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Abstract

With a focus on commodity PC systems, Beowulf clusters
traditionally lack the cutting edge network architectures,
memory subsystems, and processor technologies found in
their more expensive supercomputer counterparts. What
Beowulf clusters lack in technology, they more than make
up for with their significant cost advantage over traditional
supercomputers. This paper presents the cost implications
of an architectural extension that adds reconfigurable com-
puting to the network interface of Beowulf clusters. A quan-
titative idea of cost-effectiveness is formulated to evaluate
computing technologies. Here, cost-effectiveness is consid-
ered in the context of two applications: the 2D Fast Fourier
Transform (2D-FFT) and integer sorting.

1. Introduction

Beowulf-class computers (cluster computers based on
COTS hardware and open system software) have emerged
as a low cost supercomputing solution for a variety of prob-
lems. Unfortunately, the COTS hardware that reduces the
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cost of Beowulf clusters also limits their applicability for a
class of problems, such as the Fast Fourier Transform, that
depend on a high performance interconnect to achieve scala-
bility. In general, Beowulf clusters lack the cutting edge net-
work, memory, processor, and I/O subsystems found in their
more expensive supercomputing counterparts. Although
Beowulf clusters are low cost, they must provide scalabil-
ity for applications to be cost-effective.

Reconfigurable computing (RC) is a cutting-edge pro-
cessing technology currently receiving a great deal of atten-
tion. It is based on configurable hardware predominantly
consisting of Field Programmable Gate Arrays (FPGAs).
Reconfigurable Computing has been shown to be effective
at providing speedups for an assortment of applications by
relying on the ability of programmable hardware to instan-
tiate many custom functional units to implement data flow
computations. Unfortunately, the earliest incarnations of
RC lacked the gate counts needed to support floating-point
applications. Now, the underlying FPGA technology has
matured to the point that it can be competitive with worksta-
tions for some floating-point applications [11]. The biggest
challenge now facing reconfigurable computing is cost. His-
torically, high density FPGA devices have been expensive.
Reconfigurable computing cards based on these devices
have been low-volume specialty parts further contributing
to the high cost of the technology. Recently, the cost of high
density FPGA devices has been falling; however, reconfig-
urable computing platforms are still low-volume specialty
components. RC platforms will not reach commodity status
until a high-volume application arises.

It is difficult to find high-volume applications for RC be-
cause of its lack of general applicability. For some applica-
tions, it offers impressive speedup while for others it offers
nothing. Hindering the technology further is its reliance on
the PCI bus to transfer data to and from host memory. The
low bandwidth and high latency (for a processor intercon-



nect) of the PCI bus often decimates the speedups that RC
can offer. Further complicating the applicability to com-
modity clusters, a reconfigurable computing card and a net-
work card would typically share a single PCI bus. If an ap-
plication performs significant communication, data would
have to make three passes over the PCI bus — network in-
terface to host memory to reconfigurable computing card to
host memory. In [17], an Intelligent Network Interface Card
(INIC) based on a high performance NIC and reconfigurable
computing was proposed. The network interface proved to
be an excellent place to exploit reconfigurable computing.

When considering an architectural modification, it is im-
portant to evaluate both the performance and cost implica-
tions of the change. Traditional measures such as speedup
and isoefficiency exist to analyze the performance of an
architecture. The introduction of Beowulf clusters was
prompted by a qualitative assessment of cost-effectiveness.
Here, a quantitative measure of cost-effectiveness is formu-
lated so that break-even points for a technology can be as-
sessed. Cost-effectiveness is a function of cost and perfor-
mance with a complex model of cost rather than the tradi-
tional linear cost assumption applied to clusters.

The architecture under consideration is discussed briefly
in Section 2. Two applications and their performance char-
acterizations are presented inSection 3. Section 4com-
pares the cost-effectiveness of a cluster with and without
the enhancements to the network interface.Section 5then
presents a cost-effective INIC design. The paper closes with
related works inSection 6and conclusions inSection 7.

2. ACC System Architecture

The goal of Clemson’s ACC project is to explore archi-
tectural enhancements to Beowulf clusters without reducing
the cost-effectiveness of the system.Figure 1illustrates the
core of one such enhancement. Whereas a traditional NIC
simply buffers data in a memory (or FIFO) between the host
and network, an INIC inserts reconfigurable logic along the
datapath. The reconfigurable logic could then be used in a
range of modes including:

• Compute Accelerator— Defined as using the FPGAs
strictly for application computing tasks, this mode
significantly enhances the computing power of a node
for some tasks. Research demonstrating the abil-
ity of reconfigurable computing to accelerate certain
classes of applications is too extensive to document
here.

• Combined Compute/Protocol Accelerator— Placing
computing and protocol elements in the reconfig-
urable logic takes advantage of the insertion of a high-
performance computing core in the network datapath.

The reconfigurable logic can manipulate data pass-
ing between the host and the network (at little or no
cost), or can serve as a processor with a low-latency
network connection. This allows the reconfigurable
logic to benefit a large class of applications including
those addressed inSection 3and such things as MPI
derived data types.

• Protocol Processor— As a protocol processor, the
FPGAs are used strictly for network processing. A
properly designed Intelligent NIC could perform all
of the protocol processing for a cluster node, of-
fering more features (such as collective operations)
and higher bandwidth than current commodity net-
work subsystems. Unlike some solutions that have
attempted to use an embedded processor on the NIC
for protocol processing, the INIC approach adds ad-
ditional computing capabilities to the network inter-
face. If adequate external memory bandwidth is pro-
vided, this additional logic can provide protocol sup-
port for very high rate networks (ten gigabits should
be achievable with current FPGAs). Protocol proces-
sors are useful for any application performing signif-
icant communication as they offload processing from
the CPU and can significantly improve network per-
formance.

Prototype System

The ACC experimental platform is an 16-node Beowulf
running the Scyld Linux distribution. Each node contains a
32-bit PCI motherboard with a 1GHz Athlon and 512 MB
of RAM. On the PCI system bus is a SysKonnect PCI Gi-
gabit Ethernet NIC and a Fast Ethernet NIC. Eight systems
also include an ACEII card. The ACEII has an onboard
PCI bus attaching aµSPARC processor and a PCI Mezza-
nine (PMC) slot to the FPGAs. The PMC slot is populated
with an Alta Technologies PMC Gigabit NIC based on the
Packet Engines Hamachi chipset. The ACEII is a recon-
figurable computing board from TSI TelSys. A simplified
block diagram of the board is shown inFigure 2.

The prototype used is not the ideal architecture as it has
a few deficiencies that prevent it from achieving its full po-
tential as an Intelligent NIC. These include a single bus
on the card for all data traffic, a single 32-bit 33MHz bus
for all data traffic to the FPGAs, an older generation of
reconfigurable logic, and limited memory attached to the
FPGAs. Nonetheless it will suffice to demonstrate the con-
cepts being addressed, and it has the advantage of a standard
PMC connector permitting the use of off-the-shelf network
adapters. Newer boards with similar cost address some
of these issues but lack the features necessary to support
the networking functions. Theoretically, an Intelligent NIC
would be implemented as a single chip with external RAM
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Figure 1. A comparison of (a) a traditional NIC and (b) the proposed architectural extension to form an INIC

Figure 2. block diagram of an ACEII card

— similar to modern high performance NICs.Section 3
predicts the performance achievable with a next generation
Intelligent NIC and addresses the performance achievable
with our prototype INIC.

3. Applications

Two of the most important factors of any architecture are
the performance of the users’ applications on the architec-
ture and the cost to achieve that performance. Two appli-

cations, a512× 512 2-D Fast Fourier Transform (2D-FFT)
and integer sorting, were chosen for our preliminary evalu-
ations of the architecture. These two applications were cho-
sen because they can be implemented on the prototype and
they emphasize the capabilities of the proposed architecture
to integrate computational tasks with communication opera-
tions. For both applications, our architecture-specific imple-
mentation is a derivation of the standard parallel implemen-
tation taking advantage of the new architectural features.
This highlights the ability to use the INIC with the same pro-
gramming model as existing clusters. This section briefly
presents the applications, the implementations of the appli-
cations, and the performance of the applications. For further
details, refer to [17]. In the diagrams used to explain the
implementations, rounded boxes describe processes, rect-
angles represent function blocks, and arrows represent the
flow and sequence of data. When there is ambiguity, se-
quences are numbered. Also note that each diagram shows
a single network transaction. This is one of many concur-
rent transactions in the cluster.

3.1. 2D-FFT

One application under consideration is the two dimen-
sional Fast Fourier Transform. The baseline parallel and
serial implementations use the highly optimized Fastest
Fourier Transform in the West (FFTW) package[9]. On a
distributed memory architecture, the matrix is distributed
over the processors in a row-block distribution. The algo-
rithm as implemented can be decomposed as:
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Figure 3. (a) block diagram of the transpose algorithm used in the FFTW package; (b) data manipulation on
the network data stream as it passes through the INIC

❶ compute the 1D-FFT for each row

❷ transpose the matrix (redistribution of data)

❸ compute the 1D-FFT for each row

❹ transpose the matrix (a second redistribution of data)

The matrix transpose becomes the bottleneck in such a
scheme and is a perfect target for implementation with an
INIC. Like the parallel implementation, the INIC matrix
transpose is composed of three operations: a local trans-
pose step, an all-to-all communication, and a final permu-
tation. Unlike the standard parallel implementation, an im-
plementation using INICs pushes all of the data manipula-
tion needed for the transpose (on both the send and receive
sides) onto the INIC, as shown inFigure 3. This allows the
data manipulation to be embedded in the communication at
little additional cost (slightly higher latency than a network
transaction without the transpose would require). Further-
more, the communication protocol used can be customized
to the specific application since each node knows exactly
how much data will be sent to and received from every other
node.

3.2. Integer Sorting

The second application considered, integer sorting, is a
common benchmark application. Although some bench-
marks involve non-uniformly (often Gaussian [2]) dis-
tributed keys, synthetically generated and uniformly dis-
tributed keys are used for this discussion. This is a well-
established precedent allowing a focus on the evaluation of
the basic I/O and computational performance of the archi-
tecture. As others have recognized, sampling in a pre-sort
phase helps address the shortcomings of this assumption by
leading to a more balanced workload.

Each of the implementations of integer sort first bucket
sorts the data into buckets that fit well in the processor
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Figure 4. block diagrams of parallel integer sort
implementations on: (a) a standard cluster with
Gigabit Ethernet; (b) an INIC; (c) the prototype
INIC with limited resources
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Figure 5. Potential Intelligent NIC speedups are shown with potential speedups for the prototype INIC and a
baseline cluster (based on Gigabit Ethernet). (a) shows speedups for a 512× 512 FFT (b) shows speedups
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cache. These buckets are then sorted with Count Sort as
in [1]. For the parallel implementation, a distributed mem-
ory to distributed memory sort over a power of 2 proces-
sors is evaluated. Each processor begins by bucket sorting
its data intoP buckets. Bucketi from each processor is
then sent to processori. As a processor receives the data,
it bucket sorts the data into buckets designed to fit in pro-
cessor cache. Once all data has been collected, each bucket
is sorted with Count Sort. The Count Sort is the final sort-
ing phase — with 32 bit integers and more than128 buckets
there is no need for the final bubble sort described in [1].
On a problem size of221 keys or more, a minimum of128
buckets are needed for the problem to map into cache.

Figure4 illustrates the differences in data flow for a tra-
ditional parallel implementation and two INIC implementa-
tions. Since bucket sorting is particularly amenable to im-
plementation on the INIC, both bucket sorts and the com-
munication operations should be implemented in hardware.
Unfortunately, the limited resources of the Xilinx 4085XLA
devices on the prototype prohibit performing the full receive
side bucket sort in hardware; however, the received data can
be pre-sorted into 16 buckets each of which can be bucket
sorted by the host. As shown inSubsection 3.3, this can still
provides a performance benefit.

Figure 4(b) and (c) shows a block diagram of operations
in the INIC reconfigurable logic. On the sending side, data
is transferred directly from host memory to INIC mem-
ory. Along the path, the data is manipulated to perform
the bucket sort operation. Like the parallel implementa-
tion, the INIC implementation can overlap communication
with computation. In fact, the INIC can start transmitting

data at lower bucket thresholds (one packet) since there is
no computational overhead1 for starting a send. Hence, on
the sending side, the INIC handles all of the computation
and protocol processing leaving the processor free to other
tasks such as disk I/O. On the receiving side, the bucket sort
can be done as data is received2. As minimum thresholds
are reached, data is transferred to the host. After all data is
received, each bucket is sorted with Count Sort.

3.3. Performance Analysis

Figure 5 compares potential INIC speedups with
speedups of a prototype INIC implementation and the mea-
sured performance of a baseline (Gigabit Ethernet) cluster.
Results are measured for the prototype implementation of
the FFT an estimated (based on measured performance for
the FFT) for the integer sort implementation. Speedups are
relative to a single node without a reconfigurable computing
card. This is a reasonable comparison for FFT because in
the serial implementation, the transpose is not performed.
For integer sorting, the potential increase in performance
given by a reconfigurable computing board in a single node
would be eliminated by the PCI interface.

Figure 5shows that the INIC has great potential to accel-
erate the two applications under consideration.Figure 5(a)
indicates that the prototype INIC will offer better perfor-

1This is not to say that there is no computation involved in starting a
send, only that starting a send is handled by hardware that sits idle if no
send is in progress.

2Again, the prototype splits the receive operation between the card and
the host.
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mance than the baseline cluster for the 2D-FFT. This is
achieved by performing the transpose data manipulation
along the network data path (with minimal additional cost)
and by implementing a custom protocol that is efficient for
small data transfers.Figure 5(a) also indicates that an INIC
has the potential for linear speedup up to 16 processors but
that the prototype cannot achieve this. In this instance,
the prototype performance is limited by the single 32-bit
33 MHz bus connecting the FPGAs to the host and the net-
work.

Figure 5(b) shows that the potential prototype INIC per-
formance is only moderately better than the performance
of the baseline cluster for integer sorting. For this applica-
tion, the prototype INIC is constrained by both the limited
bus bandwidth and the density of the FPGAs. The potential
INIC speedup is much higher, even superlinear. Superlin-
ear speedup is achieved by performing both the send side
and the receive side bucket sorts in the INIC. This hides
a significant part of the computation in the communication
operation.

4. Cost Analysis

Using commodity PCs in a cluster environment requires
the addition of high-performance networking equipment to
each node. In addition, a network backplane (often a switch)
must be added externally, further increasing the cost of a
cluster. Achieving the results presented inSection 3re-
quires the addition of reconfigurable hardware to each net-
work interface. Each piece of extra hardware added to the
cluster increases the cost of achieving the promised perfor-
mance. Although clusters are typically built from a collec-
tion of serial nodes, the extra hardware needed to build the
cluster changes the cost relationship between clusters and
single node serial implementations. This is particularly sig-
nificant when using an expensive component like an INIC.
The question that arises is one of cost-effectiveness: how
can the maximum performance per unit cost be achieved?

Cost-effectiveness is an extension of the traditional mea-
sures of speedup. Though measurements such as speedup
and iso-efficiency are valuable tools, they do not account for
the cost of achieving performance targets. At first glance, it
would seem that cost-effectiveness adds little information;
however, the cost model for a cluster ofN nodes is more
complex than a simple linear relationship (N× the cost of a
serial machine). Cost-effectivenes,E, is defined as a ratio
of the ratios of price to performance for two technologies,
or:

E =

C1

Speedup1

C2

Speedup2

. (1)

Values ofE greater than one indicate that technology 2 is
more cost-effective. Likewise, a value less than one means
that technology 1 is more cost-effective.

To calculateE, the cost of the two technologies being
compared must be known. The INIC based cluster will be
evaluated based on its cost-effectiveness relative to a sin-
gle serial node and a standard Beowulf Cluster with Gigabit
Ethernet. The cost of a single node is simple to determine,
but costs for clusters are more complex than those typically
modeled. The first step to modeling these costs is to define
the cost of a cluster as the sum of the cost of the nodes and
the cost of the network:

CCluster (N) = N × CNode + CNet(N) (2)

whereCNode is the cost of a node, andCNet(N) is the cost
of a network forN nodes. Here, it is assumed that the cost
of a node is constant across all nodes in a given cluster.
Modern high-performance networks are often purchased as
an expandable chassis with some number of installed mod-
ules. Typically, even those networks that come as a single
unit can be modeled as a base cost plus some incremental
cost of expansion over some set of sizes. It is seldom pos-
sible to buy high-performance networks of arbitrary sizes.
The model accounts for this by defining a “switch incre-
ment” which is the minimum difference in the number of
ports between two switch configurations. Hence,CNet(N)
can be modeled as:

CNet(N) = B(N)×CSwitchIncrement +CSwitchBase (3)

whereB(N) is the number of switch increments needed,
CSwitchIncrement is the cost of each increment, and
CSwitchBase is the baseline cost of the switch.B(N) can
in turn be defined as:

B(N) =
⌈

N

SizeofSwitchIncrement

⌉
(4)

Equation 4contributes a step function characteristic to the
overall cost of a cluster.

Turning to the node cost, there are three configurations
to consider. The first is the cost of a serial node with no
networking, orCSerNode . The second adds the cost of a
network adapter to form the node cost:

CNode = CSerNode + CNetworkAdapter (5)

The third adds the cost of reconfigurable computing tech-
nology for an INIC enhanced node:

CINICNode = CSerNode + CNetworkAdapter + CRC (6)

or,

6



Item Cost

CRC $7500
CNode $2000
CSerNode $1500
CSwitchIncrement $10000
CSwitchBase $8000

Table 1. December 2000 costs for a prototype
INIC cluster

CINICNode = CNode + CRC (7)

In turn, this can be applied toEquation 2to get the cost
model of an INIC enhanced cluster.

CINICCluster (N) = N×(CNode + CRC )+CNet(N) (8)

Table 1shows the costs for a prototype INIC cluster con-
structed in December, 2000. DefiningCRC to be the differ-
ence in component costs between a traditional NIC and an
INIC constructed from current generation FPGAs implies
thatCRC could range as low as$250.

Now that a cost function has been developed, cost
and performance can be combined to consider cost-
effectiveness. Cost-effectiveness can be used to compare
two technologies based on theirprice / performanceratios.
Here, an INIC enhanced cluster is compared to a baseline
fixed-performance, single-node, serial solution and a Giga-
bit Ethernet based cluster solution.ESerial will be used to
refer to all comparisons (INIC and Gigabit Ethernet) to a
serial implementaion. In turn,ECluster will be used to refer
to comparisons between the clusters. Generally speaking,
E will be defined on a per-application basis.ESerial is a
special case in which the speedup is one; hence, it can be
defined as:

ESerial =
CSerNode

Ctechnology(N)
Speedup(N)

(9)

whereCtechnology(N) refers to the cost of the technology
considered.

Figure 6comparesESerial for three technologies: a base-
line cluster, a cluster enhanced with the prototype INIC, and
a theoretical INIC. ForCRC , $7500 was used for the pro-
totype INIC and$1000 (based on the cost determined in
Section 5) was used for the next generation INIC. The pro-
totype INIC is less cost-effective due both to its high cost
and relatively low performance increase; however, the the-
oretical INIC can achieve a cost-effectiveness near one for

the integer sorting application.
WhileESerial defines the relative cost per unit speedup,

Figure 6 is somewhat non-intuitive in that the term
CNet(N) causes clusters which do not achieve superlinear
speedup to have a cost-effectiveness less than one. Further,
since the purpose is to assess an enhancement to a cluster
architecture, it is better to evaluate the cost-effectiveness
relative to the baseline architecture — a standard Beowulf
Cluster with Gigabit Ethernet. For this,ECluster is used.

ECluster =

CCluster (N)
SpeedupCluster (N)
CINICCluster (N)

SpeedupINICCluster (N)

. (10)

Using Equation 10as a metric assumes that adequate
funds are available to build a cluster of sizeN , other con-
straints (space, heat, data sets to be processed) limit the
practical cluster size toN , and it is desirable to determine if
the performance gains from adding an INIC are justifiable.
WhereECluster is greater than one, an Adaptable Comput-
ing Cluster is more cost-effective than a standard Beowulf
Cluster (showing an improvement in theprice / perfor-
manceratio). Likewise, a value less than one means that the
standard Beowulf Cluster is more cost-effective.Figure 7
compares the relative cost-effectiveness of three implemen-
tations of two applications. The baseline cluster always has
a cost-effectiveness of one relative to itself. While the proto-
type INIC is less cost-effective than the baseline cluster, the
ideal INIC achieves significantly better cost-effectiveness in
many cases.

A significant factor in theESerial for the baseline clus-
ter is the relatively high cost of the gigabit switch used.
This cost also has the potential to skew the relative cost-
effectiveness of the two clusters. Similarly, the high cost
associated with the low volume of the prototype INIC sig-
nificantly reduces its cost effectiveness.Figure 8addresses
this issue by illustrating the impacts of switch cost and INIC
cost on the relative cost-effectiveness of a fixed size (sixteen
node) INIC enhanced cluster.Figure 8also provides an ex-
ample of howE can be used to assess a new architectural
feature.CNet(N) was chosen to range from the current cost
of a Fast Ethernet switch,$1000, to the cost of a Gigabit
Ethernet switch for the prototype,$28000. Similarly,CRC
was chosen to range from a minimal cost of$100 to the
prototype INIC cost,$7500.

For the purposes ofFigure 8, the cost of nodes was main-
tained at a constant$2000. While the cost of equivalent
nodes will drop over time or, correspondingly, the speed of
a fixed price node will go up over time, both applications
considered are already limited by network and memory sub-
system performance. Network performance is being held
constant and memory performance is growing significantly
slower than processor performance; hence, it is reasonable

7
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Figure 6. ESerial of three possible implementations for (a) 2D-FFT and (b) Integer Sort

to consider the graphs without the need to vary node cost or
performance.

The breakpoint between “cost-effective” and “not cost-
effective” illustrated inFigure 8occurs whenECluster = 1.
From the figure, it is clear that an INIC can be cost-effective
for the applications under consideration at the right cost.
The additional performance achievable with a theoretical
INIC make it a clear choice for these applications in all
scenarios except those where the switch cost drops near its
minimum while the INIC cost is still near its maximum. The
prototype INIC, however, is clearly not cost-effective at its
current cost. Indeed, reaching cost-effectiveness for both
applications would require thatCRC drop to$1000. This is
not surprising as the performance of the prototype INIC is
significantly constrained by the single-bus architecture em-
ployed.Section 5will discuss a design capable of achieving
the theoretical INIC performance while constrainingCRC

to $1000.

5. Cost-Effective INIC Design

In Section 3, Figure 5references the potential speedup
of an Intelligent NIC. This potential is based on the use
of Gigabit Ethernet for the network fabric. Based on the
preceding cost analysis, designing a cost-effective INIC re-
quires careful attention to performance and cost. This sec-
tion presents a design to achieve the performance of the
ideal INIC built for a Gigabit Ethernet backplane presented
in Section 3while minimizing development and production
costs. The proposed design is illustrated inFigure 9.

The first objective is achieving the full potential per-
formance of the INIC architecture. This requires that at
least two gigabits of bandwidth be available between the
FPGA device(s) and the MAC. Simultaneously, there must

be two gigabits of bandwidth available between the FPGA
device(s) and host memory. In addition, there needs to be
sufficient FPGA logic resources to perform the tasks re-
quired. Finally, there must be enough memory and memory
bandwidth to support the buffering and processing of data.

To achieve two gigabits of bandwidth to the host mem-
ory, 64-bit 66-MHz PCI will be required. It is possible to
achieve two gigabits of bandwidth between the FPGA(s)
and the network using 64-bit 66-MHz PCI, but it is un-
desirable. Commodity chipsets are available (such as the
Vitesse XMAC-II VSC8840) which provide a simple asyn-
chronous FIFO interface with a full gigabit of bandwidth in
each direction. Sufficient FPGA logic will be application
dependent. For the 2D-FFT, the two Xilinx 4085XLA de-
vices available on the prototype have abundant resources;
however, the integer sort application needs additional RAM
resources to maintain counts for enough buckets to perform
the full bucket sort on the receiving side. A single Xilinx
Virtex 1000 provides more logic than two Xilinx 4085XLA
devices and provides the additional RAM needed for the in-
teger sort application.

Memory is used for two purposes on an INIC: buffering
packets for communication and buffering data for computa-
tion. In the prototype, the SRAM is used as a computation
buffer and the external FIFOs are used as a communication
buffer. This is not an ideal scenario since data for a packet
must be kept in the SRAM until an acknowledgment for
that packet is received. It would be better to have a separate
communications buffer that could hold data that had been
transmitted while waiting on acknowledgment. The buffer
should be large enough to keep a sufficient number of out-
standing packets to allow full rate communications. In ad-
dition, there should be enough memory to statically allocate
buffer space for each connection (typically one connection
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Figure 9. a cost-effective INIC

would be used per node in the cluster). Static allocation is
not strictly necessary and removing this constraint would
reduce the amount of communication buffer needed. For-
tunately, the memory needed for this type of access is in-
expensive and so the hardware design can be simplified by
allowing static allocation. Accesses to this buffer will be
bursty and sequential and will require 4 gigabits of sustain-
able bandwidth. Memory needs for the computation buffer
will be dependent on the application, so as much storage and
bandwidth as possible should be provided. The computa-
tion buffer should be based on Zero-Bus-Turnaround (ZBT)
SRAM to allow random accesses without penalty.

The second objective is minimizing cost. The Xilinx
Virtex-II 1000 can provide both the PCI interface and FPGA
resources needed for the INIC. This saves the cost of a sep-
arate component for the PCI interface and saves the design
cost of building an integrated device. The BG560 package
will provide an adequate number of user I/O pins. The Gi-
gabit Ethernet MAC is most easily provided by an off-the-
shelf chip such as the Vitesse XMAC-II VSC8840 used by
SysKonnect in their Gigabit Ethernet cards. It provides a
full-featured Ethernet interface for a relatively low cost. Al-
ternatively, the MAC could be implemented in the FPGA,
but providing the same level of features found in commer-
cial interfaces would consume a significant amount of rela-
tively costly FPGA fabric.

For the communications buffer, 133-MHz SDRAM with
a 64-bit datapath is adequate to meet the performance tar-
gets. This is the same commodity RAM used in modern
desktop machines so 128 MB can be provided at little addi-
tional cost. Accesses to the communication buffer are long,
sequential bursts so SDRAM introduces little penalty. For
the computation buffer, ZBT-SRAM should be used to pro-
vide penalty free random accesses with reads and writes
back to back. ZBT-SRAM is much more expensive so only

Part Qty Unit Cost Total

Virtex-II 1000 1 $323.00 $323.00
Gigabit Ethernet MAC 1 $62.50 $62.50
2MB 200MHz SRAM 2 $140.00 $280.00
128MB 133MHz SDRAM 1 $26.00 $26.00
Support Parts 1 $52.20 $52.20
Board Fabrication 1 $135.00 $135.00

Total $878.70

Table 2. parts and cost for an INIC

a limited amount can be provided while maintaining cost-
effectiveness. The proposed design, shown inFigure 9, in-
cludes two banks of 2 MB each.

Table 2provides a table of components and costs for the
design proposed inFigure 9. Support parts include such
things as transceivers and clock generators. Volume pro-
duction begins to play a factor when considering the board
fabrication costs. The quoted cost per board was based on
production of 1000 boards per month. Dropping to 100
boards per month has only an incremental impact on cost
($54, or six percent). Dropping to the 10 boards per month
more characteristic of current reconfigurable platforms in-
creases fabrication cost to$400 per board, an increase of
thirty percent in overall board cost3. More importantly, the
non-recoverable engineering (NRE) costs associated with
each new board design must be amortized across all of the
cards that will be produced. Unlike reconfigurable comput-
ing cards that will have total sales of only a few hundred
boards at most, a intelligent network adapter could be sold
in higher volumes as it could be marketed for cluster appli-
cations, traditional reconfigurable computing applications,
and network encryption applications such as IPSec[7].

The data inTable 2can now be used to calculate aCRC
for this design. Of the items listed, only the Virtex-II and
the SRAM are completely unique to the INIC. The size of
the SDRAM is larger than that necessary for a standard NIC
and so it contributes additional cost. Also, the board fabrica-
tion costs would be higher for an INIC than a standard NIC
because the INIC is a more complicated board and a lower
volume board than that used in a commodity NIC. Allowing
ninety percent of the SDRAM and board fabrication costs,
CRC is calculated to be$750. This value can be expected
to drop over time as FPGA technology matures. Current
(2001) market prices are a good indication of this: a Xilinx
Virtex 1000 ranges between$1400 and$2700 (depending
on package and speed grade) while a Xilinx Virtex-II 1000
(a part from a newer family with the same density) is only

3All cost information was provided courtesy of USC/Information Sci-
ences Institute East.
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$323.

6. Related Work

Much like this effort, SRC Computers, Inc.[15] seeks
to employ reconfigurable computing in a high-performance
parallel computing environment. In the SRC-6, MAP pro-
cessors incorporate FPGAs and give them full access to the
shared memory subsystem. While this addresses many of
the interfacing issues facing reconfigurable computing tech-
nology, it is implemented in search of peak performance
rather than cost-effectiveness.

Technologies such as Myricom’s Myrinet [3], used in
the Berkeley NOW [6], and Compaq’s Servernet-II [5] are
demonstrating that cluster users are willing to pay for higher
performance networks in their commodity systems. It is rea-
sonable to expect that a volume produced INIC would be of
similar cost to Myrinet or Servernet-II interfaces.

A number of efforts have researched using dedicated
computational resources on network interfaces. Research
at the University of Wisconsin [8] suggests that fixing one
processor of an SMP for communication processing bene-
fits light-weight protocols and improves performance when
communication is a bottleneck. Indeed, many gigabit net-
works now include embedded processors on the NIC for
various network processing tasks. Research efforts such as
Typhoon [13], Georgia Tech’s VCM [14], RWCP’s GigaE
PM project [16], and the University of British Columbia’s
GMS-NP project [4] all use such a processor to acceler-
ate distributed computing. Similarly, research at CMU ex-
plored hardware to augment ATM card to boost distributed
programming speeds with a Hardware Assisted Remote
Put (HARP)[12]. An INIC offers a potentially more cost-
effective solution than these efforts because it provides the
flexible computational abilities needed by these efforts and
provides adequate resources to place application specific
computation on the INIC.

Others have created clusters with reconfigurable cards
in each node [10], but we believe that integrating the
configurable fabric with the NIC is an important innova-
tion. Specifically, it is difficult to achieve cost-effectiveness
across a wide range of applications if the reconfigurable
computing units are unable to process the network data
stream directly.

7. Conclusions

Cost-effectiveness, which adds a cost dimension to the
traditional measure of speedup, was introduced as a method
for evaluating architectures. It was then used to assess an
extension to the traditional Beowulf Cluster architecture.
Cost-effectiveness is of particular concern in the Beowulf

community because Beowulf Clusters were introduced as
a low-cost alternative to traditional supercomputers. Any
extension to this architecture must provide a performance
improvement without imposing a significant cost penalty if
it is to be accepted.

It was discovered that the prototype for the INIC archi-
tecture would not be considered cost-effective. Although
it offered significant performance improvements in many
cases, these were far outweighed by the additional cost. The
theoretical architecture, however, does have the potential to
be cost-effective. To achieve this potential, an INIC must be
closer to the theoretical performance capabilities. It is also
important that it be relatively low cost.Section 5presents
a design for an INIC that would offer significantly higher
performance than the prototype and would be significantly
lower cost.
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