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Abstract

With a focus on commodity PC systems, Beowulf clusters
traditionally lack the cutting edge network architectures,
memory subsystems, and processor technologies found in
their more expensive supercomputer counterparts. What
Beowulf clusters lack in technology, they more than make
up for with their significant cost advantage over traditional
supercomputers. We propose an architectural extension that
adds reconfigurable computing to the network interface of
Beowulf clusters. This enhances both the network and pro-
cessor capabilities of the cluster. Furthermore, for some
applications, the proposed extension partially compensates
for weaknesses in the PC memory subsystem. We discuss
two applications, the 2D Fast Fourier Transform (FFT) and
integer sorting, which benefit from the resulting architec-
ture.

1. Introduction

Beowulf-class computers (cluster computers based on
COTS hardware and open system software) have emerged
as a cost-effective supercomputing solution for a variety of
problems. Unfortunately, the COTS hardware that enables
cost-effectiveness also limits the applicability of Beowulf
clusters to classes of problems, such as those similar to the
Fast Fourier Transform. In general, problems that depend
on a high performance interconnect to achieve scalability
tend to scale poorly. Beowulf clusters generally lack the
cutting edge network, memory, processor, and I/O subsys-
tems found in their more expensive supercomputing coun-
terparts.

∗This work was supported in part by the National Science Foundation
under NSF Grant EIA-9985986
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We propose a new architectural feature that integrates
reconfigurable computing (RC) with a standard high per-
formance network interface to form an Intelligent Network
Interface Card (INIC). By placing RC in the network datap-
ath, the INIC offers a mechanism to offload application pro-
cessing and network processing from a node’s processor(s).
Furthermore, it helps hide the weak PC memory hierarchy
by providing extensive capabilities to manipulate the data
stream. This is expected to deliver significant gains in per-
formance.

Though reconfigurable technology is currently impracti-
cal due to cost, recent advances have created an opportunity
for a commodity implementation. That analysis, however,
is beyond the scope of this paper (please see [17] for dis-
cussion of cost). Instead, this paper focuses on a descrip-
tion of the proposed architecture (Section 2) and an analysis
of its performance (Section 4). We use two applications
(FFT and integer sorting) described inSection 3to high-
light the performance of our architectural extension. InSec-
tion 4, we model the performance of our proposed system
for these two applications, highlighting the source of our
performance gains. To validate our analysis, we have built
an Adaptable Computing Cluster (ACC) — a prototype 8-
node cluster utilizing an off-the-shelf RC card fitted with a
Gigabit Ethernet NIC. This prototype cluster is described in
Section 5. We compare our INIC prototype against ordi-
nary Gigabit Ethernet inSection 6. The paper is concluded
with a discussion of related work (Section 7) and a summary
(Section 8).

2. ACC System Architecture

The goal of our ACC project is to explore architectural
enhancements to Beowulf clusters. In particular, we aim to
broaden the class of applications that map well to this type
of cluster.Figure 1illustrates the core of our proposed clus-
ter enhancement. Whereas a traditional NIC simply buffers
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Figure 1. (a) comparison of a traditional NIC and (b) the proposed architectural extension to form an INIC

data in a memory between the host and network, we pro-
pose inserting FPGA-based RC along the datapath to form
an INIC. The FPGAs could then be used in a range of modes
including:

• Compute Accelerator— Defined as using the FPGAs
strictly for application computing tasks, this mode
significantly enhances the computing power of a
node. A cluster with reconfigurable computing at ev-
ery node, such as the Tower of Power [13], amplifies
this capability. When using the INIC for compute ac-
celeration, a separate path to host memory is config-
ured to allow normal network operations.

• Protocol Processor— As a protocol processor, the
FPGAs are used strictly for network processing. A
properly designed Intelligent NIC could perform all
of the protocol processing for a node, offering more
features (such as collective operations), higher band-
width, and lower latency than current commodity net-
work subsystems. An INIC can always be designed
for better network performance than current systems
because the intelligence can be coupled with any net-
work fabric. (Unlike some solutions that have at-
tempted to use an embedded processor on the NIC for
protocol processing, reconfigurable computing pro-
vides more than enough computing power for full rate
transfers at any data rate.) The performance boost
comes from having protocol processing on the card
and eliminating the need for frequent, per-packet in-
terrupts. Further, acknowledgement packets and per
packet protocol overhead need not consume system
bandwidth (bus or memory).

• Combined Compute/Protocol Accelerator— Placing
computing and protocol elements in the FPGAs takes
advantage of the opportunity to tightly couple a high-
performance computing core with the network inter-
face. This is the most interesting of the three modes as
it has the advantage of very low latency from the com-
puting core to the protocol accelerator. Alternatively,

the computing portion can be a passive element, pro-
cessing data as it passes through the device at zero
cost.

This emphasizes the architecture’s ability to improve the
communication and computation performance of each node
in a cluster. More significantly, the project’s goal is to show
that the introduction of an INIC does more than just add RC
or enhance networking. Rather, the two enable each other
to succeed in improving applications that neither technology
alone improves.

3. Applications

Application performance is the metric for evaluating
new architectural ideas. Two applications have been cho-
sen for the preliminary evaluation of the INIC architec-
ture: the Fast Fourier Transform (FFT) and integer sorting.
These applications were chosen as examples of an INIC’s
ability to absorb a significant amount of an applications
into the communications operation. For each application,
the architecture-specific implementation is derived from the
standard parallel implementation. This section discusses the
applications and their implementation. Diagrams illustrat-
ing the implementations use a rounded box to represent pro-
cesses, rectangles for hardware function blocks, and arrows
to indicate data flow. Where there is ambiguity, sequences
are numbered. Each diagram shows one of many concurrent
network transactions in the cluster.

3.1. 2D-FFT

The 2D-FFT is used in a number of applications and is
representative of a broader class of parallel workloads that
must manipulate matrices that are contained in distributed
memories. The fundamental equation is

Y [i1, i2] =
n1−1∑
j1=0

n2−1∑
j2=0

X[j1, j2]ω
−i1j1
1 ω−i2j2

2 . (1)



This is commonly grouped as

Y [i1, i2] =
n2−1∑
j2=0

n1−1∑
j1=0

X[j1, j2]ω
−i1j1
1

 ω−i2j2
2 (2)

revealing the standard parallel implementation described
below.

3.1.1. Parallel Implementation

Our baseline parallel implementation is the highly op-
timized Fastest Fourier Transform in the West (FFTW)
package[12]. On a distributed memory machine, such as
a cluster, FFTW distributes a block of the rows of the data
to each processor. Then, the algorithm is parallelized as the
following four steps.

❶ compute the 1D-FFT for each row

❷ transpose the matrix (redistribution of data)

❸ compute the 1D-FFT for each row

❹ transpose the matrix (a second redistribution of data)

3.1.2. ACC Implementation

Implementation of the FFT on an ACC follows the same
template as FFTW. The matrix transpose at the core of the
algorithm couples extensive data reorganization with net-
work operations. Since the matrix transpose is a serialized
communications step, it becomes the limiting factor for par-
allel scaling of the FFT. Because of this, the reconfigurable
resources on the INIC are best dedicated to optimizing the
transpose. Like FFTW, an ACC implementation decom-
poses the transpose into three components: a local transpose
step, an all-to-all communication, and a final permutation.
With a row block data distribution, each processor hasM
rows of data, whereM = rows/P andP is the number of
processors. Assuming a square matrix is being transformed,
each processor exchanges anM×M block with every other
processor. To perform a transpose we locally transpose each
block, send the block to the appropriate node, and interleave
data from the blocks as they are received.

Unlike the standard parallel implementation, an imple-
mentation for the ACC pushes all data manipulation needed
for the transpose (on both send and receive side) onto the
INIC, as shown inFigure 2. This allows the data manip-
ulation to be embedded in the communication at minimal
additional cost. Furthermore, the communication protocol
used can be customized to the specific application since
each node knows exactly how much data will be sent to and
received from every other node.
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Figure 2. (a) block diagram of the standard par-
allel transpose algorithm; (b) INIC manipulation
of data stream

3.2. Integer Sorting

Integer sorting is a classic benchmark application. Al-
though some sorting benchmarks involve non-uniformly
(often Gaussian [2]) distributed data, our input data is syn-
thetically generated and uniformly distributed. Although
this is not a realistic assumption, it is a well-established
precedent. Using uniformly distributed keys allows us to
focus on evaluating the basic I/O and computational perfor-
mance of our architecture and, perhaps more importantly,
permits our results to be be compared directly with previ-
ously reported numbers (presented by researchers using the
same assumptions). As others have recognized, sampling
in a pre-sort phase helps address the shortcomings of our
assumption by leading to a more balanced workload.

Each of our sorting implementations are based on the
Count Sort as in [1]. We found that Count Sort was as much
as2.5× faster than quicksort. We also found that in our test
environment it is important to first bucket sort the data such
that the buckets fit in the processor cache.

3.2.1. Parallel Implementation

The parallel implementation of the distributed memory to
distributed memory sort assumes the data is initially dis-
tributed acrossP processors whereP is a power of two.
Each processor begins by bucket sorting its data intoP
buckets. Bucketi from each processor is then sent to pro-
cessori.
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Figure 3. (a) operations involved in a standard
parallel integer sort; (b) bucket sorting in INIC
implementation

As a processor receives the data, it bucket sorts the data
into buckets designed to fit in processor cache. Once all
data has been collected, each bucket is sorted with Count
Sort. The Count Sort is the final sorting phase — with 32
bit integers and more than128 buckets there is no need for
the final bubble sort described in [1]. On a problem size of
221 keys or more, a minimum of128 buckets are needed for
the problem to map well into cache.

3.2.2. ACC Implementation

Figure 3 illustrates the differences in data flow for a tra-
ditional parallel implementation and an ACC implementa-
tion. Like the parallel implementation, the ACC implemen-
tation must bucket sort the data on the sending and receiving
nodes. Since bucket sorting is particularly amenable to im-
plementation on the INIC, we implement both bucket sorts
in hardware. Three factors make the bucket sorts a good
choice for implementation on the INIC. The bucket sorts:
(i) are tightly coupled to communications, (ii) reorganize
the entire data stream in a single pass, and (iii) compose a
significant portion of the computational load.

Figure 3(b) diagrams these operations implemented in
the INIC. On the sending side, data is transferred directly
from host memory to INIC memory. Along the path, the
data is manipulated to perform the bucket sort operation.
Like the parallel implementation, the INIC implementation
can overlap communication with computation. In fact, the
INIC can start transmitting data at lower bucket thresholds

(one packet) since there is no computational cost for starting
a send. (This is not to say that there is no computation in-
volved in starting a send, only that starting a send is handled
by hardware that sits idle if no send is in progress.) Hence,
on the sending side, the INIC handles all of the computation
and protocol processing leaving the processor free to other
tasks such as disk I/O.

On the receiving side, the bucket sort can be done as
data is received. As minimum thresholds are reached, data
is transferred to the host. After all data is received, each
bucket is sorted with Count Sort. While at first glance it
might appear that Count Sort would be amenable to im-
plementation in hardware, it should be noted that cache
memory bandwidth on a commodity processor is much
higher than the comparable memory bandwidth for an INIC,
making certain cache-friendly, memory-intensive opera-
tions better suited to the host processor.

4. Architecture Analysis

Here, the potential performance of the proposed INIC
with a Gigabit Ethernet interface is analyzed and compared
to the performance of a cluster using a Gigabit Ethernet
NIC. Although an INIC is not limited to gigabit per second
networks, the same underlying network is kept for compar-
ison. While the results presented in this section are theoret-
ical, they are supported by preliminary measurements from
our prototype. Individual bandwidths used in the analysis
have been measured, including the bandwidth to and from
the INIC while performing the local transpose steps. INIC
to INIC bandwidth has also been measured. Numbers used
in calculations are a conservative 80%–90% of measured
results.

4.1. FFT Performance

The run-time,T , of the FFTW application can be ap-
proximated as the sum of the time to compute the FFT and
the time to transpose the matrices, or

T = Tcompute + Ttrans (3)

with Tcompute defined as the time to perform the FFT com-
putation for each row assigned to the processor. This can be
written as,

Tcompute = 2×
(
T1D-FFT(rows)× rows

P

)
(4)

whereT1D-FFT(rows) is the time to compute the 1D-FFT of
one row of a matrix of sizerows, rows is the number of
rows in the (presumably square) matrix, andP is the num-
ber of processors used. The remainder of the application



time is accounted for inTtrans , which is the total time spent
doing the two required matrix transposes. For an INIC, the
transpose time can be defined as follows. The partition size,
S, (in bytes) is,

S =
rows2 × 16

P
(5)

where 16 is the number of bytes to store a complex double
precision element andP is the number of processors. As-
suming that we can pipeline data movement from host to
card and from card to network, transferring the data to the
FPGA memory from host memory requires

Tdtc =
S
P

80 × 1024× 1024
(6)

seconds of delay. The transfer of data from FPGA memory
to the network requires an additional

Tdtg =
S
P

90 × 1024× 1024
(7)

seconds of delay. Again, we assume that receives can be
pipelined with sends after each card has transmitted one
processor’s worth of data. Insuring that each processor is
always sending and receiving is a fairly simple matter. The
time (in seconds) to receive the data from the network can
be described by:

Tdfg =
(P−1)×S

P

90× 1024× 1024
. (8)

The final copy of data to the host must wait on all data to
be received, so the time required for the host to retrieve the
results is:

Tdth =
S

80 × 1024× 1024
(9)

Thus, the total time to perform both matrix transposes is the
sum of (6) through (9) times 2 because the transpose is done
twice (steps❷ and❹ in Subsection 3.1),

Ttrans = 2 × (Tdtc + Tdtg + Tdfg + Tdth) (10)

Based on this analysis, we have created the graphs shown in
Figure 4.

Looking atFigure 4(a), we see that even though they use
the same network technology, an Intelligent Gigabit Ether-
net NIC significantly outperforms the standard Gigabit Eth-
ernet NIC for a matrix transpose. To understand why, we
need to look inside the numbers. Since the only difference
in the implementations is the transpose, the graph inFig-
ure 4(b) shows a decomposition of the transpose time for the
Gigabit Ethernet NIC and INIC. The compute time scales
as expected. The curve is smooth except at 2–3 proces-
sors and 6–8 processors where the local partition fits into a

faster level of the memory hierarchy. Communication time,
however, does not scale as well. Since the Intelligent NIC
numbers are estimates, one might argue that real measure-
ments would be significantly worse; however, it is important
to note that the poor scalability seen in the communication
time for the Gigabit Ethernet NIC is a characteristic of the
TCP/IP protocol and the PC system architecture.

First, TCP is designed for long, moderate-latency, low
bandwidth transmissions over a lossy, and possibly con-
gested, channel. A cluster typically uses a low latency, high
bandwidth, extremely low loss, limited congestion chan-
nel. Furthermore, as we move to the right in the graph in
Figure 4(b), the data size exchanged between processors
becomes relatively small. To complicate matters further,
high speed network interfaces typically use some form of
interrupt mitigation — based on a time-out or number of
messages received. This mechanism is necessary because
modern systems are incapable of handling an interrupt per
packet at the full data rate of Gigabit Ethernet, but it inter-
acts poorly with TCP slow-start for short messages. These
factors combine to contribute to network overhead and to
prevent the transpose communication time over Gigabit Eth-
ernet from decreasing as rapidly as the partition size. This is
evident in the graphs as the line representing partition size
has a steeper slope than the one representing communica-
tion time.

The intelligent NIC does not suffer from these problems.
The foremost improvement is the virtual1 elimination of in-
terrupts from the communication path. The FPGAs are able
to respond instead to the memory accesses by the Gigabit
NIC on the PMC slot. Beyond that, INICs can use an ap-
plication specific protocol. In this particular instance, there
should be no packet loss as the total amount of data put
into the network never exceeds the total size of the network
buffers (combined NIC and switch buffers). The protocol
also has the advantage of knowing exactly how much data
to expect; hence, the protocol needs minimal acknowledge-
ment information.

Referring back toFigure 4(a) we see near linear speedup
for our INIC based system. The graphs show good scal-
ability with no substantial indication of when that linear
speedup will end. The FFTW application as implemented
with an INIC will stop scaling when communication time
no longer scales down with partition size. This could be
caused by any number of system issues. On the PC archi-
tecture, it is likely to be the limits on the efficiency of the
DMA engines at transferring data to and from host memory.

1Initiation of the transfer of data to the host memory may require a
single interrupt per transpose. On rare occasion, interrupts may be needed
for error handling
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Figure 4. (a) FFTW speedups for an Intelligent NIC and a cluster based on Gigabit Ethernet; (b) a decom-
position of time spent in each phase of the operation compared to partition size

4.2. Integer Sort Performance

Since the integer sort application sorts data from dis-
tributed parallel memory to distributed parallel memory, the
run-time,T , can be approximated as the sum of the time to
redistribute the data and the time to perform the count sort
on the final buckets, or

T = Tcountsort + TINIC (11)

with Tcountsort being dependent on the number of elements
on each processor and thus the same for any of our imple-
mentations. A graph of measuredTcountsort for various
numbers of processors is shown inFigure 5(a).

The remainder of the application time is accounted for in
TINIC which is the total time from when the data enters the
sending INIC until it is retrieved from the receiving INIC.
TINIC is dependent on the partition size (elements per pro-
cessor), the size of packets used to communicate, and the
transfer size on the receiving host.

The partition size,S, (in bytes) is,

S =
4 × Einit

P
(12)

where 4 is the number of bytes to store an integer,Einit

is the total number of elements being sorted, andP is the
number of processors. Assuming that we can pipeline data
movement from host to card and from card to network,
transferring the data to the FPGA memory from host mem-
ory requires

Tdtc =
P × 1024

80× 1024× 1024
(13)

seconds of delay. This assumes a packet size of 1024 bytes
and assumes the worst case distribution of data into bins
before transmits can begin. A packet size of 1024 is reason-
able since each design can have a protocol built directly on
Ethernet. This minimizes overhead in the packets. Further,
since our architecture eliminates interrupts and does not in-
volve a shared bus between the NIC and the reconfigurable
logic, there is no particular incentive to maximize the packet
size.

The transfer of data from FPGA memory to the network
requires an additional

Tdtg =
P × 1024

90 × 1024× 1024
(14)

seconds of delay. Again, we assume that receives can be
pipelined with sends, hiding additional delay. The delay
(in seconds) for receiving the data from the network can be
described by:

Tdfg =
N × 65536

90× 1024× 1024
(15)

where 64 KB is the minimum size transferred from the card
to host memory to ensure efficiency of the DMA operation.
We must receiveN times this size, whereN is the number
of buckets we are sorting into on the receiving side, before
being guaranteed that any one bucket will cross the thresh-
old for transfer. Finally, the time required for the host to
retrieve the results is:

Tdth =
S

80 × 1024× 1024
(16)
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Thus, the total time to perform the data redistribution is the
sum of Equations (13) – (16),

TINIC = Tdtc + Tdtg + Tdfg + Tdth (17)

Figure 5(b) compares the speedups of an INIC and a Gi-
gabit Ethernet implementation of integer sorting. The su-
perlinear speedups achieved by the INIC implementation is
attributable to the elimination of the time for bucket sorting
the data (over 5 seconds in the serial implementation). The
INIC exhibits much better speedups than the Gigabit Ether-
net solution by eliminating bucket sorting time and imple-
menting a better protocol for the relatively small data trans-
fers caused by larger numbers of processors. It is difficult
to directly compare the communications times of the two
implementations because bucket sorting time is overlapped
with communication times for best performance in a Gigabit
Ethernet implementation.Figure 5(a) breaks out the timed
components of a serialized parallel implementation on Gi-
gabit Ethernet.

5. Prototype System

Our experimental platform is a 16-node Beowulf run-
ning the Scyld Linux distribution. Each node contains a
32-bit PCI motherboard with a 1GHz Athlon and 512 MB
of RAM. On the PCI system bus is a SysKonnect PCI Gi-
gabit Ethernet NIC, and a Fast Ethernet NIC. Eight of the
systems include an ACEII card (shown inFigure 6) popu-
lated with a Gigabit Ethernet NIC.

Although not ideal, the board is a sufficient experimental

Figure 6. block diagram of an ACEII card

testbed for prototyping an Intelligent NIC. Furthermore, be-
cause it was an off-the-shelf design, we were able to contain
costs. It has the added advantage of a PMC connector that
offers a standard interface for which a variety of network
adapters are commercially available.

Ideally, an Intelligent NIC would be implemented as a
single chip with external RAM — similar to modern high
performance NICs. Further, the system PCI bus would be
sufficient (64-bit 66MHZ or, in the future, PCI-X) to deliver
the full bi-directional bandwidth of the network. Architec-
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Figure 7. prototype INIC integer sort implemen-
tation

tural deficiencies in the prototype prevent it from achiev-
ing its full potential as an Intelligent NIC. These deficien-
cies include a single bus on the card for all data traffic, a
32-bit 33MHz PCI busses, an older generation of reconfig-
urable logic, and limited memory attached to the FPGAs.
Nonetheless it suffices to demonstrate the concepts we are
addressing. Newer boards with similar cost address some of
these issues but lack the PMC connector necessary to sup-
port the networking functions.Section 4predicted the per-
formance achievable with a next generation Intelligent NIC,
while Section 6addresses the performance achievable with
out prototype INIC.

6. Experimental Results

This section compares measured results for our baseline
parallel implementations with those achievable on our pro-
totype hardware.Figure 2(b) shows the actual transpose
implementation achievable in hardware, andFigure 7shows
the integer sort implementation achievable. For the FFT, the
design does not change when compared with with the ideal
implementation, but the prototype hardware does introduce
a bottleneck in the form of a single 132 MB/s bus used to ac-
cess both the Gigabit Ethernet and host memory. The inte-
ger sort implementation has changed significantly from the
one found inFigure 3(b). In addition to the bottleneck in-
troduced by the bus, the Xilinx 4085XLA devices we have
are not dense enough to perform the full bucket sort on the
INIC. Consequently, the bucket sort must be performed in
two phases. The card sorts the data into 16 buckets and the
host sorts each of those buckets intoN buckets, whereN is
based on the data size. Surprisingly, this can provide higher
performance than having the host sort directly into16 × N
buckets. Despite the limitations of the prototype hardware,
it is capable of significant speedups for both applications.

6.1. FFT Results

Figure 8(a) compares the scalability of FFTW on Fast
Ethernet, Gigabit Ethernet, and our prototype Intelligent
NIC. Intelligent NIC speedups are conservative estimates.
These estimates combine measurements of actual times to
transfer data to and from the card while performing the lo-
cal transpose and final permutation based on the proposed
design. They also include preliminary bandwidth measure-
ments between two cards. The equation used is similar to
the one developed inSection 4with adjustments to account
for the architectural weaknesses of the prototype. Gigabit
Ethernet and Fast Ethernet results are measurements taken
with the FFTW package. The graph tells an interesting
story.

The Fast Ethernet data inFigure 8(a) indicates that the
bandwidth of Fast Ethernet severely limits scalability for
problem sizes of interest. To exceed the performance of a
single processor, a minimum of eight nodes is required, and
using 14 nodes barely doubles the performance of a single
processor. In contrast, Gigabit Ethernet gives a speedup of
two with 8 processors and is able to approach a speedup of
four in some cases. This is better, but would hardly be con-
sidered scalable. Finally, the prototype INIC performance
data indicates that the prototype INIC offers both a signif-
icant speedup over and better scalability than the standard
Gigabit Ethernet solution, although both use the same net-
work hardware.

Figure 8(b) directly compares the transpose times2 for
the two matrix sizes under consideration using a Gigabit
Ethernet implementation and an INIC solution. We can
see significant speedup for the matrix transpose operation
is given by the INIC based system. Additionally, the slopes
of the graphs indicate better scalability from an intelligent
NIC.

6.2. Integer Sort Results

Figure 8(b) compares the speedup of our prototype INIC
and Gigabit Ethernet implementations. Speedups for the
INIC are estimates formed in the same way as those for the
FFT. Speedups obtained by the Gigabit Ethernet are mea-
sured results. The prototype INIC can not achieve the full
potential of the INIC limited both by the bus bandwidth on
the card and the need to perform a second stage bucket sort
on the receiving host.

2Transpose time measurements for numbers of processors that are not a
power of two for the INIC are estimates added strictly to smooth the curve.
The general shape of the curve made this desirable for clarity.
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Figure 8. (a) 2D-FFT parallel speedup for a on three technologies: Fast Ethernet, Gigabit Ethernet, and an
Intelligent NIC; (b) Integer Sort parallel speedup on Prototype INIC and Gigabit Ethernet

7. Related Work

Until recently, commodity network interfaces and
switches had limited bandwidth and high latencies com-
pared to multicomputer interconnection networks. To en-
hance performance, advances in user-level interfaces and
related research has reduced latency. Examples include
VIA [ 5] and its predecessors (AM [19], U-Net [18]). How-
ever, software cannot compensate for the bandwidth differ-
ence between commodity networks and typical multicom-
puter interconnects. Thus, efforts like the SHRIMP mul-
ticomputer [3] combined commodity-PC workstations with
custom NICs and an Intel Paragon routing backplane. Simi-
larly, the Berkeley NOW [9] (and many clusters since) have
used Myrinet [4] components or Compaq’s Servernet-II [7].

With the advent of competitors to Myrinet, including Gi-
gabit Ethernet and Scali Computing’s Wulfkit [8], and con-
sidering current prices, it appears that gigabit networks are
reaching commodity prices. Thus, the question becomes
how best to use this bandwidth. In early distributed memory
multicomputers, many designs included a processor ded-
icated to communications processing. Since then, others
have considered using all processors for both communica-
tion and computation. In the cluster context, this translates
into multiprocessor nodes (SMP workstations). However,
results from researchers at the University of Wisconsin [10]
suggest that fixing one processor for communication pro-
cessing benefits light-weight protocols and improves perfor-
mance when communication is a bottleneck. These results
when combined with the arguments made in [11] (which
suggest that I/O system busses will continue to inhibit giga-

bit networking) leads one to focus on adding more process-
ing capabilities to the NIC.

Indeed many, gigabit networks have embedded proces-
sors on the NIC that researchers are exploiting in many
ways. In this way, we are similar to Typhoon [14], Geor-
gia Tech’s VCM [15], RWCP’s GigaE PM project [16], and
the University of British Columbia’s GMS-NP project [6].
All of these use a processor on the NIC to accelerate dis-
tributed computing. However, these solutions (1) are based
on embedded processors with a fraction of the computing
power of reconfigurable logic and (2) ignore the potential
of adding application-specific computation on the NIC-side
of the I/O bus. Our architectural extension is also inherently
different in that the network data stream passes through the
reconfigurable logic allowing it to apply an arbitrary data-
flow algorithm to the data. Embedded processors are funda-
mentally incapable of this.

Others have created clusters with reconfigurable cards in
each node [13]. However, relatively low PCI bus speeds
have always hindered RC and this problem is further com-
plicated when the PCI bus is shared with cluster network
traffic. Avoiding this by integrating the RC with the NIC is
an important innovation.

8. Summary

We have proposed an architectural extension to the clas-
sic Beowulf cluster architecture in the form of reconfig-
urable computing in the network datapath. We hypothesized
that such an extension would provide scalability to applica-
tions that have typically mapped poorly to Beowulf clusters.



We discussed two such applications, FFT and integer sort,
and their performance on an Adaptable Computing Cluster.

FFT is representative of a broad class of algorithms that
are difficult to parallelize on commodity distributed mem-
ory clusters because the parallel run-times are dominated by
communication operations. As a complex double precision
floating point calculation, it is also in a class of applica-
tions that has been ill-suited to FPGA technology. Properly
merging the two technologies, however, enables significant
parallel speedup and drastically better scalability on a com-
modity cluster. We have illustrated that even with prototype
hardware, the INIC is capable of providing significantly bet-
ter performance.

Integer sorting, on the other hand, is easily parallelized
for large problem sizes; however, like the FFT, it performs
large data reorganizations in association with the communi-
cation operations. Because of this, an INIC offers it a signif-
icant performance win. Even with prototype hardware that
is unable to perform the full bucket sort on the receive side,
the partial bucket sort can improve memory access patterns
enough for a performance improvement.

We have shown that these applications receive significant
benefits from an Intelligent NIC. Indeed, inserting reconfig-
urable computing in the path from network to memory has a
myriad of benefits, including essentially eliminating all in-
terrupts in many cases. By combining Beowulf clustering
and reconfigurable computing, we have achieved a result
that is greater than the sum of its parts. The implications
of this architecture are far reaching, with the potential to
accelerate functions ranging from collective operations to
MPI derived data types at a cost that is not prohibitive to
commodity implementations.
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