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ABSTRACT

As Linux clusters emerged as an alternative to traditional supercomputers one
of the problems faced was the absence of a high-performance parallel file system
comparable to the file systems on the commercial machines. The Parallel Virtual
FileSystem(PVFS) developed at Clemson University has attempted to address this
issue. PVFS is a parallel file system currently used in Parallel I/O research and as a
parallel file system on Linux clusters running high-performance parallel applications.

An important component of parallel file systems is the file system interface which
has different requirements compared to the normal UNIX interface particularly the
[/O interface. A parallel I/O interface is required to provide support for non-contiguous
access patterns, collective I/0, large file sizes in order to achieve good performance
with parallel applications. As it supports significantly different functionality, the in-
terface exposed by a parallel file system assumes importance. So, the file system
needs to either directly provide a parallel I/O interface or at the least support for
such an interface to be implemented on top.

The PVFS2 System Interface is the native file system interface for PVFS2 - the
next generation of PVFS. The System Interface provides support for multiple in-
terfaces such as a POSIX interface or a parallel I/O interface like MPI-IO to access
PVFS2 while also allowing the benefits of abstraction by decoupling the System Inter-
face from the actual file system implementation. This document discusses the design

and implementation of the System Interface for PVFES2.
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Chapter 1

Introduction

1.1 Clusters

The availability of high-speed networks and increasingly powerful commodity pro-
cessors at low prices have enabled the development of low-cost clusters. Clusters
typically used in parallel processing are collections of independent computers con-
nected by a network and dedicated to parallel processing. The cluster as a whole uses
commercial-off-the-shelf(COTS) hardware and is managed as a single administrative
entity thus easing system configuration. Since clusters themselves consist of off-the-
shelf parts they have also been able to utilize the software and hardware developed
for broad use. An upside to using broad based components is that the cluster can
benefit from the advances in technology and price fluctuations of the components un-
like supercomputers which often use custom-built components. All these advantages
translate into a considerable reduction in the overall cost of building and maintaining
a cluster.

The usage of commodity components in clusters has provided lots of flexibility
for system configuration. This along with the emergence of open source software has

helped researchers in high-performance computing experiment with various options.
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While low-cost industrial standard hardware has been abundant, the software systems
and tools for clusters have evolved more slowly. One such area where clusters have

lacked a comparable option to supercomputers is parallel file systems.

1.2 Parallel File Systems

Scientific applications typically use multiprocessor computers to satisfy their compu-
tational needs. Many of them, however, also deal with large amounts of data such
as data from satellites, checkpointing output, and visualization output. In addition,
some applications may need to work with data too large to fit in main memory, need-
ing virtual memory support. In all the above cases, the I/O system is the bottleneck
due to the disparity between processor speed and disk speed. The UNIX derived
file systems largely in use for parallel computing are unsuited for parallel, scientific
workloads[12]. They fail to address the I/O bottleneck in parallel computing as they
are not designed for concurrent data accesses by multiple processes. In the UNIX
model, a file is considered as a linear, addressable sequence of bytes and read/write
requests act on that sequence of bytes. As the entire file is located on a single disk,
all accesses are serialized even though they don’t involve the same bytes. In this case,
file access is a bottleneck that affects the bandwidth of I/O operations. Hence, the
application is unable to harness the processing power available in the cluster. Thus,
parallel file systems have been developed that are able to support a scientific workload.
A parallel file system scatters the blocks of each file across multiple disks(declusters),
enabling parallel access to the file. This parallel access lessens the effect of the bot-
tleneck due to the slow disk speed and larger bandwidth can be obtained for I/O
operations. Some of the other features of such file systems are concurrency with
guaranteed consistency, user controllable data distribution parameters, and multiple

I/O interfaces.
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Most of this development, however has been done in commercial file systems that
are specific to the vendor’s platform or are restricted to research prototypes. As
clusters begin to replace supercomputers in scientific applications, there is lack of a
high-performance production file system for clusters. The parallel virtual file sys-
tem (PVFS) has filled the void nicely and serves to provide high-speed access to file
data for parallel applications in a production environment. Features of PVFES are a
consistent namespace across the cluster, control of file distribution by the user, and

a transparent user space.

1.3 PVFS2 - The Next Generation

PVFS2, a collaboration between Clemson University and Argonne National Labora-
tory, is the next generation of the parallel virtual file system. PVFS2 is the result
of a total redesign that has come about mainly due to changes in technology, both
hardware and software, and also shortcomings in the previous design. PVFS2 seeks to
address both technical and design issues in the new version so that it can maintain its
goal of being a vehicle for parallel I/O research and a production quality file system
for Linux based clusters. As of the time of this writing, PVFS2 is a work in progress
and some of the ideas being discussed are still evolving and have not yet assumed their
final form. Table 1.1 shows a comparison of several design issues between PVES1 and
PVFS2.

One of the important lessons from the previous system’s software architecture
was the need for separation of functionality. This has resulted in a modular design so
that modules can be replaced as needed. Also, the implementations have been hidden
behind abstractions and clear interfaces defined to access the individual components.

Although a software engineering issue, the design framework is nevertheless important



‘ Issue ‘ PVFS1 ‘ PVFS2
Software Architecture | Monolithic Layered
Modular
[/O requests Strided Completely general
List-based MPI Datatype based
Data distribution Striping Modular distribution code
Networking TCP/IP Abstract network layer(BMI)
Storage UNIX files Abstract storage layer(Trove)
Servers Stateful Stateless
Separate metaserver Combined metaserver
Interfaces POSIX-based with extensions | Low-level System Interface
Others layered Replaceable user interfaces

Table 1.1: Comparison of PVFS1 and PVFS2

to ensure easy maintenance and ability to modify modules for research purposes,
additional features, or performance improvements.

Parallel scientific programs often need to access non-contiguous regions of a file.
Thus, we want the I/O description capability provided by PVFS2 to be as expressive
as possible. The idea is to encapsulate as many access patterns as possible using
the I/O description. This would allow it to support parallel I/O interfaces such as
MPI-10[5] and SIO[9] that require the underlying system to support non-contiguous
accesses in a convenient manner. The older PVFSI requests were limited as to what
they could express.

In PVFSI, the default distribution is striped. A file striped on N I/O nodes has N
files, one on each I/O node, containing the file’s data. PVFS2 has a modular distribu-
tion mechanism that can support multiple distributions. In addition, PVFS2 allows
new distributions to be added without changing the major file system components.
Thus, it allows the distribution to be tuned to the file access pattern of an application.

The PVFSI client library was designed to use TCP/IP for network communica-
tion. The network transfer layer in PVFS2 provides an abstract interface that allows

the file system design to be independent of the networking mechanism used. The net-
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work transfer layer uses an abstraction called BMI[3] to handle both short and long
messages with equal efficiency and to support a wide range of protocols and devices.

PVFS2 has a storage layer called Trove[17] that abstracts the storage of data.
This allows the details of the storage mechanism to be hidden from the rest of the
design. Thus, the servers can use raw disk, native file system, or relational databases
for storage implementation.

In PVFS1, the servers keep up with the state of open files. This has resulted in a
lot of complexity as the servers end up having to recover to a consistent state after a
crash. In PVFS2, the servers are stateless. This will hopefully reduce the complexity
and ease the design of multi-process servers.

In PVFS1, the client interface was intended to be a replacement for the standard
POSIX interface. This interface lacks many features critical to use in parallel appli-
cations. Parallel I/O interfaces such as MPI-IO had to be implemented as a layer
on top of the interface. The PVFEFS2 System Interface is designed at a lower level
than a user interface. It has a full set of features for parallel computing, though it
is very complex. Several different user interfaces can be neatly implemented on top
of it including POSIX and MPI-IO. In addition, this interface is designed to interact

with the Linux VFS to facilitate kernel implementations.

1.4 The System Interface

Figure 1.1 shows the overall system architecture for PVFS2. It is seen from the
figure that the System Interface is the layer between the user level interface and
the job or networking abstraction layer. This interface defines the logical operations
supported by the underlying file system. There are two parts to the System Interface
where it merges with the PVFS2 architecture. One is the top part of the interface

where it meets the user interface or PVFSD. This represents the API defined by the



CLIENT SERVER
APPLICATION
CLib
User SERVER
Kernel VFS Level
Interface
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SYSTEM INTERFACE
JOB
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BMI TROVE

BMI

REQUEST PROTOCO

Figure 1.1: PVFS2 Architecture

System Interface that allows user-level applications to access the parallel file system.
The lower part of the System Interface is responsible in dealing with the network
abstraction layer(job layer). The design goals for the System Interface are outlined

as follows.

o Abstraction: The file system needs to export a standard interface that can be
used by the high-level application interfaces. This would also provide the neces-
sary abstraction by decoupling the interface from the file system implementation

details.

e Flexibility: To allow parallel file systems to maximize their performance, the file
system interface needs to be as flexible as possible. This means that applications
need to be able to exercise a measure of control on the file system parameters
through the interface. This would enable applications to tune the file system

policies to achieve the best fit for themselves.
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e Support for user-level interfaces: This refers to the ability of the parallel file
system interface to support multiple high-level interfaces. The high-level inter-
faces should support as much of the functionality as possible and the file system
interface should only provide the necessary support for the high-level interfaces
by defining primitives to enable non-contiguous access and read-write with high

throughput.

e Robustness: Any application using the file system interface expects that errors
during execution of operations are handled gracefully and the system interface
shuts down cleanly. Error and if possible debugging information needs to be

returned by the system interface to the application.

e Performance: The design of the file system interface plays a major part in the
overall performance of the file system. The interface design needs to make use
of optimizations wherever possible and also make efficient use of the underlying

subsystems to achieve the best possible performance.

1.5 Approach

We propose the System Interface in PVFS2 as a solution to meet the demands made of
a parallel file system interface. Our objective in proposing this interface is to provide
a flexible and efficient interface that meets our stated goals. In this thesis, we present
the design and implementation of the PVEFS2 System Interface. After discussing the
design goals in the previous section, we list the features of the PVFS2 file system

interface which are as follows.
e file abstraction
e abstract distribution

e non-contiguous file access using complex I/O patterns



e stateless design

e control over distribution and caching

e extensible attributes

e extensible request format

e protection of file system data structures

e thread safety

In this section we discuss how the System Interface is designed to provide the
features listed previously while meeting the design goals. File abstraction is provided
by presenting the user library with a single logical file even though the actual file is
declustered over multiple servers. The distribution is abstracted as a string identifier
at the user library with the System Interface handling the details using the distri-
bution module. The availability of a well-defined API provides file and distribution
abstraction to the user library. The API implementation hides file-system specific
details from the user while at the same time providing control through the API pa-
rameters. It is intended that changing the file system implementation does not heavily
impact the API itself. The design of the well-defined APT helps achieve the goal of
abstraction along with providing the desired features.

System Interface features such as control over distribution parameters, support
for complex I/O patterns, control over caching consistency, and extensible attributes
add flexibility to the System Interface. Control over distribution parameters is needed
to match the distribution to access patterns. This is necessary for the application to
realize the performance benefits from declustering. The distribution parameters are
dependent on the distribution used but usually include the file locations on disk and
disk locations in the cluster. For a striped distribution they contain the count of I/O

nodes across which the file is striped, the first I/O node, and the unit(in bytes) by



9
which the file is divided among the various I/O nodes. These parameters can be set
during the file creation. The System Interface supports an I/O request format that
can encapsulate any MPI based derived datatype for non-contiguous I/O accesses
which are a frequent occurrence in parallel applications. The cache consistency is
controlled by using a timeout based scheme and caching can even be disabled by
making the timeout zero. The ability to add new attributes is provided by the sup-
port for extended attributes in all attribute related functions. Other features that
make the System Interface flexible are the stateless design and extensible requests.
Extensible requests are made possible by the specification of the server request pro-
tocol which defines each System Interface operation as a collection of server requests
and responses. Adding a new request in this scenario would entail just adding a few
server requests. The definition of the interface as a low-level API providing primitives
rather than semantics has led to a stateless design. Thread safety has been provided
in the interface by removing dependence on global system variables and using locks
to arbitrate access.

In addition to the features described above, the PVFS2 interface has been imple-
mented to address the goals of robustness and performance. The implementation of
the interface handles graceful recovery from error conditions and uses an error han-
dling mechanism that aggregates the information from each subsystem to return error
and debugging information to the application. The above features add to increased
robustness. After the addition of features to the interface it is also necessary to add
optimizations to ensure that good performance is achieved for operations those take
the most time and also occur frequently. In our case, we have identified network
requests to fetch metadata and the object handle in the above category. Two design
features that speed them up are the pinode cache and PVFS directory entry cache.

The pinode cache performs attribute caching thus preventing attribute requests over
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the network. The PVFS directory entry cache allows the file name to handle mapping
to be cached. This saves lookup requests from going over the network.

In this section, we listed the major features to give an idea of the issues involved
and what we have to implement. This outlines what we plan to do in this thesis. The
remainder of this document is organized as follows. In Chapter 2, we present a review
of parallel file systems and their file system interfaces that served as a background
for the design of the system interface. Chapter 3 details the design details of the
system interface and its related interfaces such as the PVFS dcache interface, pinode
cache interface and configuration management interface. An outcome of the system
interface design in PVFS2 is the server request protocol. The server request protocol
is a standardization of the request exchange mechanism between the client(the system
interface) and the servers. This chapter also contains a discussion of the server request
protocol. Chapter 4 presents the evaluation of the System Interface and gauges its
usefulness as the file system interface for PVFS2. Chapter 5 concludes this document

by presenting the conclusions and suggesting the direction for future work.



Chapter 2

Background

2.1 Parallel File Systems

This section discusses parallel file systems and dedicated interfaces for parallel I/O
that cover related work and served as background for the design of PVEFS2 and the

System Interface.

2.1.1 PIOUS
Goals

The basic goal of the Parallel Input/Output System(PIOUS) is to provide scalable
bandwidth in a parallel environment using a framework built on the idea of declus-

tering of data[13].

Design

The main components of PIOUS are a set of data servers, a service coordinator, and
a library to link with the clients. The data server runs on each machine used for
declustering and enables access to file data. Each server is independent and uses

the local file system for data storage. The independence of the data servers allows
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asynchronous operation and increased parallelism. The service coordinator initiates
major system operations but is not involved in general file access. The library provides
an API for the clients to use the services of the parallel file system. PIOUS uses a

transaction based model to guarantee consistency semantics.

File System Interface

The library in PIOUS is the interface provided to the client applications. This allows
the file structure and selected logical views of a declustered file to be specified to the

client.

2.1.2 Vesta
Goals

Vesta distinguishes itself as a file system that caters to shared file access by multiple
processes. Thus, it is different from a traditional distributed file system that either
offers weaker concurrency semantics or offers concurrency with costly synchronization
mechanisms. The goal of Vesta is to provide shared file access to I/O intensive

scientific applications while keeping performance in mind[7].

Design Overview

The Vesta parallel file system concentrates on 3 aspects to work towards its goals
of providing high-performance - parallelism, scalability, and layering. Vesta provides
parallelism by declustering of files. However, in contrast to its peer systems Vesta
allows the user to view the parallel nature of the files. Compared to its peer systems
that abstract the declustered nature from the users, Vesta allows its users to adjust the
file declustering based on the I/O access patterns by allowing partitioning of file data
among the various processes. Vesta uses a hashing scheme to locate files to minimize

conflict on high-level directories. This is done to increase the scalability of the file
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system. The design also prevents serializing of operations for purposes of concurrency
control and uses decentralized lookups during file accesses. This allows direct accesses
to the I/O servers containing the metadata or data without any interactions between
the nodes themselves. Vesta provides the abstractions necessary to create and manage
the parallel views of the files.

The actual implementation details of Vesta are briefly described as follows. Vesta
is implemented as 2 units - a client library linked to the application and a server that
runs on the I/O nodes. Vesta uses a hash based scheme to locate the file instead
of the name server or path traversal approach. The file objects are files, cells, and
Xrefs(instead of directories). A hash on the filename locates the server containing
the metadata. The metadata is distributed across all I/O servers and needs to be
looked up prior to data access. Partitioning parameters are specified during a file
open. This allows multiple processes to share a file without any synchronization
provided the partitions are disjoint. Concurrency control is provided by a token-
passing mechanism among the I/O nodes that guarantees atomicity across all nodes

while providing sequential consistency among requests.

File System Interface

The Vesta client library also acts as the file system interface. The major idea in
Vesta is the two-dimensional structure of files. The two dimensional file structure
allows multiple processes to separate the file into non-overlapping segments using the
facility of partitions provided in Vesta. This in turn allows the processes to extract
maximum parallelism during file access. Also, disjoint partitions eliminate the costly

synchronization mechanisms otherwise needed to arbitrate access.
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2.1.3 PPFS1

Goals

The principal goal of PPFS1 is to be a tool to explore and experiment with various
system policies in parallel input/output systems. To successfully experiment with the
policies the user needs to have broad control over file management policies. PPFS1
aims to provide a flexible API, the ability to explore policies such as caching, distri-
bution, prefetching, and the ability to dynamically adapt the policies to match the

access pattern[8].

Design Overview

PPFS1 is designed as a user library in order to avoid making frequent changes to the
system software that are time-consuming and also because of the increased flexibility
provided by working in user space. The basic software components in PPFS1 are the
clients, servers, metadata server, and the caching agents. PPFS1 uses a client/server
model. A PPFS1 client consists of the user application along with the local caching
and prefetching software used to access the file system. The server actually resolves
the requests made by the client and is made up of the server cache, prefetching engine,
and the storage mechanism which handles data and metadata storage. The metadata
servers service open and close requests for files in PPFS1. They maintain state for
each open file. Clients can also directly exchange metadata without involving the
metadata server. The caching agents are shared caches that serve multiple clients
and all requests to the shared file pass through the caching agent rather than directly
to the I/O servers. The caches ensure the coherence of the data provided to the
clients. All the policies in use such as prefetching or caching can be controlled by the

user and aid in the search for the best fit for each particular application.
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File System Interface

The file system interface in PPFS1 is an API that tries to let the application advertise
its information and also control the system policies that will ultimately affect I/O
performance. The API contains functions to allow the application to specify its
access patterns, control data distribution over servers, control caching policies at

clients, servers, and control prefetching policies at clients, servers.

2.1.4 Galley
Goals

Galley attempts to make use of studies of parallel application workloads and perfor-
mance evaluations of contemporary parallel file systems[14]. Galley’s goals include

the following

e give applications control over declustering
e handle various access patterns and sizes
e provide scalability

e transfer specific functionality to libraries implemented on top of Galley instead

of making them part of the file system

e obtain good performance.

Design Overview

The Galley parallel file system consists of sets of clients and servers. Processors
are dedicated either to computing or I/O. Clients run on the compute processors
and the servers run on the I/O processors. A Galley client is an application linked

to the Galley library and passes on file system requests after converting them to
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messages to the servers. Each client is independent of the others. Galley’s I/O
servers are composed of multiple units - compute threads, a cache manager, and
the disk manager. A compute thread handles only requests from a specific compute
processor and passes on the list of disk blocks needed to satisfy the request to the cache
manager. The cache manager maintains a separate block list for each thread and also
implements the cache replacement policy. For any block not in the cache, the cache
manager makes a request to the disk manager. The disk manager services requests
from the cache manager by relying on the underlying system to provide these services.
Each Galley file has a 3-dimensional structure. Each file consists of subfiles which in
turn consist of forks. Each subfile is placed on a disk and provides I/O parallelism.
The number and placement of subfiles can be controlled by the application. A subfile
contains one or more forks which are named, addressable, and linear sequences of
bytes. Forks allow related information to be stored logically together but accessed

separately.

File System Interface

Galley provides a specialized interface to the application. The interface provides for
operations on files, operations on forks, standard data access primitives, and support
for strided access patterns. Galley supports three structured strided requests and one
unstructured request. These strided requests allow grouping of multiple requests to

minimize network overhead and also allow for efficient disk scheduling decisions.

2.1.5 PPFS 2
Goals

Computational grids involve resources that are not always available and also appli-
cations with complex and varying demands. The motivation for PPFS2 is to create

a adaptive control system that uses the current state of the system to adjust system
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policies specifically related to the I/O system. This is expected to tailor policies to

application needs and hence yield maximum performance[15].

Design Overview

PPFS2 uses the Globus distributed system framework as the basic communication
architecture among the various computational grids. Over Globus it uses the Au-
topilot real-time adaptive control system. The metadata manager and I/O servers
perform their usual functions which is managing metadata and data respectively. Au-
topilot contains performance sensors to capture raw performance data, and decision
procedures to choose a policy and set its parameters and actuators (to implement
policy decisions). In addition to the quantitative data, the adaptive system uses a
neural network to perform access pattern classification. The decision server uses both
the file access pattern and the data to make a decision on choosing the striping and
caching policies for the file. PPFS2 uses the relation between inter-requests intervals
and striping as a factor in its policy selection. In addition to the adaptive mechanism,
there is a feature for user steering of policies. Some other ideas being experimented
with in PPFS2 are related to predicting access patterns and trends. This information

can then be used to prefetch data.

File System Interface

PPFS2 uses the Scalable I/0O initiative’s low level API. Other high level libraries can
be implemented on top of this interface. The SIO interface allows easy description of
complex parallel I/O patterns and includes specification of hints regarding the access

patterns.
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2.1.6 PVFS

Goals

PVFS is designed as a production level parallel file system for Linux clusters. The

design goals of PVFS are[4]

e high-speed concurrent read/write with multiple processes
e support for multiple APIs
e ability to run common UNIX commands like Is, cp

e ability to access the file system with utilities developed using the UNIX I/O
API

e robustness

e case of use

Design Overview

PVES is a user space implementation. It is a client-server system with 2 types of
servers. A metadata server that handles metadata operations involving permission
checks, open, and close. The metadata server does not take part in I/O operations.
The I/O server provides access to the data using the native file system for data
storage. An I/O server runs on each I/O node. The I/O nodes have disks attached
to them. Each file is distributed across the disks on I/O nodes. The applications

interact through the client library.

File System Interface

PVFS supports multiple API’s that include the native PVFS API, the UNIX/POSIX
API, and MPI-IO. The other API’s are built on top of the native PVFS APIL. The
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native API supports UNIX like contiguous read/write and uses a partitioned-file
interface for simple strided access patterns. The partitioning allows a non-contiguous
request to be made in a single call which would otherwise take multiple calls to the
file system. Support for MPI-IO was provided so that the full range of MPI-1O’s
non-contiguous access patterns could be used. But, it has been since realized that

the partitioned interface only supports a subset of access patterns possible through

MPI-10.

2.2 Specialized Interfaces

2.2.1 MPI-IO

MPI-IO is an API specified by the MPI forum to aid portable parallel programming.
The need for MPI-IO is because a normal UNIX like API is not suitable for par-
allel I/0O. So, MPI-IO provides functions those enable I/O parallelism, portability,
and good performance. ROMIO is a portable implementation of MPI-1O. To ensure
portability ROMIO uses an interface called the abstract device interface to separate
the architecture dependent and independent parts. ADIO is just a collection of func-
tions to enable parallel I/O. As long as ADIO is implemented for each file system, any
parallel I/O API can be implemented on top of ADIO. Some of the features of MPI-IO
are collective I/O, non-contiguous accesses, and non-blocking I/0. To provide better
support for MPI-IO Thakur, et. al.[18] have proposed a list of features for file systems
to provide. They include concurrent high- performance read/write, data consistency
and atomicity semantics, an interface supporting non-contiguous accesses, large file

support, and control over file striping.
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2.2.2 SIO low-level API

This API[9] has been proposed by the Scalable I/O Initiative, a consortium of uni-
versities and companies. The main objective of this API is to define primitives so
that the full potential of high-bandwidth network and storage devices can be realized.
The document proposing the API states that the final goal after reaching a consensus
on the interface is standardization of a parallel I/O interface. This interface chooses
performance and parallelism over ease of use. Some of the features of this interface
are application controls over cache consistency, application hints about access pat-
terns, scatter-gather, collective I/O, and asynchronous operations. Ultimately, many
of these ideas have been merged in the MPI-2 specification to create the MPI-IO

interface.

2.3 Lessons from prior work

After looking at the work done in various parallel file systems and also at the various
specialized interfaces for parallel I/O it is clear that there is no particular solution
that deals with all parallel applications. Experience with parallel file systems has also
made clear that there is no clear consensus on the file system interface or structure of
parallel file systems[12]. So, the key is flexibility in configuration. It is required that
an application make the choice of its interface and also be able to control the data
distribution. This makes it essential that a native parallel file system interface only
provide the primitives essential for parallel access with good performance and leave
the functionality details to higher-level application libraries.

At the same time, our experience with PVFS1 has taught us that abstraction is
necessary for flexibility so that changes can be made without disrupting the normal
functioning of a production file system. The presence of a well-defined interface also

makes a distinction between the functionality and implementation so that applications



21
need not change their code if the implementation changes. We believe that the system
interface in PVFS2 provides the right mix of abstraction and flexibility for parallel

applications in a production environment.



Chapter 3

Design of the System Interface

3.1 Introduction

The System Interface is the low level client side interface that interacts with appli-
cations that want to access the Parallel Virtual File System. The System Interface
is the native file system interface of PVFS2. This interface resembles the Linux VFS
interface closely so as to enable PVFS2 to be supported as a file system under Linux.
The System Interface defines the operations that can be requested of the parallel vir-
tual file system. Most of the System Interface operations actually act on file system
objects whereas the remaining few act on the file system as a whole such as retrieving

statistics from the file system.

3.2 File system objects

PVFES2 has five file system objects - metafiles, datafiles, directories, symbolic links,
and collections. The various file system objects except the symbolic links are shown
in figure 3.1. As mentioned earlier the System Interface provides an API for the

application to manipulate the system objects. The figure shows the file system objects
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Figure 3.1: PVFS2 File System Objects

and System Interface functions to manipulate them. A detailed explanation of the

file system objects follows.

3.2.1 Metatfiles

Metadata can be described as properties of a group of data in a file system and allows

the group of data to be treated collectively as a file. It typically contains information

such as uid, gid, permissions, access time, creation time, modification time, type of file

system object, and the distribution parameters. The System Interface allows meta-
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data access or modification through functions getattr and setattr. The logical entities
that store the metadata are referred to as the metafiles. Metafiles are implemented
as Trove objects which in turn may be implemented as files if the Linux file system
stores the metadata or data spaces if a database is used to store the metadata. The
figure shows metafiles for a PVFEFS2 file and directory. Functions to access metafiles

are also shown.

3.2.2 Datafiles

A datafile refers to the logical entity containing the actual data that makes up a
file. The datafile could be a file in Linux or a data space in a database. A datafile in
PVFS2 contains part of the data of the original file along with attributes necessary for
acting on the datafile. Hence, a logical file in PVFS2 is declustered and may consist of
several datafiles as shown in the figure. The way in which the file is declustered into
datafiles is decided by the distribution used. The System Interface defines operations
on files like read, write, create, and remove that may eventually end up as operations

on individual datafiles.

3.2.3 Directories

A directory is a file that contains directory entries. The directory specific operations
supported by the System Interface are creating a directory, removing a directory, and
reading a directory. Besides these, operations such as lookup to get the directory
handle and getattr/setattr to read/modify the attributes can also act on directories.

A directory is not declustered and I/0O is not allowed on directories.
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3.2.4 Symbolic Links

Symbolic links are special files that are just pointers or shortcuts to other files. These

files contain no data. Symbolic links are currently not supported.

3.2.5 Collection

A collection is an abstraction for a file system or group of file systems. A collection
encompasses all the file system objects mentioned earlier. To differentiate the file
system objects belonging to a particular collection each object is associated with a
collection ID. The collection ID is a unique identifier for a collection. It is guaranteed
that the handle space within a collection is unique. The System Interface provides a

function to query the collection(file system) statistics called statfs.

3.3 Architecture

The overall architecture is shown in figure 3.2. The System Interface is designed as
a set of functions that allow an application to interact with PVFEFS2. These func-
tions only provide primitives to access the parallel file system. Further functionality
needs to be layered on top of the System Interface by defining application libraries.
Examples of such libraries could be a POSIX library or a parallel 1/O library like
MPI-IO. PVFS2 can also be incorporated as a file system under Linux as the System
Interface tries to closely resemble the Linux VF'S interface. Hence, all that would
need to be done to support PVFS2 under Linux is to develop a layer under the kernel
VFS interface that uses the functions of the System Interface for all operations on
PVFS2 files. Apart from the System Interface API, there are other interfaces that
the System Interface depends on. The pinode and dentry cache interfaces provide the
PVFS2 interface with client side caching and minimize network traffic. The configura-

tion management interface is used to access configuration parameters. This interface
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principally consists of bucket table related functions that query and manipulate the

mappings between buckets and servers.

The System Interface communicates with the file system servers via the request

protocol. This protocol defines a set of request and response messages that operate

on the file system objects define in 3.2. In turn, the interface provided to the user

library consists of a set of request/ response pairs that operate on a logical file. Thus,

the System Interface must interact with the file system abstractions and implement

those for the user library.
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3.4 System Interface Concepts

3.4.1 Handle

A handle in PVFS2 uniquely identifies a file system object within a collection. A
handle and a collection identifier are required to identify the object across collections.
The handle is visible at the System Interface layer but not to the user library. The
System Interface manages the handles of the file system objects and provides the user

library with a single abstract handle.

3.4.2 Pinode

A pinode in PVFS2 is equivalent to a Linux inode but its visibility is restricted to
the System Interface. It is used as a mechanism to aggregate information about a
PVFS2 file system object for a particular client. It can also be considered as linking
a handle to its metadata. A mechanism is also in place in ensure the consistency of

pinodes.

3.4.3 Pinode Reference

A pinode reference is an opaque type that acts as a unique identifier to a PVFS2 object
across all file systems. All references to a PVEFS2 object at the system interface level
are either in terms of the object name or the pinode reference. A pinode reference
is currently implemented as a combination of the metafile object handle and the
collection id. The pinode reference is passed out of the System Interface to the

application and the application uses it to refer to an object thereafter.
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3.4.4 Bucket

A bucket can be thought of as a virtual disk. The basic idea is to associate file system
objects with buckets rather than physical disks. This way objects can be decoupled
from the actual storage details. This allows buckets to be moved from one physical
disk to another or even be duplicated on multiple disks as the need arises without
needing to change the metafiles of the contained objects. The relation between a
logical file in PVFS2 and a bucket is as follows. A file in PVFS2 is declustered into
buckets according to the specified distribution. The decision as to which I/O server

the bucket is placed on is made separately.

3.4.5 Credentials

Credentials collectively refer to the permission and owner information for a PVFS

object. The idea is to use this to verify permissions for access.

3.5 System Interface Function Specification

The System Interface API can be organized into 5 groups.

Interface management operations

Object creation, query and destruction operations

I/O operations

Object locking operations

File system query operations
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3.5.1 Interface management operations

The parameters to most of the System Interface API functions contain a request
and response structure. A few functions though, have only a request structure and
have no response. The request structures contain the inputs to the request and the
response structures contain the data returned after the request is serviced by the
server. We show the fields of the request and response structures for the System

Interface functions below.

e PVFS_sys_initialize(pvfs_mntlist mntent_list)
The parameters for PVEFS_sys_initialize are shown below. The pvfs_mntlist
structure contains a count of the number of mount entry structures and a pointer

to the mount entry structures.

The fields of the pvfs_mntlist structure are

— int nr_entry // number of entries in pvfstab
— pvis_mntent *ptab_p // pointer to entries in pvfstab

— gen_mutex_t *mt_lock // mutex lock
The fields of the pvfs_mntent structure are

— PVFS_string meta_addr // metaserver address
— PVFS_string serv_mnt_dir // root mount point
— PVFS_string local_mnt_dir // local mount point
— PVFS_string fs_type // file system type

— PVFS_string optl // options

— PVFS_string opt2 // options

PVFS_sys_initialize initializes the system interface data structures. Its param-

eter is a structure containing configuration information either from a pvfstab
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file or the mount command line. PVFS_sys_initialize needs to be called before
calling any other system interface function. It initializes the BMI and flow mes-
saging interfaces. It also makes a GETCONFIG request to the server to obtain
configuration information and set up the received information to be accessed by
the configuration management interface. This function is also responsible for

initializing and setting up the pinode and directory entry caches.

e PVFS_sys_finalize(void)
PVFS_sys_finalize shuts down the System Interface. This function needs to be
called after all system interface operations are finished. It deallocates memory
referenced by the system interface. It also closes down all other interfaces such
as the BMI interface, flow messaging interface, pinode cache interface, and

directory cache interface.

3.5.2 Object creation, query and destruction operations

e PVFS_sys_lookup(PVFS_sysreq lookup *req, PVFS_sysresp_lookup
*resp)

The parameters for PVFS_sys_lookup are shown below.

The fields of the request structure are

— PVFS_string name // object name
— PVFS_fs_id fs_id // file system id

— PVFS_credentials credentials // uid, gid, permissions
The fields of the response structure are
— pinode_reference pinode_refn // handle, file system id

PVFS_sys_lookup returns the pinode reference for a file, directory or symlink

given the object name and file system id. It is the equivalent of the namei func-
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tion in Linux that translates a file name to an inode number. Lookup employs
path traversal to obtain the pinode reference while also doing permission checks

for the entire path traversed.

e PVFS_sys_getattr(PVFS_sysreq_getattr *req, PVFS_sysresp_getattr
*resp)

The parameters for PVFS_sys_getattr are shown below.

The fields of the request structure are

— pinode_reference pinode_refn // handle, file system id
— PVFS_bitfield attrmask // attributes to be fetched

— PVFS_credentials credentials // uid, gid, permissions
The fields of the response structure are

— PVFS_object_attr attr; // attributes fetched

— PVFS_attr_extended extended // extended attributes
The fields of the attr structure in the response are

— PVFS_uid owner

— PVFS_gid group

— PVFS_permissions

— PVFS_time atime // access time

— PVFS_time mtime // modification time
— PVFS_time ctime // creation time

— int objtype // type of file system object
— The fields below are part of a union

— PVFS_metafile_attr meta // metafile specific attributes
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— PVFS_datafile_attr data // datafile specific attributes

— PVFS_directory_attr dir // directory specific attributes

— PVFS_symlink_attr sym // symlink specific attributes
PVFS_sys_getattr obtains the properties of the file, directory or symlink iden-
tified by the pinode reference passed as input. There is an option to obtain
attributes other than the generic information such as owner, permission infor-
mation, creation, access, and modification times by specifying attribute masks.

Attribute masks enable getting attributes such as size or object specific infor-

mation such as distribution and data file handles.

PVFS_sys_setattr(PVFS_sysreq_setattr *req)

The parameters for PVFS_sys_setattr are shown below.

The fields of the request structure are

— pinode_reference pinode_refn // handle, file system id

PVFS_object_attr attr // new attributes
— PVFS_bitfield attrmask // attributes to be modified

— PVFS_credentials credentials // uid, gid, permissions

PVFS_attr_extended extended // extended attributes

PVFES_sys_setattr allows the manipulation of the properties of a file, directory,
or symlink specified by the pinode reference input. As in PVFS_sys_getattr,

an attribute mask may be used to narrow the attributes to be modified.

PVFS_sys_mkdir(PVFS_sysreq _mkdir *req, PVFS_sysresp_mkdir *resp)

The parameters for PVFS_sys_mkdir are shown below.

The fields of the request structure are
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— PVFS_string entry_name // directory entry name

— pinode_reference parent_refn // handle, fs id of parent directory

PVFS_object_attr attr // attributes of new entry

PVFS_bitfield attrmask // attribute mask

— PVFS_credentials credentials // uid, gid, permissions
The fields of the response structure are
— pinode_reference pinode_refn // handle, file system id

PVFS_sys_mkdir creates a directory with given attributes and obtains a pinode
reference to the created directory. An entry for the newly created directory is

added to the parent directory.
PVFS_sys_rmdir(PVFS_sysreq_rmdir *req)
The parameters for PVFS_sys_rmdir are shown below.

The fields of the request structure are

— PVFS_string entry_name // directory entry to be removed
— pinode_reference parent_refn // handle, fs id of parent directory

— PVFS_credentials credentials // uid, gid, permissions

PVFS_sys_rmdir removes the directory indicated by the object name, parent
directory, and file system id. A directory can be removed only if it contains
no objects. The entry for the removed directory is deleted from the parent

directory.

PVFS_sys_create(PVFS_sysreq_create *req, PVFS_sysresp_create
*resp)

The parameters for PVFS_sys_create are shown below.
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The fields of the request structure are

PVFS_handle entry_name // name of file to create

pinode_reference parent_refn // handle, fs id of parent directory

— PVFS_object_attr attr // attributes of new object

PVFS_bitfield attrmask // attribute mask

— PVFS_credentials credentials // uid, gid, permissions
The fields of the response structure are
— pinode_reference pinode_refn //handle, file system id

PVFES_sys_create creates a new file with specified attributes and obtains a pin-
ode reference to it. This involves creating both the metadata and also creating

the datafiles on the various I/O servers.
e PVFS_sys_remove(PVFS_sysreq_remove *req)
The parameters for PVFS_sys_remove are shown below.

The fields of the request structure are

— PVFS_string entry_name // name of file to remove

— pinode_reference parent_refn // handle, fs id of parent directory

— PVFS_credentials credentials // uid, gid, permissions
PVFES_sys_remove removes the file specified by the object name, parent direc-
tory and file system id passed as input. This involves removing all the datafiles

from the I/O servers, removal of the metafile, and deleting the directory entry

from the parent.

e PVFS_sys rename(PVFS_sysreq rename *req)

The parameters for PVFS_sys_rename are shown below.
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The fields of the request structure are
— PVFS_string old_entry // old name of entry
— pinode_reference old_parent_reference // old entry’s directory

— PVFS_string new_entry // new name of entry

pinode_reference new_parent_reference // new entry’s directory

PVFS_fs_id fs_id // file system id
— PVFS_credentials credentials // uid, gid, permissions
PVFS_sys_rename renames an existing file or directory given the old and new

object names along with the old and new parent pinode references and the file

system id.

PVFS_sys_symlink(PVFS_sysreq_symlink *req, PVFS_sysresp_symlink
*resp)

The parameters for PVFS_sys_symlink are shown below.

The fields of the request structure are

— PVFS_string name // name of link

PVFS_fs_id fs_id // file system id
— PVFS_string target // name of file link points to

— PVFS_object_attr attr // attributes of link

PVFS_bitfield attrmask // attribute mask

— PVFS_credentials credentials // uid, gid, permissions
The fields of the response structure are

— pinode_reference pinode_refn
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PVFS_sys_symlink creates a symbolic link to a file or directory.

e PVFS_sys readlink(PVFS_sysreq_readlink *req, PVFS_sysresp_readlink
*resp)

The parameters for PVFS_sys_readlink are shown below.

The fields of the request structure are

— pinode_reference pinode_refn

— PVFS_credentials credentials // uid, gid, permissions
The fields of the response structure are
— PVFS_string target

PVFS_sys_readlink reads out the contents of a symbolic link.

3.5.3 I/O operations

e PVFS_sys_read(PVFS_sysreq_read *req, PVFS_sysresp_read *resp)
PVFS_sys_read reads data from a file given the pinode reference and the I/0

request pattern.

e PVFS_sys_write(PVFS_sysreq_write *req, PVFS_sysresp_write *resp)
PVFS_sys_write writes data to a file given the pinode reference and the I/0

request pattern.

e PVFS_sys_allocate(PVFS_sysreq_allocate *req, PVFS_sys resp_allocate
*resp)
PVFS_sys_allocate is not yet implemented. The function allocates specified
size of data for file on the I/O servers indicated by the pinode reference passed

in as input.
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e PVFS_sys_duplicate(PVFS_sysreq_duplicate *req, PVFS_sysresp_duplicate
*resp)
The parameters for PVFS_sys_duplicate are shown below.
— pinode_reference old _reference // entry to duplicate

— PVFS_string new_entry // name of new entry

— pinode_reference new_parent_reference // new directory
The fields of the response structure are
— pinode_reference pinode_refn // new handle, file system id

PVFS_sys_duplicate is not yet implemented. The function creates a new file
with name as specified in input and with the same distribution and attributes

as file indicated by the pinode reference passed in as input.

3.5.4 Object locking operations

e PVFS_sys_lock(PVFS_sysreq_lock *req, PVFS_sysresp_lock *resp)
PVFS_sys_lock is not yet implemented. The function obtains a lock on the file

specified by the pinode reference passed in as input.

e PVFS_sys _unlock(PVFS_sysreq_unlock *req, PVFS_sys resp_unlock
*resp)
PVFS_sys_lock is not yet implemented. The function removes the lock on the

file specified by the pinode reference passed in as input.

3.5.5 File system query operations

e PVFS_sys_statfs(PVFS_sysreq_statfs *req, PVFS_sysresp _statfs *resp)

The parameters for PVFS_sys_statfs are shown below.
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The fields of the request structure are

— PVFS_fs_id fs_id // file system id

— PVFS_credentials credentials // uid, gid, permissions
The fields of the response structure are

— PVFS_statfs statfs // file system statistics
The fields of the PVFS_statfs structure are

— PVFS_meta_stat mstat // metaserver statistics

— PVFS_io_stat iostat // I/O server statistics
The fields of the PVFS_meta_stat structure are
— PVFS_count32 filetotal // total number of metafiles

The fields of the PVFS_io_stat structure are

PVFS_size blksize // file system block size

PVFS_count32 blkfree // number of free blocks
— PVFS_count64 blktotal // total number of blocks available

— PVFS_count32 filetotal// maximum number of files

PVFES_count32 filefree // number of free files

PVFS_sys_statfs obtains the statistics for a file system specified by the file
system id passed in as input. The information obtained regarding the file system

is organized as meta server info and I/O server info.

PVFS_sys_readdir(PVFS_sysreq_readdir *req, PVFS_sys resp_readdir
*resp)

The parameters for PVFS_sys_readdir are shown below.
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The fields of the request structure are

— pinode_reference pinode_refn // directory to read entries from

PVFS_token token // token passed in
— PVFS_count32 pvfs_dirent_incount // number of entries to read

— PVFS_credentials credentials // uid, gid, permissions
The fields of the response structure are

— PVFS_token //token returned
— PVFS_count32 pvfs_dirent_outcount // number of entries returned

— PVFS_dirent *dirent_array // entries returned

PVFS_sys_readdir reads specified number of directory entries from directory
indicated by the pinode reference passed in as input. This function can be
called repeatedly on a directory with the token returned each time passed in as
input the next time. The number of directories returned is specified separately
in case the number of directory entries requested is greater than the actual

number of entries present.

e PVFS_sys fhdump(PVFS_sysreq fhdump *req, PVFS_sys resp_fhdump)

PVFS_sys_thdump is not yet implemented.

3.6 System Interface Implementation

The usefulness of the System Interface lies in the functionality afforded by the in-
terface. The role of the implementation is to make sure that the functionality is
implemented in a way so as to achieve good performance. The interface affords us an
abstraction by which we can modify the implementation to reflect our understand-

ing of the underlying issues involved in improving PVFS2. At the same time, the



40
applications need not change to benefit from the changes made for the better. Ulti-
mately, we expect that any changes made will only improve on the performance and
production level standards of the overall file system. Other issues we need to consider
in the implementation are thread safety and robustness. It is possible that multiple
clients may simultaneously use the system interface. So, the system interface must
implement thread safety by making all global data structures it uses thread safe. The
robustness of a production level file system depends on the robustness of its compo-
nents. As the file system is accessed through the system interface there must be a
provision in the interface to handle errors gracefully and return debugging info to the
user application. The system interface attempts to provide robust error handling and
debugging ability to the application by handling operations so that an error does not
leave the system in an inconsistent state. This does not mean that the system is fault
tolerant.

The system interface functions implement their functionality by constructing a re-
quest, sending the request to the server and processing the response from the server.
This process is repeated as many times as it is needed. The request exchange mecha-
nism between the client(in this case, the system interface) and the servers is standard-
ized in the form of the server request protocol. This also ensures stateless working of
the server. The communication mechanism from the client to the server is abstracted
by the network transfer layer and hence is transparent to the client. The client just
hands off the requests to the network layer and collects responses from it. This frees
up the client from a lot of complexity.

To minimize network traffic due to client requests and responses the system inter-
face utilizes the pinode cache. It is the responsibility of the client to ensure that the
data obtained from the cache is correct. To prevent traversing the path each time to
obtain the corresponding pinode reference the client uses the PVFS dcache. So, in

short the client first looks up information in the above caches and only if necessary
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contacts the server. The configuration management interface is used by the client
to associate the files to their location both while creating or performing any other
operations on them.

Full path permission checking is handled only during lookup but object level per-
missions are verified during each operation by passing on the credentials information
to the server. Lookup also uses an optimization to lookup multiple path segments in

a single server request.

3.7 Server Request Protocol

The server request protocol standardizes the client/server request exchange mecha-
nism. The protocol is a combination of the stateless server design and the design of
the system interface in PVFS2. The client/server exchanges usually consist of pre-
defined server request or response structures. In most cases, the exchange starts off
with a request by the client specified using a server request structure. The I/O trans-
fer which is in raw bytes is an exception to the above described method of passing
requests and responses. It is to be noted that the request or response structures in
the protocol do not exactly parallel those in the system interface as some objects are
not visible at the system interface level and vice versa.

The server request and response structures are shown below. The union in the struc-

tures depends on the particular request or response being sent.

struct PVFS_server_req_s {
PVFS_server_op op;
PVFS_size rsize;
PVFS_credentials credentials;
union {

PVFS_servreq_lookup_path lookup_path;
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}ou;

+;

struct PVFS_server_resp_s {
PVFS_server_op op;
PVFS_size rsize;
PVFS_error status;
union {

PVFS_servresp_lookup_path lookup_path;

}ou;
};

We now illustrate the methodology to construct a server request and response for
lookup_path and the way in the server request and response are laid out contiguously
for transfer over the network.

As shown in figure 3.3, the actual request parameters for lookup_path are preceded
by the generic parameters listing the request id, the size of the entire request, and the
credentials information. As the pathname is a string, a contiguous buffer is allocated
that totals the sizes of the server request structure and the path name string. The
server request parameters are first filled in and at the end of that the pathname string
is copied in. In the case of the response the handle array and the attribute array are
variable length quantities. The contiguous buffer for the response is allocated taking
into account the maximum amount of data that could be returned. This would
be in the event of the handle and attribute information for all the path segments
being returned. The networking layer uses the allocated buffer to fill in the response
returned from the server. In a similar way, the other requests and responses can be

constructed.
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in /parl/tmp/foo

The server request protocol specification follows. We show only those fields specific

to each request.

3.7.1 Lookup Path

Type

Name

Description

PVFS_handle

starting_handle

Handle of starting directory in path

PVFS_string | path Full path to be traversed
PVFS_fs_id fs_id File system identifier
PVFES_bitfield | attrmask Mask to specify desired attributes

Table 3.1: Lookup Path Request
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Type

Name Description

PVFS_handle*

handle_array | Ordered array of handles per segment traversed

PVFS_object_attr*

attr_array Array of object attributes

PVFEFS_count32

count Count of number of handles returned

Table 3.2: Lookup Path Response

3.7.2 Get Attributes

Type Name Description

PVFS_handle | handle Handle of object to fetch attributes for

PVFS_fs_id fs_id

File system identifier

PVFS_bitfield | attrmask | Mask to specify desired attributes

Table 3.3: Get Attributes Request

Type

Name Description

PVFS_object_attr

attr Attributes of the object specified in request

PVFS_attr_extended

extended | Extended attributes

Table 3.4: Get Attributes Response

3.7.3 Set Attributes

Type

Name Description

PVFS_handle

handle Handle of object to set attributes for

PVFS_fs_id

fs_id File system identifier

PVFS_object_attr

attr Attribute values to be set

PVFS_bitfield

attrmask | Mask to specify desired attributes

PVFS_attr_extended

extended | Extended attributes

Table 3.5: Set Attributes Request




No response for setattr

3.7.4 Get Configuration

Type Name Description

PVFS_string fs_name Name of file system to get config info for

PVFS_count32 | max_strsize | Max string size allowed for response mappings

Table 3.6: Get Configuration Request

Type Name Description

PVFS_fs_id fs_id File system identifier
PVFES_handle | root_handle Root handle for the file system
PVFS_count32 | meta_server_count Number of metaservers in system

PVFS_string meta_server_mapping | Ordered list of metaservers

PVFS_count32 | io_server_count Number of I/O servers in system

PVFS_string io_server_mapping Ordered list of 1/O servers

Table 3.7: Get Configuration Response

3.7.5 Make Directory

Type Name Description

PVFES_handle bucket Bucket to associate object with
PVFS_handle handle_mask | Number of bucket bits in handle
PVFS_fs_id fs_id File system identifier
PVFS_object_attr | attr Attribute values of new object
PVFS_bitfield attrmask Mask to restrict attributes to be set

Table 3.8: Make Directory Request



Type

Name

Description

PVFS_handle

handle

handle of new directory created

Table 3.9: Make Directory Response

3.7.6 Remove Directory

Type

Name

Description

PVFS_string

entry_name

Name of directory to remove

PVFEFS_handle

parent_handle

Handle of parent directory

PVFS_fs_id

fs_id

File system identifier

Table 3.10: Remove Directory Request

3.7.7 Create Directory Entry

Type

Name

Description

PVFS_string

name

Name of directory entry to create

PVFS_handle

new_handle

Handle of object

PVFS_handle

parent_handle

Handle of directory to add entry to

PVFS_fs_id

fs_id

File system identifier

Table 3.11: Create Directory Entry Request

3.7.8 Remove Directory Entry

Type

Name

Description

PVFS_string

entry

Name of directory entry to remove

PVFEFS_handle

parent_handle

Handle of directory to remove entry from

PVFS_fs_id

fs_id

File system identifier

Table 3.12: Remove Directory Entry Request
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3.7.9 Create

Type

Name

Description

PVFS_handle

bucket

Bucket to associate PVFS object with

PVFEFS_handle

handle_mask

Number of bucket bits in handle

PVFS_fs_id fs_id File system identifier

int type Type of PVFES object
Table 3.13: Create Request

Type Name | Description

PVFS_handle | handle | Handle of file created

Table 3.14: Create Response

3.7.10 Remove

Type

Name

Description

PVFEFS_handle

handle

Handle of PVF'S file to remove

PVFS_fs_id

fs_id File system identifier

Table 3.15: Remove Request

No Response for remove

3.7.11 File System Statistics
Type Name Description
int server_type | Metaserver or /O server
PVFS_fs_id | fs_id File system identifier

Table 3.16: Statfs Request
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Type

Name | Description

PVFS_serv_statfs | stat File System Statistics

Table 3.17: Statfs Response

Type

Name | Description

PVFS_mserv_stat | mstat | Meta server statistics

PVFS_ioserv_stat | iostat | I/O server statistics

Table 3.18: Contents of PVFS_serv_statfs

Type

Name Description

PVFEFS_count32

filetotal | Total number of files

Table 3.19: Contents of PVFS_mserv_stat

Type

Name Description

PVFS_size

blksize | File system block size

PVFEFS_count64

blkfree | Number of free blocks

PVFEFS_count64

blktotal | Total number of blocks available

PVFS_count32

filetotal | Maximum number of files

PVFS_count32

filefree | Number of free files

Table 3.20: Contents of PVFS_ioserv_stat
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3.7.12 Readdir

Type Name Description

PVFES_handle | handle Handle of directory to read entries from
PVFS_fs_id fs_id File system identifier

PVFS_token token Current position in directory
PVFES_count32 | pvis_dirent_count | Number of entries to read

Table 3.21: Readdir Request

Type Name Description

PVFES_token token Updated token reflecting current position

PVFS_count32 | pvfs_dirent_count | Number of entries actually read

PVFS_dirent* | pvfs_dirent_array | Array of entries read

Table 3.22: Readdir Response

3.8 Related Interfaces

In this section we talk of the various interfaces the System Interface depends on in
its implementation. These interfaces provide functionality for caching of pinodes,
caching of directory entries, storing of configuration parameters, and mapping of
buckets to servers. The System Interface is the only layer that makes use of them

and the application cannot directly access these APIs.

3.8.1 Pinode cache

The role of the pinode cache is to serve as a shorter path to the metadata for the client.
Instead of making a server request for the metadata each time and in turn incurring
network overhead for the request, the client first looks in the pinode cache. If the entry

is found in the cache, it is tested for validity. Fetching the pinode is handled by the
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pinode helper functions layer which provides a pinode fetch and validate mechanism.
The validate is done using timestamps instead of a cache-coherence protocol. This
layer refreshes the pinode by getting the attributes and filling in the pinode. The
appropriate timestamp is also updated. The pinode cache implementation is thread
safe. Currently, we have implemented a simple stack based cache. The various pinode

cache operations supported are as follows.

e pcache_initialize(pcache *cache)
pcache_initialize initializes the pinode cache interface and also sets up the cache

data structures.

e pcache_finalize(pcache *cache)

pcache_finalize shuts down the pinode cache interface.

e pcache_lookup(pcache *cache, pinode_reference refn, pinode *pin-
ode_ptr)
pcache_lookup searches for a specified pinode in the cache and returns the pin-

ode if found.

e pcache_insert(pcache *cache, pinode *pnode)
pcache_insert adds/merges a pinode to the cache. The merge operation merges

2 pinodes based on the timestamps of their contents.

e pcache_remove(pcache *cache, pinode_reference refn, pinode **item)
pcache_remove removes a specified pinode from the cache and returns the re-

moved item.

3.8.2 PVFS Directory Entry cache

The purpose for the PVFS Directory Entry cache is to prevent lookup operations on

files traversing the network each time. The idea is to cache already resolved file names
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so that the next time the resolution of the name to the pinode happens in the cache
itself. The cache implementation for the PVFS dcache is currently quite similar to

the pinode cache. The dcache operations supported are as follows.

e dcache_initialize(struct dcache *cache)
dcache_initialize initializes the dcache interface and also sets up the cache data

structures.

e dcache_finalize(struct dcache *cache) dcache_finalize shuts down the dcache

interface.

e dcache_lookup(struct dcache *cache, char *name, pinode_reference
parent, pinode_reference entry)
dcache_lookup searches for a specified directory entry in the cache and returns

the entry if found.

e dcache_insert(struct dcache *cache, char *name, pinode_reference
entry, pinode_reference parent)
dcache_insert adds an entry to the cache if not already present. If the entry is

already present, just updates its timestamp and returns successfully.

e dcache_remove(struct dcache *cache, char *name, pinode_reference
parent, unsigned char *item found)

dcache_remove removes a specified entry from the cache.

3.8.3 Configuration Management Interface

The Configuration Management Interface exports functions to the system interface
to manage all server related configuration information mainly obtained through the
Getconfig server request. Most of the interface is now dedicated to handling the

bucket to server mapping and vice versa. We know from the definition of a bucket
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that the datafile or metafile of a file system object is associated to a bucket and not
the actual server. This bucket identifier is embedded in the object handle. So, to
determine the bucket and in turn the server that holds the metafile or datafile for
an object, it is required that given a handle we be able to find the bucket identifier.
This is the reason that the configuration management interface provides functions to
determine the server given a bucket identifier. It is expected that other functions not
directly related to buckets would be added later on and listed under the configuration

management interface. The interface exports the following functions.

e config_bt_initialize(pvfs_mntlist mntlist_list)

config_bt_initialize initializes the interface related data structures.

e config_bt_finalize(void)
config_bt_finalize shuts down the interface by deallocating the interface related

data structures.

e config bt_get_next_meta_bucket(PVFS_fs_id fsid, PVFS_handle *bucket,

PVFS_handle *handle mask)
config_bt_get_next_meta_bucket takes a file system identifier as input and re-
turns the bucket, handle mask, and the metaserver to use while creating a new

PVFS system object.

e config_bt_get_next_io_bucket_array(PVFS_fs_id fsid, int num_servers,

char **io_name_array, PVFS_handle **bucket_array, PVFS_handle
*handle_mask)

config_bt_get_next_io_bucket_array takes a file system identifier and the num-
ber of servers as input and returns the requested number of buckets, handle

masks, and I/O servers needed to create datafiles for a PVFS file.

e config bt_map_ bucket_to_server(char **server_name, PVFS_handle

bucket, PVFS_fs_id fsid)
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config_bt_map_bucket_to_server takes a bucket and file system identifier as

input and returns the server name which is associated with the bucket.

config_bt_map_server_to_bucket_array(char **server_name, PVFS_handle
**bucket_array, PVFS_handle *handle _mask)
config_bt_map_server_to_bucket_array takes a server name as input and re-

turns the buckets and their handle masks associated with the server.

config_bt_get_num_meta(PVFS_fs_id fsid, int *num_meta)
config_bt_get_num_meta takes the file system identifier as input and returns

the metaservers in the file system.

config_bt_get_num_io(PVFS_fs_id fsid, char **io_server_array)
config_bt_get_num_io takes the file system identifier as input and returns the

ioservers in the file system.

config_fsi_get_root_handle(PVFS_fs_id fsid, PVFS_handle *fh_root)
config_bt_get_root_handle takes the file system identifier as input and returns

the root handle for the file system.

config_fsi_get_io_server(PVFS_fs_id fsid, char **io_server_array, int
*num_io)
config_fsi_get_io_server takes the file system identifier as input and returns the

I/O servers for the file system.

config_fsi_get_meta_server(PVFS_fs_id fsid, char **meta_server_array,
int *num_meta)
config_fsi_get_meta_server takes the file system identifier as input and returns

the meta servers for the file system.
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e config fsi_get_fsid(PVFS_fs_id fsid, char *mnt_dir)
config_fsi_get_fsid takes the mount directory of a file system as input and re-

turns the file system identifier for the file system.

3.9 Summary

We have presented the design of the System Interface in this chapter. Initially, we
discussed the overall design and how the individual file system objects fit into the
design. We then introduced terms those were frequently used and relevant to the
discussion. Subsequently, we presented the functions in the actual interface grouped
by functionality followed by details of the implementation covering various issues such
as name resolution, caching, and permissions. After the implementation, we moved
on to an overview of the request protocol used in the exchanges between the System
Interface and the servers. Finally, we mentioned the various related interfaces used

for client side, name resolution caching, and configuration management.



Chapter 4

Evaluation

The System Interface was primarily designed to serve as a file system interface for
PVFS2 and at the same time allow us to further our research on parallel I/O. The

objective of this research was twofold.

e To utilize the experience gained from the implementation of PVFS1 in the im-
plementation of a more powerful file system interface. This would help address
deficiencies in the earlier file system interface as well as provide newer features

that would allow PVFS2 to be used effectively.

e To evaluate the new design and determine the degree of success we have achieved

in our goals

4.1 System Interface Implementation

As described in the System Interface Specification[ch.3] 14 out of the 19 functions
in the System Interface have been implemented. In addition, the pinode and PVFS
directory caches have also been implemented along with the configuration manage-
ment interface. The 19 functions are part of the System Interface API specification,

whereas the other parts like the pinode and PVFS directory caches are underlying
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modules used by the API. Please refer chapter 3 for details on any of the above
interfaces. This makes up the first implementation of the System Interface.

As full-scale testing could not be done, the functions have been evaluated with
a test harness that simulates the working of the job interface(the networking layer)
and also the server. This testing only covers correctness and usability. No profiling
or performance specific testing is planned until a working prototype of a full-fledged
PVFS2 system is ready. The role of the testing using the harness was to verify that
the API exposed the right primitives to the application using it and that the amount
of complexity involved in the calling code was manageable. The complexity of the
application code would help us determine if the API provided the correct level of
abstraction to the higher layers.

The role of the test harness is to test if the System Interface works with the
job interfaces and the server request protocol. This involves checking arguments
that are passed to the job layer and subsequently to the server part of the harness.
After the testing, it is expected that when the System Interface links to the actual
job layer it would be able to send requests and receive responses correctly. In the
implementation this is done by first checking the parameters to the job layer in turn
handed over to the server portion of the harness. The server portion of the harness
validates the parameters passed by the System Interface and then using a simple
implementation returns the requested information though the response structures of
the Server Request Protocol. The returned information is then interpreted by the
System Interface to decide the next action. The action could consist of either further
processing or simply passing on the response to the client invoking the API. Thus,

the testing is also a validation of the Server Request Protocol.
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4.2 Evaluation of the System Interface

In order to evaluate the System Interface we compare it to the file system interface in
PVFS1 which is a combination of a file system interface and a POSIX file I/O library.
As various stages of the System Interface are still in progress we are unable to obtain
any actual performance results so we proceed to provide qualitative arguments. Our
approach will consist of giving a case study of how a particular operation is handled in
both PVFS1 and PVFS2, and how the presence of a particular feature in the PVFS2
file system interface enables the operation to be executed more efficiently. Finally,
our intent is to illustrate that the System Interface is a significant improvement over
the PVFS1 interface.

Firstly, we mention the significant distinguishing features of the PVFS2 file system

interface from that of PVFSL.

e abstraction

e support for multiple interfaces

o flexibility and modularity

e description of complex I/O patterns
e clearly defined semantics

e thread safety

e PVFS directory cache

pinode cache

Next, we provide comparative arguments to show that each of the above features
indeed leads to the improvement of the PVFS2 file system interface over that of
PVFSI.
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Figure 4.1: Modular System Interface vs. monolithic PVFS1 interface

4.2.1 Abstraction(Data hiding)

The PVFSI interface is a combination of a file I/O library and a file system interface.
Due to this, each function in the library needs to be directly involved with details
such as keeping up with sockets and storing the distribution information for PVFS
files. This introduces unnecessary complexity in the library code. Also, PVFS1 uses
many system specific structures and hence it is tied down to the operating system
used. The specification of a System Interface provides the necessary abstraction so
that higher level libraries do not have to be concerned about dealing with the file
system data structures. The System Interface in itself abstracts the file system to
the libraries and the libraries can be restricted to providing only the semantics in
their functionality. The System Interface takes on the responsibility of dealing with
the communication subsystem and providing features such as caching. This leads to
cleaner library code and the abstraction insulates the library code from changes in

the file system implementation.
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4.2.2 Support for multiple interfaces
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Figure 4.2: Stacking of interfaces in PVFS1

As most parallel applications will use high-level libraries rather than directly use
the file system interface, the effort involved in implementing libraries on top of the
basic parallel file system interface is indeed an important issue to consider. The
PVFSI interface as mentioned earlier is a higher level interface in that it combines
the features of a POSIX file I/O library and hence includes a lot more functionality
than a file system interface. This makes the implementation difficult as it limits the
facilities that the file system can expose to the library. In PVFSI1 interfaces end up
being stacked over one another as each interface is atop both the parallel file system
interface and a POSIX library. In the System Interface, the limitations of PVFS1
have been avoided by making the file system interface provide low-level functions that
can be used by higher level libraries. The libraries are given the job of implementing

any functionality such as a POSIX layer or an MPI-IO layer. This allows the System
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Interface to support a much larger number of interfaces than the previous version in

PVES] and at the same time does not lead to stacked interfaces.

4.2.3 Flexibility and Modularity

The file system interface in PVFS1 is not modular in its design and there is no clear
separation of functionality. This results in the interface implementation itself handling
file I/0, distributions, and networking. The application does not have the ability to
set, options for consistency, choose the distribution, or adjust the data layout. The
System Interface along with the rest of the PVES2 subsystems encapsulates func-
tionality in modules and uses interfaces to communicate with modules. The various
System Interface components like the pinode cache and PVFS dcache define clean
interfaces for the System Interface functions to use. The advantage that modularity
provides is the ability to replace one module with another seamlessly. In addition the
System Interface is quite flexible in providing the application options to tune consis-
tency, control the distribution, and support to suggest data layout. These allow the

application to make better use of the file system by tuning the policies to its benefit.

4.2.4 Description of complex I/O patterns

Non-contiguous file access is a frequent requirement of parallel applications so the file
system interface has to support an efficient way of achieving it. We compare the sup-
port for complex I/O patterns provided by both PVFS1 and PVFS2 interfaces. First,
we discuss a few functions in the PVFS1 interface API that provide non-contiguous
access. Nomn-contiguous memory access is provided by the functions pvfs_readv and
pvfs_writev. These functions do not however provide non-contiguous file access. The
pvis_read_list and pvfs_write_list give higher level parallel I/O libraries like MPI-IO
basic support for non-contiguous accesses. Other than the above, non-contiguous sup-

port in PVFS1 is provided through logical partitioning. Logical partitioning allows
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the application to create a partition comprising regions of interest from a file. This
partition is then accessed as a single unit thus saving multiple seek-access operations.
But, the partitioning interface is only useful for single dimensional data or simple
distributions of two dimensional data.

PVFS2 provides a highly expressive 1/O request description facility that can sup-
port any data layout that can be constructed using MPI derived datatypes such as
indexed or struct which can’t be described using the partitioning. This is supported
through the functions PVFS_sys_read and PVFS_sys_write. This can allow MPI-
IO to take full advantage of PVFS2 features as MPI-IO derived datatypes allow the
application to create complex I/O patterns to describe non-contiguous file accesses.
The interpretation of the request description is handled by a separate module and
the System Interface only exposes the ability to the application. The advantage of
being able to describe complex non-contiguous I/O accesses to a file is important as
such non-contiguous accesses are quite common in a parallel application. Supporting
non-contiguous accesses in a single function call reduces the number of calls needed as
well as the number of requests over the network. Speeding up a frequently occurring

access pattern is hence a big win.

4.2.5 Clearly defined semantics

In this section we discuss specific semantic features that are clearly specified in the
PVFS2 interface compared to the PVFS] interface. The benefit of having well-defined
semantics is clearly felt by the user of the parallel file system. The user can now tailor
his applications likewise. In PVFS1 the semantics for file system operations is not
clearly defined. Error handling, consistency, atomicity, handle reuse, and permission
checking semantics are not specified. Also, the point where PVFS differs from POSIX
is not defined. In the PVFS2 System Interface, consistency, atomicity, error handling

handle reuse, permission checking semantics are quite clearly specified in a PVFS2
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semantics document that eliminates confusion. As caching is performed at the System
Interface level it is also necessary to define the mechanism followed for consistency
of the cached entries. This is dealt with in the System Interface design document.
The caches in PVFS2 have tunable consistency semantics implemented by means of
a timeout that can be set to 0 to indicate that no caching is to be performed. With
the semantics and its implementation specified in design documents we expect the

utility of PVFS2 to increase.

4.2.6 Thread Safety

PVFESI is not thread safe. This just means that the interface functions cannot be
called by multiple threads. A threaded application can use the PVFS1 library by
calling a single thread for the library functions and serializing operations. In compar-
ison, the PVFS2 System Interface is designed to be thread safe. The System Interface
functions can be called by multiple threads and will provide consistent results. The
caches and configuration management structures in the System Interface use locking
to provide thread safety. Global variables like errno are strictly avoided in the System

Interface.

4.2.7 The PVFS2 directory cache

We demonstrate the motivation for the PVFS2 dcache by showing that the PVFEFS2
design leads to lookups of increased number and longer duration. The directory cache
in PVFS2 is an outcome of having multiple servers storing metadata. In PVFS1, a
single metaserver is theoretically a bottleneck during metadata servers so PVFS2 has
multiple metaservers. In PVEFS2, metadata is spread out over all metaservers without
overlap so as to maximize parallelism. In the worst case, this could mean that the
metadata for each object in a pathname is on a different server. With a simplistic

lookup approach as in PVFS1 this leads to more requests over the network in PVFS2.
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Thus, this does not scale well with increasing number of clients performing lookups
and longer pathnames. This is where the PVFS2 dcache comes in. The dcache
caches the name to handle mapping for each object after a successful lookup. As
more lookups occur and as more entries are cached there will be further saving of
time spent over network traversal. This approach also scales well with increased
number of clients, longer pathnames, and increased number of metaservers. This is
because the increased cache hits would balance out the increased requests. As an
optimization, if metadata for successive segments in a path name is on the same
metaserver then lookup recursively goes through the path until it finds a segment

whose metadata is not on the same server.

4.2.8 The PVFS2 pinode cache

The function of the pinode cache is to cache the attributes encapsulated in a pinode.
In PVFS1, the stat function is used to fetch metadata but no attempt is made to
cache the attributes. Thus, each time there is a request for metadata a request is
sent over the network to obtain them. To sum it up, the number of network messages
involved in fetching metadata would be the double the number of actual metadata
requests assuming one message each for a request and response. In PVFS2, as the
System Interface function getattr could be used by many library calls, metadata may
be fetched quite frequently. In addition, it is needed to validate handles in PVFS2,
calculate directory size, and in I/O operations. The pinode cache makes use of the
sizeable temporal locality exhibited at the System Interface. With each metadata
request being satisfied from the cache itself, the number of network messages due to

metadata requests are reduced and also the load on metadata servers is eased.
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4.3 Summary

We believe that the objectives of the research have been satisfied by the implemen-
tation of the System Interface. The above comparative study proves that we have
learned from the experience of the PVFS1 file system interface and have successfully
corrected the shortcomings and also provided new features that will allow us to fur-
ther explore issues in parallel I/O. We also hope to have demonstrated that the newer

design features in the System Interface indeed make it better.



Chapter 5

Conclusion and Future Work

This document discussed the design and implementation of the System Interface for
PVES2. The System Interface was proposed as a file system interface for PVFS2 to

meet the following demands.

e Flexibility

Support for multiple interfaces

Abstraction

Robustness

Performance

It has been shown that the System Interface meets the intended goals. The Sys-
tem Interface has been evaluated by comparing it with the file system interface in
PVFS1. Through qualitative arguments we have tried to demonstrate that the Sys-
tem Interface is an improvement over the PVFS1 interface.

The functions in the first cut of the System Interface have been implemented. As
work on the some of the underlying subsystems is currently in progress it was not

possible to develop a working prototype of the entire PVFS2 system. We hope as the
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prototype is near completion that integration of the System Interface with the other

modules can be done and quantitative results obtained.

5.1 Future work

As further testing is done on the System Interface there is scope for further improve-
ments. Future work can be broadly divided into three areas - getting quantitative
performance results using various libraries, implementing the remaining functions in

the specification and adding features to make the interface more flexible.

5.1.1 Performance Results

This needs to be done with higher priority as this will eventually allow us to evaluate
our design and identify bottlenecks in the System Interface. Some possible work in this
regard may be the implementation of a POSIX compliant library and comparison of
the results with PVFS1, comparison of ROMIO implementation results with PVFEFSI,
VEFES interface implementation results. Specific tests to determine the improvements

due to client side caching could also be done.

5.1.2 Implement the remaining functions

The remaining functions in the specification pertaining to locking and symbolic link
support need to be implemented so as to provide richer functionality in the file system

interface.

5.1.3 Provide features to increase flexibility

There is scope to add features to make the interface more flexible. The configuration
management interface can be provided with hints on access patterns so as to make

intelligent choices while deciding the data layout. Support for non-blocking I/O could
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be provided. The error handling scheme needs to be implemented to provide info to

the user when a problem occurs in a production environment.
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