

pro
essing or simply passing on the response to the
lient invoking the API. Thus,

the testing is also a validation of the Server Request Proto
ol.

57

4.2 Evaluation of the System Interfa
e

In order to evaluate the System Interfa
e we
ompare it to the �le system interfa
e in

PVFS1 whi
h is a
ombination of a �le system interfa
e and a POSIX �le I/O library.

As various stages of the System Interfa
e are still in progress we are unable to obtain

any a
tual performan
e results so we pro
eed to provide qualitative arguments. Our

approa
h will
onsist of giving a
ase study of how a parti
ular operation is handled in

both PVFS1 and PVFS2, and how the presen
e of a parti
ular feature in the PVFS2

�le system interfa
e enables the operation to be exe
uted more eÆ
iently. Finally,

our intent is to illustrate that the System Interfa
e is a signi�
ant improvement over

the PVFS1 interfa
e.

Firstly, we mention the signi�
ant distinguishing features of the PVFS2 �le system

interfa
e from that of PVFS1.

� abstra
tion

� support for multiple interfa
es

�
exibility and modularity

� des
ription of
omplex I/O patterns

�
learly de�ned semanti
s

� thread safety

� PVFS dire
tory
a
he

� pinode
a
he

Next, we provide
omparative arguments to show that ea
h of the above features

indeed leads to the improvement of the PVFS2 �le system interfa
e over that of

PVFS1.

58

CACHE
PVFS DIRECTORY

MANAGEMENT
CONFIGURATION

INTERFACE

DISTRIBUTION
MODULE

 INTERFACE

NETWORK

MODULAR PVFS2 INTERFACE ARCHITECTURE USING ABSTRACTION

DISTRIBUTION HANDLING

POSIX FILE I/O

CACHING OF DISTRIBUTIONS

MONOLITHIC PVFS1 INTERFACE ARCHITECTURE

NETWORKING

 SYSTEM

ABSTRACTION
LAYER

PINODE CACHE

Figure 4.1: Modular System Interfa
e vs. monolithi
 PVFS1 interfa
e

4.2.1 Abstra
tion(Data hiding)

The PVFS1 interfa
e is a
ombination of a �le I/O library and a �le system interfa
e.

Due to this, ea
h fun
tion in the library needs to be dire
tly involved with details

su
h as keeping up with so
kets and storing the distribution information for PVFS

�les. This introdu
es unne
essary
omplexity in the library
ode. Also, PVFS1 uses

many system spe
i�
 stru
tures and hen
e it is tied down to the operating system

used. The spe
i�
ation of a System Interfa
e provides the ne
essary abstra
tion so

that higher level libraries do not have to be
on
erned about dealing with the �le

system data stru
tures. The System Interfa
e in itself abstra
ts the �le system to

the libraries and the libraries
an be restri
ted to providing only the semanti
s in

their fun
tionality. The System Interfa
e takes on the responsibility of dealing with

the
ommuni
ation subsystem and providing features su
h as
a
hing. This leads to

leaner library
ode and the abstra
tion insulates the library
ode from
hanges in

the �le system implementation.

59

4.2.2 Support for multiple interfa
es

DOUBLING AS FILE SYSTEM INTERFACE

PVFS1 ACCESS THROUGH
KERNEL

PVFS1 INTERFACE

PVFSD

KERNEL VFS LAYER

APPLICATION
ROMIO OVER PVFS1

PVFS1 INTERFACE

ROMIO

VFS LAYER POSIX

SYSTEM INTERFACE

NO STACKING IN PVFS2 DUE TO LOW LEVEL

SYSTEM INTERFACE LAYER

ROMIO

DUE TO HIGH LEVEL PVFS1 LIBRARY

MDBI

PVFS1 INTERFACE

MDBI OVER PVFS1

STACKED INTERFACES IN PVFS1

Figure 4.2: Sta
king of interfa
es in PVFS1

As most parallel appli
ations will use high-level libraries rather than dire
tly use

the �le system interfa
e, the e�ort involved in implementing libraries on top of the

basi
 parallel �le system interfa
e is indeed an important issue to
onsider. The

PVFS1 interfa
e as mentioned earlier is a higher level interfa
e in that it
ombines

the features of a POSIX �le I/O library and hen
e in
ludes a lot more fun
tionality

than a �le system interfa
e. This makes the implementation diÆ
ult as it limits the

fa
ilities that the �le system
an expose to the library. In PVFS1 interfa
es end up

being sta
ked over one another as ea
h interfa
e is atop both the parallel �le system

interfa
e and a POSIX library. In the System Interfa
e, the limitations of PVFS1

have been avoided by making the �le system interfa
e provide low-level fun
tions that

an be used by higher level libraries. The libraries are given the job of implementing

any fun
tionality su
h as a POSIX layer or an MPI-IO layer. This allows the System

60

Interfa
e to support a mu
h larger number of interfa
es than the previous version in

PVFS1 and at the same time does not lead to sta
ked interfa
es.

4.2.3 Flexibility and Modularity

The �le system interfa
e in PVFS1 is not modular in its design and there is no
lear

separation of fun
tionality. This results in the interfa
e implementation itself handling

�le I/O, distributions, and networking. The appli
ation does not have the ability to

set options for
onsisten
y,
hoose the distribution, or adjust the data layout. The

System Interfa
e along with the rest of the PVFS2 subsystems en
apsulates fun
-

tionality in modules and uses interfa
es to
ommuni
ate with modules. The various

System Interfa
e
omponents like the pinode
a
he and PVFS d
a
he de�ne
lean

interfa
es for the System Interfa
e fun
tions to use. The advantage that modularity

provides is the ability to repla
e one module with another seamlessly. In addition the

System Interfa
e is quite
exible in providing the appli
ation options to tune
onsis-

ten
y,
ontrol the distribution, and support to suggest data layout. These allow the

appli
ation to make better use of the �le system by tuning the poli
ies to its bene�t.

4.2.4 Des
ription of
omplex I/O patterns

Non-
ontiguous �le a

ess is a frequent requirement of parallel appli
ations so the �le

system interfa
e has to support an eÆ
ient way of a
hieving it. We
ompare the sup-

port for
omplex I/O patterns provided by both PVFS1 and PVFS2 interfa
es. First,

we dis
uss a few fun
tions in the PVFS1 interfa
e API that provide non-
ontiguous

a

ess. Non-
ontiguous memory a

ess is provided by the fun
tions pvfs readv and

pvfs writev. These fun
tions do not however provide non-
ontiguous �le a

ess. The

pvfs read list and pvfs write list give higher level parallel I/O libraries like MPI-IO

basi
 support for non-
ontiguous a

esses. Other than the above, non-
ontiguous sup-

port in PVFS1 is provided through logi
al partitioning. Logi
al partitioning allows

61

the appli
ation to
reate a partition
omprising regions of interest from a �le. This

partition is then a

essed as a single unit thus saving multiple seek-a

ess operations.

But, the partitioning interfa
e is only useful for single dimensional data or simple

distributions of two dimensional data.

PVFS2 provides a highly expressive I/O request des
ription fa
ility that
an sup-

port any data layout that
an be
onstru
ted using MPI derived datatypes su
h as

indexed or stru
t whi
h
an't be des
ribed using the partitioning. This is supported

through the fun
tions PVFS sys read and PVFS sys write. This
an allow MPI-

IO to take full advantage of PVFS2 features as MPI-IO derived datatypes allow the

appli
ation to
reate
omplex I/O patterns to des
ribe non-
ontiguous �le a

esses.

The interpretation of the request des
ription is handled by a separate module and

the System Interfa
e only exposes the ability to the appli
ation. The advantage of

being able to des
ribe
omplex non-
ontiguous I/O a

esses to a �le is important as

su
h non-
ontiguous a

esses are quite
ommon in a parallel appli
ation. Supporting

non-
ontiguous a

esses in a single fun
tion
all redu
es the number of
alls needed as

well as the number of requests over the network. Speeding up a frequently o

urring

a

ess pattern is hen
e a big win.

4.2.5 Clearly de�ned semanti
s

In this se
tion we dis
uss spe
i�
 semanti
 features that are
learly spe
i�ed in the

PVFS2 interfa
e
ompared to the PVFS1 interfa
e. The bene�t of having well-de�ned

semanti
s is
learly felt by the user of the parallel �le system. The user
an now tailor

his appli
ations likewise. In PVFS1 the semanti
s for �le system operations is not

learly de�ned. Error handling,
onsisten
y, atomi
ity, handle reuse, and permission

he
king semanti
s are not spe
i�ed. Also, the point where PVFS di�ers from POSIX

is not de�ned. In the PVFS2 System Interfa
e,
onsisten
y, atomi
ity, error handling

handle reuse, permission
he
king semanti
s are quite
learly spe
i�ed in a PVFS2

62

semanti
s do
ument that eliminates
onfusion. As
a
hing is performed at the System

Interfa
e level it is also ne
essary to de�ne the me
hanism followed for
onsisten
y

of the
a
hed entries. This is dealt with in the System Interfa
e design do
ument.

The
a
hes in PVFS2 have tunable
onsisten
y semanti
s implemented by means of

a timeout that
an be set to 0 to indi
ate that no
a
hing is to be performed. With

the semanti
s and its implementation spe
i�ed in design do
uments we expe
t the

utility of PVFS2 to in
rease.

4.2.6 Thread Safety

PVFS1 is not thread safe. This just means that the interfa
e fun
tions
annot be

alled by multiple threads. A threaded appli
ation
an use the PVFS1 library by

alling a single thread for the library fun
tions and serializing operations. In
ompar-

ison, the PVFS2 System Interfa
e is designed to be thread safe. The System Interfa
e

fun
tions
an be
alled by multiple threads and will provide
onsistent results. The

a
hes and
on�guration management stru
tures in the System Interfa
e use lo
king

to provide thread safety. Global variables like errno are stri
tly avoided in the System

Interfa
e.

4.2.7 The PVFS2 dire
tory
a
he

We demonstrate the motivation for the PVFS2 d
a
he by showing that the PVFS2

design leads to lookups of in
reased number and longer duration. The dire
tory
a
he

in PVFS2 is an out
ome of having multiple servers storing metadata. In PVFS1, a

single metaserver is theoreti
ally a bottlene
k during metadata servers so PVFS2 has

multiple metaservers. In PVFS2, metadata is spread out over all metaservers without

overlap so as to maximize parallelism. In the worst
ase, this
ould mean that the

metadata for ea
h obje
t in a pathname is on a di�erent server. With a simplisti

lookup approa
h as in PVFS1 this leads to more requests over the network in PVFS2.

63

Thus, this does not s
ale well with in
reasing number of
lients performing lookups

and longer pathnames. This is where the PVFS2 d
a
he
omes in. The d
a
he

a
hes the name to handle mapping for ea
h obje
t after a su

essful lookup. As

more lookups o

ur and as more entries are
a
hed there will be further saving of

time spent over network traversal. This approa
h also s
ales well with in
reased

number of
lients, longer pathnames, and in
reased number of metaservers. This is

be
ause the in
reased
a
he hits would balan
e out the in
reased requests. As an

optimization, if metadata for su

essive segments in a path name is on the same

metaserver then lookup re
ursively goes through the path until it �nds a segment

whose metadata is not on the same server.

4.2.8 The PVFS2 pinode
a
he

The fun
tion of the pinode
a
he is to
a
he the attributes en
apsulated in a pinode.

In PVFS1, the stat fun
tion is used to fet
h metadata but no attempt is made to

a
he the attributes. Thus, ea
h time there is a request for metadata a request is

sent over the network to obtain them. To sum it up, the number of network messages

involved in fet
hing metadata would be the double the number of a
tual metadata

requests assuming one message ea
h for a request and response. In PVFS2, as the

System Interfa
e fun
tion getattr
ould be used by many library
alls, metadata may

be fet
hed quite frequently. In addition, it is needed to validate handles in PVFS2,

al
ulate dire
tory size, and in I/O operations. The pinode
a
he makes use of the

sizeable temporal lo
ality exhibited at the System Interfa
e. With ea
h metadata

request being satis�ed from the
a
he itself, the number of network messages due to

metadata requests are redu
ed and also the load on metadata servers is eased.

64

4.3 Summary

We believe that the obje
tives of the resear
h have been satis�ed by the implemen-

tation of the System Interfa
e. The above
omparative study proves that we have

learned from the experien
e of the PVFS1 �le system interfa
e and have su

essfully

orre
ted the short
omings and also provided new features that will allow us to fur-

ther explore issues in parallel I/O. We also hope to have demonstrated that the newer

design features in the System Interfa
e indeed make it better.

Chapter 5

Con
lusion and Future Work

This do
ument dis
ussed the design and implementation of the System Interfa
e for

PVFS2. The System Interfa
e was proposed as a �le system interfa
e for PVFS2 to

meet the following demands.

� Flexibility

� Support for multiple interfa
es

� Abstra
tion

� Robustness

� Performan
e

It has been shown that the System Interfa
e meets the intended goals. The Sys-

tem Interfa
e has been evaluated by
omparing it with the �le system interfa
e in

PVFS1. Through qualitative arguments we have tried to demonstrate that the Sys-

tem Interfa
e is an improvement over the PVFS1 interfa
e.

The fun
tions in the �rst
ut of the System Interfa
e have been implemented. As

work on the some of the underlying subsystems is
urrently in progress it was not

possible to develop a working prototype of the entire PVFS2 system. We hope as the

66

prototype is near
ompletion that integration of the System Interfa
e with the other

modules
an be done and quantitative results obtained.

5.1 Future work

As further testing is done on the System Interfa
e there is s
ope for further improve-

ments. Future work
an be broadly divided into three areas - getting quantitative

performan
e results using various libraries, implementing the remaining fun
tions in

the spe
i�
ation and adding features to make the interfa
e more
exible.

5.1.1 Performan
e Results

This needs to be done with higher priority as this will eventually allow us to evaluate

our design and identify bottlene
ks in the System Interfa
e. Some possible work in this

regard may be the implementation of a POSIX
ompliant library and
omparison of

the results with PVFS1,
omparison of ROMIO implementation results with PVFS1,

VFS interfa
e implementation results. Spe
i�
 tests to determine the improvements

due to
lient side
a
hing
ould also be done.

5.1.2 Implement the remaining fun
tions

The remaining fun
tions in the spe
i�
ation pertaining to lo
king and symboli
 link

support need to be implemented so as to provide ri
her fun
tionality in the �le system

interfa
e.

5.1.3 Provide features to in
rease
exibility

There is s
ope to add features to make the interfa
e more
exible. The
on�guration

management interfa
e
an be provided with hints on a

ess patterns so as to make

intelligent
hoi
es while de
iding the data layout. Support for non-blo
king I/O
ould

67

be provided. The error handling s
heme needs to be implemented to provide info to

the user when a problem o

urs in a produ
tion environment.

Bibliography

[1℄ Mark Baker. Cluster
omputing white paper, 2000.

[2℄ Peter J. Braam. File systems for
lusters from a proto
ol prespe
tive. In Se
ond

Extreme Linux Topi
s Workshop, June 1999.

[3℄ P. H. Carns. Design and Analysis of a Network Transfer Layer for Parallel File

Systems. Clemson University Master's Thesis, De
ember 2001.

[4℄ Philip H. Carns, Walter B. Ligon III, Robert B. Ross, and Rajeev Thakur. PVFS:

A parallel �le system for linux
lusters. In Pro
eedings of the 4th Annual Linux

Show
ase and Conferen
e, pages 317{327. USENIX Asso
iation, 2000.

[5℄ The MPI-IO Committee. MPI-IO: A Parallel File I/O Interfa
e for MPI Version

0.5.

[6℄ Peter Corbett, Dror Feitelson, Sam Fineberg, Yarsun Hsu, Bill Nitzberg, Jean-

Pierre Prost, Mar
 Snir, Bernard Traversat, and Parkson Wong. Overview of the

MPI-IO parallel I/O interfa
e. In High Performan
e Mass Storage and Paral-

lel I/O: Te
hnologies and Appli
ations, pages 477{487. IEEE Computer So
iety

Press and Wiley, New York, NY, 2001.

[7℄ Peter F. Corbett and Dror G. Feitelson. The Vesta parallel �le system. ACM

Transa
tions on Computer Systems, 14(3):225{264, August 1996.

[8℄ Jay Huber, Christopher L. Elford, Daniel A. Reed, Andrew A. Chien, and

David S. Blumenthal. PPFS: A high performan
e portable parallel �le system. In

Pro
eedings of the 9th ACM International Conferen
e on Super
omputing, pages

385{394. ACM Press, July 1995.

[9℄ S
alable I/O Initiative. SIO low-level appli
ation programming interfa
e, Novem-

ber 1996.

[10℄ Mi
hael J. Karels and Marshall Kirk M
kusi
k. Toward a
ompatible �lesystem

interfa
e. In Pro
eedings of the European Unix User's Group, September 1986.

[11℄ David Kotz. Disk-dire
ted I/O for MIMD multipro
essors, February 1997.

69

[12℄ David Kotz and Nils Nieuwejaar. Flexibility and performan
e of parallel �le

systems. In Pro
eedings of the Third International Conferen
e of the Austrian

Center for Parallel Computation (ACPC), volume 1127 of Le
ture Notes in Com-

puter S
ien
e, pages 1{11. Springer-Verlag, September 1996.

[13℄ Steven A. Moyer and V. S. Sunderam. PIOUS: a s
alable parallel I/O system

for distributed
omputing environments. In Pro
eedings of the S
alable High-

Performan
e Computing Conferen
e, pages 71{78, 1994.

[14℄ Nils Nieuwejaar and David Kotz. The Galley parallel �le system. Parallel Com-

puting, 23(4):447{476, June 1997.

[15℄ Huseyin Simit
i, Daniel A. Reed, Ryan Fox, Mario Medina, James Oly, Nan
y

Tran, and Gouyi Wang. A framework for adaptive storage input/output on

omputational grids. In Pro
eedings of the 3rd Workshop on Runtime Systems

for Parallel Programming, April 1999.

[16℄ Hal Stern. Managing NFS and NIS. O' Reilly, June 1991.

[17℄ PVFS2 Development Team. Trove: The PVFS2 Storage Interfa
e. PARL Inter-

nal Do
umentation.

[18℄ Rajeev Thakur, William Gropp, and Ewing Lusk. On implementing MPI-IO

portably and with high performan
e. In Pro
eedings of the Sixth Workshop on

Input/Output in Parallel and Distributed Systems, pages 23{32, May 1999.

