
CERSe - a Tool for High Performance
Remote Sensing Application Development

Nathan A. DeBardeleben Walter B. Ligon III Sourabh Pandit Dan C. Stanzione Jr.
864-656-7223 864-656-1224 864-656-7223 864-656-7367

ndebard@parl.clemson.edu walt@parl.clemson.edu spandit@parl.clemson.edu dstanzi@parl.clemson.edu
Parallel Architecture Research Lab

Department of Electrical and Computer Engineering
Clemson University

105 Riggs Hall
Clemson, SC 29634-0915

http://www.parl.clemson.edu

Abstract— As the quality and accuracy of remote
sensing instruments available improves, the ability to
quickly process remotely sensed data is in increasing de-
mand. A side effect of this increased quality and accu-
racy is a tremendous increase in the amount of compu-
tational power required by modern remote sensing ap-
plications.

In this work, a problem solving environment for par-
allel computing named the Component-based Environ-
ment for Remote Sensing (CERSe) is described. CERSe
is targeted at producing applications for Linux Beowulf
clusters. CERSe uses out-of-core computation tech-
niques to handle extremely large datasets. A multi-
threaded, multi-queue runtime engine executes user-
supplied modules in parallel over partitioned datasets.
The modules supplied by the user can be purely sequen-
tial code. Parallelism comes from the partitioning of the
dataset by the system and from the ability to execute
multiple modules simultaneously. Parallel I/O is used to
take advantage of the I/O resources throughout the clus-
ter and provide high performance. A GUI is provided
which allows users to specify a dataflow for the applica-
tion by creating and connecting pluggable modules. The
GUI also provides facilities for launching jobs, selecting
parameters and data, and analyzing job performance and
results.

CERSe’s runtime engine and graphical user interface are
presented. Performance results with and without use of
a parallel file system are given which show near linear
speedup can be achieved through I/O tuning.

TABLE OF CONTENTS

1. INTRODUCTION

2. CERSE

3. CERSE EXAMPLE

4. PERFORMANCERESULTS

5. CONCLUSIONS ANDFUTURE WORK

1. INTRODUCTION

There is a growing number of people who want to use
remotely sensed satellite data and Geographic Informa-
tion Systems (GIS) data. The different applications that
users want to run require increasing amounts of tem-
poral, spectral, and spatial resolution. Some users, for
instance, are satisfied with a single image a day, while
others require many images an hour. Scientists are be-
ginning to take advantage of multi-spectral datasets ob-
tained from satellites which, in many cases, have over
100 different spectral bands present. Also, there is
growing interest in combining large numbers of datasets
from different satellites taken at different times of dif-
ferent geographical locations and at different spotsize
resolutions [1].

For users to take advantage of this data they must be pro-
vided with software tools. These tools must deal with
the issues inherent in the growing data requirements.
How to store and how to process the data are two such
issues.

The problems facing the remote sensing community are:

• a diversifying user base requires lower cost solu-
tions,



• increasing amounts of temporal, spectral, and spa-
tial resolution requires massive data storage and
processing power (parallel computers),

• parallel computers are difficult to program,

• rapid code development, execution, analysis, and
maintenance remains of major importance.

Beowulf clusters [2] are large computers comprised of
commodity off-the-shelf (COTS) hardware components
such as cheap memory, EIDE disks, inexpensive net-
works, and conventional CPUs. The software (includ-
ing operating system) is low cost / no cost and parallel
programming libraries and tools are available for devel-
opment of user code. This hardware organization lends
itself well to coarse-grain problems. Coarse-grain prob-
lems are those which have portions that can operate a
relatively long time without necessary communication
to other portions. Beowulf computers also show a ben-
eficial cost-to-performance ratio over conventional su-
percomputers. For these reasons, our approach targets
Beowulf clusters.

We propose the design of a problem solving environ-
ment (PSE) which meets the needs of the remote sens-
ing community by providing high performance, ease of
use, and extensibility. This environment must

• Provide a mechanism for code reuse,

• Run on parallel computers,

• Be usable without advanced knowledge of parallel
architecture or parallel algorithms, and

• Provide tools which facilitate fast algorithm devel-
opment and data analysis (such as a graphical en-
vironment, data selection tools, and performance
analysis agents).

We discuss a problem solving environment aimed at
achieving these goals. This system accomplishes the
goals of extensibility and code reuse through the use of
interconnected components, or modules, to design al-
gorithms. These modules consist of reusable blocks of
code which are run in parallel on a parallel computer.
Issues dealing with how to achieve the parallelism, pass-
ing data between modules, and synchronization are hid-
den from the user. We provide tools to address usabil-
ity such as graphical dataflow editors, data visualization,

data selection tools, and tools to constrain the region of
interest.

A number of related projects exist, some of which
specifically target remote sensing applications while
others target different domains. The Common Compo-
nent Architecture [3] is a framework for defining the in-
teraction between components as well as an interface
definition language (SIDL). Khoros [4] is a commercial
software package for modular program development on
sequential computers where users describe the dataflow
with “glyphs” which are separate programs. Cactus [5]
is a software tool for parallel computers which defines
the interaction between the driver (flesh) and modules
(thorns) aimed primarily at astrophysics codes. The
Open Source Software Image Map (OSSIM) [6] aims to
leverage existing open source tools in the remote sens-
ing community to construct an integrated tool for run-
ning remote sensing codes on parallel machines.

In the next section we outline the design of the problem
solving environment framework upon which CERSe is
built and discuss CERSe in detail. An example of
porting an existing NASA remote sensing module into
CERSe is given next. We conclude with performance
results and discuss both computational and I/O speedup.

2. CERSE

The Component-based Environment for Remote Sens-
ing (CERSe) is a software tool for developing modular
codes for parallel computers. CERSe modules are sub-
routines in either C or Fortran. Modules are placed onto
a canvas and a dataflow graph is created by connecting
inputs and outputs between modules. This model works
very well for many remote sensing applications. Once
the dataflow graph has been created, CERSe jobs may
be launched on a parallel computer (such as a Beowulf).
Special, internal data structures are maintained which
handle passing data between modules, allocating and
deallocating memory when needed and communication
between processors. Programmers have access to these
data structures but most find that the helper functions
for retrieving and creating data are enough. Advanced
users can create modules which break satellite datasets
into partitions, pass them to different processes on the
parallel machine, and reassemble the results. Queues
of data to be processed are maintained internally which
facilitate load balancing between the processors. With
these queues, once a processor is done with a portion of
the dataset it merely requests an additional portion from



the master process.

A graphical user interface (GUI) assists in application
development by providing a place for describing the
dataflow graph, launching jobs on the parallel computer,
visualizing results in real-time, and analyzing perfor-
mance after job completion.

CERSe is built upon two additional technologies -
Coven and the Algorithm Description Format (ADF).
ADF [7] is an open graph format which defines the in-
teraction between connected modules. Coven is a low-
level toolkit for building problem solving environments
for parallel computers. Coven has been used to build
PSEs for physics and electromagnetics as well as remote
sensing.

Figure 1 depicts the relationship between ADF, Coven,
and CERSe.

(Coven)

Programming Model

Infrastructure

(ADF)

(CERSe)

Problem in Domain Terms

A
bs

tr
ac

tio
n

Figure 1: PSE Architecture

Coven PSE Framework

Coven provides a framework for developing PSEs for
parallel computers. Aruntime driverand GUI client
can be extended and utilized by specific PSEs.

Coven’s runtime driver is composed of:

• TPH - The Tagged Partition Handle is an internal
data structure for representing data flow between
modules.

• Module Loader - Modules are loaded dynamically
by the module loader so that all operations are done
in-core.

• Program Sequencer - The program sequencer runs
on each processor of the parallel machine and

transparently handles executing modules in order
and passing the required data between them.

• Threading - Modules are placed into threads within
processes so that additional parallelism can be
achieved through asynchronous I/O, computation,
and network communication.

• Queues - Input queues of TPHs are maintained for
each thread on each processor which allows for
load balancing.

Coven’s GUI client provides:

• Graph Editor - The editor is a tool for graphically
describing the dataflow between modules.

• Code Generator - Dataflow algorithms are trans-
formed into code which is used by the Coven run-
time driver by the code generator.

• Introspection - Coven parses user source code
modules to determine the types of all inputs and
outputs and provides tools for type checking.

• Performance Analysis - After jobs have been run,
Coven provides performance analysis of many in-
ternal events which can be useful for hand-tuning.

CERSe customizes the Coven framework to the remote
sensing domain by changing the terminology presented
in the interface to be more familiar to the remote sensing
user. Additionally, CERSe provides graphical agents for
selecting datasets through a database, choosing a region
of interest, and real-time visualization of results as they
are computed on the parallel machine.

Achieving Parallelism

Parallelism is achieved with CERSe through the use of
distributor modules which partition satellite datasets and
distribute them to separate processes on the parallel ma-
chine. While the distributor modules do require some
knowledge of parallel computing, many are provided
which simply can be dropped into place. Advanced
users can create their own. Functionality within Coven
allows advanced users to use the Message Passing In-
terface (MPI) [8, 9] to communicate between parallel
modules if a problem does not fit the simple data parti-
tioning model. Currently, no users of CERSe have found
the MPI functionality a necessity.



Additional performance gains come from asynchronous
I/O, computation, and communication through the use
of Coven’s multi-threaded feature. The inherent queu-
ing system also improves performance by creating a
pipeline effect as data passes through the system from
thread to thread.

3. CERSE EXAMPLE

An example of a module is one that calculates the satel-
lite zenith angle for each pixel in an AVHRR satellite
image. This example shows the process of taking exist-
ing (legacy) code and incorporating it within CERSe.

Figure 2 depicts the module code to calculate the satel-
lite zenith angle for each pixel over each scan line parti-
tioned to the module.

The beginning of thesatzenith function uses four
calls to CERSe helper functions. These functions re-
trieve the requested data from the TPH transparently.
In CERSe, attributes are single values (such as inte-
gers, strings, and floats) and buffers are arrays (possibly
multi-dimensional). Several calls in thesatzenith
module are made to retrieve attribute values for the
number of scan lines that this module will process and
the number of points in a scan. This module will be
run by many processors many times and each time will
operate on only a portion of the data. The variable
num scan lines determines each time the module
runs exactly which scanlines will be processed.

The CERSeINPUT function reads from the TPH
the Brouwer Lydanne osculating elements and assigns
the pointer to a local variable namedoscs . The
CERSeOUTPUTfunction allocates an array of floating
point values and assigns the pointer to the local name
satzens . Some constant values pertaining to the max-
imum scan angle and the radius of the earth are also de-
fined. Recognizing that the earth is not a sphere, as this
code assumes, one could readily implement code which
calculates the earth radius for particular scan lines.

Finally, there are two loops which iterate over the scan
lines given to a particular processor. These loops are
where the parallelism occurs since each processor oper-
ates on only a portion of the total number of scan lines.
As this module is executed by the Program Sequencer
on each slave node the TPH will contain data relevant
only to a portion of a dataset. We achieve a great
deal of data parallelism with this method. The satellite

zenith angle is calculated for each point in these loops.
These values are placed into thesatzens data struc-
ture which was allocated by the call toCERSeOUTPUT
as an array of float values and is now present in the TPH.
This array is now available in the TPH for other modules
to use as input.

The code in Figure 2 came from existing NASA remote
sensing tools.

4. PERFORMANCERESULTS

For our performance tests we used CERSe to create a
common remote sensing application. This application
computes the Normalized Difference Vegetation Index
[10], masks clouds, and projects the output to a com-
mon coordinate system. Sequential remote sensing code
exists which performs these algorithms and was used in
speedup analysis.

In an effort to distinguish speedup attributed to com-
putation versus I/O, three sets of tests of CERSe were
run on a dedicated cluster of computers. The cluster
consisted of eight nodes connected by Fast Ethernet.
Each node had 64MB of RAM, 80GB of disk space,
and a 300MHz Pentium II processor. For the first se-
ries of tests no parallel file system was used. In these
tests all the datasets consumed by CERSe were available
on the local disks of each of the compute nodes in the
cluster. Therefore, the data was replicated eight times.
This kept all I/O accesses local and shows the computa-
tional speedup of CERSe without effects of I/O. Figure
3 shows the speedup curve for this simulation. It can
be seen that using only local data provides very good
speedup. This is to be expected as the problem is natu-
rally parallel. A clear drawback of this simulation, how-
ever, is that it requires all the data to be replicated on all
of the local disks within the cluster. With the massive
amounts of data currently available and the increasing
volume of new data this solution is not practical. To
deal with this problem we incorporated parallel I/O.

Tests of CERSe were also run using PVFS [11, 12], a
parallel file system for Beowulf clusters developed at
the Parallel Architecture Research Laboratory at Clem-
son University. PVFS stripes data across the disks in
a Beowulf cluster like a RAID. In the first set of tests
all of the processors used performed both computation
and I/O. Thus, when less than the maximum number of
processors was used, the unused nodes were not used as
I/O nodes. The datasets were partitioned along scanline



1 #include "CERSe.h"
2
3 double totalswath = 110.7968;
4 double maxscanangle = 55.37;
5 double earthRadius = 6378140.0;
6
7 CERSe_MODULE(satzenith, tph)
8 {
9 int num_scan_lines = CERSe_INT_ATTRIB_GET(tph, "num_scan_lines", "Number of scanlines for THIS TPH");

10 int points_per_scan = CERSe_INT_ATTRIB_GET(tph, "points_per_scan", "Number of points in a scanline");
11 CERSe_OSCEL_BUFFER_TYPE oscs = CERSe_INPUT(tph, CERSe_OSCEL_BUFFER, "Brouwer Lydanne osculating elements");
12 CERSe_FLOAT_BUFFER_TYPE satzens = CERSe_OUTPUT(tph, CERSe_FLOAT_BUFFER, num_scan_lines*points_per_scan, "Satellite zenith angles");
13
14 int scan, i;
15 float *latsptr, *lonsptr;
16 double SemiMajorAxis, Eccentricity, MeanAnomaly, sat_height, ang, tmp;
17
18 /* ‘scan’ is a relative scan, 0->number of scans instead of start_scan -> start_scan+number of scans */
19 for (scan=0; scan<num_scan_lines; scan++) {
20 SemiMajorAxis = oscs[scan].SemiMajorAxis;
21 Eccentricity = oscs[scan].Eccentricity;
22 MeanAnomaly = oscs[scan].MeanAnomaly;
23
24 sat_height = (SemiMajorAxis * (1 - (Eccentricity * Eccentricity))) / (Eccentricity * cos(MeanAnomaly) + 1);
25
26 /* loop over each angle in the scan line */
27 for (i=0; i < points_per_scan; i++) {
28 ang = fabs(totalswath * i / points_per_scan - maxscanangle);
29 /* calculate the zenith angle */
30 tmp = asin((sat_height / earthRadius) * sin(ang * RADDEG));
31 tmp = fabs(tmp);
32 satzens[(scan * points_per_scan) + i] = tmp;
33 }
34 }
35 }

Figure 2: Satellite Zenith Angle Calculation Module

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

S�

P

Speedup vs. Num. Processors

Ideal
Local Data Access
PVFS Data Access
PVFS w/ 4 Dedicated I/O Nodes

Figure 3: Speedup for Varying Number of Compute
Nodes Using Local Data Access

boundaries and the default PVFS stripe size of 64KB
was used initially. The second PVFS test case involved
using four dedicated I/O nodes and varying numbers of
compute nodes. Again, the default PVFS stripe size was
used. These tests show the speedup due to I/O.

As can be seen from the plot, PVFS incurs considerable
overhead, but exhibits reasonably good scalability. As
the number of processors increases beyond six, however,
we find that the speedup when using PVFS decreases
due to the file system being overloaded. The tests using
dedicated I/O nodes suggest that I/O tuning can have
beneficial effects. We further believe that a balance ex-
ists between stripe size and the size of partitions that
are distributed out to each processor. The configuration
of the file system can have a significant impact on both
overhead and scalability and we are currently working
to improve the interaction between PVFS and CERSe.

5. CONCLUSIONS ANDFUTURE WORK

The remote sensing community faces a number of chal-
lenges which are addressed by CERSe. The problem
solving environment presented allows for existing re-
mote sensing code and new algorithms to be written
in a modular framework which can be executed on a
parallel computer. Advanced understanding of parallel
computing has been abstracted away from the user. Par-



allel computing is essential for handling the increasing
amounts of data due to growing temporal, spectral, and
spatial resolutions.

CERSe is designed to provide high performance com-
puting, extensibility, and usability for remote sensing
problems. An environment for modular code devel-
opment and easy pluggability of modules is provided.
This environment makes it easy to both incorporate ex-
isting, legacy software as well as develop new algo-
rithms. A graphical interface addresses usability by pro-
viding tools for dataflow graph creation, data visual-
ization, and additional functionality specific to remote
sensing problems such as specification of region of in-
terest, choosing map projections, and database connec-
tivity. Performance results show that near ideal com-
putational speedup is achieved by CERSe. I/O tuning
is still an issue and research is currently under way to
address this.

Additional reserach has begun on code profiling within
Coven to allow users to visualize time spent within mod-
ules, threads, and processes. Coven is being used to
build environment for other realms of science such as
computational fluid dynamics and material simulations.

ACKNOWLEDGMENTS

This work was supported in part by NASA grant NAG5-
8605 and by the ERC Program of the National Science
Foundation under Award Number EEC-9731680.

REFERENCES

[1] M. Halem, F. Shaffer, N. Palm, E. Salmon,
S. Raghavar, and L. Kempster, “Can We Avoid
A Data Survivability Crisis?,” Tech. Rep. 51,
National Aeronautics and Space Administration,
1999.

[2] T. Sterling, Beowulf Cluster Computing with
Linux. The MIT Press, 2001.

[3] R. Armstrong, D. Gannon, A. Geist, K. Keahey,
S. Kohn, L. McInnes, S. Parker, and B. Smolinski,
“Toward a Common Component Architecture for
High-Performance Scientific Computing,” inPro-
ceedings of the 1999 Conference on High Perfor-
mance Distributed Computing, 1999.

[4] J. Rasure and S. Kubica,The Khoros Application
Development Environment. Khoral Research Inc.,
Albuquerque, New Mexico, 1992.

[5] E. Seidel, “Cactus,”IEEE Computational Science
& Engineering, 1999.

[6] K. Melero, “Open Source Software Image Map
Documentation.” http://www.ossim.org, 2001.

[7] D. C. Stanzione Jr. and W. B. Ligon III, “In-
frastructure for High Performance Computer Sys-
tems,” in IPDPS 2000 Workshops, LNCS 1800
(e. a. Jose Rolim, ed.), pp. 314–323, ACM/IEEE,
Springer-Verlag, May 2000.

[8] MPI Forum, “MPI: A message passing interface
standard, version 1.1,” tech. rep., University of
Tennessee, 1995.

[9] MPI Forum, “MPI-2: Extensions to the message
passing interface,” tech. rep., University of Ten-
nessee, 1997.

[10] A. P. Cracknell,The Advanced Very High Resolu-
tion Radiometer. Taylor and Francis, 1997.

[11] R. Ross and W. Ligon III, “An Overview of the
Parallel Virtual Filesystem,” inProceedings of the
1999 Extreme Linux Workshop, 1999 June.

[12] P. Carns, W. Ligon III, R. Ross, and R. Thakur,
“PVFS: A Parallel File System For Linux Clus-
ters,” in Proceedings of the 4th Annual Linux
Showcase and Conference, October 2000.


	Introduction
	CERSe
	CERSe Example
	Performance Results
	Conclusions and Future Work

