CERSe

a Tool for High Performance Remote Sensing Application Development

Nathan DeBardeleben Walter B. Ligon III Sourabh Pandit Dan C. Stanzione Jr.

presented by Nathan DeBardeleben

Parallel Architecture Research Laboratory (PARL) Clemson University, Clemson, South Carolina http://www.parl.clemson.edu/

Outline

- ⇔ Problem
- \heartsuit CERSe
- \Rightarrow Applications of CERSe
- ♀ Future Work

- \checkmark Diversifying user base requires lower cost solutions
- \checkmark Increasing temporal, spectral, and spatial resolution
- \checkmark Massive data storage and processing power
- \checkmark Parallel computers are difficult to program
- \checkmark Rapid code development, execution, analysis, and maintenance

Proposed Solution

- \checkmark A Problem Solving Environment (PSE)
- \heartsuit Provide:
 - □ High performance
 - O Parallel computers
 - O Usable without advanced parallel computing knowledge
 - □ Ease of use
 - O Development and analysis tools
 - □ Extensibility
 - O Code reuse

- ▷ The Component-based Environment for Remote Sensing
- \heartsuit Modular approach
 - $\hfill\square$ Modules are subroutines in C or Fortran
 - □ Modules are placed onto a canvas to create a dataflow graph
 - □ Data passes between modules with an easy-to-use interface
- Programs are created on a workstation and then run on a parallel computer

- \Rightarrow Editor allows creation of the dataflow graph
- \Rightarrow Results can be visualized in real-time
- \heartsuit Tools for introspection
- ▷ Performance analysis

latitude [max,min] 36.79 8.75		Month		Weekday	
langituda (may min) 05 42 70.95		🗌 Any Month	🗌 July	🗹 Any Day	🗌 Wednesday
		🗌 January	🗌 August	🗌 Sunday	🗌 Thursday
Sensor		🗌 February	🗌 September	🗌 Monday	🗌 Friday
Any sensor		🗹 March	October	🗌 Tuesday	🗌 Saturday
Diatform	Voar	🗹 April	November		Dav
Any Platform	✓ Any Year	May May	December	Any Day	Day
☑ NOAA12	□ 1999	v lune			
NOAA14	2000	<u>y</u> junc			
	2001				
Hour		Minute			
🗌 Any Hour		🗹 Any Minute			
🗹 Range:	12,14,18-22	🗌 Range:			
	Query Database		Cancel		

- Distributor modules partitions satellite datasets
- ▷ Many drop-in parallel modules available
- \Rightarrow Results reassembled by combining modules
- Solution Module designers can use MPI for parallel computation
- ▷ Threads, queues, and other internal components increase performance (see paper)

- ▷ Existing NASA code has been placed into CERSe
- Very little augmentation of original code required to work with CERSe
- \Rightarrow Examples:
 - AVHRRMODIS

- \Leftrightarrow CERSe is built upon Coven
- ♀ Coven is a framework for developing PSEs for parallel computers
- ♀ Coven provides a runtime driver and GUI can be extended for specific PSEs
- Coven is built upon The Algorithm Description Format (ADF)
- ▷ CERSe customizes Coven framework to the RS domain by changing the terminology presented in the interface

Speedup vs. Num. Processors

Р

- The RS community faces a number of challenges which CERSe addresses
- \Rightarrow Good scalability is achieved and explained in paper
- ▷ The GUI assists in usability and extensibility
- Advanced problems still require someone who understands parallel computers

 \Rightarrow Advanced profiling of jobs

Advanced use of parallelism between components

 \Rightarrow Applications in other problem domains

Acknowledgements

- \Rightarrow This work was supported in part by:
 - □ NASA grant NAG5-8605 and by the
 - □ ERC Program of the National Science Foundation under Award Number EEC-9731680