
Deember 13, 2002

To the Graduate Shool:

This thesis entitled \Design and Implementation of the System Interfae for

PVFS2" and written by Harish Ramahandran is presented to the Graduate Shool

of Clemson University. I reommend that it be aepted in partial ful�llment of the

requirements for the degree of Master of Siene with a major in Computer Engineer-

ing.

Walter B. Ligon III, Advisor

We have reviewed this thesis

and reommend its aeptane:

Ron Sass

Harlan Russell

Aepted for the Graduate Shool:

Design and Implementation of the System

Interfae for PVFS2

A Thesis

Presented to

the Graduate Shool of

Clemson University

In Partial Ful�llment

of the Requirements for the Degree

Master of Siene

Computer Engineering

by

Harish Ramahandran

Deember 2002

Advisor: Dr. Walter B. Ligon III

Abstrat

As Linux lusters emerged as an alternative to traditional superomputers one

of the problems faed was the absene of a high-performane parallel �le system

omparable to the �le systems on the ommerial mahines. The Parallel Virtual

FileSystem(PVFS) developed at Clemson University has attempted to address this

issue. PVFS is a parallel �le system urrently used in Parallel I/O researh and as a

parallel �le system on Linux lusters running high-performane parallel appliations.

An important omponent of parallel �le systems is the �le system interfae whih

has di�erent requirements ompared to the normal UNIX interfae partiularly the

I/O interfae. A parallel I/O interfae is required to provide support for non-ontiguous

aess patterns, olletive I/O, large �le sizes in order to ahieve good performane

with parallel appliations. As it supports signi�antly di�erent funtionality, the in-

terfae exposed by a parallel �le system assumes importane. So, the �le system

needs to either diretly provide a parallel I/O interfae or at the least support for

suh an interfae to be implemented on top.

The PVFS2 System Interfae is the native �le system interfae for PVFS2 - the

next generation of PVFS. The System Interfae provides support for multiple in-

terfaes suh as a POSIX interfae or a parallel I/O interfae like MPI-IO to aess

PVFS2 while also allowing the bene�ts of abstration by deoupling the System Inter-

fae from the atual �le system implementation. This doument disusses the design

and implementation of the System Interfae for PVFS2.

Dediation

To my family who have supported and always enouraged me to ahieve my goals.

Aknowledgments

I would like to thank my advisor Dr.Walt Ligon for his guidane and support. I would

also like to thank Phil Carns for his invaluable help.

Table of Contents

Page

TITLE PAGE . i

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGMENTS . iv

LIST OF TABLES . viii

LIST OF FIGURES . ix

1 Introdution . 1

1.1 Clusters . 1

1.2 Parallel File Systems . 2

1.3 PVFS2 - The Next Generation 3

1.4 The System Interfae . 5

1.5 Approah . 7

2 Bakground . 11

2.1 Parallel File Systems . 11

2.1.1 PIOUS . 11

2.1.2 Vesta . 12

2.1.3 PPFS 1 . 14

2.1.4 Galley . 15

2.1.5 PPFS 2 . 16

2.1.6 PVFS . 18

2.2 Speialized Interfaes . 19

2.2.1 MPI-IO . 19

2.2.2 SIO low-level API . 20

2.3 Lessons from prior work . 20

3 Design of the System Interfae . 22

3.1 Introdution . 22

3.2 File system objets . 22

3.2.1 Meta�les . 23

3.2.2 Data�les . 24

3.2.3 Diretories . 24

3.2.4 Symboli Links . 25

vi

3.2.5 Colletion . 25

3.3 Arhiteture . 25

3.4 System Interfae Conepts . 27

3.4.1 Handle . 27

3.4.2 Pinode . 27

3.4.3 Pinode Referene . 27

3.4.4 Buket . 28

3.4.5 Credentials . 28

3.5 System Interfae Funtion Spei�ation 28

3.5.1 Interfae management operations 29

3.5.2 Objet reation, query and destrution operations 30

3.5.3 I/O operations . 36

3.5.4 Objet loking operations . 37

3.5.5 File system query operations 37

3.6 System Interfae Implementation 39

3.7 Server Request Protool . 41

3.7.1 Lookup Path . 43

3.7.2 Get Attributes . 44

3.7.3 Set Attributes . 44

3.7.4 Get Con�guration . 45

3.7.5 Make Diretory . 45

3.7.6 Remove Diretory . 46

3.7.7 Create Diretory Entry . 46

3.7.8 Remove Diretory Entry . 46

3.7.9 Create . 47

3.7.10 Remove . 47

3.7.11 File System Statistis . 47

3.7.12 Readdir . 49

3.8 Related Interfaes . 49

3.8.1 Pinode ahe . 49

3.8.2 PVFS Diretory Entry ahe 50

3.8.3 Con�guration Management Interfae 51

3.9 Summary . 54

4 Evaluation . 55

4.1 System Interfae Implementation 55

4.2 Evaluation of the System Interfae 57

4.2.1 Abstration(Data hiding) . 58

4.2.2 Support for multiple interfaes 59

4.2.3 Flexibility and Modularity . 60

4.2.4 Desription of omplex I/O patterns 60

4.2.5 Clearly de�ned semantis . 61

4.2.6 Thread Safety . 62

4.2.7 The PVFS2 diretory ahe 62

vii

4.2.8 The PVFS2 pinode ahe . 63

4.3 Summary . 64

5 Conlusion and Future Work . 65

5.1 Future work . 66

5.1.1 Performane Results . 66

5.1.2 Implement the remaining funtions 66

5.1.3 Provide features to inrease exibility 66

BIBLIOGRAPHY . 68

List of Tables

Table Page

1.1 Comparison of PVFS1 and PVFS2 4

3.1 Lookup Path Request . 43

3.2 Lookup Path Response . 44

3.3 Get Attributes Request . 44

3.4 Get Attributes Response . 44

3.5 Set Attributes Request . 44

3.6 Get Con�guration Request . 45

3.7 Get Con�guration Response . 45

3.8 Make Diretory Request . 45

3.9 Make Diretory Response . 46

3.10 Remove Diretory Request . 46

3.11 Create Diretory Entry Request . 46

3.12 Remove Diretory Entry Request . 46

3.13 Create Request . 47

3.14 Create Response . 47

3.15 Remove Request . 47

3.16 Statfs Request . 47

3.17 Statfs Response . 48

3.18 Contents of PVFS serv statfs . 48

3.19 Contents of PVFS mserv stat . 48

3.20 Contents of PVFS ioserv stat . 48

3.21 Readdir Request . 49

3.22 Readdir Response . 49

List of Figures

Figure Page

1.1 PVFS2 Arhiteture . 6

3.1 PVFS2 File System Objets . 23

3.2 System Interfae Arhiteture . 26

3.3 Server request and response for lookup path 43

4.1 Modular System Interfae vs. monolithi PVFS1 interfae 58

4.2 Staking of interfaes in PVFS1 . 59

Chapter 1

Introdution

1.1 Clusters

The availability of high-speed networks and inreasingly powerful ommodity pro-

essors at low pries have enabled the development of low-ost lusters. Clusters

typially used in parallel proessing are olletions of independent omputers on-

neted by a network and dediated to parallel proessing. The luster as a whole uses

ommerial-o�-the-shelf(COTS) hardware and is managed as a single administrative

entity thus easing system on�guration. Sine lusters themselves onsist of o�-the-

shelf parts they have also been able to utilize the software and hardware developed

for broad use. An upside to using broad based omponents is that the luster an

bene�t from the advanes in tehnology and prie utuations of the omponents un-

like superomputers whih often use ustom-built omponents. All these advantages

translate into a onsiderable redution in the overall ost of building and maintaining

a luster.

The usage of ommodity omponents in lusters has provided lots of exibility

for system on�guration. This along with the emergene of open soure software has

helped researhers in high-performane omputing experiment with various options.

2

While low-ost industrial standard hardware has been abundant, the software systems

and tools for lusters have evolved more slowly. One suh area where lusters have

laked a omparable option to superomputers is parallel �le systems.

1.2 Parallel File Systems

Sienti� appliations typially use multiproessor omputers to satisfy their ompu-

tational needs. Many of them, however, also deal with large amounts of data suh

as data from satellites, hekpointing output, and visualization output. In addition,

some appliations may need to work with data too large to �t in main memory, need-

ing virtual memory support. In all the above ases, the I/O system is the bottlenek

due to the disparity between proessor speed and disk speed. The UNIX derived

�le systems largely in use for parallel omputing are unsuited for parallel, sienti�

workloads[12℄. They fail to address the I/O bottlenek in parallel omputing as they

are not designed for onurrent data aesses by multiple proesses. In the UNIX

model, a �le is onsidered as a linear, addressable sequene of bytes and read/write

requests at on that sequene of bytes. As the entire �le is loated on a single disk,

all aesses are serialized even though they don't involve the same bytes. In this ase,

�le aess is a bottlenek that a�ets the bandwidth of I/O operations. Hene, the

appliation is unable to harness the proessing power available in the luster. Thus,

parallel �le systems have been developed that are able to support a sienti� workload.

A parallel �le system satters the bloks of eah �le aross multiple disks(delusters),

enabling parallel aess to the �le. This parallel aess lessens the e�et of the bot-

tlenek due to the slow disk speed and larger bandwidth an be obtained for I/O

operations. Some of the other features of suh �le systems are onurreny with

guaranteed onsisteny, user ontrollable data distribution parameters, and multiple

I/O interfaes.

3

Most of this development, however has been done in ommerial �le systems that

are spei� to the vendor's platform or are restrited to researh prototypes. As

lusters begin to replae superomputers in sienti� appliations, there is lak of a

high-performane prodution �le system for lusters. The parallel virtual �le sys-

tem(PVFS) has �lled the void niely and serves to provide high-speed aess to �le

data for parallel appliations in a prodution environment. Features of PVFS are a

onsistent namespae aross the luster, ontrol of �le distribution by the user, and

a transparent user spae.

1.3 PVFS2 - The Next Generation

PVFS2, a ollaboration between Clemson University and Argonne National Labora-

tory, is the next generation of the parallel virtual �le system. PVFS2 is the result

of a total redesign that has ome about mainly due to hanges in tehnology, both

hardware and software, and also shortomings in the previous design. PVFS2 seeks to

address both tehnial and design issues in the new version so that it an maintain its

goal of being a vehile for parallel I/O researh and a prodution quality �le system

for Linux based lusters. As of the time of this writing, PVFS2 is a work in progress

and some of the ideas being disussed are still evolving and have not yet assumed their

�nal form. Table 1.1 shows a omparison of several design issues between PVFS1 and

PVFS2.

One of the important lessons from the previous system's software arhiteture

was the need for separation of funtionality. This has resulted in a modular design so

that modules an be replaed as needed. Also, the implementations have been hidden

behind abstrations and lear interfaes de�ned to aess the individual omponents.

Although a software engineering issue, the design framework is nevertheless important

4

Issue PVFS1 PVFS2

Software Arhiteture Monolithi Layered

Modular

I/O requests Strided Completely general

List-based MPI Datatype based

Data distribution Striping Modular distribution ode

Networking TCP/IP Abstrat network layer(BMI)

Storage UNIX �les Abstrat storage layer(Trove)

Servers Stateful Stateless

Separate metaserver Combined metaserver

Interfaes POSIX-based with extensions Low-level System Interfae

Others layered Replaeable user interfaes

Table 1.1: Comparison of PVFS1 and PVFS2

to ensure easy maintenane and ability to modify modules for researh purposes,

additional features, or performane improvements.

Parallel sienti� programs often need to aess non-ontiguous regions of a �le.

Thus, we want the I/O desription apability provided by PVFS2 to be as expressive

as possible. The idea is to enapsulate as many aess patterns as possible using

the I/O desription. This would allow it to support parallel I/O interfaes suh as

MPI-IO[5℄ and SIO[9℄ that require the underlying system to support non-ontiguous

aesses in a onvenient manner. The older PVFS1 requests were limited as to what

they ould express.

In PVFS1, the default distribution is striped. A �le striped on N I/O nodes has N

�les, one on eah I/O node, ontaining the �le's data. PVFS2 has a modular distribu-

tion mehanism that an support multiple distributions. In addition, PVFS2 allows

new distributions to be added without hanging the major �le system omponents.

Thus, it allows the distribution to be tuned to the �le aess pattern of an appliation.

The PVFS1 lient library was designed to use TCP/IP for network ommunia-

tion. The network transfer layer in PVFS2 provides an abstrat interfae that allows

the �le system design to be independent of the networking mehanism used. The net-

5

work transfer layer uses an abstration alled BMI[3℄ to handle both short and long

messages with equal eÆieny and to support a wide range of protools and devies.

PVFS2 has a storage layer alled Trove[17℄ that abstrats the storage of data.

This allows the details of the storage mehanism to be hidden from the rest of the

design. Thus, the servers an use raw disk, native �le system, or relational databases

for storage implementation.

In PVFS1, the servers keep up with the state of open �les. This has resulted in a

lot of omplexity as the servers end up having to reover to a onsistent state after a

rash. In PVFS2, the servers are stateless. This will hopefully redue the omplexity

and ease the design of multi-proess servers.

In PVFS1, the lient interfae was intended to be a replaement for the standard

POSIX interfae. This interfae laks many features ritial to use in parallel appli-

ations. Parallel I/O interfaes suh as MPI-IO had to be implemented as a layer

on top of the interfae. The PVFS2 System Interfae is designed at a lower level

than a user interfae. It has a full set of features for parallel omputing, though it

is very omplex. Several di�erent user interfaes an be neatly implemented on top

of it inluding POSIX and MPI-IO. In addition, this interfae is designed to interat

with the Linux VFS to failitate kernel implementations.

1.4 The System Interfae

Figure 1.1 shows the overall system arhiteture for PVFS2. It is seen from the

�gure that the System Interfae is the layer between the user level interfae and

the job or networking abstration layer. This interfae de�nes the logial operations

supported by the underlying �le system. There are two parts to the System Interfae

where it merges with the PVFS2 arhiteture. One is the top part of the interfae

where it meets the user interfae or PVFSD. This represents the API de�ned by the

6

User
Level

Interface
Kernel VFS

CLib

PVFSD

BMI

JOB

DCACHE

APPLICATION

 SERVER

JOB

FLOW

TROVEBMI

REQUEST PROTOCOL

CLIENT SERVER

SYSTEM INTERFACE

PCACHE

Figure 1.1: PVFS2 Arhiteture

System Interfae that allows user-level appliations to aess the parallel �le system.

The lower part of the System Interfae is responsible in dealing with the network

abstration layer(job layer). The design goals for the System Interfae are outlined

as follows.

� Abstration: The �le system needs to export a standard interfae that an be

used by the high-level appliation interfaes. This would also provide the nees-

sary abstration by deoupling the interfae from the �le system implementation

details.

� Flexibility: To allow parallel �le systems to maximize their performane, the �le

system interfae needs to be as exible as possible. This means that appliations

need to be able to exerise a measure of ontrol on the �le system parameters

through the interfae. This would enable appliations to tune the �le system

poliies to ahieve the best �t for themselves.

7

� Support for user-level interfaes: This refers to the ability of the parallel �le

system interfae to support multiple high-level interfaes. The high-level inter-

faes should support as muh of the funtionality as possible and the �le system

interfae should only provide the neessary support for the high-level interfaes

by de�ning primitives to enable non-ontiguous aess and read-write with high

throughput.

� Robustness: Any appliation using the �le system interfae expets that errors

during exeution of operations are handled graefully and the system interfae

shuts down leanly. Error and if possible debugging information needs to be

returned by the system interfae to the appliation.

� Performane: The design of the �le system interfae plays a major part in the

overall performane of the �le system. The interfae design needs to make use

of optimizations wherever possible and also make eÆient use of the underlying

subsystems to ahieve the best possible performane.

1.5 Approah

We propose the System Interfae in PVFS2 as a solution to meet the demands made of

a parallel �le system interfae. Our objetive in proposing this interfae is to provide

a exible and eÆient interfae that meets our stated goals. In this thesis, we present

the design and implementation of the PVFS2 System Interfae. After disussing the

design goals in the previous setion, we list the features of the PVFS2 �le system

interfae whih are as follows.

� �le abstration

� abstrat distribution

� non-ontiguous �le aess using omplex I/O patterns

8

� stateless design

� ontrol over distribution and ahing

� extensible attributes

� extensible request format

� protetion of �le system data strutures

� thread safety

In this setion we disuss how the System Interfae is designed to provide the

features listed previously while meeting the design goals. File abstration is provided

by presenting the user library with a single logial �le even though the atual �le is

delustered over multiple servers. The distribution is abstrated as a string identi�er

at the user library with the System Interfae handling the details using the distri-

bution module. The availability of a well-de�ned API provides �le and distribution

abstration to the user library. The API implementation hides �le-system spei�

details from the user while at the same time providing ontrol through the API pa-

rameters. It is intended that hanging the �le system implementation does not heavily

impat the API itself. The design of the well-de�ned API helps ahieve the goal of

abstration along with providing the desired features.

System Interfae features suh as ontrol over distribution parameters, support

for omplex I/O patterns, ontrol over ahing onsisteny, and extensible attributes

add exibility to the System Interfae. Control over distribution parameters is needed

to math the distribution to aess patterns. This is neessary for the appliation to

realize the performane bene�ts from delustering. The distribution parameters are

dependent on the distribution used but usually inlude the �le loations on disk and

disk loations in the luster. For a striped distribution they ontain the ount of I/O

nodes aross whih the �le is striped, the �rst I/O node, and the unit(in bytes) by

9

whih the �le is divided among the various I/O nodes. These parameters an be set

during the �le reation. The System Interfae supports an I/O request format that

an enapsulate any MPI based derived datatype for non-ontiguous I/O aesses

whih are a frequent ourrene in parallel appliations. The ahe onsisteny is

ontrolled by using a timeout based sheme and ahing an even be disabled by

making the timeout zero. The ability to add new attributes is provided by the sup-

port for extended attributes in all attribute related funtions. Other features that

make the System Interfae exible are the stateless design and extensible requests.

Extensible requests are made possible by the spei�ation of the server request pro-

tool whih de�nes eah System Interfae operation as a olletion of server requests

and responses. Adding a new request in this senario would entail just adding a few

server requests. The de�nition of the interfae as a low-level API providing primitives

rather than semantis has led to a stateless design. Thread safety has been provided

in the interfae by removing dependene on global system variables and using loks

to arbitrate aess.

In addition to the features desribed above, the PVFS2 interfae has been imple-

mented to address the goals of robustness and performane. The implementation of

the interfae handles graeful reovery from error onditions and uses an error han-

dling mehanism that aggregates the information from eah subsystem to return error

and debugging information to the appliation. The above features add to inreased

robustness. After the addition of features to the interfae it is also neessary to add

optimizations to ensure that good performane is ahieved for operations those take

the most time and also our frequently. In our ase, we have identi�ed network

requests to feth metadata and the objet handle in the above ategory. Two design

features that speed them up are the pinode ahe and PVFS diretory entry ahe.

The pinode ahe performs attribute ahing thus preventing attribute requests over

10

the network. The PVFS diretory entry ahe allows the �le name to handle mapping

to be ahed. This saves lookup requests from going over the network.

In this setion, we listed the major features to give an idea of the issues involved

and what we have to implement. This outlines what we plan to do in this thesis. The

remainder of this doument is organized as follows. In Chapter 2, we present a review

of parallel �le systems and their �le system interfaes that served as a bakground

for the design of the system interfae. Chapter 3 details the design details of the

system interfae and its related interfaes suh as the PVFS dahe interfae, pinode

ahe interfae and on�guration management interfae. An outome of the system

interfae design in PVFS2 is the server request protool. The server request protool

is a standardization of the request exhange mehanism between the lient(the system

interfae) and the servers. This hapter also ontains a disussion of the server request

protool. Chapter 4 presents the evaluation of the System Interfae and gauges its

usefulness as the �le system interfae for PVFS2. Chapter 5 onludes this doument

by presenting the onlusions and suggesting the diretion for future work.

Chapter 2

Bakground

2.1 Parallel File Systems

This setion disusses parallel �le systems and dediated interfaes for parallel I/O

that over related work and served as bakground for the design of PVFS2 and the

System Interfae.

2.1.1 PIOUS

Goals

The basi goal of the Parallel Input/Output System(PIOUS) is to provide salable

bandwidth in a parallel environment using a framework built on the idea of delus-

tering of data[13℄.

Design

The main omponents of PIOUS are a set of data servers, a servie oordinator, and

a library to link with the lients. The data server runs on eah mahine used for

delustering and enables aess to �le data. Eah server is independent and uses

the loal �le system for data storage. The independene of the data servers allows

12

asynhronous operation and inreased parallelism. The servie oordinator initiates

major system operations but is not involved in general �le aess. The library provides

an API for the lients to use the servies of the parallel �le system. PIOUS uses a

transation based model to guarantee onsisteny semantis.

File System Interfae

The library in PIOUS is the interfae provided to the lient appliations. This allows

the �le struture and seleted logial views of a delustered �le to be spei�ed to the

lient.

2.1.2 Vesta

Goals

Vesta distinguishes itself as a �le system that aters to shared �le aess by multiple

proesses. Thus, it is di�erent from a traditional distributed �le system that either

o�ers weaker onurreny semantis or o�ers onurreny with ostly synhronization

mehanisms. The goal of Vesta is to provide shared �le aess to I/O intensive

sienti� appliations while keeping performane in mind[7℄.

Design Overview

The Vesta parallel �le system onentrates on 3 aspets to work towards its goals

of providing high-performane - parallelism, salability, and layering. Vesta provides

parallelism by delustering of �les. However, in ontrast to its peer systems Vesta

allows the user to view the parallel nature of the �les. Compared to its peer systems

that abstrat the delustered nature from the users, Vesta allows its users to adjust the

�le delustering based on the I/O aess patterns by allowing partitioning of �le data

among the various proesses. Vesta uses a hashing sheme to loate �les to minimize

onit on high-level diretories. This is done to inrease the salability of the �le

13

system. The design also prevents serializing of operations for purposes of onurreny

ontrol and uses deentralized lookups during �le aesses. This allows diret aesses

to the I/O servers ontaining the metadata or data without any interations between

the nodes themselves. Vesta provides the abstrations neessary to reate and manage

the parallel views of the �les.

The atual implementation details of Vesta are briey desribed as follows. Vesta

is implemented as 2 units - a lient library linked to the appliation and a server that

runs on the I/O nodes. Vesta uses a hash based sheme to loate the �le instead

of the name server or path traversal approah. The �le objets are �les, ells, and

Xrefs(instead of diretories). A hash on the �lename loates the server ontaining

the metadata. The metadata is distributed aross all I/O servers and needs to be

looked up prior to data aess. Partitioning parameters are spei�ed during a �le

open. This allows multiple proesses to share a �le without any synhronization

provided the partitions are disjoint. Conurreny ontrol is provided by a token-

passing mehanism among the I/O nodes that guarantees atomiity aross all nodes

while providing sequential onsisteny among requests.

File System Interfae

The Vesta lient library also ats as the �le system interfae. The major idea in

Vesta is the two-dimensional struture of �les. The two dimensional �le struture

allows multiple proesses to separate the �le into non-overlapping segments using the

faility of partitions provided in Vesta. This in turn allows the proesses to extrat

maximum parallelism during �le aess. Also, disjoint partitions eliminate the ostly

synhronization mehanisms otherwise needed to arbitrate aess.

14

2.1.3 PPFS 1

Goals

The prinipal goal of PPFS1 is to be a tool to explore and experiment with various

system poliies in parallel input/output systems. To suessfully experiment with the

poliies the user needs to have broad ontrol over �le management poliies. PPFS1

aims to provide a exible API, the ability to explore poliies suh as ahing, distri-

bution, prefething, and the ability to dynamially adapt the poliies to math the

aess pattern[8℄.

Design Overview

PPFS1 is designed as a user library in order to avoid making frequent hanges to the

system software that are time-onsuming and also beause of the inreased exibility

provided by working in user spae. The basi software omponents in PPFS1 are the

lients, servers, metadata server, and the ahing agents. PPFS1 uses a lient/server

model. A PPFS1 lient onsists of the user appliation along with the loal ahing

and prefething software used to aess the �le system. The server atually resolves

the requests made by the lient and is made up of the server ahe, prefething engine,

and the storage mehanism whih handles data and metadata storage. The metadata

servers servie open and lose requests for �les in PPFS1. They maintain state for

eah open �le. Clients an also diretly exhange metadata without involving the

metadata server. The ahing agents are shared ahes that serve multiple lients

and all requests to the shared �le pass through the ahing agent rather than diretly

to the I/O servers. The ahes ensure the oherene of the data provided to the

lients. All the poliies in use suh as prefething or ahing an be ontrolled by the

user and aid in the searh for the best �t for eah partiular appliation.

15

File System Interfae

The �le system interfae in PPFS1 is an API that tries to let the appliation advertise

its information and also ontrol the system poliies that will ultimately a�et I/O

performane. The API ontains funtions to allow the appliation to speify its

aess patterns, ontrol data distribution over servers, ontrol ahing poliies at

lients, servers, and ontrol prefething poliies at lients, servers.

2.1.4 Galley

Goals

Galley attempts to make use of studies of parallel appliation workloads and perfor-

mane evaluations of ontemporary parallel �le systems[14℄. Galley's goals inlude

the following

� give appliations ontrol over delustering

� handle various aess patterns and sizes

� provide salability

� transfer spei� funtionality to libraries implemented on top of Galley instead

of making them part of the �le system

� obtain good performane.

Design Overview

The Galley parallel �le system onsists of sets of lients and servers. Proessors

are dediated either to omputing or I/O. Clients run on the ompute proessors

and the servers run on the I/O proessors. A Galley lient is an appliation linked

to the Galley library and passes on �le system requests after onverting them to

16

messages to the servers. Eah lient is independent of the others. Galley's I/O

servers are omposed of multiple units - ompute threads, a ahe manager, and

the disk manager. A ompute thread handles only requests from a spei� ompute

proessor and passes on the list of disk bloks needed to satisfy the request to the ahe

manager. The ahe manager maintains a separate blok list for eah thread and also

implements the ahe replaement poliy. For any blok not in the ahe, the ahe

manager makes a request to the disk manager. The disk manager servies requests

from the ahe manager by relying on the underlying system to provide these servies.

Eah Galley �le has a 3-dimensional struture. Eah �le onsists of sub�les whih in

turn onsist of forks. Eah sub�le is plaed on a disk and provides I/O parallelism.

The number and plaement of sub�les an be ontrolled by the appliation. A sub�le

ontains one or more forks whih are named, addressable, and linear sequenes of

bytes. Forks allow related information to be stored logially together but aessed

separately.

File System Interfae

Galley provides a speialized interfae to the appliation. The interfae provides for

operations on �les, operations on forks, standard data aess primitives, and support

for strided aess patterns. Galley supports three strutured strided requests and one

unstrutured request. These strided requests allow grouping of multiple requests to

minimize network overhead and also allow for eÆient disk sheduling deisions.

2.1.5 PPFS 2

Goals

Computational grids involve resoures that are not always available and also appli-

ations with omplex and varying demands. The motivation for PPFS2 is to reate

a adaptive ontrol system that uses the urrent state of the system to adjust system

17

poliies spei�ally related to the I/O system. This is expeted to tailor poliies to

appliation needs and hene yield maximum performane[15℄.

Design Overview

PPFS2 uses the Globus distributed system framework as the basi ommuniation

arhiteture among the various omputational grids. Over Globus it uses the Au-

topilot real-time adaptive ontrol system. The metadata manager and I/O servers

perform their usual funtions whih is managing metadata and data respetively. Au-

topilot ontains performane sensors to apture raw performane data, and deision

proedures to hoose a poliy and set its parameters and atuators (to implement

poliy deisions). In addition to the quantitative data, the adaptive system uses a

neural network to perform aess pattern lassi�ation. The deision server uses both

the �le aess pattern and the data to make a deision on hoosing the striping and

ahing poliies for the �le. PPFS2 uses the relation between inter-requests intervals

and striping as a fator in its poliy seletion. In addition to the adaptive mehanism,

there is a feature for user steering of poliies. Some other ideas being experimented

with in PPFS2 are related to prediting aess patterns and trends. This information

an then be used to prefeth data.

File System Interfae

PPFS2 uses the Salable I/O initiative's low level API. Other high level libraries an

be implemented on top of this interfae. The SIO interfae allows easy desription of

omplex parallel I/O patterns and inludes spei�ation of hints regarding the aess

patterns.

18

2.1.6 PVFS

Goals

PVFS is designed as a prodution level parallel �le system for Linux lusters. The

design goals of PVFS are[4℄

� high-speed onurrent read/write with multiple proesses

� support for multiple APIs

� ability to run ommon UNIX ommands like ls, p

� ability to aess the �le system with utilities developed using the UNIX I/O

API

� robustness

� ease of use

Design Overview

PVFS is a user spae implementation. It is a lient-server system with 2 types of

servers. A metadata server that handles metadata operations involving permission

heks, open, and lose. The metadata server does not take part in I/O operations.

The I/O server provides aess to the data using the native �le system for data

storage. An I/O server runs on eah I/O node. The I/O nodes have disks attahed

to them. Eah �le is distributed aross the disks on I/O nodes. The appliations

interat through the lient library.

File System Interfae

PVFS supports multiple API's that inlude the native PVFS API, the UNIX/POSIX

API, and MPI-IO. The other API's are built on top of the native PVFS API. The

19

native API supports UNIX like ontiguous read/write and uses a partitioned-�le

interfae for simple strided aess patterns. The partitioning allows a non-ontiguous

request to be made in a single all whih would otherwise take multiple alls to the

�le system. Support for MPI-IO was provided so that the full range of MPI-IO's

non-ontiguous aess patterns ould be used. But, it has been sine realized that

the partitioned interfae only supports a subset of aess patterns possible through

MPI-IO.

2.2 Speialized Interfaes

2.2.1 MPI-IO

MPI-IO is an API spei�ed by the MPI forum to aid portable parallel programming.

The need for MPI-IO is beause a normal UNIX like API is not suitable for par-

allel I/O. So, MPI-IO provides funtions those enable I/O parallelism, portability,

and good performane. ROMIO is a portable implementation of MPI-IO. To ensure

portability ROMIO uses an interfae alled the abstrat devie interfae to separate

the arhiteture dependent and independent parts. ADIO is just a olletion of fun-

tions to enable parallel I/O. As long as ADIO is implemented for eah �le system, any

parallel I/O API an be implemented on top of ADIO. Some of the features of MPI-IO

are olletive I/O, non-ontiguous aesses, and non-bloking I/O. To provide better

support for MPI-IO Thakur, et. al.[18℄ have proposed a list of features for �le systems

to provide. They inlude onurrent high- performane read/write, data onsisteny

and atomiity semantis, an interfae supporting non-ontiguous aesses, large �le

support, and ontrol over �le striping.

20

2.2.2 SIO low-level API

This API[9℄ has been proposed by the Salable I/O Initiative, a onsortium of uni-

versities and ompanies. The main objetive of this API is to de�ne primitives so

that the full potential of high-bandwidth network and storage devies an be realized.

The doument proposing the API states that the �nal goal after reahing a onsensus

on the interfae is standardization of a parallel I/O interfae. This interfae hooses

performane and parallelism over ease of use. Some of the features of this interfae

are appliation ontrols over ahe onsisteny, appliation hints about aess pat-

terns, satter-gather, olletive I/O, and asynhronous operations. Ultimately, many

of these ideas have been merged in the MPI-2 spei�ation to reate the MPI-IO

interfae.

2.3 Lessons from prior work

After looking at the work done in various parallel �le systems and also at the various

speialized interfaes for parallel I/O it is lear that there is no partiular solution

that deals with all parallel appliations. Experiene with parallel �le systems has also

made lear that there is no lear onsensus on the �le system interfae or struture of

parallel �le systems[12℄. So, the key is exibility in on�guration. It is required that

an appliation make the hoie of its interfae and also be able to ontrol the data

distribution. This makes it essential that a native parallel �le system interfae only

provide the primitives essential for parallel aess with good performane and leave

the funtionality details to higher-level appliation libraries.

At the same time, our experiene with PVFS1 has taught us that abstration is

neessary for exibility so that hanges an be made without disrupting the normal

funtioning of a prodution �le system. The presene of a well-de�ned interfae also

makes a distintion between the funtionality and implementation so that appliations

21

need not hange their ode if the implementation hanges. We believe that the system

interfae in PVFS2 provides the right mix of abstration and exibility for parallel

appliations in a prodution environment.

Chapter 3

Design of the System Interfae

3.1 Introdution

The System Interfae is the low level lient side interfae that interats with appli-

ations that want to aess the Parallel Virtual File System. The System Interfae

is the native �le system interfae of PVFS2. This interfae resembles the Linux VFS

interfae losely so as to enable PVFS2 to be supported as a �le system under Linux.

The System Interfae de�nes the operations that an be requested of the parallel vir-

tual �le system. Most of the System Interfae operations atually at on �le system

objets whereas the remaining few at on the �le system as a whole suh as retrieving

statistis from the �le system.

3.2 File system objets

PVFS2 has �ve �le system objets - meta�les, data�les, diretories, symboli links,

and olletions. The various �le system objets exept the symboli links are shown

in �gure 3.1. As mentioned earlier the System Interfae provides an API for the

appliation to manipulate the system objets. The �gure shows the �le system objets

23

datafile for

Handle : h1

IOD 4

IOD 3

IOD 2

IOD 1

datafile for

h4

type: DIR
7000
1362

0
7

atime:

Handle Info:
perms:

uid:
gid:

0

Handle : h3

datafile for

Sta
tfs

R
eaddir

Lookup/ G
etattr/ S

etattr

Looku
p/ G

etattr
/ S

etattr

Read/ W
rite

Read/ Write

Read/ Write

A
pp

lic
at

io
n

Directory /parl

foo2
foo1
foo

Metadata for directory /parl

file /parl/foo

file /parl/foo

file /parl/foo

Metadata for file /parl/foo

S
ys

te
m

 In
te

rf
ac

e

Collection ID (file system ID) : 1

Handle : h4

Handle : h2

type: FILE

h1, h2, h3

Handle Info:
7

6000
1361

atime:
perms:
gid:
uid:

Figure 3.1: PVFS2 File System Objets

and System Interfae funtions to manipulate them. A detailed explanation of the

�le system objets follows.

3.2.1 Meta�les

Metadata an be desribed as properties of a group of data in a �le system and allows

the group of data to be treated olletively as a �le. It typially ontains information

suh as uid, gid, permissions, aess time, reation time, modi�ation time, type of �le

system objet, and the distribution parameters. The System Interfae allows meta-

24

data aess or modi�ation through funtions getattr and setattr. The logial entities

that store the metadata are referred to as the meta�les. Meta�les are implemented

as Trove objets whih in turn may be implemented as �les if the Linux �le system

stores the metadata or data spaes if a database is used to store the metadata. The

�gure shows meta�les for a PVFS2 �le and diretory. Funtions to aess meta�les

are also shown.

3.2.2 Data�les

A data�le refers to the logial entity ontaining the atual data that makes up a

�le. The data�le ould be a �le in Linux or a data spae in a database. A data�le in

PVFS2 ontains part of the data of the original �le along with attributes neessary for

ating on the data�le. Hene, a logial �le in PVFS2 is delustered and may onsist of

several data�les as shown in the �gure. The way in whih the �le is delustered into

data�les is deided by the distribution used. The System Interfae de�nes operations

on �les like read, write, reate, and remove that may eventually end up as operations

on individual data�les.

3.2.3 Diretories

A diretory is a �le that ontains diretory entries. The diretory spei� operations

supported by the System Interfae are reating a diretory, removing a diretory, and

reading a diretory. Besides these, operations suh as lookup to get the diretory

handle and getattr/setattr to read/modify the attributes an also at on diretories.

A diretory is not delustered and I/O is not allowed on diretories.

25

3.2.4 Symboli Links

Symboli links are speial �les that are just pointers or shortuts to other �les. These

�les ontain no data. Symboli links are urrently not supported.

3.2.5 Colletion

A olletion is an abstration for a �le system or group of �le systems. A olletion

enompasses all the �le system objets mentioned earlier. To di�erentiate the �le

system objets belonging to a partiular olletion eah objet is assoiated with a

olletion ID. The olletion ID is a unique identi�er for a olletion. It is guaranteed

that the handle spae within a olletion is unique. The System Interfae provides a

funtion to query the olletion(�le system) statistis alled statfs.

3.3 Arhiteture

The overall arhiteture is shown in �gure 3.2. The System Interfae is designed as

a set of funtions that allow an appliation to interat with PVFS2. These fun-

tions only provide primitives to aess the parallel �le system. Further funtionality

needs to be layered on top of the System Interfae by de�ning appliation libraries.

Examples of suh libraries ould be a POSIX library or a parallel I/O library like

MPI-IO. PVFS2 an also be inorporated as a �le system under Linux as the System

Interfae tries to losely resemble the Linux VFS interfae. Hene, all that would

need to be done to support PVFS2 under Linux is to develop a layer under the kernel

VFS interfae that uses the funtions of the System Interfae for all operations on

PVFS2 �les. Apart from the System Interfae API, there are other interfaes that

the System Interfae depends on. The pinode and dentry ahe interfaes provide the

PVFS2 interfae with lient side ahing and minimize network traÆ. The on�gura-

tion management interfae is used to aess on�guration parameters. This interfae

26

PVFS DIRECTORY CACHE

NETWORK ABSTRACTION LAYER

POSIX API MPI−IO
VFS LAYER

I/O SERVER 2I/O SERVER 1

STORAGE STORAGE
SUBSYSTEM

STORAGE
SUBSYSTEM

STORAGE
SUBSYSTEMSUBSYSTEM

SYSTEM INTERFACE LAYER

CONFIGURATION

MANAGEMENT

INTERFACE

PINODE CACHE

LINUX KERNEL

I/O SERVER 3 I/O SERVER N

Figure 3.2: System Interfae Arhiteture

prinipally onsists of buket table related funtions that query and manipulate the

mappings between bukets and servers.

The System Interfae ommuniates with the �le system servers via the request

protool. This protool de�nes a set of request and response messages that operate

on the �le system objets de�ne in 3.2. In turn, the interfae provided to the user

library onsists of a set of request/ response pairs that operate on a logial �le. Thus,

the System Interfae must interat with the �le system abstrations and implement

those for the user library.

27

3.4 System Interfae Conepts

3.4.1 Handle

A handle in PVFS2 uniquely identi�es a �le system objet within a olletion. A

handle and a olletion identi�er are required to identify the objet aross olletions.

The handle is visible at the System Interfae layer but not to the user library. The

System Interfae manages the handles of the �le system objets and provides the user

library with a single abstrat handle.

3.4.2 Pinode

A pinode in PVFS2 is equivalent to a Linux inode but its visibility is restrited to

the System Interfae. It is used as a mehanism to aggregate information about a

PVFS2 �le system objet for a partiular lient. It an also be onsidered as linking

a handle to its metadata. A mehanism is also in plae in ensure the onsisteny of

pinodes.

3.4.3 Pinode Referene

A pinode referene is an opaque type that ats as a unique identi�er to a PVFS2 objet

aross all �le systems. All referenes to a PVFS2 objet at the system interfae level

are either in terms of the objet name or the pinode referene. A pinode referene

is urrently implemented as a ombination of the meta�le objet handle and the

olletion id. The pinode referene is passed out of the System Interfae to the

appliation and the appliation uses it to refer to an objet thereafter.

28

3.4.4 Buket

A buket an be thought of as a virtual disk. The basi idea is to assoiate �le system

objets with bukets rather than physial disks. This way objets an be deoupled

from the atual storage details. This allows bukets to be moved from one physial

disk to another or even be dupliated on multiple disks as the need arises without

needing to hange the meta�les of the ontained objets. The relation between a

logial �le in PVFS2 and a buket is as follows. A �le in PVFS2 is delustered into

bukets aording to the spei�ed distribution. The deision as to whih I/O server

the buket is plaed on is made separately.

3.4.5 Credentials

Credentials olletively refer to the permission and owner information for a PVFS

objet. The idea is to use this to verify permissions for aess.

3.5 System Interfae Funtion Spei�ation

The System Interfae API an be organized into 5 groups.

� Interfae management operations

� Objet reation, query and destrution operations

� I/O operations

� Objet loking operations

� File system query operations

29

3.5.1 Interfae management operations

The parameters to most of the System Interfae API funtions ontain a request

and response struture. A few funtions though, have only a request struture and

have no response. The request strutures ontain the inputs to the request and the

response strutures ontain the data returned after the request is servied by the

server. We show the �elds of the request and response strutures for the System

Interfae funtions below.

� PVFS sys initialize(pvfs mntlist mntent list)

The parameters for PVFS sys initialize are shown below. The pvfs mntlist

struture ontains a ount of the number of mount entry strutures and a pointer

to the mount entry strutures.

The �elds of the pvfs mntlist struture are

{ int nr entry // number of entries in pvfstab

{ pvfs mntent *ptab p // pointer to entries in pvfstab

{ gen mutex t *mt lok // mutex lok

The �elds of the pvfs mntent struture are

{ PVFS string meta addr // metaserver address

{ PVFS string serv mnt dir // root mount point

{ PVFS string loal mnt dir // loal mount point

{ PVFS string fs type // �le system type

{ PVFS string opt1 // options

{ PVFS string opt2 // options

PVFS sys initialize initializes the system interfae data strutures. Its param-

eter is a struture ontaining on�guration information either from a pvfstab

30

�le or the mount ommand line. PVFS sys initialize needs to be alled before

alling any other system interfae funtion. It initializes the BMI and ow mes-

saging interfaes. It also makes a GETCONFIG request to the server to obtain

on�guration information and set up the reeived information to be aessed by

the on�guration management interfae. This funtion is also responsible for

initializing and setting up the pinode and diretory entry ahes.

� PVFS sys �nalize(void)

PVFS sys �nalize shuts down the System Interfae. This funtion needs to be

alled after all system interfae operations are �nished. It dealloates memory

referened by the system interfae. It also loses down all other interfaes suh

as the BMI interfae, ow messaging interfae, pinode ahe interfae, and

diretory ahe interfae.

3.5.2 Objet reation, query and destrution operations

� PVFS sys lookup(PVFS sysreq lookup *req, PVFS sysresp lookup

*resp)

The parameters for PVFS sys lookup are shown below.

The �elds of the request struture are

{ PVFS string name // objet name

{ PVFS fs id fs id // �le system id

{ PVFS redentials redentials // uid, gid, permissions

The �elds of the response struture are

{ pinode referene pinode refn // handle, �le system id

PVFS sys lookup returns the pinode referene for a �le, diretory or symlink

given the objet name and �le system id. It is the equivalent of the namei fun-

31

tion in Linux that translates a �le name to an inode number. Lookup employs

path traversal to obtain the pinode referene while also doing permission heks

for the entire path traversed.

� PVFS sys getattr(PVFS sysreq getattr *req, PVFS sysresp getattr

*resp)

The parameters for PVFS sys getattr are shown below.

The �elds of the request struture are

{ pinode referene pinode refn // handle, �le system id

{ PVFS bit�eld attrmask // attributes to be fethed

{ PVFS redentials redentials // uid, gid, permissions

The �elds of the response struture are

{ PVFS objet attr attr; // attributes fethed

{ PVFS attr extended extended // extended attributes

The �elds of the attr struture in the response are

{ PVFS uid owner

{ PVFS gid group

{ PVFS permissions

{ PVFS time atime // aess time

{ PVFS time mtime // modi�ation time

{ PVFS time time // reation time

{ int objtype // type of �le system objet

{ The �elds below are part of a union

{ PVFS meta�le attr meta // meta�le spei� attributes

32

{ PVFS data�le attr data // data�le spei� attributes

{ PVFS diretory attr dir // diretory spei� attributes

{ PVFS symlink attr sym // symlink spei� attributes

PVFS sys getattr obtains the properties of the �le, diretory or symlink iden-

ti�ed by the pinode referene passed as input. There is an option to obtain

attributes other than the generi information suh as owner, permission infor-

mation, reation, aess, and modi�ation times by speifying attribute masks.

Attribute masks enable getting attributes suh as size or objet spei� infor-

mation suh as distribution and data �le handles.

� PVFS sys setattr(PVFS sysreq setattr *req)

The parameters for PVFS sys setattr are shown below.

The �elds of the request struture are

{ pinode referene pinode refn // handle, �le system id

{ PVFS objet attr attr // new attributes

{ PVFS bit�eld attrmask // attributes to be modi�ed

{ PVFS redentials redentials // uid, gid, permissions

{ PVFS attr extended extended // extended attributes

PVFS sys setattr allows the manipulation of the properties of a �le, diretory,

or symlink spei�ed by the pinode referene input. As in PVFS sys getattr,

an attribute mask may be used to narrow the attributes to be modi�ed.

� PVFS sys mkdir(PVFS sysreq mkdir *req, PVFS sysresp mkdir *resp)

The parameters for PVFS sys mkdir are shown below.

The �elds of the request struture are

33

{ PVFS string entry name // diretory entry name

{ pinode referene parent refn // handle, fs id of parent diretory

{ PVFS objet attr attr // attributes of new entry

{ PVFS bit�eld attrmask // attribute mask

{ PVFS redentials redentials // uid, gid, permissions

The �elds of the response struture are

{ pinode referene pinode refn // handle, �le system id

PVFS sys mkdir reates a diretory with given attributes and obtains a pinode

referene to the reated diretory. An entry for the newly reated diretory is

added to the parent diretory.

� PVFS sys rmdir(PVFS sysreq rmdir *req)

The parameters for PVFS sys rmdir are shown below.

The �elds of the request struture are

{ PVFS string entry name // diretory entry to be removed

{ pinode referene parent refn // handle, fs id of parent diretory

{ PVFS redentials redentials // uid, gid, permissions

PVFS sys rmdir removes the diretory indiated by the objet name, parent

diretory, and �le system id. A diretory an be removed only if it ontains

no objets. The entry for the removed diretory is deleted from the parent

diretory.

� PVFS sys reate(PVFS sysreq reate *req, PVFS sysresp reate

*resp)

The parameters for PVFS sys reate are shown below.

34

The �elds of the request struture are

{ PVFS handle entry name // name of �le to reate

{ pinode referene parent refn // handle, fs id of parent diretory

{ PVFS objet attr attr // attributes of new objet

{ PVFS bit�eld attrmask // attribute mask

{ PVFS redentials redentials // uid, gid, permissions

The �elds of the response struture are

{ pinode referene pinode refn //handle, �le system id

PVFS sys reate reates a new �le with spei�ed attributes and obtains a pin-

ode referene to it. This involves reating both the metadata and also reating

the data�les on the various I/O servers.

� PVFS sys remove(PVFS sysreq remove *req)

The parameters for PVFS sys remove are shown below.

The �elds of the request struture are

{ PVFS string entry name // name of �le to remove

{ pinode referene parent refn // handle, fs id of parent diretory

{ PVFS redentials redentials // uid, gid, permissions

PVFS sys remove removes the �le spei�ed by the objet name, parent dire-

tory and �le system id passed as input. This involves removing all the data�les

from the I/O servers, removal of the meta�le, and deleting the diretory entry

from the parent.

� PVFS sys rename(PVFS sysreq rename *req)

The parameters for PVFS sys rename are shown below.

35

The �elds of the request struture are

{ PVFS string old entry // old name of entry

{ pinode referene old parent referene // old entry's diretory

{ PVFS string new entry // new name of entry

{ pinode referene new parent referene // new entry's diretory

{ PVFS fs id fs id // �le system id

{ PVFS redentials redentials // uid, gid, permissions

PVFS sys rename renames an existing �le or diretory given the old and new

objet names along with the old and new parent pinode referenes and the �le

system id.

� PVFS sys symlink(PVFS sysreq symlink *req, PVFS sysresp symlink

*resp)

The parameters for PVFS sys symlink are shown below.

The �elds of the request struture are

{ PVFS string name // name of link

{ PVFS fs id fs id // �le system id

{ PVFS string target // name of �le link points to

{ PVFS objet attr attr // attributes of link

{ PVFS bit�eld attrmask // attribute mask

{ PVFS redentials redentials // uid, gid, permissions

The �elds of the response struture are

{ pinode referene pinode refn

36

PVFS sys symlink reates a symboli link to a �le or diretory.

� PVFS sys readlink(PVFS sysreq readlink *req, PVFS sysresp readlink

*resp)

The parameters for PVFS sys readlink are shown below.

The �elds of the request struture are

{ pinode referene pinode refn

{ PVFS redentials redentials // uid, gid, permissions

The �elds of the response struture are

{ PVFS string target

PVFS sys readlink reads out the ontents of a symboli link.

3.5.3 I/O operations

� PVFS sys read(PVFS sysreq read *req, PVFS sysresp read *resp)

PVFS sys read reads data from a �le given the pinode referene and the I/O

request pattern.

� PVFS sys write(PVFS sysreq write *req, PVFS sysresp write *resp)

PVFS sys write writes data to a �le given the pinode referene and the I/O

request pattern.

� PVFS sys alloate(PVFS sysreq alloate *req, PVFS sys resp alloate

*resp)

PVFS sys alloate is not yet implemented. The funtion alloates spei�ed

size of data for �le on the I/O servers indiated by the pinode referene passed

in as input.

37

� PVFS sys dupliate(PVFS sysreq dupliate *req, PVFS sysresp dupliate

*resp)

The parameters for PVFS sys dupliate are shown below.

{ pinode referene old referene // entry to dupliate

{ PVFS string new entry // name of new entry

{ pinode referene new parent referene // new diretory

The �elds of the response struture are

{ pinode referene pinode refn // new handle, �le system id

PVFS sys dupliate is not yet implemented. The funtion reates a new �le

with name as spei�ed in input and with the same distribution and attributes

as �le indiated by the pinode referene passed in as input.

3.5.4 Objet loking operations

� PVFS sys lok(PVFS sysreq lok *req, PVFS sysresp lok *resp)

PVFS sys lok is not yet implemented. The funtion obtains a lok on the �le

spei�ed by the pinode referene passed in as input.

� PVFS sys unlok(PVFS sysreq unlok *req, PVFS sys resp unlok

*resp)

PVFS sys lok is not yet implemented. The funtion removes the lok on the

�le spei�ed by the pinode referene passed in as input.

3.5.5 File system query operations

� PVFS sys statfs(PVFS sysreq statfs *req, PVFS sysresp statfs *resp)

The parameters for PVFS sys statfs are shown below.

38

The �elds of the request struture are

{ PVFS fs id fs id // �le system id

{ PVFS redentials redentials // uid, gid, permissions

The �elds of the response struture are

{ PVFS statfs statfs // �le system statistis

The �elds of the PVFS statfs struture are

{ PVFS meta stat mstat // metaserver statistis

{ PVFS io stat iostat // I/O server statistis

The �elds of the PVFS meta stat struture are

{ PVFS ount32 �letotal // total number of meta�les

The �elds of the PVFS io stat struture are

{ PVFS size blksize // �le system blok size

{ PVFS ount32 blkfree // number of free bloks

{ PVFS ount64 blktotal // total number of bloks available

{ PVFS ount32 �letotal// maximum number of �les

{ PVFS ount32 �lefree // number of free �les

PVFS sys statfs obtains the statistis for a �le system spei�ed by the �le

system id passed in as input. The information obtained regarding the �le system

is organized as meta server info and I/O server info.

� PVFS sys readdir(PVFS sysreq readdir *req, PVFS sys resp readdir

*resp)

The parameters for PVFS sys readdir are shown below.

39

The �elds of the request struture are

{ pinode referene pinode refn // diretory to read entries from

{ PVFS token token // token passed in

{ PVFS ount32 pvfs dirent inount // number of entries to read

{ PVFS redentials redentials // uid, gid, permissions

The �elds of the response struture are

{ PVFS token //token returned

{ PVFS ount32 pvfs dirent outount // number of entries returned

{ PVFS dirent *dirent array // entries returned

PVFS sys readdir reads spei�ed number of diretory entries from diretory

indiated by the pinode referene passed in as input. This funtion an be

alled repeatedly on a diretory with the token returned eah time passed in as

input the next time. The number of diretories returned is spei�ed separately

in ase the number of diretory entries requested is greater than the atual

number of entries present.

� PVFS sys fhdump(PVFS sysreq fhdump *req, PVFS sys resp fhdump)

PVFS sys fhdump is not yet implemented.

3.6 System Interfae Implementation

The usefulness of the System Interfae lies in the funtionality a�orded by the in-

terfae. The role of the implementation is to make sure that the funtionality is

implemented in a way so as to ahieve good performane. The interfae a�ords us an

abstration by whih we an modify the implementation to reet our understand-

ing of the underlying issues involved in improving PVFS2. At the same time, the

40

appliations need not hange to bene�t from the hanges made for the better. Ulti-

mately, we expet that any hanges made will only improve on the performane and

prodution level standards of the overall �le system. Other issues we need to onsider

in the implementation are thread safety and robustness. It is possible that multiple

lients may simultaneously use the system interfae. So, the system interfae must

implement thread safety by making all global data strutures it uses thread safe. The

robustness of a prodution level �le system depends on the robustness of its ompo-

nents. As the �le system is aessed through the system interfae there must be a

provision in the interfae to handle errors graefully and return debugging info to the

user appliation. The system interfae attempts to provide robust error handling and

debugging ability to the appliation by handling operations so that an error does not

leave the system in an inonsistent state. This does not mean that the system is fault

tolerant.

The system interfae funtions implement their funtionality by onstruting a re-

quest, sending the request to the server and proessing the response from the server.

This proess is repeated as many times as it is needed. The request exhange meha-

nism between the lient(in this ase, the system interfae) and the servers is standard-

ized in the form of the server request protool. This also ensures stateless working of

the server. The ommuniation mehanism from the lient to the server is abstrated

by the network transfer layer and hene is transparent to the lient. The lient just

hands o� the requests to the network layer and ollets responses from it. This frees

up the lient from a lot of omplexity.

To minimize network traÆ due to lient requests and responses the system inter-

fae utilizes the pinode ahe. It is the responsibility of the lient to ensure that the

data obtained from the ahe is orret. To prevent traversing the path eah time to

obtain the orresponding pinode referene the lient uses the PVFS dahe. So, in

short the lient �rst looks up information in the above ahes and only if neessary

41

ontats the server. The on�guration management interfae is used by the lient

to assoiate the �les to their loation both while reating or performing any other

operations on them.

Full path permission heking is handled only during lookup but objet level per-

missions are veri�ed during eah operation by passing on the redentials information

to the server. Lookup also uses an optimization to lookup multiple path segments in

a single server request.

3.7 Server Request Protool

The server request protool standardizes the lient/server request exhange meha-

nism. The protool is a ombination of the stateless server design and the design of

the system interfae in PVFS2. The lient/server exhanges usually onsist of pre-

de�ned server request or response strutures. In most ases, the exhange starts o�

with a request by the lient spei�ed using a server request struture. The I/O trans-

fer whih is in raw bytes is an exeption to the above desribed method of passing

requests and responses. It is to be noted that the request or response strutures in

the protool do not exatly parallel those in the system interfae as some objets are

not visible at the system interfae level and vie versa.

The server request and response strutures are shown below. The union in the stru-

tures depends on the partiular request or response being sent.

strut PVFS_server_req_s {

PVFS_server_op op;

PVFS_size rsize;

PVFS_redentials redentials;

union {

PVFS_servreq_lookup_path lookup_path;

42

...

} u;

};

strut PVFS_server_resp_s {

PVFS_server_op op;

PVFS_size rsize;

PVFS_error status;

union {

PVFS_servresp_lookup_path lookup_path;

...

} u;

};

We now illustrate the methodology to onstrut a server request and response for

lookup path and the way in the server request and response are laid out ontiguously

for transfer over the network.

As shown in �gure 3.3, the atual request parameters for lookup path are preeded

by the generi parameters listing the request id, the size of the entire request, and the

redentials information. As the pathname is a string, a ontiguous bu�er is alloated

that totals the sizes of the server request struture and the path name string. The

server request parameters are �rst �lled in and at the end of that the pathname string

is opied in. In the ase of the response the handle array and the attribute array are

variable length quantities. The ontiguous bu�er for the response is alloated taking

into aount the maximum amount of data that ould be returned. This would

be in the event of the handle and attribute information for all the path segments

being returned. The networking layer uses the alloated bu�er to �ll in the response

returned from the server. In a similar way, the other requests and responses an be

onstruted.

43

SIZE = sizeof(struct PVFS_server_req_s)

’/0’

’/’

’m’

’t’

’l’

’r’

’a’

’p’

’o’

’o’

’f’

’p’

 ATTR_GENERIC

 path

SERVER REQUEST FOR LOOKUP_PATH

+ strlen("/parl/tmp/foo") + 1

 sizeof(PVFS_handle) * 3

 SIZE

 0

handle_array

attr_array

3

+ sizeof(PVFS_object_attr) * 3

+ sizeof(PVFS_handle) * 3

SIZE = sizeof(struct PVFS_server_resp_s)

SERVER RESPONSE FOR LOOKUP_PATH

in /parl/tmp/foo
path segments
number of

S
IZ

E

sizeof(PVFS_object_attr) * 3

PVFS_SERV_LOOKUP_PATH

S
IZ

E

 1

 UID, GID, Permissions

 SIZE

PVFS_SERV_LOOKUP_PATH

Figure 3.3: Server request and response for lookup path

The server request protool spei�ation follows. We show only those �elds spei�

to eah request.

3.7.1 Lookup Path

Type Name Desription

PVFS handle starting handle Handle of starting diretory in path

PVFS string path Full path to be traversed

PVFS fs id fs id File system identi�er

PVFS bit�eld attrmask Mask to speify desired attributes

Table 3.1: Lookup Path Request

44

Type Name Desription

PVFS handle* handle array Ordered array of handles per segment traversed

PVFS objet attr* attr array Array of objet attributes

PVFS ount32 ount Count of number of handles returned

Table 3.2: Lookup Path Response

3.7.2 Get Attributes

Type Name Desription

PVFS handle handle Handle of objet to feth attributes for

PVFS fs id fs id File system identi�er

PVFS bit�eld attrmask Mask to speify desired attributes

Table 3.3: Get Attributes Request

Type Name Desription

PVFS objet attr attr Attributes of the objet spei�ed in request

PVFS attr extended extended Extended attributes

Table 3.4: Get Attributes Response

3.7.3 Set Attributes

Type Name Desription

PVFS handle handle Handle of objet to set attributes for

PVFS fs id fs id File system identi�er

PVFS objet attr attr Attribute values to be set

PVFS bit�eld attrmask Mask to speify desired attributes

PVFS attr extended extended Extended attributes

Table 3.5: Set Attributes Request

45

No response for setattr

3.7.4 Get Con�guration

Type Name Desription

PVFS string fs name Name of �le system to get on�g info for

PVFS ount32 max strsize Max string size allowed for response mappings

Table 3.6: Get Con�guration Request

Type Name Desription

PVFS fs id fs id File system identi�er

PVFS handle root handle Root handle for the �le system

PVFS ount32 meta server ount Number of metaservers in system

PVFS string meta server mapping Ordered list of metaservers

PVFS ount32 io server ount Number of I/O servers in system

PVFS string io server mapping Ordered list of I/O servers

Table 3.7: Get Con�guration Response

3.7.5 Make Diretory

Type Name Desription

PVFS handle buket Buket to assoiate objet with

PVFS handle handle mask Number of buket bits in handle

PVFS fs id fs id File system identi�er

PVFS objet attr attr Attribute values of new objet

PVFS bit�eld attrmask Mask to restrit attributes to be set

Table 3.8: Make Diretory Request

46

Type Name Desription

PVFS handle handle handle of new diretory reated

Table 3.9: Make Diretory Response

3.7.6 Remove Diretory

Type Name Desription

PVFS string entry name Name of diretory to remove

PVFS handle parent handle Handle of parent diretory

PVFS fs id fs id File system identi�er

Table 3.10: Remove Diretory Request

3.7.7 Create Diretory Entry

Type Name Desription

PVFS string name Name of diretory entry to reate

PVFS handle new handle Handle of objet

PVFS handle parent handle Handle of diretory to add entry to

PVFS fs id fs id File system identi�er

Table 3.11: Create Diretory Entry Request

3.7.8 Remove Diretory Entry

Type Name Desription

PVFS string entry Name of diretory entry to remove

PVFS handle parent handle Handle of diretory to remove entry from

PVFS fs id fs id File system identi�er

Table 3.12: Remove Diretory Entry Request

47

3.7.9 Create

Type Name Desription

PVFS handle buket Buket to assoiate PVFS objet with

PVFS handle handle mask Number of buket bits in handle

PVFS fs id fs id File system identi�er

int type Type of PVFS objet

Table 3.13: Create Request

Type Name Desription

PVFS handle handle Handle of �le reated

Table 3.14: Create Response

3.7.10 Remove

Type Name Desription

PVFS handle handle Handle of PVFS �le to remove

PVFS fs id fs id File system identi�er

Table 3.15: Remove Request

No Response for remove

3.7.11 File System Statistis

Type Name Desription

int server type Metaserver or I/O server

PVFS fs id fs id File system identi�er

Table 3.16: Statfs Request

48

Type Name Desription

PVFS serv statfs stat File System Statistis

Table 3.17: Statfs Response

Type Name Desription

PVFS mserv stat mstat Meta server statistis

PVFS ioserv stat iostat I/O server statistis

Table 3.18: Contents of PVFS serv statfs

Type Name Desription

PVFS ount32 �letotal Total number of �les

Table 3.19: Contents of PVFS mserv stat

Type Name Desription

PVFS size blksize File system blok size

PVFS ount64 blkfree Number of free bloks

PVFS ount64 blktotal Total number of bloks available

PVFS ount32 �letotal Maximum number of �les

PVFS ount32 �lefree Number of free �les

Table 3.20: Contents of PVFS ioserv stat

49

3.7.12 Readdir

Type Name Desription

PVFS handle handle Handle of diretory to read entries from

PVFS fs id fs id File system identi�er

PVFS token token Current position in diretory

PVFS ount32 pvfs dirent ount Number of entries to read

Table 3.21: Readdir Request

Type Name Desription

PVFS token token Updated token reeting urrent position

PVFS ount32 pvfs dirent ount Number of entries atually read

PVFS dirent* pvfs dirent array Array of entries read

Table 3.22: Readdir Response

3.8 Related Interfaes

In this setion we talk of the various interfaes the System Interfae depends on in

its implementation. These interfaes provide funtionality for ahing of pinodes,

ahing of diretory entries, storing of on�guration parameters, and mapping of

bukets to servers. The System Interfae is the only layer that makes use of them

and the appliation annot diretly aess these APIs.

3.8.1 Pinode ahe

The role of the pinode ahe is to serve as a shorter path to the metadata for the lient.

Instead of making a server request for the metadata eah time and in turn inurring

network overhead for the request, the lient �rst looks in the pinode ahe. If the entry

is found in the ahe, it is tested for validity. Fething the pinode is handled by the

50

pinode helper funtions layer whih provides a pinode feth and validate mehanism.

The validate is done using timestamps instead of a ahe-oherene protool. This

layer refreshes the pinode by getting the attributes and �lling in the pinode. The

appropriate timestamp is also updated. The pinode ahe implementation is thread

safe. Currently, we have implemented a simple stak based ahe. The various pinode

ahe operations supported are as follows.

� pahe initialize(pahe *ahe)

pahe initialize initializes the pinode ahe interfae and also sets up the ahe

data strutures.

� pahe �nalize(pahe *ahe)

pahe �nalize shuts down the pinode ahe interfae.

� pahe lookup(pahe *ahe, pinode referene refn, pinode *pin-

ode ptr)

pahe lookup searhes for a spei�ed pinode in the ahe and returns the pin-

ode if found.

� pahe insert(pahe *ahe, pinode *pnode)

pahe insert adds/merges a pinode to the ahe. The merge operation merges

2 pinodes based on the timestamps of their ontents.

� pahe remove(pahe *ahe, pinode referene refn, pinode **item)

pahe remove removes a spei�ed pinode from the ahe and returns the re-

moved item.

3.8.2 PVFS Diretory Entry ahe

The purpose for the PVFS Diretory Entry ahe is to prevent lookup operations on

�les traversing the network eah time. The idea is to ahe already resolved �le names

51

so that the next time the resolution of the name to the pinode happens in the ahe

itself. The ahe implementation for the PVFS dahe is urrently quite similar to

the pinode ahe. The dahe operations supported are as follows.

� dahe initialize(strut dahe *ahe)

dahe initialize initializes the dahe interfae and also sets up the ahe data

strutures.

� dahe �nalize(strut dahe *ahe) dahe �nalize shuts down the dahe

interfae.

� dahe lookup(strut dahe *ahe, har *name, pinode referene

parent, pinode referene entry)

dahe lookup searhes for a spei�ed diretory entry in the ahe and returns

the entry if found.

� dahe insert(strut dahe *ahe, har *name, pinode referene

entry, pinode referene parent)

dahe insert adds an entry to the ahe if not already present. If the entry is

already present, just updates its timestamp and returns suessfully.

� dahe remove(strut dahe *ahe, har *name, pinode referene

parent, unsigned har *item found)

dahe remove removes a spei�ed entry from the ahe.

3.8.3 Con�guration Management Interfae

The Con�guration Management Interfae exports funtions to the system interfae

to manage all server related on�guration information mainly obtained through the

Geton�g server request. Most of the interfae is now dediated to handling the

buket to server mapping and vie versa. We know from the de�nition of a buket

52

that the data�le or meta�le of a �le system objet is assoiated to a buket and not

the atual server. This buket identi�er is embedded in the objet handle. So, to

determine the buket and in turn the server that holds the meta�le or data�le for

an objet, it is required that given a handle we be able to �nd the buket identi�er.

This is the reason that the on�guration management interfae provides funtions to

determine the server given a buket identi�er. It is expeted that other funtions not

diretly related to bukets would be added later on and listed under the on�guration

management interfae. The interfae exports the following funtions.

� on�g bt initialize(pvfs mntlist mntlist list)

on�g bt initialize initializes the interfae related data strutures.

� on�g bt �nalize(void)

on�g bt �nalize shuts down the interfae by dealloating the interfae related

data strutures.

� on�g bt get next meta buket(PVFS fs id fsid, PVFS handle *buket,

PVFS handle *handle mask)

on�g bt get next meta buket takes a �le system identi�er as input and re-

turns the buket, handle mask, and the metaserver to use while reating a new

PVFS system objet.

� on�g bt get next io buket array(PVFS fs id fsid, int num servers,

har **io name array, PVFS handle **buket array, PVFS handle

*handle mask)

on�g bt get next io buket array takes a �le system identi�er and the num-

ber of servers as input and returns the requested number of bukets, handle

masks, and I/O servers needed to reate data�les for a PVFS �le.

� on�g bt map buket to server(har **server name, PVFS handle

buket, PVFS fs id fsid)

53

on�g bt map buket to server takes a buket and �le system identi�er as

input and returns the server name whih is assoiated with the buket.

� on�g bt map server to buket array(har **server name, PVFS handle

**buket array, PVFS handle *handle mask)

on�g bt map server to buket array takes a server name as input and re-

turns the bukets and their handle masks assoiated with the server.

� on�g bt get num meta(PVFS fs id fsid, int *num meta)

on�g bt get num meta takes the �le system identi�er as input and returns

the metaservers in the �le system.

� on�g bt get num io(PVFS fs id fsid, har **io server array)

on�g bt get num io takes the �le system identi�er as input and returns the

ioservers in the �le system.

� on�g fsi get root handle(PVFS fs id fsid, PVFS handle *fh root)

on�g bt get root handle takes the �le system identi�er as input and returns

the root handle for the �le system.

� on�g fsi get io server(PVFS fs id fsid, har **io server array, int

*num io)

on�g fsi get io server takes the �le system identi�er as input and returns the

I/O servers for the �le system.

� on�g fsi get meta server(PVFS fs id fsid, har **meta server array,

int *num meta)

on�g fsi get meta server takes the �le system identi�er as input and returns

the meta servers for the �le system.

54

� on�g fsi get fsid(PVFS fs id fsid, har *mnt dir)

on�g fsi get fsid takes the mount diretory of a �le system as input and re-

turns the �le system identi�er for the �le system.

3.9 Summary

We have presented the design of the System Interfae in this hapter. Initially, we

disussed the overall design and how the individual �le system objets �t into the

design. We then introdued terms those were frequently used and relevant to the

disussion. Subsequently, we presented the funtions in the atual interfae grouped

by funtionality followed by details of the implementation overing various issues suh

as name resolution, ahing, and permissions. After the implementation, we moved

on to an overview of the request protool used in the exhanges between the System

Interfae and the servers. Finally, we mentioned the various related interfaes used

for lient side, name resolution ahing, and on�guration management.

Chapter 4

Evaluation

The System Interfae was primarily designed to serve as a �le system interfae for

PVFS2 and at the same time allow us to further our researh on parallel I/O. The

objetive of this researh was twofold.

� To utilize the experiene gained from the implementation of PVFS1 in the im-

plementation of a more powerful �le system interfae. This would help address

de�ienies in the earlier �le system interfae as well as provide newer features

that would allow PVFS2 to be used e�etively.

� To evaluate the new design and determine the degree of suess we have ahieved

in our goals

4.1 System Interfae Implementation

As desribed in the System Interfae Spei�ation[h.3℄ 14 out of the 19 funtions

in the System Interfae have been implemented. In addition, the pinode and PVFS

diretory ahes have also been implemented along with the on�guration manage-

ment interfae. The 19 funtions are part of the System Interfae API spei�ation,

whereas the other parts like the pinode and PVFS diretory ahes are underlying

56

modules used by the API. Please refer hapter 3 for details on any of the above

interfaes. This makes up the �rst implementation of the System Interfae.

As full-sale testing ould not be done, the funtions have been evaluated with

a test harness that simulates the working of the job interfae(the networking layer)

and also the server. This testing only overs orretness and usability. No pro�ling

or performane spei� testing is planned until a working prototype of a full-edged

PVFS2 system is ready. The role of the testing using the harness was to verify that

the API exposed the right primitives to the appliation using it and that the amount

of omplexity involved in the alling ode was manageable. The omplexity of the

appliation ode would help us determine if the API provided the orret level of

abstration to the higher layers.

The role of the test harness is to test if the System Interfae works with the

job interfaes and the server request protool. This involves heking arguments

that are passed to the job layer and subsequently to the server part of the harness.

After the testing, it is expeted that when the System Interfae links to the atual

job layer it would be able to send requests and reeive responses orretly. In the

implementation this is done by �rst heking the parameters to the job layer in turn

handed over to the server portion of the harness. The server portion of the harness

validates the parameters passed by the System Interfae and then using a simple

implementation returns the requested information though the response strutures of

the Server Request Protool. The returned information is then interpreted by the

System Interfae to deide the next ation. The ation ould onsist of either further

proessing or simply passing on the response to the lient invoking the API. Thus,

the testing is also a validation of the Server Request Protool.

57

4.2 Evaluation of the System Interfae

In order to evaluate the System Interfae we ompare it to the �le system interfae in

PVFS1 whih is a ombination of a �le system interfae and a POSIX �le I/O library.

As various stages of the System Interfae are still in progress we are unable to obtain

any atual performane results so we proeed to provide qualitative arguments. Our

approah will onsist of giving a ase study of how a partiular operation is handled in

both PVFS1 and PVFS2, and how the presene of a partiular feature in the PVFS2

�le system interfae enables the operation to be exeuted more eÆiently. Finally,

our intent is to illustrate that the System Interfae is a signi�ant improvement over

the PVFS1 interfae.

Firstly, we mention the signi�ant distinguishing features of the PVFS2 �le system

interfae from that of PVFS1.

� abstration

� support for multiple interfaes

� exibility and modularity

� desription of omplex I/O patterns

� learly de�ned semantis

� thread safety

� PVFS diretory ahe

� pinode ahe

Next, we provide omparative arguments to show that eah of the above features

indeed leads to the improvement of the PVFS2 �le system interfae over that of

PVFS1.

58

CACHE
PVFS DIRECTORY

MANAGEMENT
CONFIGURATION

INTERFACE

DISTRIBUTION
MODULE

 INTERFACE

NETWORK

MODULAR PVFS2 INTERFACE ARCHITECTURE USING ABSTRACTION

DISTRIBUTION HANDLING

POSIX FILE I/O

CACHING OF DISTRIBUTIONS

MONOLITHIC PVFS1 INTERFACE ARCHITECTURE

NETWORKING

 SYSTEM

ABSTRACTION
LAYER

PINODE CACHE

Figure 4.1: Modular System Interfae vs. monolithi PVFS1 interfae

4.2.1 Abstration(Data hiding)

The PVFS1 interfae is a ombination of a �le I/O library and a �le system interfae.

Due to this, eah funtion in the library needs to be diretly involved with details

suh as keeping up with sokets and storing the distribution information for PVFS

�les. This introdues unneessary omplexity in the library ode. Also, PVFS1 uses

many system spei� strutures and hene it is tied down to the operating system

used. The spei�ation of a System Interfae provides the neessary abstration so

that higher level libraries do not have to be onerned about dealing with the �le

system data strutures. The System Interfae in itself abstrats the �le system to

the libraries and the libraries an be restrited to providing only the semantis in

their funtionality. The System Interfae takes on the responsibility of dealing with

the ommuniation subsystem and providing features suh as ahing. This leads to

leaner library ode and the abstration insulates the library ode from hanges in

the �le system implementation.

59

4.2.2 Support for multiple interfaes

DOUBLING AS FILE SYSTEM INTERFACE

PVFS1 ACCESS THROUGH
KERNEL

PVFS1 INTERFACE

PVFSD

KERNEL VFS LAYER

APPLICATION
ROMIO OVER PVFS1

PVFS1 INTERFACE

ROMIO

VFS LAYER POSIX

SYSTEM INTERFACE

NO STACKING IN PVFS2 DUE TO LOW LEVEL

SYSTEM INTERFACE LAYER

ROMIO

DUE TO HIGH LEVEL PVFS1 LIBRARY

MDBI

PVFS1 INTERFACE

MDBI OVER PVFS1

STACKED INTERFACES IN PVFS1

Figure 4.2: Staking of interfaes in PVFS1

As most parallel appliations will use high-level libraries rather than diretly use

the �le system interfae, the e�ort involved in implementing libraries on top of the

basi parallel �le system interfae is indeed an important issue to onsider. The

PVFS1 interfae as mentioned earlier is a higher level interfae in that it ombines

the features of a POSIX �le I/O library and hene inludes a lot more funtionality

than a �le system interfae. This makes the implementation diÆult as it limits the

failities that the �le system an expose to the library. In PVFS1 interfaes end up

being staked over one another as eah interfae is atop both the parallel �le system

interfae and a POSIX library. In the System Interfae, the limitations of PVFS1

have been avoided by making the �le system interfae provide low-level funtions that

an be used by higher level libraries. The libraries are given the job of implementing

any funtionality suh as a POSIX layer or an MPI-IO layer. This allows the System

60

Interfae to support a muh larger number of interfaes than the previous version in

PVFS1 and at the same time does not lead to staked interfaes.

4.2.3 Flexibility and Modularity

The �le system interfae in PVFS1 is not modular in its design and there is no lear

separation of funtionality. This results in the interfae implementation itself handling

�le I/O, distributions, and networking. The appliation does not have the ability to

set options for onsisteny, hoose the distribution, or adjust the data layout. The

System Interfae along with the rest of the PVFS2 subsystems enapsulates fun-

tionality in modules and uses interfaes to ommuniate with modules. The various

System Interfae omponents like the pinode ahe and PVFS dahe de�ne lean

interfaes for the System Interfae funtions to use. The advantage that modularity

provides is the ability to replae one module with another seamlessly. In addition the

System Interfae is quite exible in providing the appliation options to tune onsis-

teny, ontrol the distribution, and support to suggest data layout. These allow the

appliation to make better use of the �le system by tuning the poliies to its bene�t.

4.2.4 Desription of omplex I/O patterns

Non-ontiguous �le aess is a frequent requirement of parallel appliations so the �le

system interfae has to support an eÆient way of ahieving it. We ompare the sup-

port for omplex I/O patterns provided by both PVFS1 and PVFS2 interfaes. First,

we disuss a few funtions in the PVFS1 interfae API that provide non-ontiguous

aess. Non-ontiguous memory aess is provided by the funtions pvfs readv and

pvfs writev. These funtions do not however provide non-ontiguous �le aess. The

pvfs read list and pvfs write list give higher level parallel I/O libraries like MPI-IO

basi support for non-ontiguous aesses. Other than the above, non-ontiguous sup-

port in PVFS1 is provided through logial partitioning. Logial partitioning allows

61

the appliation to reate a partition omprising regions of interest from a �le. This

partition is then aessed as a single unit thus saving multiple seek-aess operations.

But, the partitioning interfae is only useful for single dimensional data or simple

distributions of two dimensional data.

PVFS2 provides a highly expressive I/O request desription faility that an sup-

port any data layout that an be onstruted using MPI derived datatypes suh as

indexed or strut whih an't be desribed using the partitioning. This is supported

through the funtions PVFS sys read and PVFS sys write. This an allow MPI-

IO to take full advantage of PVFS2 features as MPI-IO derived datatypes allow the

appliation to reate omplex I/O patterns to desribe non-ontiguous �le aesses.

The interpretation of the request desription is handled by a separate module and

the System Interfae only exposes the ability to the appliation. The advantage of

being able to desribe omplex non-ontiguous I/O aesses to a �le is important as

suh non-ontiguous aesses are quite ommon in a parallel appliation. Supporting

non-ontiguous aesses in a single funtion all redues the number of alls needed as

well as the number of requests over the network. Speeding up a frequently ourring

aess pattern is hene a big win.

4.2.5 Clearly de�ned semantis

In this setion we disuss spei� semanti features that are learly spei�ed in the

PVFS2 interfae ompared to the PVFS1 interfae. The bene�t of having well-de�ned

semantis is learly felt by the user of the parallel �le system. The user an now tailor

his appliations likewise. In PVFS1 the semantis for �le system operations is not

learly de�ned. Error handling, onsisteny, atomiity, handle reuse, and permission

heking semantis are not spei�ed. Also, the point where PVFS di�ers from POSIX

is not de�ned. In the PVFS2 System Interfae, onsisteny, atomiity, error handling

handle reuse, permission heking semantis are quite learly spei�ed in a PVFS2

62

semantis doument that eliminates onfusion. As ahing is performed at the System

Interfae level it is also neessary to de�ne the mehanism followed for onsisteny

of the ahed entries. This is dealt with in the System Interfae design doument.

The ahes in PVFS2 have tunable onsisteny semantis implemented by means of

a timeout that an be set to 0 to indiate that no ahing is to be performed. With

the semantis and its implementation spei�ed in design douments we expet the

utility of PVFS2 to inrease.

4.2.6 Thread Safety

PVFS1 is not thread safe. This just means that the interfae funtions annot be

alled by multiple threads. A threaded appliation an use the PVFS1 library by

alling a single thread for the library funtions and serializing operations. In ompar-

ison, the PVFS2 System Interfae is designed to be thread safe. The System Interfae

funtions an be alled by multiple threads and will provide onsistent results. The

ahes and on�guration management strutures in the System Interfae use loking

to provide thread safety. Global variables like errno are stritly avoided in the System

Interfae.

4.2.7 The PVFS2 diretory ahe

We demonstrate the motivation for the PVFS2 dahe by showing that the PVFS2

design leads to lookups of inreased number and longer duration. The diretory ahe

in PVFS2 is an outome of having multiple servers storing metadata. In PVFS1, a

single metaserver is theoretially a bottlenek during metadata servers so PVFS2 has

multiple metaservers. In PVFS2, metadata is spread out over all metaservers without

overlap so as to maximize parallelism. In the worst ase, this ould mean that the

metadata for eah objet in a pathname is on a di�erent server. With a simplisti

lookup approah as in PVFS1 this leads to more requests over the network in PVFS2.

63

Thus, this does not sale well with inreasing number of lients performing lookups

and longer pathnames. This is where the PVFS2 dahe omes in. The dahe

ahes the name to handle mapping for eah objet after a suessful lookup. As

more lookups our and as more entries are ahed there will be further saving of

time spent over network traversal. This approah also sales well with inreased

number of lients, longer pathnames, and inreased number of metaservers. This is

beause the inreased ahe hits would balane out the inreased requests. As an

optimization, if metadata for suessive segments in a path name is on the same

metaserver then lookup reursively goes through the path until it �nds a segment

whose metadata is not on the same server.

4.2.8 The PVFS2 pinode ahe

The funtion of the pinode ahe is to ahe the attributes enapsulated in a pinode.

In PVFS1, the stat funtion is used to feth metadata but no attempt is made to

ahe the attributes. Thus, eah time there is a request for metadata a request is

sent over the network to obtain them. To sum it up, the number of network messages

involved in fething metadata would be the double the number of atual metadata

requests assuming one message eah for a request and response. In PVFS2, as the

System Interfae funtion getattr ould be used by many library alls, metadata may

be fethed quite frequently. In addition, it is needed to validate handles in PVFS2,

alulate diretory size, and in I/O operations. The pinode ahe makes use of the

sizeable temporal loality exhibited at the System Interfae. With eah metadata

request being satis�ed from the ahe itself, the number of network messages due to

metadata requests are redued and also the load on metadata servers is eased.

64

4.3 Summary

We believe that the objetives of the researh have been satis�ed by the implemen-

tation of the System Interfae. The above omparative study proves that we have

learned from the experiene of the PVFS1 �le system interfae and have suessfully

orreted the shortomings and also provided new features that will allow us to fur-

ther explore issues in parallel I/O. We also hope to have demonstrated that the newer

design features in the System Interfae indeed make it better.

Chapter 5

Conlusion and Future Work

This doument disussed the design and implementation of the System Interfae for

PVFS2. The System Interfae was proposed as a �le system interfae for PVFS2 to

meet the following demands.

� Flexibility

� Support for multiple interfaes

� Abstration

� Robustness

� Performane

It has been shown that the System Interfae meets the intended goals. The Sys-

tem Interfae has been evaluated by omparing it with the �le system interfae in

PVFS1. Through qualitative arguments we have tried to demonstrate that the Sys-

tem Interfae is an improvement over the PVFS1 interfae.

The funtions in the �rst ut of the System Interfae have been implemented. As

work on the some of the underlying subsystems is urrently in progress it was not

possible to develop a working prototype of the entire PVFS2 system. We hope as the

66

prototype is near ompletion that integration of the System Interfae with the other

modules an be done and quantitative results obtained.

5.1 Future work

As further testing is done on the System Interfae there is sope for further improve-

ments. Future work an be broadly divided into three areas - getting quantitative

performane results using various libraries, implementing the remaining funtions in

the spei�ation and adding features to make the interfae more exible.

5.1.1 Performane Results

This needs to be done with higher priority as this will eventually allow us to evaluate

our design and identify bottleneks in the System Interfae. Some possible work in this

regard may be the implementation of a POSIX ompliant library and omparison of

the results with PVFS1, omparison of ROMIO implementation results with PVFS1,

VFS interfae implementation results. Spei� tests to determine the improvements

due to lient side ahing ould also be done.

5.1.2 Implement the remaining funtions

The remaining funtions in the spei�ation pertaining to loking and symboli link

support need to be implemented so as to provide riher funtionality in the �le system

interfae.

5.1.3 Provide features to inrease exibility

There is sope to add features to make the interfae more exible. The on�guration

management interfae an be provided with hints on aess patterns so as to make

intelligent hoies while deiding the data layout. Support for non-bloking I/O ould

67

be provided. The error handling sheme needs to be implemented to provide info to

the user when a problem ours in a prodution environment.

Bibliography

[1℄ Mark Baker. Cluster omputing white paper, 2000.

[2℄ Peter J. Braam. File systems for lusters from a protool prespetive. In Seond

Extreme Linux Topis Workshop, June 1999.

[3℄ P. H. Carns. Design and Analysis of a Network Transfer Layer for Parallel File

Systems. Clemson University Master's Thesis, Deember 2001.

[4℄ Philip H. Carns, Walter B. Ligon III, Robert B. Ross, and Rajeev Thakur. PVFS:

A parallel �le system for linux lusters. In Proeedings of the 4th Annual Linux

Showase and Conferene, pages 317{327. USENIX Assoiation, 2000.

[5℄ The MPI-IO Committee. MPI-IO: A Parallel File I/O Interfae for MPI Version

0.5.

[6℄ Peter Corbett, Dror Feitelson, Sam Fineberg, Yarsun Hsu, Bill Nitzberg, Jean-

Pierre Prost, Mar Snir, Bernard Traversat, and Parkson Wong. Overview of the

MPI-IO parallel I/O interfae. In High Performane Mass Storage and Paral-

lel I/O: Tehnologies and Appliations, pages 477{487. IEEE Computer Soiety

Press and Wiley, New York, NY, 2001.

[7℄ Peter F. Corbett and Dror G. Feitelson. The Vesta parallel �le system. ACM

Transations on Computer Systems, 14(3):225{264, August 1996.

[8℄ Jay Huber, Christopher L. Elford, Daniel A. Reed, Andrew A. Chien, and

David S. Blumenthal. PPFS: A high performane portable parallel �le system. In

Proeedings of the 9th ACM International Conferene on Superomputing, pages

385{394. ACM Press, July 1995.

[9℄ Salable I/O Initiative. SIO low-level appliation programming interfae, Novem-

ber 1996.

[10℄ Mihael J. Karels and Marshall Kirk Mkusik. Toward a ompatible �lesystem

interfae. In Proeedings of the European Unix User's Group, September 1986.

[11℄ David Kotz. Disk-direted I/O for MIMD multiproessors, February 1997.

69

[12℄ David Kotz and Nils Nieuwejaar. Flexibility and performane of parallel �le

systems. In Proeedings of the Third International Conferene of the Austrian

Center for Parallel Computation (ACPC), volume 1127 of Leture Notes in Com-

puter Siene, pages 1{11. Springer-Verlag, September 1996.

[13℄ Steven A. Moyer and V. S. Sunderam. PIOUS: a salable parallel I/O system

for distributed omputing environments. In Proeedings of the Salable High-

Performane Computing Conferene, pages 71{78, 1994.

[14℄ Nils Nieuwejaar and David Kotz. The Galley parallel �le system. Parallel Com-

puting, 23(4):447{476, June 1997.

[15℄ Huseyin Simiti, Daniel A. Reed, Ryan Fox, Mario Medina, James Oly, Nany

Tran, and Gouyi Wang. A framework for adaptive storage input/output on

omputational grids. In Proeedings of the 3rd Workshop on Runtime Systems

for Parallel Programming, April 1999.

[16℄ Hal Stern. Managing NFS and NIS. O' Reilly, June 1991.

[17℄ PVFS2 Development Team. Trove: The PVFS2 Storage Interfae. PARL Inter-

nal Doumentation.

[18℄ Rajeev Thakur, William Gropp, and Ewing Lusk. On implementing MPI-IO

portably and with high performane. In Proeedings of the Sixth Workshop on

Input/Output in Parallel and Distributed Systems, pages 23{32, May 1999.

