
Allo
ation and S
heduling for a

Computational Grid

A Thesis

Presented to

the Graduate S
hool of

Clemson University

In Partial Ful�llment

of the Requirements for the Degree

Master of S
ien
e

Computer Engineering

by

Carel A. Lewis

De
ember 2001

Advisor: Dr. Walter B. Ligon III



De
ember 14, 2001

To the Graduate S
hool:

This thesis entitled \Allo
ation and S
heduling for a Computational Grid" and

written by Carel A. Lewis is presented to the Graduate S
hool of Clemson University.

I re
ommend that it be a

epted in partial ful�llment of the requirements for the

degree of Master of S
ien
e with a major in Computer Engineering.

Walter B. Ligon III, Advisor

We have reviewed this dissertation

and re
ommend its a

eptan
e:

Ron Sass

Adam Hoover

A

epted for the Graduate S
hool:



Abstra
t

Parallel 
omputers are be
oming in
reasingly important for modern engineering

and s
ienti�
 simulation. A su

essful type of parallel 
omputer is the Beowulf 
lus-

ter. These 
lusters emphasize using many 
ommodity pro
essors in parallel to try

to a
hieve the performan
e levels of more expensive super
omputers. A growing re-

sear
h area is in 
onne
ting multiple Beowulfs into a Computational Grid to 
reate a

distributed system of 
lusters.

With multiple resour
es distributed a
ross a system, an e�e
tive way to 
ombine

their pro
essing power must be examined. A way to transfer the ownership of the

remote pro
essors on a 
luster to a separate 
luster on the Grid is needed to be able

to 
ombine the resour
es into a larger 
omputer. This paper explores the di�erent

aspe
ts of s
heduling and allo
ating resour
es in a Grid of Beowulfs. It also des
ribes

the design of a spe
ialized node allo
ation me
hanism for a su
h a 
luster. This

me
hanism integrates with 
urrent Beowulf software whi
h allows the user to see a

\single" 
omputer instead of a distributed system.

The te
hniques used by this new me
hanism to borrow and return nodes between

separate 
lusters is dis
ussed, as well as methods for order of 
onta
t and ownership of

nodes. This paper also surveys a few di�erent allo
ation and s
heduling tools that are


urrently used in parallel 
omputers. By using these ideas and the new me
hanism,

the organization and the 
omputational power of a Grid of Beowulfs will be improved.



Dedi
ation

To my friends and family, for their love and support through the last �ve years.

Without your help and patien
e, none of this would have been possible.

Espe
ially to my parents, ea
h of whom has given me love, knowledge, and a spe-


ial trait that has helped me to su

eed. To my mother, who has given me her strength

and 
ommitment to ex
ellen
e. To my father, who has given me his adaptivity and

te
hni
al skills. To my step-father, who has helped me to develop management and

organizational skills. To my step-mother, who has helped me to develop persisten
e

and patien
e.



A
knowledgments

I would like to espe
ially thank Dr. Walt Ligon for his guidan
e and support. Your


ommitment to resear
h has helped me to expand my knowledge in many dire
tions.

I would also like to thank my 
ommittee members and Dr. Daniel Stanzione for their

dire
tion and advi
e.



Table of Contents

Page

TITLE PAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

1 Introdu
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Computational Grids . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Ideal Mini-Grid Capability . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 One Cluster Example . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Mini-Grid Example . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Allo
ation and S
heduling Issues . . . . . . . . . . . . . . . . . . 8

1.4 Proposed Solution . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 S
hedulers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 MAUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2 Bbq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Allo
ators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Conne
tion Ma
hine . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 Globus Resour
e Allo
ation Manager . . . . . . . . . . . . . . 20

3 Ballo
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 Introdu
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 End User Fun
tionality . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 In
orporation into MPI . . . . . . . . . . . . . . . . . . . . . . 25

3.2.2 Ballo
 API Fun
tions . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.3 Ballo
 Control Manager and Status Reports . . . . . . . . . . 31

3.3 System Daemon Ballo
 . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.1 One Cluster Implementation . . . . . . . . . . . . . . . . . . . 32

3.3.2 Two or More Cluster Implementation . . . . . . . . . . . . . . 36

4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1 Testbeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Experiments Completed with Timing Information . . . . . . . . 48



v

5 Con
lusions and Future Work . . . . . . . . . . . . . . . . . . . . . . 50

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

A Ballo
 API Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

A.1 Overview of Ballo
 API . . . . . . . . . . . . . . . . . . . . . . . 53

A.2 Example Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

A.3 Fun
tion Des
riptions . . . . . . . . . . . . . . . . . . . . . . . . 61

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82



List of Figures

Figure Page

1.1 Mini{Grid Ar
hite
ture . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Example of allo
ation on one 
luster. . . . . . . . . . . . . . . . . . . 6

1.3 Example of use on Mini-Grid. . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Proposed stru
ture for a Beowulf allo
ation tool. . . . . . . . . . . . . 10

2.1 Steps taken by servi
es to run user pro
esses. . . . . . . . . . . . . . 13

2.2 Conne
tion Ma
hine, CM{5, Ar
hite
ture. . . . . . . . . . . . . . . . 19

2.3 Globus Resour
e Allo
ation S
heme. . . . . . . . . . . . . . . . . . . 21

3.1 Mpirun exe
ution sequen
e. . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 State transitions available for nodes in Ballo
. . . . . . . . . . . . . . 34

3.3 State transitions by a loaner, available on Beowulf Grid. . . . . . . . 37

3.4 State transitions by a borrower, available on Beowulf Grid. . . . . . . 38

3.5 Tra
king set numbers while borrowing nodes. . . . . . . . . . . . . . . 39

4.1 Grendel Testbed Ar
hite
ture . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Clemson University's Mini-Grid Stru
ture . . . . . . . . . . . . . . . 47



Chapter 1

Introdu
tion

The amount of information gathered around the world, from satellites to hospital re-

sear
h, is in
reasing at a dramati
 rate. This data 
ould hold the answers to weather

fore
asting, environmental situations, or even the early dete
tion and treatment of

geneti
 diseases. Pro
essing this data is be
oming in
reasingly diÆ
ult, due to the

enormous amounts available for di�erent types of testing. Computers have be
ome

key in getting results qui
kly. Even so, many di�erent algorithms 
an be performed

on the same data, 
ausing an even greater need for 
omputational power. Demand for

faster 
omputers has driven resear
h in pro
essor speed and 
aused an almost expo-

nential in
rease in performan
e, but this in
rease is still not enough. By �nding ways

to in
rease the 
omputational power of existing ma
hines, resear
hers 
an pro
ess the

available data with mu
h greater speed.

Several ar
hite
tures exist that use 
omputers in parallel to pro
ess information.

By s
heduling jobs and allo
ating these 
omputers in eÆ
ient ways, several users 
an

be running pro
esses at the same time. The more 
ompetent the s
heduling and

allo
ation servi
es are, the less time users must wait for answers. If these tools were


apable of 
ombining several existing parallel 
omputers into one large 
omputer, the



2

available 
omputational power for a single user would allow an in
rease in 
omputa-

tional resear
h in almost any area or �eld.

1.1 Computational Grids

High performan
e 
omputing is �lling the gap between the pro
essing speed required

and what is 
urrently available. On large data sets that require 
ertain 
omputations,

parallel ma
hines 
an almost a
hieve a linear speedup over single pro
essor 
omputers.

For a time, this power was only available to a limited few who 
ould a�ord large,

expensive super
omputers. However, in the last few years a movement has been made

to use many 
ommodity pro
essors in parallel to try to a
hieve the same performan
e

levels. The original proje
t was named Beowulf and was started by Tom Sterling and

Donald Be
ker in 1994 [18℄. The �rst 
luster 
ontained sixteen pro
essors and was


reated at NASA's Goddard Spa
e Flight Center.

A Beowulf 
luster is a grouping of 
omputers, ea
h with its own pro
essors, mem-

ory, hard drives, and network 
ards. Normally these 
omputers use the Linux oper-

ating system and Ethernet swit
hes for 
ommuni
ation. On ea
h 
luster there exists

a \head node" that is usually 
onne
ted to an external network. This head node


ontains 
onne
tions to the \remote nodes", or the nodes that would do the a
tual


omputation of a program. Ea
h node in the 
luster is dedi
ated to the 
luster and

sin
e the remote nodes are not subje
t to the external network, their performan
e


orresponds only to the program 
urrently exe
uting.

Beowulfs have grown in popularity and are found in a wide range of pla
es. Their

a�ordability and 
omputational power en
ourages experimentation. A problem o

urs

though, when a single user tries to manage a large number of pro
essors. S
alability

be
omes an issue, be
ause of the number of 
on
urrent pro
esses that are a
tively


ommuni
ating with ea
h other. To 
he
k the status of ea
h 
omputer, the user



3

must log on to ea
h node to �nd out any information. Debugging be
omes espe
ially

diÆ
ult when 
ommuni
ation between 
omputers fails for unknown reasons. Spe
ial

software has been developed to simplify this pro
ess.

The S
yld operating system is designed to allow a user to see a Beowulf as a

single 
omputer, simplifying programming and administration. The 
ore of the S
yld

system is a distributed pro
ess spa
e 
reated by a set of daemons, 
alled Bpro
.

Pro
esses are started on the head node and migrated out to the remote nodes, for

a
tual 
omputation. A \ghost" pro
ess 
an still be seen on the head node that mirrors

all information about the a
tual pro
ess on the remote node, whi
h allows simpli�ed

management. This single image view of a 
luster 
omputer and the su

ess of this

system en
ourages the development of other user software spe
i�
ally designed for

Beowulfs.

More re
ently resear
hers have been trying to �nd a way to 
ombine resour
es

that are spread out over great distan
es to allow for even greater 
omputational

power. These resour
es in
lude a variety of hardware in
luding extremely powerful

super
omputers, databases, networks, and 
lusters. These groupings are known as

Computational Grids and programs for these arrays usually in
lude a great deal of

data partitioned over the Grid. A Computational Grid is similar to a Power Grid,

where a

ess to the Grid is available at many points. A user 
an plug in anywhere

on the Grid to get the ne
essary power, whether it be 
omputational or ele
tri
al.

Timing, se
urity, and stability be
ome issues when dealing with the extensive size

and heterogeneous nature of su
h a system.

Simpler versions of Computational Grids are in development. These \Mini{Grids"

try to use a lo
alized setting as an advantage for 
ommuni
ations, instead of relying

on slow Internet 
onne
tions to transfer data and pro
ess information. They also


ontain a homogeneous mixture of resour
es 
onsisting of S
yld Beowulfs. These

Mini{Grids 
an be illustrated as one large 
luster that is broken into several smaller



4

Private Network

Internet

Figure 1.1: Mini{Grid Ar
hite
ture



5

sub{
lusters, whi
h helps to simplify administration, as seen in Figure 1.1. Ea
h

sub{
luster 
ontains its own head node, and no hierar
hy exists between them, so

ea
h one 
an be used as a full 
luster. The sub{
lusters' remote nodes are 
onne
ted

in the ba
kground with 
ommuni
ation devi
es on a private network. This allows

any remote node to belong to any head node. In this way the entire Mini{Grid

ar
hite
ture 
an be 
ombined to be one massive Beowulf 
omputer.

1.2 Ideal Mini-Grid Capability

The 
apabilities that should be available in a Mini-Grid 
an be des
ribed with two

example allo
ations, or jobs with di�erent allotments of nodes. The �rst is on a

single 
luster and 
on
erns the basi
 fun
tionality ne
essary in an allo
ation tool.

The se
ond is an example on our target ar
hite
ture the Mini-Grid with four separate


lusters. Three of those 
lusters are owned by di�erent groups, and the fourth 
luster

is a node pool that is available to all the other 
lusters.

1.2.1 One Cluster Example

The �rst example is the use of a single 
luster. The ar
hite
ture used for this demon-

stration 
ontains thirty-two nodes and 
an be seen in Figure 1.2. This example shows

multiple users a

essing a single 
luster at the same time.

The �rst job to arrive is a Shared allo
ation request for eight nodes. The se
ond

job that is �lled requests Ex
lusive use, be
ause it is time-restri
tive, and requests

twenty nodes. These two requests are ful�lled with out any problems.

The next request asks for sixteen nodes, but only twelve are available for shared

mode, eight of whi
h already have a user on them. At this point the allo
ator 
he
ks

to see if the user will ex
ept fewer nodes. If not, an error o

urs and a a
knowledgment



6

            Shared      8 Nodes 

            Exclusive  20 Nodes  

            Shared      12(16 req) Nodes 

    

Figure 1.2: Example of allo
ation on one 
luster.

is sent telling the user that the nodes are not available. However, for this example,

the 
ag is set and the nodes are allo
ated.

Several other Shared jobs 
ould still a

ess twelve nodes. No Ex
lusive jobs 
ould

be started and no nodes 
ould be borrowed though, until nodes be
ame Free.

1.2.2 Mini-Grid Example

The se
ond example shows several users on ea
h ea
h 
luster of a Mini-Grid. This

illustration 
an be seen in Figure 1.3. The ar
hite
ture for this example is taken

from a testbed that is dis
ussed further in Se
tion 4.1. All options are represented

by di�erent jobs on the 
luster. There are three groups that have a

ess to this Mini-

Grid, the Center for Advan
ed Engineering Fibers and Films (CAEFF), the Clemson

University Genomi
s Institute (CUGI), and the Parallel Ar
hite
ture Resear
h Lab

(PARL).



7

Internet

            Shared      96 Nodes  CAEFF

            Shared      48 Nodes  CAEFF

            Shared      32 Nodes  PARL

            Exclusive  48 Nodes  PARL

  Shared      64 Nodes  CUGI

  

CAEFF Cluster
(32 Nodes)

CUGI Cluster
(32 Nodes)

Processor Pool
(128 Nodes)

PARL Cluster
(64 Nodes)

Figure 1.3: Example of use on Mini-Grid.

This example 
onsists of �ve jobs. The �rst arrives on the CAEFF 
luster re-

questing 96 nodes in Shared mode. This 
luster only 
ontains 32 nodes, and must

borrow nodes if any are available. The �rst pla
e every 
luster queries for borrowed

nodes is the Node Pool. This Pool is used only to provide the other 
lusters with

spare nodes. Assuming the borrowing is allowed, the 
luster a

esses the other nodes,

and allo
ates those nodes on
e the request 
an be �lled.

The next job is on the same 
luster. This request is for 48 Shared nodes, whi
h


an be �lled on the lo
al nodes and the 
urrently borrowed nodes. Sin
e the nodes

have already been borrowed, the reboot delay is not en
ountered.

The third job is on the PARL 
luster and is requesting 32 Ex
lusive nodes. It 
an

be �lled on the lo
al 
luster. The next job is requesting 48 Ex
lusive nodes, but it

requests that all of the nodes are on the same 
luster. This request 
annot be �lled on

the lo
al 
luster, so the other allo
ators are queried and the allo
ation is 
ompleted

on the Farm.

The �nal job is on the CUGI 
luster and is requesting 64 Shared nodes. This

request has set to take the most nodes available �rst, instead of by the priority of the



8


lusters. All the 
lusters are queried and it is dis
overed that the PARL 
luster 
an

loan the entire amount needed. The CUGI 
luster borrows from it before the Pool

and only has nodes spread a
ross two 
lusters instead of three.

These two examples show the primary implementation requirements that are ne
-

essary in the allo
ation tool. However, these are just two examples of the wide range

of available allo
ations of nodes that should be available, and the eÆ
a
y of su
h

fun
tions should be shown.

1.3 Allo
ation and S
heduling Issues

Allo
ators and s
hedulers are in
orporated into almost every 
omputer. S
hedulers

organize jobs to be run on ma
hines in many di�erent ways, ea
h trying to deal with

separate issues su
h as speed of 
ompletion, priorities, and eÆ
ien
y. A s
heduler

says when, where, and how long ea
h job will be exe
uted. While s
hedulers are

trying to set the order of jobs, allo
ation tools are trying to set the resour
es being

used. A 
ouple of the main issues in allo
ation are lo
ality, speed of 
ommuni
ation,

and se
urity poli
ies (whi
h users are allowed whi
h resour
es). These tools vary in

use and are usually hardware spe
i�
.

Allo
ation and s
heduling problems arise with ea
h new ar
hite
ture developed.

Many tools dealing with parti
ular problems in 
lusters are already in development.

Su
h problems addressed are 
hoosing whi
h nodes to use, balan
ing the number of

users on ea
h node, and allowing the 
luster to be reserved for large jobs. By 
hanging

the ar
hite
ture of a 
luster, and 
reating the Mini{Grid, new problems arise. One of

the main aspe
ts of the Mini{Grid is its ability to be 
ombined into one large 
luster,

however no allo
ator 
urrently exists that performs this fun
tion.

Using S
yld Beowulf and 
urrently available allo
ation tools, the only way to 
om-

bine the nodes into one 
luster is manually, 
hanging 
on�guration �les and rebooting



9

the Bpro
 daemons. A new way to dynami
ally and transparently \borrow" nodes

between the 
lusters needs to be developed in an allo
ation tool. This servi
e must:

� Maintain the state of nodes distributed a
ross the grid,

� Allow for multi{user and single{user a

ess to nodes,

� Provide a me
hanism for transferring nodes between 
lusters,

� Provide borrowing and allo
ation options for poli
y implementation in a s
hed-

uler,

� Be transparent to the user,

� Enfor
e usage poli
ies,

� Have an eÆ
ient implementation, and

� Be able to integrate with existing software.

While a few tools o�er some of these options, none work with the S
yld operating

system and allow nodes to be transferred from one 
luster to another.

1.4 Proposed Solution

We propose the design of a new Beowulf allo
ation tool (Ballo
) whi
h would allow

nodes to be transparently \borrowed" between lo
ally 
onne
ted 
lusters and pro-

vide extensibility and simpli
ity of use. This tool would ful�ll the previously listed

requirements.

This new servi
e would 
ontain a stru
ture like that in Figure 1.4. The user would

have several options to a

ess the allo
ator, in
luding MPI s
ripts, fun
tion 
alls, and

a 
ontrol manager. The Ballo
 tool would 
onsist of daemons running on ea
h 
luster

listening on 
ommuni
ation ports. These daemons would have the ability to send

information between ea
h other and transfer nodes between the 
lusters.



10

MPI program

function calls

Manager

Balloc Control

Communiction
Port

Communiction

Communiction

Port

Port

Allocation

Allocation

Allocation

Daemon

Daemon

Daemon

User

Systems Users

Figure 1.4: Proposed stru
ture for a Beowulf allo
ation tool.

1.5 Outline

In this thesis, we start with ba
kground about di�eren
es between s
hedule and al-

lo
ation servi
es. Two examples of s
hedulers are dis
ussed to give ba
kground on

ne
essary interfa
es for allo
ation software. We then review two previous allo
ators.

The �rst is of an early super
omputer allo
ator for the Conne
tion Ma
hine CM5.

The se
ond servi
e is the allo
ator used in the Globus Toolkit, the Globus Resour
e

Allo
ation Manager (GRAM) in 
oordination with the Dynami
ally Updated Request

Online Co{Allo
ator (DUROC), designed for a Computational Grid. Ea
h of the al-

lo
ation tools are analyzed for possible use in the Clemson University Mini{Grid.

Next, the development of a new allo
ation tool designed for our ar
hite
ture and

operating system is dis
ussed. The su

ess of this tool is based upon the requirements

for our stru
ture. This daemon rea
hes the listed requirements, using a separate API

for the user, fun
tions implemented in S
yld for node manipulation, and two separate

databases for owned and borrowed nodes.



11

The Beowulf Allo
ator, or Ballo
, is examined in two separate dis
ussions. The

�rst dis
ussion is of the basi
 fun
tionality of Ballo
. This fun
tionality in
ludes an

examination of the user API and des
ribes the possible Ballo
 fun
tion 
alls avail-

able. The des
ription of the user API also in
ludes the in
orporation of Ballo
 into an

existing parallel programming language environment 
alled the Message{Passing In-

terfa
e, or MPI. Administrators for the Mini{Grid also need a Ballo
 
ontrol manager

appli
ation, that would allow easy examination of the state of the Grid.

The se
ond dis
ussion is a des
ription of the a
tual Ballo
 daemon implementa-

tion. The basi
 uses of an allo
ator that would exist on a single 
luster are in
or-

porated, su
h as multi{user or single{user a

ess and an organized way of keeping

tra
k of set information. Also in this Se
tion, the borrowing fun
tions needed for the

Mini{Grid are des
ribed. The implementation of borrowing and loaning nodes be-

tween 
lusters is examined, with the manipulation of databases and S
yld operating

�les.

On
e the implementation is dis
ussed, a
tual experiments are performed, and the

su

ess of the system is evaluated. The experiments are des
ribed using the mpirun

fun
tion 
all, with some test parallel programs. Timing for these experiments is

also evaluated. With �le manipulations o

urring whenever nodes are borrowed and

reboots ne
essary, timing be
omes a diÆ
ult issue. Evaluation of this requirement

and its ful�llment are examined, along with the su

ess of the allo
ator for the other

Mini{Grid requirements.

Finally, we 
on
lude whether or not Ballo
 meets the design goals and is 
apable

of borrowing nodes on a Mini{Grid. We then examine future work related to Ballo
.



Chapter 2

Related Work

In this 
hapter we dis
uss an overview of s
hedulers and allo
ators. The interfa
es to

s
hedulers are illustrated and several examples of allo
ators are examined.

S
hedulers and allo
ators are used as a system to allow organized a

ess to 
om-

puter resour
es. This a

ess is restri
ted to the programs entered into a queuing

manager. The main steps of this pro
ess 
an be seen in Figure 2.1. First a problem

solving environment or user level program starts a job on the Beowulf 
luster. This

job is put into a queue of waiting jobs. The queue manager 
onta
ts the s
heduler

to let it know there is a new pro
ess waiting to run. The s
heduler looks at the

system, and de
ides when the next job should be allowed to start. It 
onta
ts the

allo
ator for the appropriate resour
es and the allo
ator returns whi
h pro
essors,

networks, databases, et
. are now reserved for use by the job. The s
heduler would

then dequeue the appropriate job, and start the pro
esses on the required resour
es.

While this s
heme may vary from system to system, the main 
omponents are the

same. In some 
ases the queue manager or allo
ator might take more 
ontrol over

the a
tual start time of the job. For our purposes though, the above arrangement is

a good abstra
t representation.



13

Figure 2.1: Steps taken by servi
es to run user pro
esses.

The fun
tion of an allo
ator and a s
heduler should not be 
onfused. While the

s
heduler de
ides when and how mu
h to allo
ate to a given job, the allo
ator 
ontrols

the availablity of the resour
es and a
tually makes the allo
ation de
isions.

2.1 S
hedulers

Sin
e s
hedulers play su
h a large part in organizing and starting pro
esses, it is

imperative that an appropriate interfa
e be examined for integrating any allo
ator

into an existing s
heme. Two 
ommonly used s
hedulers on Beowulf 
lusters are the

MAUI S
heduler and the Beowulf Bat
h Queue, or Bbq.

2.1.1 MAUI

Maui [8℄ was initially part of a Master's Thesis on S
heduling Optimizations. It was

�rst 
reated in 1995 at Brigham Young University(BYU). It uses its own allo
ation

algorithms, but needs a resour
e manager to work appropriately. The resour
e man-

agers that 
urrently have an interfa
e to Maui are Wikiman [9℄, IBM's Loadlever

[1℄, and PBS [5℄. Several other institutions are involved with the 
urrent form of



14

the proje
t, in
luding, but not limited to, the University of Utah, the University of

Pennsylvania, Pa
i�
 Northwest National Laboratory, Boeing, SAIC, and the Maui

High Performan
e Computing Center (MHPCC) at the University of Hawaii.

\Maui is an advan
ed bat
h s
heduler with a large feature set well suited for high

performan
e 
omputing(HPC) platforms in
luding large Alpha and PC 
lusters...it

makes de
isions about where, when, and how to run jobs as spe
i�ed by admin{


on�gurable poli
ies" [8℄. It was designed to be able to be installed transparently

without user knowledge. This allows users to be able to 
ontinue to submit jobs as

previously, but with added s
heduling algorithms taking pla
e in the ba
kground to

in
rease system throughput.

The 
apabilities of Maui in
lude several available statisti
s gathering and diagnos-

ti
 utilities. These utilities make this s
heduler very attra
tive to administrators, as

well as users. The statisti
s 
an be gathered per user, per node, or even per job. The

diagnosti
s allow users to tra
k jobs from when they are pla
ed in the queue until


ompletion.

Other options for administrators in
lude the Quality of Servi
e, or QOS, feature

and the throttling poli
ies available. The QOS allows poli
ies to be geared toward

the mission statement or purpose of a given organization. Spe
ial privileges 
an be

provided to users or a

ounts that have a greater priority in the funded resear
h by

the fs.
fg �le. This �le would spe
ify exemptions from poli
ies restri
ting a

ess to

pro
essing time or resour
es.

Throttling poli
ies are some of the poli
ies that QOS might exempt a user from.

These poli
ies are implemented by an administrator to resri
t the 
ow of jobs through

a system at any given moment in time. These restri
tions 
an be for a single job, a

single user, or for the entire system. Su
h restri
tions 
an be on the number of jobs

presented, the number of pro
essors or nodes being a

essed, a job's duration, or the

amount of memory being utilized.



15

Capabilities for the a
tual s
heduling of resour
es in
lude options su
h as advan
e

reservations, ba
k�ll, and node allo
ation poli
ies. Advan
e reservations \guarantees

the availability of a set of resour
es at a parti
ular time" [8℄. Reservations must

in
lude the resour
es required, the time{frame to reserve, and an a

ess 
ontrol list,

or ACL. When the reservation is �lled only users or a

ounts in the ACL 
an a

ess

those restri
ted resour
es.

Ba
k�ll is the method used by Maui to try to utilize the system as mu
h as

possible. For this algorithm to work, ea
h job must send an estimated wall{
lo
k

runtime. If ba
k�ll s
heduling is turned on some lower priority jobs might run before

a higher priority job, as long as the higher priority job is not delayed. This in
ident

might o

ur when a high priority pro
ess is waiting on a resour
e. The s
heduler

knows the approximate time the job 
urrently using that resour
e is going to be free.

Other resour
es needed by the high{priority job 
ould just sit empty, but Maui tries

to �nd other jobs that would run in the remaining time and �ll those jobs early. This

approa
h is extremely helpful if 
orre
t time estimates are used.

There are also many node allo
ation poli
ies available in Maui. These algorithms

would be useful in an allo
ation tool. A 
ouple of these poli
ies are termed by

the FASTEST, CPULOAD, and FIRSTAVAILABLE. FASTEST allo
ates the fastest nodes

�rst, while CPULOAD allo
ates the nodes with the greatest amount of CPU power still

available. FIRSTAVAILABLE allo
ates nodes in the order they are reported to the

s
heduler by the resour
e manager. These are just a few of the many algorithms

available. The one that might be the most important to this resear
h, is the LOCAL,

or user spe
i�ed algorithm, that 
ould 
onta
t an allo
ator for the manipulation and

borrowing of nodes from other 
lusters.

Maui is only a s
heduler, even though it has the 
apability to implement allo
ation

algorithms. For this reason Maui will only run 
orre
tly if it is atta
hed to a resour
e

manager that is in pla
e and operational. A resour
e manager is a program that



16

keeps tra
k of the available resour
es and the allo
ation of ea
h to spe
i�ed users. It

often has information stored in a database or in 
on�guration �les whi
h allow Maui

to interfa
e as well as gather statisti
al information. Certain poli
y issues 
an be

implemented on these managers, su
h as whi
h users are allowed on whi
h nodes or

partitions.

A partition is a division of the resour
es that are available, and by default jobs 
an

not bridge these resour
es. Some spe
ial pro
esses have spanning 
apability. It might

be interesting to see if these partitions 
an be manipulated while Maui is running. If so

\borrowing" between 
lusters on the Mini{Grid might be implemented by 
ontrolling

this ability. However, partition implementation in Maui may be in
orre
t, and testing

would need to be done to ensure stability.

Maui 
urrently has three available resour
e manager interfa
es, whi
h would help

with the development of a new one. Maui has a variable 
alled RMTYPE whi
h instru
ts

it to 
onne
t with a parti
ular manager. The lo
ation of the manager is spe
i�ed by

the RMNAME, RMHOST, and RMPORT parameters. Four fun
tions are at the heart of the

intera
tions between Maui and the manager. GETJOBINFO 
olle
ts state information

about 
urrently running jobs. GETNODEINFO 
olle
ts state information about 
on-

ne
ted nodes. STARTJOB and CANCELJOB tell Maui to start or stop a job, respe
tively,

on the 
luster.

A possible interfa
e to Maui may be 
reated using partitions, the LOCAL allo
ation

algorithm fun
tion, and developing the four primary fun
tions. Other manipulations

might be needed, but the requirements for development are 
ertainly available.

2.1.2 Bbq

The S
yld Beowulf Bat
h Queuing System, or Bbq [7℄, is an allo
ator, s
heduler,

and queuing system all in one. The allo
ator is very basi
 and only takes the next

available node in ex
lusive use by setting the user and group permissions on ea
h



17

node. While the allo
ator does not ful�ll our requirements, it is worth noting that

enfor
ement of Bbq 
an be a

omplished by setting Bpro
 permissions. This will be

helpful later on.

The queuing system is designed to be easy for user intera
tion and is also fairly

basi
. Several di�erent queues are available and labeled with a single 
hara
ter from

a to z and A to Z. The higher letters have lower priorities and a is the default for Bbq.

There is also a spe
ial queue, labeled =, and is spe
i�
ally for 
urrently running jobs.

These queues are sorted by the job start times.

Bbq also 
ontains a s
heduler that is a job bat
hing system based on the Linux


ommand, at [14℄. At was developed by Thomas Koenig and David Parsons. It is

fairly simple to use whi
h has made it very attra
tive for resear
hers. However, its

simpli
ity has limited its fun
tionality, and many users soon move on to more 
omplex

s
hedulers.

The s
heduling in at is straight forward and is 
reated spe
i�
ally for future reser-

vations. Using the at 
ommand a pro
ess 
an be s
heduled to be run at a later time,

but no pre-pro
essing is done to make sure that jobs will not overlap or have to wait

for their spe
i�ed start time.

The at system 
omes in two parts. The �rst is a daemon. 
alled atd, whi
h runs

jobs that are already queued. This daemon will run bat
hed jobs based on a limiting

load fa
tor for the system. Administrators 
an override this fa
tor however, by setting

a di�erent threshold.

The se
ond part to at, is a text based interfa
e, where users 
an intera
t with the

atd daemon. The 
ommand at will s
hedule a job by a spe
i�ed time, or by typing

now, midnight, or noon. This interfa
e also 
ontains the atq 
ommand, whi
h will

list all s
heduled jobs in a queue, and the atrm 
ommand, whi
h will remove a job

from the queue.



18

While this s
heduler gives us a better understanding of the intera
tions ne
essary

for integration with the S
yld operating system, it does not to �t our needs for a

s
heduler or allo
ator in the long run. At present, at is not suitable for a system

where users are 
ompeting for resour
es, and would not work well in a Mini-Grid

ar
hite
ture with several di�erent resear
h groups vying for nodes. However, it may

be worth �nding a temporary interfa
e for testing purposes.

2.2 Allo
ators

Many allo
ators exist for di�erent ar
hite
tures. Most often new tools must be de-

signed, be
ause of new hardware requirements or the availability of a new allo
ation

me
hanism or algorithm. Several examples of allo
ation tools will be dis
ussed in this

Se
tion and the possibility of in
orporation into the Mini{Grid ar
hite
ture will be

examined.

2.2.1 Conne
tion Ma
hine

The Conne
tion Ma
hine, or CM5 [4℄ and [13℄ was �rst released by Thinking Ma
hines

in O
tober, 1991. It tried to 
ombine the positive aspe
ts of both the MIMD and

SIMD ma
hines. The \CM5 supports the full data parallel model by providing high

performan
e for bran
hing and syn
hronization alike" [4℄.

The CM{5 operating system, CMOST, is an enhan
ed version of the UNIX op-

erating system. It supports most of the standards in UNIX and uses the network

standards to 
ommuni
ate to all of its pro
essors through three separate network


onne
tions.

The basi
 ar
hite
ture of the CM{5 
an be seen in Figure 2.2. The three networks

that 
onne
t the pro
essing elements are the 
ontrol, diagnosti
, and data networks.

The 
ontrol network is used for 
ommuni
ations that involve all pro
essors in
luding



19

Figure 2.2: Conne
tion Ma
hine, CM{5, Ar
hite
ture.

broad
asting and syn
hronization. The diagnosti
 network is used for a \ba
k{door"

entran
e for administrators to gain a

ess to all parts of the ma
hine. The data

network is used for interpro
essor 
ommuni
ation.

The pro
essing elements that appear in Figure 2.2 
ontain two types. The �rst

is the a
tual Pro
essing Nodes (PN) that do the 
omputations for programs. The

number of PNs 
an be anywhere from several tens to thousands of pro
essors. These

nodes 
ontain general purpose pro
essors based on the RISC ar
hite
ture and usually

are upgraded to 
ontain high{performan
e arithmeti
 a

elerators. These are the

nodes that are allo
ated to spe
i�
 jobs.

The se
ond type of elements are the Control Pro
essors (CPs). These nodes


ontain a SPARC mi
ropro
essor that is based on the RISC ar
hite
ture. They are

more streamlined than the PNs and are spe
i�
ally made for making de
isions about


ommuni
ations, allo
ations, and running system 
alls. These pro
essors 
an be

designated one of two types, either an I/O Control Pro
essor (IOCP) or a Partition

Manager (PM).

The Partition Manager 
ontrols and allo
ates the nodes in partitions. A partition

is a grouping of the Pro
essing Nodes 
reated by an administrator that would all



20

perform the same approximate fun
tion. A Control Pro
essor would be designated

a PM for ea
h partition 
reated, and all allo
ation and s
heduling de
isions would

be made by hardware. The available modes for these partitions are running a single

high{priority job, a bat
h mode, and a time{sharing mode.

These partitions 
an be rearranged to in
lude any number of pro
essors; the only

restri
tion on the number of partitions is the number of PM's. However, by 
om-

bining all the partitions into one, it is possible to use the entire CM{5 as a single

ma
hine. This rearrangement 
ould be very useful, but it must be done manually

by an administrator and 
an not be done by the hardware or software without stri
t

instru
tions.

The idea behind partitions is valuable and their 
ontrol hierar
hy is very similar

to a grouping of 
lusters, but without software dynami
ally 
hanging ownership of

these partitions, this allo
ation s
heme 
annot be developed to work on a Mini-

Grid. The allo
ation of the a
tual nodes is also done with hardware in the Partition

Managers and would be very diÆ
ult to probe for more in depth allo
ation algorithm

information. We should be able to think of the partitions as separate 
lusters in

the Mini-Grid, and hopefully use this idea to develop a similar hierar
hy to a new

allo
ation tool.

2.2.2 Globus Resour
e Allo
ation Manager

With the 
omplexity involved in a Grid, a way is needed to manage jobs. The

Globus Proje
t 
reated and released the �rst version of the Globus Grid Programming

Toolkit [16℄ in November of 1998. This toolkit \provides a set of standard servi
es for

authenti
ation, resour
e lo
ation, resour
e allo
ation, 
on�guration, 
ommuni
ation,

�le a

ess, fault dete
tion, and exe
utable management" [16℄. Not all tools need to

be installed, and 
an be 
ombined for the user's spe
i�
 needs.

The allo
ation tools of Globus 
ome in �ve separate pie
es. These pie
es in
lude:



21

GRAM GRAMGRAM

Figure 2.3: Globus Resour
e Allo
ation S
heme.

� DUROC: Dynami
ally Updated Request Online Co{allo
ator,

� GRAM: Globus Resour
e Allo
ation Manager,

� MDS: Meta
omputing Dire
tory Servi
e,

� RSL: Resour
e Spe
i�
ation Language, and

� the Lo
al Resour
e Manager.

The steps used to allo
ate resour
es and start a pro
ess 
an be seen in Figure 2.3.

The main Globus programs start with DUROC, in
lude several pie
es to GRAM, and

the MDS daemon. The Lo
al Resour
e Manager is dependent on the site ar
hite
ture

and operating system. The RSL Library is a 
ommuni
ation tool used by Globus to

allow a heterogeneous Grid to spe
ify ne
essary resour
es in general terms.

The Globus Toolkit supports an algorithm known as 
o{allo
ation, or the simul-

taneous allo
ation of a resour
e to two or more sets in a shared state. The tool

that keeps tra
k of this information is the Dynami
ally Updated Request Online Co{

allo
ator, or DUROC. DUROC keeps tra
k of the requests for resour
es and initializes

the pro
esses. It monitors the system and keeps tra
k of new or failed nodes. On
e it



22

re
eives a new request, it dis
overs any ne
essary information about the state of the

system and then 
onta
ts the GRAM tool to a
tually start the pro
ess on the remote

ma
hines.

Before GRAM 
an start the pro
esses, it must 
onta
t the MDS to �nd out where

the resour
e is lo
ated and what kind of hardware and appli
ations exist on the

ma
hines. This dire
tory 
an be updated by the Globus system, an appli
ation,

or another information provider. The MDS helps the GRAM Client know whi
h

Gatekeepers, or remote se
urity daemons, to 
onta
t for allo
ation.

The main program used for allo
ation is the Globus Resour
e Allo
ation Manager,

or GRAM. It 
ontains four 
omponents. The �rst is the GRAM Client whi
h sends

requests to the remote ma
hines to start a parti
ular pro
ess. The 
omponent it


onta
ts is 
alled the Gatekeeper, whi
h a

esses its Globus Se
urity Infrastru
ture

to authenti
ate the user trying to start a new pro
ess. On
e the Gatekeeper allows the

request through, it is passed to the Job Manager. The third part, the Job Manager

translates the request sent by the GRAM Client to the ne
essary 
alls for the Lo
al

Resour
e Manager on that ma
hine. The RSL library is a 
ommon language for

spe
ifying the job requirements for a parti
ular ma
hine and is 
onsidered the power

behind GRAM. The library makes the 
ommuni
ations in a heterogeneous network,

like a Grid, possible.

The last pie
e is resour
e dependent. The Lo
al Resour
e Manager keeps tra
k

of the available resour
es and the allo
ation of ea
h to spe
i�ed users. It often has

information stored in a database or in 
on�guration �les. Globus 
urrently supports

the following managers: POE [3℄, Condor [17℄, Easy{LL [10℄, NQE [11℄, Prun [15℄,

Loadleveler [1℄, LSF [2℄, PBS [5℄, GLUnix [6℄, and Pexe
 [12℄.

The allo
ation tools in the Globus Toolkit were designed for separate resour
es and


lusters that would never 
ombine, unlike the Mini-Grid ar
hite
ture. The layering

and fun
tionality of this software would be of great use on the Grid, but its fo
us



23

on the heterogeneous nature of a Grid would 
ause it to be too ineÆ
ient for our

purposes.

Many allo
ators are ar
hite
ture dependent, su
h as the CM-5. Others that have

tried to be very generalized for a Grid are very 
omplex, su
h as the Globus Toolkit,

and are usually not very eÆ
ient. Something in between is ne
essary for our allo
ation

purposes, that would 
ombine the 
exibility of the Grid and 
lusters, but with the

eÆ
ien
y that would allow a program to run on one 
luster with borrowed nodes.



Chapter 3

Ballo


3.1 Introdu
tion

The resear
h dis
ussed in this 
hapter was started be
ause of the need for a new

allo
ation tool that would be usable on the new Mini{Grid ar
hite
ture. This Grid is


omprised of separate, homogeneous Beowulf 
lusters that are 
ompletely 
onne
ted,

in
luding the remote nodes. Sin
e these nodes 
an belong to any of the 
lusters, a new

allo
ation program was needed that 
ould dynami
ally and transparently \borrow"

these nodes from one 
luster to another. By allowing this fun
tionality, the idea of the

S
yld Beowulf is 
ontinued with the user seeing only a \single 
omputer" as opposed

to the large Beowulf Grid. The use of the tool should be transparent and needs to be

enfor
ed. This allo
ation tool needs to be extensible, simple for the user, and robust.

It must be able to pro
ess multiple users requesting large numbers of nodes and run

in an appropriate amount of time when allo
ating and freeing resour
es.

The Beowulf Allo
ator, or Ballo
, was 
reated as an allo
ation tool for the new

Mini{Grid. It 
ontains a system daemon that keeps tra
k of allo
ations and resour
es,

and a user API that allows sets to be obtained through an mpirun 
all or dire
tly

through the daemon itself. The fun
tionality of Ballo
 will be dis
ussed through



25

a des
ription of the user intera
tion. The a
tual implementation will be dis
ussed

through a des
ription of the system daemon and the algorithms used for allo
ation.

3.2 End User Fun
tionality

Ballo
 is purely an allo
ation tool. When a request arrives, it responds by returning

whi
h nodes are now reserved for use by the job and user. This list of nodes is


onsidered a set, available to the user until the set is freed. It keeps a log of whi
h

users are allowed on whi
h nodes and tra
ks all sets, available nodes, and allo
ated

resour
es.

Using Ballo
 
an either be dire
t or indire
t, but will always o

ur when a user

exe
utes a parallel program. A pro
ess must 
all Ballo
 to get appropriate usage

permissions set. The only ex
eption to this is the root user, whi
h 
an exe
ute

pro
esses on any node. Normally the user will not work dire
tly with the Ballo


interfa
e, but will use MPI 
alls, although the dire
t intera
tion is available via simple

fun
tion 
alls in an API.

There are three main ways for a user to a

ess the information and resour
es


ontrolled by Ballo
. These in
lude:

� Using the MPI interfa
e and 
alling mpirun,

� Using the Ballo
 user interfa
e and the set and node numbers returned, and

� Using the Ballo
 
ontrol manager to allo
ate and free nodes.

3.2.1 In
orporation into MPI

The Message Passing Interfa
e, or MPI, is a 
ommonly used parallel programming

library that stresses the use of standard message passing fun
tions that allows easier


ommuni
ation programming between remote pro
esses. It is widely available and



26

Call mpirun

balloc_job_map

Sets BEOWULF_JOB_MAP

send request

return set

Balloc Daemon

Allocates Nodes

Balloc Daemon

Frees Set

Execute Program

free_job_map

Exit Program

send request

Preprocessing

Postprocessing

Parse Arguments

Figure 3.1: Mpirun exe
ution sequen
e.

both free and vendor versions exist. The user is able to start an MPI program with

the mpirun s
ript. This s
ript attempts to hide some of the ba
kground work that

starts, exe
utes, and 
leans up an MPI parallel program.

The S
yld operating system has adapted mpirun to exe
ute Bpro
 
ode that mi-

grates all of the remote pro
esses. Bpro
 de
ides where to send these pro
esses in two

separate ways. The �rst is by defaults. The number of pro
essors requested is pla
ed

in an environment variable NP, or the number of pro
essors. By default, Bpro
 pla
es

the �rst pro
ess on the head node, and the rest on 
onse
utive nodes. The se
ond

way takes a di�erent environment variable, BEOWULF JOB MAP. This variable 
ontains

a list of nodes that the program wishes its pro
esses to run on. The argument to

BEOWULF JOB MAP looks like \3:15:8:2:25", where ea
h value is a node number. This

example argument would migrate �ve pro
esses, the �rst to node 3, the se
ond to

node 15, and so on.



27

Using existing programs, we took advantage of the fa
t that S
yld's designation

of resour
es is as easy as setting an environment variable. By modifying the mpirun

s
ript we were able to 
reate a way that the user 
an intera
t with Ballo
 indire
tly.

Often the user may not even know that Ballo
 was a

essed. This o

urs when the user


alls mpirun and the mpirun s
ript a

esses two C programs 
alled ballo
 job map

and free job map. The fun
tion order that o

urs when a user 
alls mpirun 
an be

seen in Figure 3.1

When a user 
alls the mpirun s
ript, it �rst parses all arguments used in the


ommand line. The available arguments that are Ballo
 spe
i�
 will be dis
ussed in

more detail in the Allo
ation Options Subse
tion in Se
tions 3.3.1 and 3.3.2. They

in
lude:

� --ba--ex
 = Allo
ate nodes in Ex
lusive mode (Default is Shared mode),

� --ba--less = A

ept a set with less nodes than requested (Default is stri
t

setting),

� --ba--borr = If ne
essary borrow nodes from another 
luster (Default is no

borrowing),

� --ba--one = Only allo
ate resour
es on one 
luster (Default is mixed allo
a-

tions allowed),

� --ba--group \
har" = Borrow nodes from 
lusters with spe
i�ed \m", by most

�rst, or \p", by priority grouping (Default is by 
luster priority).

After the arguments have been parsed, the s
ript then 
alls the ballo
 job map

program. This program sends an allo
ation request to Ballo
. When Ballo
 returns

the node information, ballo
 job map 
on�gures the node numbers into the 
orre
t

argument sequen
e for BEOWULF JOB MAP, and sets the environment variable. This

is not the only environment variable set however. BALLOC SETNUM is also exported.

This variable is the set number used to designate the grouping of nodes allo
ated by

ballo
 job map's 
all to Ballo
.



28

After the prepro
essing, the a
tual program exe
utes and Bpro
 migrates the

pro
esses to the 
orre
t nodes. On
e the program is 
ompleted, some 
lean up is

needed. This is where BALLOC SETNUM is used. Mpirun 
alls free job map, whi
h

sends a free request to Ballo
. This request spe
i�es whi
h grouping of nodes to free

by BALLOC SETNUM. If everything exe
utes appropriately, the s
ript then exits. This

intera
tion with Ballo
 should be the safest, but user requests are not always going

to be in the form of an mpirun 
all. This is where the other two available interfa
es

be
ome useful.

3.2.2 Ballo
 API Fun
tions

It may be ne
essary for a user to allo
ate and manipulate a set within a program.

The user API was 
reated for this purpose to allow dire
t intera
tion with the Be-

owulf Allo
ator. The fun
tion 
alls available set up the ne
essary request pa
kets and


ommuni
ate with Ballo
 without the user having to worry about any so
ket pro-

gramming. The API does the entire 
ommuni
ation in
luding formatting, sending,

and re
eiving the pa
kets. It even manipulates the byte order of the responses, in


ase di�erent operating systems or ar
hite
tures are being used. Currently the API

is only in C, but a Java API would be useful in 
reating a web based monitoring

system. More information about ea
h fun
tion and its de
laration 
an be found in

the user manual in Appendix A.

The allo
ation fun
tion 
alls available to the user are:

� int ballo
(int nodes, int mode, node info *data, int gro,

int all, int bor, int ltn, 
har *bheadname)

� int bfree(int set, 
har *bheadname)

� int free node info(node info *data)

� int bnodestat(int *data, int *datanode, int node, int *mode,

int *sets, int *
ount, 
har * bheadname)



29

� int btypestat(node info *data, int mode, int *nodes,


har *bheadname)

� int bsetstat(node info *data, int set, int *uid, int *mode,

int *nodes, 
har *bheadname)

� int ba
tset(int *data, int *sets, 
har *bheadname)

The �rst three 
alls should be all that the user needs to interfa
e dire
tly with Ballo
.

The �rst 
all ballo
, is the fun
tion that a
tually allo
ates the resour
es requested.

The nodes argument 
ontains the number of nodes requested in the spe
i�ed mode.

When Ballo
 re
eives this request, it does all of the pro
essing ne
essary to 
reate

a set of nodes on the system. The remote nodes in this set might be spread out

a
ross several di�erent 
lusters, but the user will only see them as nodes belonging

to the 
luster that the request o

urred on. The node numbers, node addresses, and

number of users on ea
h node are returned in the node info linked{list stru
ture.

The fun
tion free node info simply frees the memory mallo
ed for this stru
ture.

The arguments gro, or groupings of nodes, bor, or whether or not to borrow from

another 
luster, all, or nodes all on one 
luster, and ltn, or whether or not less

nodes would be a

epted, are dis
ussed in further detail in the Allo
ation Options

Subse
tion in Se
tions 3.3.1 and Se
tion 3.3.2.

On
e the user has exe
uted the program, the user frees the set that was 
reated.

When bfree is 
alled, the set number and all memory allo
ated to keep tra
k of

the group is freed. The nodes are set to mode Free, if no other users are on those

ma
hines. If bfree is not 
alled, the set 
ontinues to exist until the user is �nished

with his proje
t and 
alls bfree. If the user forgets, an administrator must 
all bfree

or a reboot of the head node will free the nodes.

The API also in
ludes fun
tion 
alls that will monitor and return the status of the


ondition of the system. These 
alls are espe
ially helpful with the 
ontrol manager

developed in Se
tion 3.2.3. These fun
tions are fairly self{explanatory and use mainly

pointers to return the requested information. The bnodestat fun
tion returns the



30

status information of the pro
essor with the number node. The btypestat fun
tion

returns a list of all nodes that are in the spe
i�ed state, mode, bsetstat returns all

information about the spe
i�ed grouping of nodes with the set number, set, and

ba
tset returns a list of all a
tive sets. Together these four status fun
tions 
an give

a general idea about the 
ondition of the 
luster.

There are also several fun
tions that are listed in the API, but would normally

only be used by the Ballo
 daemon, an administrator, or for testing purposes. These

in
lude:

� int bresv(int nodes, int *return nodes, 
har *bheadname)

� int ballo
resv(int nodes, int setnum, borr node info *data,


har *bheadname)

� int free borr node info(borr node info *data)

� int breturn(int set, int importan
e, 
har *borr
lustername,


har *bheadname)

� int breset(
har *bheadname)

Both bresv and ballo
resv are used when one 
luster must try and borrow nodes

from another. The borr node info stru
ture returned in ballo
resv is the same

as node info, but in
ludes the Ethernet address of ea
h node. The implementation

of these two 
alls is dis
ussed further in Se
tion 3.3.2. free borr node info is a


leanup fun
tion and frees the information returned in the borr node info stru
ture.

The breturn fun
tion for
es a return on a borrowed set from a 
luster. This 
an either

be done when the nodes are �nished running the 
urrent jobs, or 
auses the return

to be immediate with no regard to the exe
uting jobs. More information about the

implementation 
an be found in Se
tion 3.3.2. The �nal fun
tion in Ballo
 is a bail

out fun
tion 
alled, breset. This 
ompletely reinitializes the 
luster immediately.

This 
all should be removed, and only implemented when expansion and testing of

Ballo
 are in pro
ess.



31

3.2.3 Ballo
 Control Manager and Status Reports

The Ballo
 Control Manager, or ba
tl, is a text appli
ation that allows an admin-

istrator to 
he
k and 
ontrol the status of the system. It 
an be run on any Linux

ma
hine on the network, and 
onne
ts to the Beowulf 
luster by use of so
kets. The

instru
tion new
luster 
an be used to instru
t ba
tl to 
onne
t to a spe
i�
 head

node, There are several di�erent 
ommands available that 
an be listed with the ?

help instru
tion. All of these 
ommands work by exe
uting the user API fun
tions

des
ribed in the previous Se
tion.

The status 
he
ks available in
lude a request on ea
h state, su
h as freestat,

or Free nodes, and ex
stat, or Ex
lusive nodes. A
tual allo
ations and releases of

resour
es 
an be a

omplished from this program as well. If an administrator needed

to free all sets held by a spe
i�
 user, an a
tsets 
ould be exe
uted whi
h would

return a list of all a
tive sets. This list of set numbers 
ould then be passed to

setstat, whi
h would return all the information about that set, in
luding the user

id. If the spe
i�
 user owned the set a freeset 
ommand 
ould be 
alled, and would

release those resour
es. All information returned is printed to the s
reen in a readable

format.

3.3 System Daemon Ballo


The daemon Ballo
 runs with the Bpro
 daemon on the head node of ea
h sepa-

rate 
luster. It 
ontains node information ne
essary for allo
ation purposes. This

information is gathered using system 
alls to Bpro
, in
luding bpro
 nodestatus,

bpro
 numnodes, and bpro
 nodeinfo. Bpro
 nodestatus returns the state of a

spe
i�ed node, whi
h in Bpro
 
an be boot, up, down, error, unavailable, reboot,

halt, and pwro�. Bpro
 numnodes returns the total number of nodes 
urrently in-

stalled on the system. Bpro
 nodeinfo is only used for initialization and 
ontains



32

state, IP address, and user and group permissions. The Ethernet address is obtained

by reading the Beowulf 
on�guration �le lo
ated in /et
/beowulf/
on�g. Hardware

information 
ould also be available by adding a separate 
on�guration �le or a ex-

ploratory program. The hardware stru
ture is in
orporated into the node database,

but not used for any of the 
urrent allo
ation algorithms be
ause the Mini{Grid is a

homogeneous system.

The implementation of Ballo
 
an be broken down into two groups. The �rst group

is the basi
 allo
ation me
hanism ne
essary on any 
luster or parallel 
omputer to

keep tra
k of lo
al resour
es. This in
ludes databases, allo
ation types, options for

allo
ation, and enfor
ement, or se
urity. The se
ond group of fun
tions are new to

allo
ators. These have to do with the ne
essary intera
tions for \borrowing" nodes

between 
lusters. Separate databases for lo
al and borrowed nodes must be used. New

fun
tions, in
luding borrowing, returning, reserving, and freeing must be implemented

to work with the S
yld operating system and the Bpro
 daemon.

3.3.1 One Cluster Implementation

Using other available allo
ation programs as a starting point, the �rst goal of this

proje
t was to 
reate a reliable allo
ation tool that 
ould be run on a single 
luster.

This tool had to interfa
e 
orre
tly with the S
yld operating system and MPI. The

MPI interfa
e is dis
ussed more thoroughly in Se
tion 3.2.1. This daemon had to

allow qui
k a

ess to nodes, sin
e the majority of use of the Grid is assumed to be

lo
ated within the bounds of a single 
luster.

The �rst step in developing this new tool was to examine what types of databases

would be required for qui
k, dire
t a

ess to 
omplete node and allo
ation information.

Two separate databases were used for this purpose. The �rst database was designed

to keep the state information for the lo
al nodes. This database is an array of a

node stru
tures, whi
h in
ludes the state, the IP address, and the Ethernet address



33

of the node. The node numbers are assigned by S
yld, and the information is pla
ed

in the database su
h that the index 
orresponds to the node number. The se
ond

database required was used to keep tra
k of the allo
ations. Ea
h grouping of nodes is


onsidered a \set" of nodes. A set is 
onsidered \a
tive" if the grouping is designated

to a user. Di�erent a
tive sets 
an 
ontain the same nodes, if those nodes are in a

multi{user state. The a
tive sets database is an array of nodeset stru
tures, whi
h

in
ludes the user id that owns the set, the request id of the pa
ket that allo
ated

the set, the number of nodes in the set, and a list of node numbers that have been

allo
ated to that set. Set numbers are assigned to ea
h a
tive set and are the index

into the database.

On
e the databases were designed the manipulation of nodes needed to be im-

plemented. Several topi
s will be dis
ussed in the next few Subse
tions, in
luding

the ne
essary states or modes for the nodes, options available for allo
ations, and

enfor
ing the use of the Ballo
 program.

Allo
ation Types

Several states for the nodes need to be de�ned for the 
orre
t allo
ation and a

ess

in ea
h set. The modes used in Ballo
 for the one{
luster 
ase are Free, Shared,

Ex
lusive, Unknown, and Down. The Unknown and Down states are self{explanatory

and 
orrespond to the state information returned by Bpro
. A 
ow 
hart of the rest

of the available states is found in Figure 3.2.

When Ballo
 �rst initializes, all nodes that are not Unknown or Down will be

pla
ed in the Free state. This state 
an transition into any other state. Whenever

a new allo
ation is requested, these nodes are allo
ated �rst, sin
e they should not


urrently be used by any pro
esses.

The Shared mode, 
orresponds to the required multi{user a

ess to parti
ular

nodes. This state allows for multiple sets, owned by di�erent users, to 
ontain the



34

���
���
���
���

���
���
���
���

���
���
���
���

States are in UAB

A= able to be allocated

B = able to be borrowed

U = number of users

Exclusive

Free
Free

Allocate

Free

Allocate

Free

Allocate

Free

Allocate

Shared

100

011

110 210

Figure 3.2: State transitions available for nodes in Ballo
.

same node. This state would normally be used by resear
hers that are not testing

timing issues or resear
hers with tasks that do not have timing 
onstraints. If a

user requests a Shared set, the Free nodes are �rst sear
hed, and then the nodes

that already 
ontain users are allo
ated. By allo
ating the Free nodes �rst, the most

system resour
es are being utilized and the best performan
e possible will be delivered

to ea
h job.

Some users with higher priorities might 
hoose to run a large job and do not wish

anyone else to be able to a

ess the nodes exe
uting the pro
esses. The Ex
lusive

state was 
reated for a single{user a

ess to a set. Unfortunately, if all the nodes in

a 
luster are pla
ed in an Ex
lusive state, a Shared job 
annot be run until nodes

be
ome available. This state gives ex
ellent user performan
e, but limits the ability

of the 
luster to ful�ll other jobs.

Available Options For Allo
ation

Users will want to allo
ate nodes on a 
luster in di�erent ways. Options must be

implemented to allow 
exibility with Ballo
. Sin
e the 
urrent hardware 
on�guration



35

is a homogeneous system, not many options were implemented, but the base format

was 
reated. This format is extensible for future use, be
ause it uses an integer 
ag

with bit{representations of ea
h option.

The main option developed was to allow Ballo
 to allo
ate and return a set of

nodes that 
ontains less than the number of nodes that were initially requested. This


ag LESSTHAN is one bit in an integer 
ag that is set in the API fun
tion 
alled ballo
.

When 
alling ballo
, LESSON or LESSOFF 
an be pla
ed in the ltn argument. If using

mpirun, --ba--less 
an be used to set this option. If LESSTHAN is not set, Ballo


will try to �ll the request, but if it is unable to do so, it returns an error.

More options were developed for the two or more 
luster 
ase and are dis
ussed

in Se
tion 3.3.2.

Enfor
ement

Enfor
ing the use of Ballo
 was important in 
reating a stable environment for a

s
heduler to be able to �ll the appropriate tasks. If every user did not 
onta
t Bal-

lo
 for nodes, then jobs that were supposed to run on Ex
lusive nodes might have

multiple users. This also be
omes a problem with borrowing nodes as 
an be seen in

Se
tion 3.3.2. If users started jobs on nodes that Ballo
 thought were Free, and then

tried to loan those nodes out, the nodes would be rebooted and all information about

the pro
ess would be lost.

The S
yld operating system has its own enfor
ement poli
ies. Bpro
 only al-

lows users that have the appropriate permissions on nodes a

ess to those resour
es.

This information is stored in the /et
/beowulf/
on�g �le for initialization of Bpro
.

Root 
an 
hange these permissions by 
alling bpro
 
hown(node number, user id,

group id), whi
h sets the user and group id's to have a

ess to the spe
i�
 node

number.



36

Ballo
 
hanges the 
on�guration �le and 
alls bpro
 
hown every time an allo
a-

tion or free is requested. The 
on�guration �le is 
hanged in 
ase the Bpro
 daemons

are restarted. This way on initialization, the 
orre
t users have the appropriate per-

missions and 
an 
ontinue working.

On startup all nodes are initialized to allow only root a

ess. This for
es all

allo
ations to be done by Ballo
, but still allows root to have a

ess to the nodes. If

the nodes are allo
ated in Ex
lusive mode, the user id is set to the user who sent the

request and the group id is kept as root. If the nodes are allo
ated in Shared mode,

the user id is set to any to allow multiple users and the group id is kept as root.

The reason any must be set is there is 
urrently no way to spe
ify two or more users.

Groups 
ould be set up, but sin
e nodes 
an be in multiple sets, and no two nodes

need be in the same 
ombination of sets, a group would have to be 
reated for ea
h

node. Sin
e a node in Shared mode 
an not be borrowed and a

ess to these 
lusters

is fairly restri
tive, the any option was 
hosen for use in this version of Ballo
.

3.3.2 Two or More Cluster Implementation

The main purpose of Ballo
 was to 
reate a new allo
ation program that 
an trans-

parently \borrow" nodes between 
lusters. It was designed for the new ar
hite
ture

that 
an be seen in Figure 1.1. This Figure illustrates the new Mini{Grid, whi
h


an be depi
ted as a large 
luster broken down into separate sub{
lusters. These

sub{
lusters are 
ompletely 
onne
ted in the ba
kground and any remote node 
an

belong to any of the head nodes.

To allow these sub{
lusters to 
ombine, Ballo
 had to be able to move nodes

to di�erent 
lusters, or \borrow" nodes. Borrowing nodes 
onsists of transferring

ownership of a node from one 
luster to another so, while a node is still physi
ally


loser to the loaning head node, it nows re
eives instru
tions and pro
esses from



37

011

000

���
���
���
���

���
���
���
���

���
���
���
���

States are in UAB

A= able to be allocated

B = able to be borrowed

U = number of users

Free

Return

Allocate

Free

Borrow

Allocate

Free

Exclusive

Borrowed

Shared

Free

Allocate

Free

Allocate

100

110 210

Figure 3.3: State transitions by a loaner, available on Beowulf Grid.

the borrowing head node. With the 
onne
tions between the lo
al nodes and the

borrowed nodes, laten
y should be fairly negligible.

Borrowing nodes 
an be seen from two di�erent perspe
tives. The �rst is from the

loaner. The available state transitions for the owning node 
an be seen in Figure 3.3.

This is very similar to the single 
luster 
ase, but a new mode Borrowed is introdu
ed.

The loaning 
luster does not keep tra
k of who the borrowed nodes were allo
ated

to, just whi
h 
luster borrowed the nodes. For this reason, the Borrowed state only

exists on the loaning 
luster.

The borrowing 
luster sees the node as one of its own and pla
es it in a di�erent

state in a separate database. The state transitions available to the borrowing 
luster


an be seen in Figure 3.3. This state diagram 
ontains some unusual states. The

main ones are the Ex
lusive modes with multiple users. This o

urs when a 
luster

requests that its nodes be returned, and is dis
ussed further in following Subse
tions.



38

�������� ����

�������� ������������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������

States are in UAB

A= able to be allocated

B = able to be borrowed

U = number of users

100

After Being Borrowed Return When DoneReturn When Done Return When Done

Allocate Allocate Allocate

FreeFree

Free Free

Free

Free

In Exclusive Mode

In Shared Mode

Free

Free

110 210 310

300200

Figure 3.4: State transitions by a borrower, available on Beowulf Grid.

The borrowing 
luster treats the node as a lo
al one, allo
ating and freeing it as

it would any remote node. The only ex
eption is where the information is stored. A

separate database for borrowed nodes was 
reated. This database 
ontains nodes that

were borrowed from other 
lusters, and is 
omprised mostly of the same information

as in the lo
al node database. This database however, must 
ontain additional infor-

mation, in
luding the original set number, the original node number, and the original

owning 
luster.

The ne
essity for keeping tra
k of the original information, espe
ially the set

number, 
an be seen in Figure 3.5. When the 
luster borrows the set, it must keep

tra
k of the original set number and owner to be able to 
all bfree on that set when

the entire group is Free. The user never sees this set number and it would only

appear on the loaning 
luster's ba
tset fun
tion 
all. This helps keep the borrowing

transparent from the user.

Borrowed nodes are added on to the end of the list of available nodes. They are

the last to be allo
ated in any request. The lo
al node database has a spe
i�
 size,

whi
h is the number of nodes available on the 
luster. When a node is borrowed its



39

User Recieves

Local Set Number

Set Number For Freeing
User Returns Local

Includes borrowed 
nodes

Borrowed

Loaning Cluster

Borrowing

Set Number

Borrowed Set Number

Borrowed Set Number With Local Set Number
New User Set

Borrowing Cluster

Figure 3.5: Tra
king set numbers while borrowing nodes.

node number be
omes its index into the borrowed database plus the lo
al database

size. The index might not be the same on 
onse
utive borrows of the same node,

be
ause the node numbers are �lled as nodes are re
eived from another 
luster.

The next steps were de
iding on available options for two or more 
lusters an

a
tually implementing the fun
tions that borrowed and returned nodes. The options

implemented for the Grid are dis
ussed in the next Subse
tion. To borrow a node,

a remove from the original 
luster and a add to the new 
luster were required. To

return a node, a return from the new 
luster and a reset on the original 
luster were

required. These implementations are dis
ussed in later Subse
tions.

Available Options For Allo
ation

The available options for allo
ating nodes on more than one 
luster in
lude three

di�erent alternatives. All are implemented using the integer 
ag 
reated in the ballo


API 
all. The three options and their 
orresponding arguments in the API ballo



all in Se
tion 3.2.2 and mpirun 
all in Se
tion 3.2.1 are:



40

� option; API arg.; MPI arg.

� borrowing; bor; --ba--borr

� grouping; gro; --ba--group

� allonone; all; --ba--one

The �rst bit added to the 
ag, is whether or not to borrow nodes if ne
essary.

Ballo
 always tries to allo
ate nodes on the lo
al ma
hine, if possible, but if this 
ag

is set it will try to �ll any remaining nodes on other 
lusters on the Grid. The API


an be �lled in with BORROWON or BORROWOFF. The way Ballo
 
hooses to allo
ate

nodes is set by the other two 
ags.

The grouping 
ag takes four bits in the integer 
ag and 
an 
urrently either be

PRIORITY or MOSTFIRST. This preferen
e spe
i�es whi
h 
lusters to borrow nodes

from. If PRIORITY is set, the nodes are taken from the 
luster with the highest

priority listed in its 
luster 
on�guration �le. If MOSTFIRST is set, the nodes are taken

from the 
luster with the most available free nodes �rst. If MOSTFIRST is set and two

or more 
lusters 
ontain the same number of free nodes, the 
luster with the highest

priority is allo
ated �rst. The default for this 
ag is to allo
ate by PRIORITY.

The �nal preferen
e implemented is the allonone bit 
ag, whi
h 
an be set in the

API with ALLON or ALLOFF. This option spe
i�es whether or not the entire set of

nodes must physi
ally exist on one ma
hine. Borrowed nodes are allowed, if they

all 
ome from the same 
luster. This 
ag takes pre
eden
e over the LESSTHAN 
ag

des
ribed in Se
tion 3.3.1; if this 
ag is set Ballo
 will not return fewer nodes than

the amount requested. The default for this 
ag is ALLOFF.

Borrowing Implementation

When borrowing nodes, Ballo
 has to do some pro
essing before the allo
ation a
tu-

ally o

urs. Depending on the poli
y of the system, Ballo
 might 
hose one available

set over another on a di�erent 
luster. One example of this o

urren
e might be if a



41


luster needed to borrow �ve nodes. If one 
luster had three nodes free and another

had �ve, it would make more sense to take the �ve nodes, than three and two.

To allow an exploration of the available nodes on the Grid, a reservation system

was used. This system uses the bresv API 
all to reserve a spe
i�ed number of

nodes. If that number of nodes is not available, the maximum number of reservable

nodes is returned. The reserved nodes are pla
ed in a set on the loaning 
luster. The

borrowing 
luster then sorts through the available nodes, and sends a ballo
resv


all to the loaning 
luster. This fun
tion takes a set number, whi
h is the reserved

set, and the number of nodes to allo
ate from that set. The loaning 
luster sets an

alarm to go o�, allowing ten se
onds for the borrowing 
luster to de
ide. If it does

not re
eive a ballo
resv 
all on the set number by the alarm, it frees the nodes that

were reserved.

If a ballo
resv is re
eived from the borrowing 
luster, the nodes requested must

be removed from the Bpro
 on the owning ma
hine. When a remote node is booted

in the S
yld operating system, it is a two step pro
ess. The node �rst sends out a

RARP, or a request to �nd an owning 
luster. A Beoserv daemon, part of Bpro
 that

handles the remote node bootings, will respond and reboot the node with the 
orre
t

kernel version. To remove a node from a 
luster the Bpro
 and Beoserv daemons

must be told that this node no longer belongs to this 
luster.

To get the daemons to realize this, the 
on�guration �le, /et
/beowulf/
on�g,

must be 
hanged. The �le is �rst read into a bu�er and several node stru
tures. The

�le is then rewritten, and as the nodes are being printed, ea
h one is 
he
ked whether

or not it is in the set being allo
ated. If it is, it is turned o� by writing \node o� root

root" in the 
orresponding node line. On
e the 
on�guration �le has been altered, the

set must be rebooted by 
alling bpro
 setnodestatus for ea
h node. The daemons

must then be HUPed to for
e them to reread the new 
on�guration �le, and know



42

not to respond to the RARPs of the rebooted nodes. The node is now e�e
tively

removed from the 
luster.

On
e removed, the borrowing 
luster must add the rebooted nodes to its list.

This is basi
ally done the same way as removing the nodes from the original 
luster.

A 
ouple of di�eren
es are the 
on�guration �le is 
hanged to in
lude the node,

e.g. \node ETHERNETADDRESS root root", the nodes are not rebooted, and the

/var/beowulf/unknown addresses �le must be altered. The unknown address �le

is used by Bpro
 to know whi
h addresses not to respond to. It 
ontains a list of

Ethernet addresses that a RARP was re
eived from, but no node number was assigned

to. This �le is read in by Ballo
 and 
he
ked for any of the Ethernet addresses of

the borrowed set. If any are present they are removed before the Bpro
 and Beoserv

daemons on the borrowing 
luster are HUPed. On
e these daemons are restarted, the

nodes are then booted into the 
luster.

On
e the borrowing is 
omplete, the nodes must be booted with the 
orre
t kernel

from the new 
luster. This may take up several minutes depending on the ma
hine

speed and the whether or not an error o

urs with the remote node. The new 
luster

will try rebooting the ma
hine up to three times. If the node still will not 
ome up,

it is marked as down, and may be returned to the original 
luster when a free o

urs.

If this is the 
ase, an administrator may have to go in and reset the node by hand.

If Ballo
 returns while the nodes are in the boot state, the user will not be able to

use the borrowed nodes and an error o

urs. Therefore, right before Ballo
 sets the

permissions on those nodes, it waits for ea
h one to 
ome up. As stated this 
an take

several minutes, but this design is assuming large jobs, that take a long time to run.

With only a few minutes before and after, for prepro
essing, this is not expe
ted to

be a major fa
tor.



43

Returning Implementation

When returning nodes, the entire set must be returned. A single node 
annot be

restored, unless it is a set of one. The reason for this is to keep 
onsisten
y and

simpli
ity for borrowing. As 
an be seen in Figure 3.5, the original set number is

required for returning a set to its owner. This allows the borrowed nodes to be

treated mu
h the same as lo
al nodes.

Returning nodes is done mu
h the same way as borrowing, but there are two ways

a return 
an be started. The �rst is with a breturn API 
all. The breturn 
ontains

a 
ag whi
h 
ommands a return to be done NOW or WHENDONE. A NOW argument 
auses

the entire set to be returned immediately with no regard for any user job 
urrently

running on that ma
hine. The nodes are returned and any set 
ontaining those nodes

has a -1 pla
ed in the node list. A WHENDONE argument only has e�e
t if the nodes

were allo
ated in a Shared state as 
an be seen in Figure 3.4. It 
auses the nodes to

move into an Ex
lusive state su
h that no other jobs 
an be pla
ed on them. The

nodes will return when the 
urrent users are �nished and no other jobs 
an be started.

The breturn is not 
alled by Ballo
, but is a
tually 
alled by the administrator,

normally using the Ballo
 Control Manager. The 
all 
ould be pla
ed in Ballo
, but

the timing of when it would be 
alled needs to be strongly 
onsidered.

The other way to return nodes, is simply when every node in the set is Free, to

immediately give ba
k the borrowed nodes. In Figure 3.4, there is a �nal free that

allows the nodes to no longer be part of the new 
luster. This free 
he
ks every node

in the set, and returns only if the entire set is free. If it is entirely free not, these

nodes remain part of the 
luster and 
an be allo
ated again if in Shared mode.

The implementation of returning and reseting the nodes is the same as borrow-

ing them. The /et
/beowulf/
on�g and /var/beowulf/unknown addresses �les are

altered a

ordingly and the appropriate nodes are rebooted. The daemons are then

HUPed and for
ed to reread the �les.



44

However the loaning 
luster does not wait for the nodes to be rebooted 
or-

re
tly before responding to the borrowing Ballo
. This saves some time in the post-

pro
essing for the user. The loaning 
luster sends the response, and then waits for

the nodes before setting the appropriate permissions.

On
e the nodes have been set as up on the owning 
luster, the entire borrow-

ing pro
ess has been 
ompleted. This pro
ess 
an be repeated whenever ne
essary,

however the user wishes to allo
ate the nodes.



Chapter 4

Results

Ballo
 was designed spe
i�
ally for a Mini-Grid ar
hite
ture and the S
yld Operating

System for a Beowulf 
luster. The main goals of this resear
h have been met by

the implementation of the allo
ator. The eÆ
a
y of borrowing nodes 
an be demon-

strated with a 
ouple of examples. These obje
tives in
lude maintaining the state

of all nodes distributed a
ross the Grid, the implementation of a borrowing me
h-

anism, multi{user and single{user support, available options for poli
y exploration,

and transparen
y to the user. Example usage is explored in Se
tion 1.2.

One goal, simpli
ity of use 
orresponds to the transparen
y to the user and is

ful�lled with the in
orporation of the three ways for a user to a

ess the information,

in
luding mpirun, the API, and the Ballo
 Control Manager. In the �rst 
ase the

user does not even need to a

ess the Ballo
 daemon, therefore being transparent,

and in the other two a user interfa
e allows any intera
tion to be limited to simple

fun
tion 
alls. Borrowing is also transparent, be
ause the user sees all allo
ated nodes

as belonging to the queried 
luster. The only hint that this o

urs, is through the

option that must be set.

Extensibility is available through development of the user API, options for allo-


ation, and new fun
tions that 
an be developed into Ballo
. In ea
h one of these



46

Internet

Figure 4.1: Grendel Testbed Ar
hite
ture

parts, a format is followed that would allow a programmer to develop new poli
ies

and implementations that would expand the 
apabilities of Ballo
.

The last two goals that were required for this program were an eÆ
ient imple-

mentation and an enfor
ement poli
y. EÆ
ien
y is dis
ussed further in Se
tion 4.2.

Enfor
ement of Ballo
's allo
ations o

urs with the appli
ation setting the appro-

priate permissions for the request's user id. For our purpose, this poli
y is enough

se
urity to ne
essitate a

ess to Ballo
 before any 
omputations 
an be performed.

4.1 Testbeds

To test the new allo
ation tool, Ballo
, a testbed had to be 
reated. The initial

testbed 
onsists of two 
lusters of six remote nodes and one head node ea
h, and

whose ar
hite
ture 
an be seen in Figure 4.1. This testbed was slow in 
omparison

to the �nal target ar
hite
ture dis
ussed below, but was suÆ
ient for implementation

testing. The nodes 
onsisted of 150 MHz Pentium pro
essors, 64 MB EDO DRAM,

two GB IDE hard drives, and SMC Tulip-Based Fast Ethernet 
ards. This test Mini-

Grid was developed from an older Beowulf Cluster named Grendel. Only the initial

head node was allowed to have a

ess to the outside network.

The target ar
hite
ture for Ballo
 was the Clemson University Mini-Grid, as seen

in Figure 4.2. The Clemson University Mini{Grid 
an be illustrated as one large



47

PARL Cluster

(128 Processors)

Gigabit Fiber Private Network

Internet

CUGI Cluster

(64 Processors)

CAEFF Cluster

(64 Processors)

Processor Pool

(256+ Processors)

Figure 4.2: Clemson University's Mini-Grid Stru
ture



48


luster that is broken into four separate smaller sub{
lusters. These sub{
lusters

belong to di�erent resear
h groups on 
ampus, allowing them to 
ombine resour
es

to build an even larger parallel 
omputer than one group alone 
ould a�ord. The

three groups working on this proje
t are the Center for Advan
ed Engineering Fibers

and Films (CAEFF), the Clemson University Genomi
s Institute (CUGI), and the

Parallel Ar
hite
ture Resear
h Lab (PARL).

These sub{
lusters exist around the 
ampus and ea
h 
luster is 
onne
ted with

gigabit �ber on a private network. The nodes use Ethernet swit
hes to allow any

node to belong to any head. Ea
h 
luster is 
on�gured to 
ontain 256 nodes, the

total number of nodes in the Grid, and ea
h node 
ontains dual Intel Pentium 3

1GHz pro
essors. Due to hardware problems, I was unable to do any testing on the

Clemson Mini-Grid, but Ballo
 was run su

essfully on the Grendel Testbed.

4.2 Experiments Completed with Timing Informa-

tion

EÆ
ien
y is a small issue that will be addressed brie
y. The main aspe
t is that the

allo
ation tool should not slow down development. Given the expe
ted size of a Mini-

Grid and its sub
lusters, it 
an be assumed that when a user for
es Ballo
 to borrow

nodes, the number of nodes requested is very large. Sin
e the number of nodes in

the set is very large, the size of the 
omputations must also be very large and involve

a great deal of time. Therefore, if allowing the user to spread the 
omputation over

nodes that may have fewer users on them de
reases the amount of time to perform

the fun
tions, then some lenien
y 
an be given to the allo
ation tool.

A test program was used to time the 
omputations with and without Ballo
. This

program multiplied two matri
es one of 1280�320 and the other 320�160. Using the

Grendel Grid, the program was run on di�erent number of pro
essors ten times. The



49

run time of the program was taken using the wall 
lo
k time, and 
an vary depending

on the state of the system.

Taking this into 
onsideration, the 
ommon 
ase, or one 
luster 
ase, must take

pla
e qui
kly, while borrowing nodes may take a greater amount of time. However,

it was dis
overed that using Ballo
 for the 
ommon 
ase, might a
tually speed up

the test program. More studies would have to be performed for this statement to

be justi�ed, but with the test program running on �ve pro
essors, the average time

without Ballo
 was 34.22 se
onds and the average time with Ballo
 was 31.91 se
onds.

While 6.75% is not a great di�eren
e, it is enough to take noti
e. This di�eren
e 
ould

be in the way Ballo
 and MPI on S
yld allo
ate nodes. With this example, it is shown

that the 
ommon one-
luster 
ase is not slowed down at all by using Ballo
.

The rarer 
ase, where nodes must be borrowed, 
omes in to play with very large

jobs, or multiple jobs that require Ex
lusive a

ess. The test program was used with

twelve nodes, using the entire Grendel Grid. Unfortunately, the test program did not

seem to be as eÆ
ient on multiple nodes, and pro
essing took around 40 se
onds with

Ballo
. Borrowing on the other hand is extremely slow on Grendel. With an average

time of 5.5 minutes for borrowing all six nodes, when none fail or have to be rebooted,

pro
essing time would need to be mu
h greater than that to justify borrowing nodes.

A problem o

urs when a node fails or does not boot 
orre
tly and adds an average

of 2 minutes per node to the borrowing time. On Grendel this o

urred approximately

50% of the time. It is assumed that some of this o

urs be
ause of slow hardware

and implementation on the Clemson Mini-Grid would help. Even though the nodes

have a tenden
y to not boot, Ballo
 handles this and only one out of ten times did

the node not eventually 
ome up. In this 
ase the node is deleted from the set and

the set is sent with one fewer that requested.



Chapter 5

Con
lusions and Future Work

This paper dis
ussed the design and implementation of a new allo
ation tool for the

Mini-Grid ar
hite
ture. The requirements for su
h an allo
ator were examined and

were determined to be to:

� Maintain the state of nodes distributed a
ross the grid,

� Allow for multi{user and single{user a

ess to nodes,

� Provide a me
hanism for transferring nodes between 
lusters,

� Provide borrowing and allo
ation options for poli
y implementation in a s
hed-

uler,

� Be transparent to the user,

� Enfor
e usage poli
ies,

� Have an eÆ
ient implementation, and

� Be able to integrate with existing software.

Several s
hedulers were examined for ne
essary interfa
e 
omponents, and then several

allo
ators were examined for possible integration. It was determined that the existing

allo
ators did not meet the ne
essary requirements for this ar
hite
ture.

The design and implementation of a new Beowulf allo
ation tool, Ballo
, was

dis
ussed, in
luding the development of a user API and a system daemon. The



51

user API was shown to hide the user from the 
omplexities of so
ket programming,

and allowed simple a

ess to Ballo
. The system daemon was shown to 
omplete all

fun
tionality requirements ne
essary in
luding integrating with the S
yld software and

providing a new borrowing me
hanism. Ballo
 is robust enough to handle multiple

users requesting large numbers of nodes. It is time eÆ
ient when allo
ating nodes

and does not e�e
t the timing statisti
s of 
ertain types of MPI programs. When

borrowing nodes, the allo
ation time is in
reased, but sin
e borrowing nodes implies

a large program, the time required is small in 
omparison.

There are many avenues available for future work on Ballo
. The �rst is to test

the allo
ator on the a
tual Clemson University Mini-Grid. This Mini-Grid is mu
h

larger in size and would give a greater estimate of the amount of time required for

borrowing and allo
ating nodes. Database sear
hes would be greater and rebooting

large numbers of nodes might 
ause problems. Attempts should be made to see if a

speedup is ne
essary for reading and writing 
on�guration �les. This larger testbed

would give better insight into the operations of Ballo
.

Another venue, is the integration of Ballo
 with an existing s
heduler. This would

make the use of Ballo
 on a large 
luster more e�e
tive. This integration should be

able to a

ess Ballo
 for nodes and tell it when to allo
ate, but Ballo
 should de
ide

whi
h nodes to use. By s
heduling jobs into the Mini-Grid, more throughput 
ould

be a
hieved.

Also, a reservation s
heme with the s
heduler will need to be implemented for

future use. This requires developing a fun
tionality that allows groups of users onto

the same group of reserved nodes. One way to a

omplish this might be to 
reate a

set management program. It 
ould keep tra
k of a larger set and be able to allo
ate

smaller sets within that group. This would allow a resear
h group to designate a set

of nodes for their ex
lusive use, and only allow those people on the nodes in a shared

fun
tionality.



52

A program that might in
rease the re
ognition of the Clemson Mini-Grid is a

GUI program that would be available on the web for use by anyone. This program

would allow users to see the status of the Mini-Grid at any time. This appli
ation

would require a Java API to be developed and should not be too diÆ
ult, sin
e the


ommuni
ation pa
kets are already pla
ed in network-byte order. This API would

need to 
onta
t Ballo
 and use the status requests to graphi
ally display the 
urrent

status.

Another GUI that might be developed is for the Ballo
 Control Manager. The


urrent interfa
e to the manager is purely text based and 
an make it hard for the

admin to keep tra
k of the status of the Mini-Grid. This GUI would make 
ontrolling

and maintaining the Mini-Grid easier for an administrator.

Finally, Ballo
 
ould be developed to have more 
ontrol over the way Bpro
 sees

the 
luster. Currently, the 
luster must be 
on�gured to 
ontain IP addresses and

node numbers for the entire size of the Mini-Grid. The 
on�guration �les 
ould be

written to expand and 
ollapse the size of the 
luster a

ording to when nodes are

borrowed from another 
luster. This 
on�guration �le 
ontains all information about

the 
luster, in
luding the IP address range, a list of node Ethernet addresses, and

and the net mask used for 
ommuni
ations.

Ballo
 was developed for use on the new Mini-Grid ar
hite
ture. This thesis

examined the ne
essary requirements for su
h an allo
ator. How these requirements

were developed and implemented in Ballo
 was dis
ussed.



Appendi
es



Appendix A

Ballo
 API Manual

A.1 Overview of Ballo
 API

The ballo
 appli
ation proto
ol interfa
e (API) 
onsists of nine user fun
tions and

four system fun
tions. The prototypes of both the user and system fun
tions are

de�ned in the \ballo
.h" header �le, and the implementation of these fun
tions is

de�ned in the \balib.
" sour
e �le. The user fun
tions provide a means to allo
ate,

free, and query sets and a means to 
reate a job map from a set. The system fun
tions

are provided primarily for use by the ballo
 daemon sour
e and for the ballo
 API

sour
e itself. The system fun
tions give the daemon sour
e the ability to temporarily

reserve nodes on a 
luster for possible allo
ation. Other system fun
tions give the

API sour
e the ability to 
onvert data from network-byte-order to host-byte-order.

A brief des
ription of the user fun
tions and system fun
tions 
an be found in Tables

1 and 2 respe
tively. Next some 
oding examples are given. Finally, a more detailed

des
ription of ea
h fun
tion is listed.

There are four user fun
tions provided to 
reate and free sets. These fun
tions

are ballo
(), bfree(), breturn(), and breset(). The fun
tion ballo
() is used to allo
ate

sets. Several attributes of the set 
an be spe
i�ed whi
h in
ludes the number of



54

nodes in the set, the mode the set should be allo
ated in, the grouping of the set,

whether or not all nodes must be allo
ated on one 
luster, whether or not borrowing

is allowed, and whether or not less nodes than requested will be a

epted. On
e a set

has been allo
ated, it 
an be freed with bfree(). If a set has been loaned to another


luster it 
an be returned with breturn() when the 
urrent pro
esses are �nished or

immediately. Finally, breset() 
an be used to reset the allo
ation tables. However,

this fun
tion should only be used for testing purposes.

There are four user fun
tions provided to query nodes and sets. These fun
tions

are ba
tset(), bnodestat(), bsetstat(), and btypestat(). The fun
tion ba
tset() will

return a list of all a
tive sets. The fun
tion bnodestat() is used to determine the

status of the spe
i�ed node. The returned information about the node in
ludes the

IP address, the mode, the number of users 
urrently using the node, the number of

sets that 
ontain the node, and a list of the sets that 
ontain the node. The fun
tion

bsetstat() is used to determine the information about a spe
i�
 set. The returned

information in
ludes the mode the set is in, the user ID of the owner of the set, the

number of nodes in the set, and a list of the nodes in the set. The fun
tion btypestat()

is used to get a list of nodes in a spe
i�
 mode.

On
e a set has been 
reated with ballo
(), the fun
tion node info to job map()

is used to 
reate a job map from the spe
i�ed list of nodes. A job map is a string 
on-

taining a list of node numbers seperated by 
olons. Typi
ally, a job map is 
reated for

the environment variable BEOWULF JOB MAP. On
e the BEOWULF JOB MAP

variable is set to the job map, a job 
an be exe
uted on nodes listed in the job map.

The two system fun
tions used by the ballo
 daemon sour
e are bresv() and bal-

lo
resv(). The bresv() fun
tion is �rst 
alled to reserve the spe
i�ed number of nodes

for ten se
onds while ballo
 determines whether or not the nodes are needed. If ballo


de
ides the nodes are needed, the ballo
resv() fun
tion is 
alled to allo
ate the nodes

in the set that were just reserved.



55

The other two system fun
tions are ntoh borr info() and ntoh node info(). These

fun
tions are mainly used by the ballo
 API fun
tions. They both take returned

network-byte-order data and 
onvert it to host-byte-order. The ntoh borr info()

fun
tion organizes the data into borr node info stru
tures and the ntoh node info()

fun
tion organizes the data into node info stru
tures.

A typi
al s
enario will involve �rst using ballo
() to allo
ate some sets. Next

querying may be done to determine the status of nodes and sets. Then the fun
tion

node info to job map() will be 
alled to 
reate a job map. The job map will be used

to set the BEOWULF JOB MAP environment varaiable. At this point jobs 
an be

run on the nodes spe
i�ed by the BEOWULF JOB MAP variable. Finally after all

jobs have ended on a parti
ular set, the set is freed.



56

Table 1 - User Fun
tions

Fun
tion prototype Des
ription

int ba
tset(int *data, int *sets, 
har

*bheadname)

Returns a list of a
tive sets.

int ballo
 (int nodes, int mode, node info *data,

int gro, int all, int bor, int ltn, 
har *bheadname)

Allo
ates the number of

nodes requested if the given


onstraints are met.

int bfree(int set, 
har *bheadname) Frees the spe
i�ed set.

int bnodestat(int *data, int *datanode, int

node, int *mode, int *sets, int *
ount, 
har

*bheadname)

Returns information on a

spe
i�ed node.

int breset(
har *bheadname) Resets ballo
. All nodes are

freed and removed from all

sets. Should only be used

for testing purposes.

int breturn(int set, int importan
e, 
har

*borr
lustername, 
har *bheadname)

Request the set that 'bor-

r
lustername' loaned to

'bheadname' to be returned

to 'borr
lustername'.

int bsetstat(node info *data, int set, int *uid,

int *mode, int *nodes, 
har *bheadname)

Returns information on the

spe
i�ed set.

int btypestat(node info *data, int mode, int

*nodes, 
har *bheadname)

Returns a list of nodes that

are in the spe
i�ed mode.


har *node info to job map(node info

*data)

Returns a job map of the

form \X1:X2:...:XN" where

X1 through XN are the

node numbers stored in the

list 'data'.

Table 2 - System Fun
tions

Fun
tion prototype Des
ription

int ballo
resv(int nodes, int setnum,

borr node info *data, 
har *bheadname)

Allo
ates nodes that are in

the reserved set 'setnum'.

int bresv(int nodes, int *return nodes, 
har

*bheadname)

Reserves a set of nodes for

10 se
onds that 
ontains

less than or equal to the

number requested.

int ntoh borr info(int *new data, int

numnodes, borr node info *data)

Converts the returned

data 'new data' to a

borr node info list.

int ntoh node info(int *new data, int

numnodes, node info *data)

Converts the returned data

'new data' to a node info

list.



57

A.2 Example Coding

1. Below is an example that allo
ates a set of 16 nodes on the lo
al 
luster-head.

Borrowing will not be allowed and less nodes will not be a

epted. The nodes

will be allo
ated in SHARED mode. After the nodes are allo
ated, a job map

is 
reated from the nodes. Finally, the set of nodes are freed.

node_info * theNodes;

node_info *finger1, *finger2;


har bheadname[MAXHOSTNAME + 1℄;


har *jobMap;

int set = 0;

int status = 0;

// get the lo
al host name

gethostname(bheadname, MAXHOSTNAME);

// allo
ate the set

theNodes = (node_info *) mallo
(sizeof(node_info));

set = ballo
(16, SHARED, theNodes, MOSTFIRST, ALLOFF, BORROWOFF,

LESSOFF, bheadname);

if(set < 0)

{

fprintf(stderr, "Failed to allo
ate Set!\n");

exit(-1);

}

// get the job map

jobMap = node_info_to_job_map(theNodes);

if(jobMap == NULL)

{

fprintf(stderr, "Failed to 
reate job map!\n");

exit(-1);

}

...

// use the job map to exe
ute jobs

...

// free the set

status = bfree(set, bheadname);

if(status < 0)

{

fprintf(stderr, "Failed to free set!\n");

exit(-1);

}



58

// free the node_info list from memory

finger1 = theNodes;

while(finger1 != NULL)

{

finger2 = finger1->next_node;

free(finger1);

finger1 = finger2;

}

2. Below is an example of allo
ating 32 nodes in EXCLUSIVE mode. Priority

gouping will be used. Allo
ating all the nodes on one 
luster will not be required.

Borrowing will be allowed. Finally, less nodes than requested will be a

epted.

node_info * theNodes;


har bheadname[MAXHOSTNAME + 1℄;

int set = 0;

int status = 0;

// get the lo
al host name

gethostname(bheadname, MAXHOSTNAME);

set = ballo
(32, EXCLUSIVE, theNodes, PRIORITY, ALLOFF, BORROWON,

LESSON, bheadname);

if(set < 0)

{

fprintf(stderr, "Failed to allo
ate Set!\n");

exit(-1);

}

...

status = bfree(set, bheadname);

if(status < 0)

{

fprintf(stderr, "Failed to free Set!\n");

exit(-1);

}

// free vars, et
...

3. Below is an example of how to use ba
tset() and bsetstat(). The returned list

of sets from ba
tset() are printed to the display. For ea
h set, the user id of the

owner of the set, the mode the set is in, and the number of nodes in the set are

retrieved using ba
tset() and printed to the display.


har bheadname[MAXHOSTNAME + 1℄;

int status = 0;

int i = 0;



59

int sets = 0;

int *data;

// get the lo
al host name

gethostname(bheadname, MAXHOSTNAME);

status = ba
tset(&data, &sets, bheadname);

if(status < 0)

{

fprintf(stderr, "Failed to get a
tive sets!\n");

exit(-1);

}

// print out all the set numbers

for(i = 0; i < sets; i++)

{

node_info *node_list;

int uid = 0;

int mode = 0;

int nodes = 0;

printf("set #: %d\n",data[i℄);

status = bsetstat(node_list, data[i℄, &uid, &mode, &nodes,

bheadname);

if(status < 0)

{

fprintf(stderr, "Error getting status of set!\n");

exit(-1);

}

printf("\tuser id: %d\n", uid);

printf("\tmode: %d\n", mode);

printf("\tnum nodes: %d\n", nodes);

// free vars, et
...

}

4. Below is an example of how to use bnodestat() and btypestat().


har bheadname[MAXHOSTNAME + 1℄;

int *data;

node_info *node_list;

int 
ount = 0;

int status = 0;

int sets = 0;



60

int datanode = 0;

int uid = 0;

int mode = 0;

int nodes = 0;

// get the lo
al host name

gethostname(bheadname, MAXHOSTNAME);

node_list = (node_info *) mallo
(sizeof(node_info));

status = btypestat(node_list, SHARED, &nodes, bheadname);

if(status < 0)

{

fprintf(stderr, "Error retrieving list of nodes in

spe
ified mode!\n");

exit(-1);

}

if(nodes > 0)

{

status = bnodestat(data, &datanode, node_list[0℄, &mode,

&sets, &
ount, bheadname);

if(status < 0)

{

fprintf(stderr, "Error retrieving information on node!\n");

exit(-1);

}

printf("node: %d\n", node_list[0℄);

printf("\tip address: %d\n", datanode);

printf("\tmode: %d\n", mode);

printf("\tnum sets: %d\n", sets);

printf("\tnum users: %d\n", 
ount);

}

else

{

printf("There were no nodes found in the spe
ified mode\n");

}

// free vars, et
...



61

A.3 Fun
tion Des
riptions

ba
tset()

Fun
tion Prototype

int ba
tset(int *data, int *sets, 
har *bheadname);

Des
ription

The fun
tion 'ba
tset' will return a list of all a
tive sets in the 'data' argument. The

number of a
tive sets found will be returned in the 'sets' argument.

Arguments

int *data : output

int *sets : output


har *bheadname : input

The argument 'data' is used by ba
tset() to return a list of all the a
tive sets.

The argument 'sets' is used by ba
tset() to return the number of a
tive sets.

The 'bheadname' argument must point to a null terminating string that 
ontains

the network name of the 
luster head to send request to. This argument will

typi
ally be lo
alhost for users.

Return Value

If ba
tset() is su

essful, 0 is returned. If it is not su

essful, -1 is returned and

errno is set.

Errno

EBADREQ The request was not valid.



62

ballo
()

Fun
tion Prototype

int ballo
(int nodes, int mode, node info *data, int gro, int all, int bor, int ltn, 
har

*bheadname);

Des
ription

The fun
tion ballo
() attempts to allo
ate the number of nodes spe
i�ed by 'nodes'.

The nodes 
an be allo
ated in one of two modes as des
ribed by the 'mode'

argument. The 'ltn' argument allows the user to spe
ify that less nodes than

requested are a

eptable.

ballo
() 
an borrow nodes from other 
lusters if there are not enough available on

the lo
al 
luster and the 'bor' variable is set to allow borrowing. When borrowing

nodes, there are two options that spe
ify how the nodes should be borrowed. The

argument 'gro' allows the user to spe
ify the grouping. The argument 'all' allows

the user to spe
ify whether or not all nodes must be borrowed from one 
luster.

Arguments

int nodes : input

int mode : input

node info *data : output

int gro : input

int all : input

int bor : input

int ltn : input


har *bheadname : input



63

The 'nodes' argument spe
i�es the number of nodes to allo
ate. This number

should be greater than 0.

The 'mode' argument allows the user to spe
ify what mode the nodes should be

allo
ated in. The possible modes are either SHARED or EXCLUSIVE. SHARED

means that the nodes allo
ated 
an belong to more than one set. EXCLUSIVE

means that the nodes allo
ated 
annot be allo
ated to any other sets until they are

freed.

The 'data' argument is used by ballo
() to return the list of nodes allo
ated to the

set. The 'data' obje
t must point to a valid node info stru
ture. The stru
ture

must have memory allo
ated to it before 
alling ballo
().

The 'gro' argument allows the user to spe
ify the grouping of borrowed nodes. The

possible values of 'gro' are PRIORITY or MOSTFIRST. PRIORITY means that

nodes should be borrowed from 
lusters with the highest priority �rst. The priority

of the 
lusters is de�ned in the ballo
 
luster 
on�g �le. MOSTFIRST means that

nodes should be borrowed from 
lusters with the most available nodes �rst. If two or

more 
lusters have teh same number of nodes available, then PRIORITY is used.

The 'all' argument is used to spe
ify whether or not all of the borrowed nodes must


ome from one 
luster. The possible values for this argument are ALLON or

ALLOFF. ALLON means that all of the borrowed nodes must 
ome from the same


luster. ALLOFF means that all of the borrowed nodes do not need to 
ome from

the same 
luster. If there are enough available nodes on the lo
al 
luster, this

argument is ignored.

The 'bor' argument is used to spe
ify whether or not nodes should be borrowed if

there are not enough available nodes on the lo
al 
luster. The possible values for

this argument are BORROWON or BORROWOFF. BORROWNON means that



64

ballo
() should attempt to borrow nodes if there are not enough available.

BORROWOFF means that ballo
() should not attempt to borrow nodes.

The 'ltn' argument is used to spe
ify whether or not less nodes are a

eptable. The

possible values for this argument are LESSON or LESSOFF. LESSON means that

less nodes are a

eptable. LESSOFF means that either the number of nodes

requested are allo
ated or none are allo
ated.

The 'bheadname' argument must point to a null terminating string that 
ontains

the network name of the 
luster head to send request to. This argument will

typi
ally be lo
alhost for users.

Return Value

If ballo
() is su

essful, the set number is returned and the argument 'data' 
ontains

the returned node addresses. If ballo
() 
annot meet the request, -1 is returned and

errno is set.

Errno

EBADREQ The request was not valid.

EUNAVAIL The amount of requested nodes are not available.

ENOSETS No more sets 
ould be 
reated.

EBADNUM There were more nodes requested than the number of reserved nodes.



65

bfree()

Fun
tion Prototype

int bfree(int set, 
har *bheadname);

Des
ription

The bfree() fun
tion will remove all nodes from the set spe
i�ed by the argument

'set'. If the set 
ontained a set of borrowed nodes and those nodes do not belong to

any other set, bfree() will return the group of borrowed nodes to it's original 
luster.

Arguments

int set : input


har *bheadname : input

The 'set' argument is the set number that will be freed.

The 'bheadname' argument must point to a null terminating string that 
ontains

the network name of the 
luster head to send request to. This argument will

typi
ally be lo
alhost for users.

Return Value

If bfree() is su

essful, 0 will be returned. If it is not su

essful, -1 will be returned

and errno will be set.

Errno

EBADREQ The request was not valid.

EBADSET The set spe
i�ed was not found.



66

bnodestat()

Fun
tion Prototype

int bnodestat(int *data, int *datanode, int node, int *mode, int *sets, int *
ount,


har *bheadname);

Des
ription

The fun
tion bnodestat() returns information on the spe
i�ed node 'node'. The

information returned in
ludes a list of set numbers that 
ontain the node, address of

the node, the mode of the node, the number of sets 
ontaining the node, and the

number of users on the node.

Arguments

int *data : output

int *datanode : output

int node : input

int *mode : output

int *sets : output

int *
ount : output


har *bheadname : input

The 'data' argument is used by bnodestat() to return a list of set numbers that the

node belongs to.

The 'datanode' is used by bnodestat() to return the IP address of the node.

The 'node' argument is the spe
i�ed node to look up.

The 'mode' argument is used by bnodestat() to return the mode that the node is in.

The possible modes are: UNKNOWN, FREE, SHARED, EXCLUSIVE,



67

RESERVED, DOWN, BORROWED. UNKNOWN means that the status of the

node 
annot be determined. FREE means that the node is 
urrently available.

SHARED means that the set belongs to one or more SHARED sets. The node 
an

be allo
ated to more SHARED sets. EXLUSIVE means that the node belongs to an

EXCLUSIVE set and 
annot be allo
ated to another set until it is freed.

RESERVED means that the node has been RESERVED by the system for future

use. The node 
annot be allo
ated. DOWN means that the node is not 
urrently

operating. BORROWED means that the node has been loaned to another 
luster.

The 'sets' argument is used by bnodestat() to return the number of sets that the

node belong to. This is the size of the 'data' list.

The '
ount' argument is number of users that are 
urrently using the node.

The 'bheadname' argument must point to a null terminating string that 
ontains

the network name of the 
luster head to send request to. This argument will

typi
ally be lo
alhost for users.

Return Value

If bnodestat() is su

essful, 0 is returned. If it is not su

essful, -1 is returned and

errno is set.

Errno

EBADREQ The request was not valid.

EBADNODE The node spe
i�ed was not available



68

breset()

Fun
tion Prototype

int breset(
har *bheadname);

Des
ription

The fun
tion breset() reinitializes the entire set database. All of the nodes are freed

and removed from all sets. This fun
tion should only be used for testing purposes

and should be depre
ated.

Arguments


har *bheadname : input

The 'bheadname' argument must point to a null terminating string that 
ontains

the network name of the 
luster head to send request to. This argument will

typi
ally be lo
alhost for users.

Return Value

If breset() is su

essful, 0 is returned. If it is not su

essful, -1 is returned and errno

is set.

Errno

EBADREQ The request was not valid.



69

breturn()

Fun
tion Prototype

int breturn(int set, int importan
e, 
har *borr
lustername, 
har *bheadname);

Des
ription

The breturn() fun
tion returns the set of borrowed nodes to it's original owner.

This request should be sent to the 
luster head that borrowed the nodes.

Arguments

int set : input

int importan
e : input


har *borr
lustername : input


har *bheadname : input

The 'set' argument is the set that 
ontains the loaned nodes.

The 'importan
e' argument 
an be either NOW or WHENDONE. NOW means that

the nodes must be returned immediately. There is no warning given, and any set


ontaining those nodes will loose those nodes. WHENDONE means to wait until

the jobs s
heduled on the nodes are done, but no additional jobs 
an be s
heduled.

The 'borr
lustername' argument must point to a null terminating string that


ontains the network name of the 
luster head that loaned the set.

The 'bheadname' argument must point to a null terminating string that 
ontains

the network name of the 
luster head to send request to. This argument will

typi
ally be lo
alhost for users.



70

Return Value

If breturn() is su

essful, 0 is returned. If it is not su

essful, -1 is returned and

errno is set.

Errno

EBADREQ The request was not valid.

EBADSET The set spe
i�ed was not found.



71

bsetstat()

Fun
tion Prototype

int bsetstat(node info *data, int set, int *uid, int *mode, int *nodes, 
har

*bheadname);

Des
ription

The fun
tion bsetstat() returns information about the set spe
i�ed by 'set'. The

information returned is the list of the nodes in the set, user ID of the owner of the

set, mode the set is in, and number of nodes in the set. The information returned

about ea
h node in the set in
ludes the node number, IP address, and the number

of users 
urrently on the node.

Arguments

node info *data : output

int set : input

int *uid : output

int *mode : output

int *nodes : output


har *bheadname : input

The 'data' argument is used by bsetstat() to return a list of nodes in the set. It

must point to a valid node info stru
ture. This memory must be allo
ated before


alling bsetstat().

The 'set' argument should 
ontain the set number for the set that is being queried.

The 'uid' argument is used by bsetstat() to return the user ID of the owner of the

set.



72

The 'mode' argument is used by bsetstat() to return the mode of the set. The mode


an be one of the following: SHARED, EXCLUSIVE, or BORROWED. SHARED

means that any node in the set 
an be allo
ated to another set that is also in the

SHARED mode. EXCLUSIVE means that all nodes in the set are ex
lusively

allo
ated to the set. None of the nodes 
an be allo
ated to future sets until they are

freed from this set. BORROWED means that the set is not part of the 
luster's


urrent resour
es. The nodes in the set have been loaned to another 
luster.

The 'nodes' argument is used by bsetstat() to returned the number of nodes in the

set.

The 'bheadname' argument must point to a null terminating string that 
ontains

the network name of the 
luster head to send request to. This argument will

typi
ally be lo
alhost for users.

Return Value

If bsetstat() is su

essful, 0 is returned. If it is not su

essful, -1 is returned and

errno is set.

Errno

EBADREQ The request was not valid.

EBADSET The set spe
i�ed was not found.



73

btypestat()

Fun
tion Prototype

int btypestat(node info *data, int mode, int *nodes, 
har *bheadname);

Des
ription

The fun
tion btypestat() returns a list of nodes that are in the spe
i�ed mode.

Arguments

node info *data : output

int mode : input

int *nodes : output


har *bheadname : input

The 'data' argument is used by btypestat() to return the list of nodes that are in

the mode spe
i�ed by 'mode'. The 'data' argument must point to a valid node info

stru
ture. The stru
ture must have memory allo
ated to it before 
alling

btypestat().

The 'mode' argument should spe
ify the mode to look up.

The 'nodes' argument returns the number of nodes that are in the spe
i�ed mode.

The 'bheadname' argument must point to a null terminating string that 
ontains

the network name of the 
luster head to send request to. This argument will

typi
ally be lo
alhost for users.

Return Value



74

If btypestat() is su

essful, 0 is returned. If it is not su

essful, -1 is returned and

errno is set.

Errno

EBADREQ The request was not valid.



75

node info to job map()

Fun
tion Prototype


har * node info to job map(node info *node 
ount);

Des
ription

The fun
tion node info to job map() takes a list of nodes 'node 
ount' and

returns a list of node numbers in the job map format for the environment variable

BEOWULF JOB MAP.

Arguments

node info *node 
ount : input

The 'node 
ount' argument should 
ontain a list of nodes that will be returned in

job map format.

Return Value

If node info to job map() is su

essful, a job map is returned with the form

nodenumber: nodenumber:...:nodenumber. If it is not su

essful, NULL is returned

and errno is set.

Errno

EBADREQ The request was not valid.



76

ballo
resv()

Fun
tion Prototype

int ballo
resv(int nodes, int setnum, borr node info *data, 
har *bheadname);

Des
ription

The fun
tion ballo
resv() allo
ates previously reserved nodes in the spe
i�ed set.

Arguments

int nodes : input

int setnum : input

borr node info *data : output


har *bheadname : input

The 'nodes' argument spe
i�es the number of nodes to allo
ate. This 
an be less

than or equal to the number originally reserved.

The 'setnum' argument spe
i�es the reserved set that the nodes are in.

The 'data' is used by ballo
resv() to return the list of nodes that have been

allo
ated. The 'data' obje
t must point to a valid borr node info stru
ture. The

stru
ture must have memory allo
ated to it before 
alling ballo
resv().

The 'bheadname' argument must point to a null terminating string that 
ontains

the network name of the 
luster head to send request to. This argument will

typi
ally be lo
alhost for users.

Return Value



77

If ballo
resv() is su

essful, the new set number is returned. If it is not su

essful, -1

is returned and errno is set.

Errno

EBADREQ The request was not valid.

EBADNUM There were more nodes requested than the number of reserved nodes.



78

bresv()

Fun
tion Prototype

int bresv(int nodes, int *return nodes, 
har *bheadname);

Des
ription

The fun
tion bresv() reserves the number of nodes spe
i�ed by 'nodes' for 10

se
onds. During the 10 se
onds ballo
() will de
ide whether or not it needs to

borrow those nodes. If ballo
 does not 
laim the nodes within 10 se
onds, they are

freed.

Arguments

int nodes : input

int *return nodes : output


har *bheadname : input

The 'nodes' argument spe
i�es how many nodes to reserve.

The 'return nodes' argument is used by bresv() to return the a
tual number of

nodes reserved, be
ause ballo
 assumes less nodes are a

eptable for reservation.

This allows the number of nodes on 
lusters to be 
ompared.

The 'bheadname' argument must point to a null terminating string that 
ontains

the network name of the 
luster head to send request to. The reserved nodes will be

reserved on the 
luster referen
ed by this argument.

Return Value

If bresv() is su

essful, 0 is returned. If it is not su

essful, -1 is returned and errno

is set.



79

Errno

EBADREQ The request was not valid.

ENOSETS No more sets 
ould be 
reated.



80

ntoh borr info()

Fun
tion Prototype

int ntoh borr info(int *new data, int numnodes, borr node info *data);

Des
ription

The fun
tion ntoh borr info() takes the returned data 'new data' and 
onverts it

to the borr node info list 'data'. The data is translated from network to host byte

order and organized into the 'data' list. This fun
tion is used by ballo
 
alls to


hange byte order of data returned from the ballo
 daemon.

Arguments

int *new data : input

int numnodes : input

borr node info *data : output

The 'new data' argument 
ontains a list of data that is in network byte order. The

sequen
e of data, as found int the borr node info stru
ture, is nodenum, nodeaddr,


ount, eaddr, repeat.

The 'numnodes' argument is the number of nodes in the list.

The 'data' argument is used by ntoh borr info() to return the list of nodes.

Return Value

If ntoh node info() is su

essful, 0 is returned. If it is not su

essful, -1 is returned

and errno is set.

Errno

EBADREQ The request was not valid.



81

ntoh node info()

Fun
tion Prototype

int ntoh node info(int *new data, int numnodes, node info *data);

Des
ription

The fun
tion ntoh node info() takes the returned data 'new data' and 
onverts it

to a node info list. The data is translated from network to host byte order and

organized into the 'data' list. This fun
tion is used by ballo
 
alls to 
hange byte

order of data returned from the ballo
 daemon.

Arguments

int *new data : input

int numnodes : input

node info *data : output

The 'new data' argument 
ontains a list of data that is in network byte order. The

sequen
e of data, as found in the node info stru
ture, is nodenum, nodeaddr, 
ount,

next node, repeat.

The 'numnodes' argument is the number of nodes in the list.

The 'data' argument is used by ntoh node info() to return the list of nodes.

Return Value

If ntoh node info() is su

essful, 0 is returned. If it is not su

essful, -1 is returned

and errno is set.

Errno

EBADREQ The request was not valid.



Bibliography

[1℄ IBM Corporation. RS/6000 SP System Management: Easy, Lean, and Mean.

Te
hni
al report, International Te
hni
al Support Organization, June 1995.

[2℄ Platform Computing Corporation. LSF Referen
e Guide: Version 4.2. Te
hni
al

report, June 1994.

[3℄ Platform Computing Corporation. Using LSF with IBM SP-2. Te
hni
al report,

2000.

[4℄ Thinking Ma
hines Corporation. The Conne
tion Ma
hine: CM-5 Te
hni
al

Summary. Te
hni
al report, Thinking Ma
hines Corporation, Cambridge, Mas-

sa
husetts, O
tober 1991.

[5℄ Veridian Corporation. PBS Unix Manual Pages. Te
hni
al report, June 2000.

[6℄ Amin Vahdat Douglas Ghormley, David Petrou and Keith Vetter. Global Layer

Unix: GLUnix. http://now.
s.berkeley.edu/Glunix/glunix.html, 1997.

[7℄ et. al. Dr. Walter B. Ligon, Dr. Daniel C. Stanzione. S
yld Beowulf Training.

Te
hni
al report, S
yld Computing Corporation, 2001.

[8℄ Super
luster Development Group. Maui Do
umentation: Se
tions: His-

tory, Overview, Qui
k Start Guide, User's Manual, Administrator's Guide.

http://www.super
luster.org, 2000.

[9℄ Super
luster Development Group. Wiki RM Interfa
e Spe
i�
ations Version 1.1.

http://www.super
luster.org, 2000.

[10℄ Cornell University IBM SP. Extensible Argonne S
heduling System Load Leveler.

http://www.t
.
ornell.edu/UserDo
/SP/Bat
h/Easy.

[11℄ Cray In
orporated. Network Queueing Environment(NQE): Software Guide.

http://www.
ray.
om/produ
ts/software/nqe.html, 2001.

[12℄ Southampton O
eanography Center James Rennell Division. Pexe
 man pages.

http://www.so
.soton.a
.uk/JRD, O
tober 1997.

[13℄ Charles E. Leiserson. The Network Ar
hite
ture of the Conne
tion Ma
hine

CM-5. pages 1{18, O
tober 1992.



83

[14℄ LINUX. LINUX man pages: at, atd, 2000.

[15℄ University of Utah. Usage of the Compaq Sierra. Te
hni
al report, Center for

High Performan
e Computing, July 2001.

[16℄ The Globus Proje
t Team. The Globus Grid Programming Toolkit Tutorial.

Te
hni
al report, The Globus Proje
t Team, ANL, and USC/ISI, November 1999.

[17℄ University of Wis
onsin-Madison The Condor Team. Condor High Throughput

Computing. http://www.
s.wis
.edu/
ondor.

[18℄ Donald J. Be
ker Thomas Sterling, John Salmon and Daniel F. Savarese. How to

Build a Beowulf: A Guide to the Implementation and Appli
ation of PC Clusters.

1999.


