
Alloation and Sheduling for a

Computational Grid

A Thesis

Presented to

the Graduate Shool of

Clemson University

In Partial Ful�llment

of the Requirements for the Degree

Master of Siene

Computer Engineering

by

Carel A. Lewis

Deember 2001

Advisor: Dr. Walter B. Ligon III

Deember 14, 2001

To the Graduate Shool:

This thesis entitled \Alloation and Sheduling for a Computational Grid" and

written by Carel A. Lewis is presented to the Graduate Shool of Clemson University.

I reommend that it be aepted in partial ful�llment of the requirements for the

degree of Master of Siene with a major in Computer Engineering.

Walter B. Ligon III, Advisor

We have reviewed this dissertation

and reommend its aeptane:

Ron Sass

Adam Hoover

Aepted for the Graduate Shool:

Abstrat

Parallel omputers are beoming inreasingly important for modern engineering

and sienti� simulation. A suessful type of parallel omputer is the Beowulf lus-

ter. These lusters emphasize using many ommodity proessors in parallel to try

to ahieve the performane levels of more expensive superomputers. A growing re-

searh area is in onneting multiple Beowulfs into a Computational Grid to reate a

distributed system of lusters.

With multiple resoures distributed aross a system, an e�etive way to ombine

their proessing power must be examined. A way to transfer the ownership of the

remote proessors on a luster to a separate luster on the Grid is needed to be able

to ombine the resoures into a larger omputer. This paper explores the di�erent

aspets of sheduling and alloating resoures in a Grid of Beowulfs. It also desribes

the design of a speialized node alloation mehanism for a suh a luster. This

mehanism integrates with urrent Beowulf software whih allows the user to see a

\single" omputer instead of a distributed system.

The tehniques used by this new mehanism to borrow and return nodes between

separate lusters is disussed, as well as methods for order of ontat and ownership of

nodes. This paper also surveys a few di�erent alloation and sheduling tools that are

urrently used in parallel omputers. By using these ideas and the new mehanism,

the organization and the omputational power of a Grid of Beowulfs will be improved.

Dediation

To my friends and family, for their love and support through the last �ve years.

Without your help and patiene, none of this would have been possible.

Espeially to my parents, eah of whom has given me love, knowledge, and a spe-

ial trait that has helped me to sueed. To my mother, who has given me her strength

and ommitment to exellene. To my father, who has given me his adaptivity and

tehnial skills. To my step-father, who has helped me to develop management and

organizational skills. To my step-mother, who has helped me to develop persistene

and patiene.

Aknowledgments

I would like to espeially thank Dr. Walt Ligon for his guidane and support. Your

ommitment to researh has helped me to expand my knowledge in many diretions.

I would also like to thank my ommittee members and Dr. Daniel Stanzione for their

diretion and advie.

Table of Contents

Page

TITLE PAGE . i

ABSTRACT . ii

DEDICATION . ii

LIST OF FIGURES . vi

1 Introdution . 1

1.1 Computational Grids . 2

1.2 Ideal Mini-Grid Capability . 5

1.2.1 One Cluster Example . 5

1.2.2 Mini-Grid Example . 6

1.3 Alloation and Sheduling Issues 8

1.4 Proposed Solution . 9

1.5 Outline . 10

2 Related Work . 12

2.1 Shedulers . 13

2.1.1 MAUI . 13

2.1.2 Bbq . 16

2.2 Alloators . 18

2.2.1 Connetion Mahine . 18

2.2.2 Globus Resoure Alloation Manager 20

3 Ballo . 24

3.1 Introdution . 24

3.2 End User Funtionality . 25

3.2.1 Inorporation into MPI . 25

3.2.2 Ballo API Funtions . 28

3.2.3 Ballo Control Manager and Status Reports 31

3.3 System Daemon Ballo . 31

3.3.1 One Cluster Implementation 32

3.3.2 Two or More Cluster Implementation 36

4 Results . 45

4.1 Testbeds . 46

4.2 Experiments Completed with Timing Information 48

v

5 Conlusions and Future Work . 50

APPENDICES . 53

A Ballo API Manual . 53

A.1 Overview of Ballo API . 53

A.2 Example Coding . 57

A.3 Funtion Desriptions . 61

BIBLIOGRAPHY . 82

List of Figures

Figure Page

1.1 Mini{Grid Arhiteture . 4

1.2 Example of alloation on one luster. 6

1.3 Example of use on Mini-Grid. 7

1.4 Proposed struture for a Beowulf alloation tool. 10

2.1 Steps taken by servies to run user proesses. 13

2.2 Connetion Mahine, CM{5, Arhiteture. 19

2.3 Globus Resoure Alloation Sheme. 21

3.1 Mpirun exeution sequene. 26

3.2 State transitions available for nodes in Ballo. 34

3.3 State transitions by a loaner, available on Beowulf Grid. 37

3.4 State transitions by a borrower, available on Beowulf Grid. 38

3.5 Traking set numbers while borrowing nodes. 39

4.1 Grendel Testbed Arhiteture . 46

4.2 Clemson University's Mini-Grid Struture 47

Chapter 1

Introdution

The amount of information gathered around the world, from satellites to hospital re-

searh, is inreasing at a dramati rate. This data ould hold the answers to weather

foreasting, environmental situations, or even the early detetion and treatment of

geneti diseases. Proessing this data is beoming inreasingly diÆult, due to the

enormous amounts available for di�erent types of testing. Computers have beome

key in getting results quikly. Even so, many di�erent algorithms an be performed

on the same data, ausing an even greater need for omputational power. Demand for

faster omputers has driven researh in proessor speed and aused an almost expo-

nential inrease in performane, but this inrease is still not enough. By �nding ways

to inrease the omputational power of existing mahines, researhers an proess the

available data with muh greater speed.

Several arhitetures exist that use omputers in parallel to proess information.

By sheduling jobs and alloating these omputers in eÆient ways, several users an

be running proesses at the same time. The more ompetent the sheduling and

alloation servies are, the less time users must wait for answers. If these tools were

apable of ombining several existing parallel omputers into one large omputer, the

2

available omputational power for a single user would allow an inrease in omputa-

tional researh in almost any area or �eld.

1.1 Computational Grids

High performane omputing is �lling the gap between the proessing speed required

and what is urrently available. On large data sets that require ertain omputations,

parallel mahines an almost ahieve a linear speedup over single proessor omputers.

For a time, this power was only available to a limited few who ould a�ord large,

expensive superomputers. However, in the last few years a movement has been made

to use many ommodity proessors in parallel to try to ahieve the same performane

levels. The original projet was named Beowulf and was started by Tom Sterling and

Donald Beker in 1994 [18℄. The �rst luster ontained sixteen proessors and was

reated at NASA's Goddard Spae Flight Center.

A Beowulf luster is a grouping of omputers, eah with its own proessors, mem-

ory, hard drives, and network ards. Normally these omputers use the Linux oper-

ating system and Ethernet swithes for ommuniation. On eah luster there exists

a \head node" that is usually onneted to an external network. This head node

ontains onnetions to the \remote nodes", or the nodes that would do the atual

omputation of a program. Eah node in the luster is dediated to the luster and

sine the remote nodes are not subjet to the external network, their performane

orresponds only to the program urrently exeuting.

Beowulfs have grown in popularity and are found in a wide range of plaes. Their

a�ordability and omputational power enourages experimentation. A problem ours

though, when a single user tries to manage a large number of proessors. Salability

beomes an issue, beause of the number of onurrent proesses that are atively

ommuniating with eah other. To hek the status of eah omputer, the user

3

must log on to eah node to �nd out any information. Debugging beomes espeially

diÆult when ommuniation between omputers fails for unknown reasons. Speial

software has been developed to simplify this proess.

The Syld operating system is designed to allow a user to see a Beowulf as a

single omputer, simplifying programming and administration. The ore of the Syld

system is a distributed proess spae reated by a set of daemons, alled Bpro.

Proesses are started on the head node and migrated out to the remote nodes, for

atual omputation. A \ghost" proess an still be seen on the head node that mirrors

all information about the atual proess on the remote node, whih allows simpli�ed

management. This single image view of a luster omputer and the suess of this

system enourages the development of other user software spei�ally designed for

Beowulfs.

More reently researhers have been trying to �nd a way to ombine resoures

that are spread out over great distanes to allow for even greater omputational

power. These resoures inlude a variety of hardware inluding extremely powerful

superomputers, databases, networks, and lusters. These groupings are known as

Computational Grids and programs for these arrays usually inlude a great deal of

data partitioned over the Grid. A Computational Grid is similar to a Power Grid,

where aess to the Grid is available at many points. A user an plug in anywhere

on the Grid to get the neessary power, whether it be omputational or eletrial.

Timing, seurity, and stability beome issues when dealing with the extensive size

and heterogeneous nature of suh a system.

Simpler versions of Computational Grids are in development. These \Mini{Grids"

try to use a loalized setting as an advantage for ommuniations, instead of relying

on slow Internet onnetions to transfer data and proess information. They also

ontain a homogeneous mixture of resoures onsisting of Syld Beowulfs. These

Mini{Grids an be illustrated as one large luster that is broken into several smaller

4

Private Network

Internet

Figure 1.1: Mini{Grid Arhiteture

5

sub{lusters, whih helps to simplify administration, as seen in Figure 1.1. Eah

sub{luster ontains its own head node, and no hierarhy exists between them, so

eah one an be used as a full luster. The sub{lusters' remote nodes are onneted

in the bakground with ommuniation devies on a private network. This allows

any remote node to belong to any head node. In this way the entire Mini{Grid

arhiteture an be ombined to be one massive Beowulf omputer.

1.2 Ideal Mini-Grid Capability

The apabilities that should be available in a Mini-Grid an be desribed with two

example alloations, or jobs with di�erent allotments of nodes. The �rst is on a

single luster and onerns the basi funtionality neessary in an alloation tool.

The seond is an example on our target arhiteture the Mini-Grid with four separate

lusters. Three of those lusters are owned by di�erent groups, and the fourth luster

is a node pool that is available to all the other lusters.

1.2.1 One Cluster Example

The �rst example is the use of a single luster. The arhiteture used for this demon-

stration ontains thirty-two nodes and an be seen in Figure 1.2. This example shows

multiple users aessing a single luster at the same time.

The �rst job to arrive is a Shared alloation request for eight nodes. The seond

job that is �lled requests Exlusive use, beause it is time-restritive, and requests

twenty nodes. These two requests are ful�lled with out any problems.

The next request asks for sixteen nodes, but only twelve are available for shared

mode, eight of whih already have a user on them. At this point the alloator heks

to see if the user will exept fewer nodes. If not, an error ours and a aknowledgment

6

 Shared 8 Nodes

 Exclusive 20 Nodes

 Shared 12(16 req) Nodes

Figure 1.2: Example of alloation on one luster.

is sent telling the user that the nodes are not available. However, for this example,

the ag is set and the nodes are alloated.

Several other Shared jobs ould still aess twelve nodes. No Exlusive jobs ould

be started and no nodes ould be borrowed though, until nodes beame Free.

1.2.2 Mini-Grid Example

The seond example shows several users on eah eah luster of a Mini-Grid. This

illustration an be seen in Figure 1.3. The arhiteture for this example is taken

from a testbed that is disussed further in Setion 4.1. All options are represented

by di�erent jobs on the luster. There are three groups that have aess to this Mini-

Grid, the Center for Advaned Engineering Fibers and Films (CAEFF), the Clemson

University Genomis Institute (CUGI), and the Parallel Arhiteture Researh Lab

(PARL).

7

Internet

 Shared 96 Nodes CAEFF

 Shared 48 Nodes CAEFF

 Shared 32 Nodes PARL

 Exclusive 48 Nodes PARL

 Shared 64 Nodes CUGI

CAEFF Cluster
(32 Nodes)

CUGI Cluster
(32 Nodes)

Processor Pool
(128 Nodes)

PARL Cluster
(64 Nodes)

Figure 1.3: Example of use on Mini-Grid.

This example onsists of �ve jobs. The �rst arrives on the CAEFF luster re-

questing 96 nodes in Shared mode. This luster only ontains 32 nodes, and must

borrow nodes if any are available. The �rst plae every luster queries for borrowed

nodes is the Node Pool. This Pool is used only to provide the other lusters with

spare nodes. Assuming the borrowing is allowed, the luster aesses the other nodes,

and alloates those nodes one the request an be �lled.

The next job is on the same luster. This request is for 48 Shared nodes, whih

an be �lled on the loal nodes and the urrently borrowed nodes. Sine the nodes

have already been borrowed, the reboot delay is not enountered.

The third job is on the PARL luster and is requesting 32 Exlusive nodes. It an

be �lled on the loal luster. The next job is requesting 48 Exlusive nodes, but it

requests that all of the nodes are on the same luster. This request annot be �lled on

the loal luster, so the other alloators are queried and the alloation is ompleted

on the Farm.

The �nal job is on the CUGI luster and is requesting 64 Shared nodes. This

request has set to take the most nodes available �rst, instead of by the priority of the

8

lusters. All the lusters are queried and it is disovered that the PARL luster an

loan the entire amount needed. The CUGI luster borrows from it before the Pool

and only has nodes spread aross two lusters instead of three.

These two examples show the primary implementation requirements that are ne-

essary in the alloation tool. However, these are just two examples of the wide range

of available alloations of nodes that should be available, and the eÆay of suh

funtions should be shown.

1.3 Alloation and Sheduling Issues

Alloators and shedulers are inorporated into almost every omputer. Shedulers

organize jobs to be run on mahines in many di�erent ways, eah trying to deal with

separate issues suh as speed of ompletion, priorities, and eÆieny. A sheduler

says when, where, and how long eah job will be exeuted. While shedulers are

trying to set the order of jobs, alloation tools are trying to set the resoures being

used. A ouple of the main issues in alloation are loality, speed of ommuniation,

and seurity poliies (whih users are allowed whih resoures). These tools vary in

use and are usually hardware spei�.

Alloation and sheduling problems arise with eah new arhiteture developed.

Many tools dealing with partiular problems in lusters are already in development.

Suh problems addressed are hoosing whih nodes to use, balaning the number of

users on eah node, and allowing the luster to be reserved for large jobs. By hanging

the arhiteture of a luster, and reating the Mini{Grid, new problems arise. One of

the main aspets of the Mini{Grid is its ability to be ombined into one large luster,

however no alloator urrently exists that performs this funtion.

Using Syld Beowulf and urrently available alloation tools, the only way to om-

bine the nodes into one luster is manually, hanging on�guration �les and rebooting

9

the Bpro daemons. A new way to dynamially and transparently \borrow" nodes

between the lusters needs to be developed in an alloation tool. This servie must:

� Maintain the state of nodes distributed aross the grid,

� Allow for multi{user and single{user aess to nodes,

� Provide a mehanism for transferring nodes between lusters,

� Provide borrowing and alloation options for poliy implementation in a shed-

uler,

� Be transparent to the user,

� Enfore usage poliies,

� Have an eÆient implementation, and

� Be able to integrate with existing software.

While a few tools o�er some of these options, none work with the Syld operating

system and allow nodes to be transferred from one luster to another.

1.4 Proposed Solution

We propose the design of a new Beowulf alloation tool (Ballo) whih would allow

nodes to be transparently \borrowed" between loally onneted lusters and pro-

vide extensibility and simpliity of use. This tool would ful�ll the previously listed

requirements.

This new servie would ontain a struture like that in Figure 1.4. The user would

have several options to aess the alloator, inluding MPI sripts, funtion alls, and

a ontrol manager. The Ballo tool would onsist of daemons running on eah luster

listening on ommuniation ports. These daemons would have the ability to send

information between eah other and transfer nodes between the lusters.

10

MPI program

function calls

Manager

Balloc Control

Communiction
Port

Communiction

Communiction

Port

Port

Allocation

Allocation

Allocation

Daemon

Daemon

Daemon

User

Systems Users

Figure 1.4: Proposed struture for a Beowulf alloation tool.

1.5 Outline

In this thesis, we start with bakground about di�erenes between shedule and al-

loation servies. Two examples of shedulers are disussed to give bakground on

neessary interfaes for alloation software. We then review two previous alloators.

The �rst is of an early superomputer alloator for the Connetion Mahine CM5.

The seond servie is the alloator used in the Globus Toolkit, the Globus Resoure

Alloation Manager (GRAM) in oordination with the Dynamially Updated Request

Online Co{Alloator (DUROC), designed for a Computational Grid. Eah of the al-

loation tools are analyzed for possible use in the Clemson University Mini{Grid.

Next, the development of a new alloation tool designed for our arhiteture and

operating system is disussed. The suess of this tool is based upon the requirements

for our struture. This daemon reahes the listed requirements, using a separate API

for the user, funtions implemented in Syld for node manipulation, and two separate

databases for owned and borrowed nodes.

11

The Beowulf Alloator, or Ballo, is examined in two separate disussions. The

�rst disussion is of the basi funtionality of Ballo. This funtionality inludes an

examination of the user API and desribes the possible Ballo funtion alls avail-

able. The desription of the user API also inludes the inorporation of Ballo into an

existing parallel programming language environment alled the Message{Passing In-

terfae, or MPI. Administrators for the Mini{Grid also need a Ballo ontrol manager

appliation, that would allow easy examination of the state of the Grid.

The seond disussion is a desription of the atual Ballo daemon implementa-

tion. The basi uses of an alloator that would exist on a single luster are inor-

porated, suh as multi{user or single{user aess and an organized way of keeping

trak of set information. Also in this Setion, the borrowing funtions needed for the

Mini{Grid are desribed. The implementation of borrowing and loaning nodes be-

tween lusters is examined, with the manipulation of databases and Syld operating

�les.

One the implementation is disussed, atual experiments are performed, and the

suess of the system is evaluated. The experiments are desribed using the mpirun

funtion all, with some test parallel programs. Timing for these experiments is

also evaluated. With �le manipulations ourring whenever nodes are borrowed and

reboots neessary, timing beomes a diÆult issue. Evaluation of this requirement

and its ful�llment are examined, along with the suess of the alloator for the other

Mini{Grid requirements.

Finally, we onlude whether or not Ballo meets the design goals and is apable

of borrowing nodes on a Mini{Grid. We then examine future work related to Ballo.

Chapter 2

Related Work

In this hapter we disuss an overview of shedulers and alloators. The interfaes to

shedulers are illustrated and several examples of alloators are examined.

Shedulers and alloators are used as a system to allow organized aess to om-

puter resoures. This aess is restrited to the programs entered into a queuing

manager. The main steps of this proess an be seen in Figure 2.1. First a problem

solving environment or user level program starts a job on the Beowulf luster. This

job is put into a queue of waiting jobs. The queue manager ontats the sheduler

to let it know there is a new proess waiting to run. The sheduler looks at the

system, and deides when the next job should be allowed to start. It ontats the

alloator for the appropriate resoures and the alloator returns whih proessors,

networks, databases, et. are now reserved for use by the job. The sheduler would

then dequeue the appropriate job, and start the proesses on the required resoures.

While this sheme may vary from system to system, the main omponents are the

same. In some ases the queue manager or alloator might take more ontrol over

the atual start time of the job. For our purposes though, the above arrangement is

a good abstrat representation.

13

Figure 2.1: Steps taken by servies to run user proesses.

The funtion of an alloator and a sheduler should not be onfused. While the

sheduler deides when and how muh to alloate to a given job, the alloator ontrols

the availablity of the resoures and atually makes the alloation deisions.

2.1 Shedulers

Sine shedulers play suh a large part in organizing and starting proesses, it is

imperative that an appropriate interfae be examined for integrating any alloator

into an existing sheme. Two ommonly used shedulers on Beowulf lusters are the

MAUI Sheduler and the Beowulf Bath Queue, or Bbq.

2.1.1 MAUI

Maui [8℄ was initially part of a Master's Thesis on Sheduling Optimizations. It was

�rst reated in 1995 at Brigham Young University(BYU). It uses its own alloation

algorithms, but needs a resoure manager to work appropriately. The resoure man-

agers that urrently have an interfae to Maui are Wikiman [9℄, IBM's Loadlever

[1℄, and PBS [5℄. Several other institutions are involved with the urrent form of

14

the projet, inluding, but not limited to, the University of Utah, the University of

Pennsylvania, Pai� Northwest National Laboratory, Boeing, SAIC, and the Maui

High Performane Computing Center (MHPCC) at the University of Hawaii.

\Maui is an advaned bath sheduler with a large feature set well suited for high

performane omputing(HPC) platforms inluding large Alpha and PC lusters...it

makes deisions about where, when, and how to run jobs as spei�ed by admin{

on�gurable poliies" [8℄. It was designed to be able to be installed transparently

without user knowledge. This allows users to be able to ontinue to submit jobs as

previously, but with added sheduling algorithms taking plae in the bakground to

inrease system throughput.

The apabilities of Maui inlude several available statistis gathering and diagnos-

ti utilities. These utilities make this sheduler very attrative to administrators, as

well as users. The statistis an be gathered per user, per node, or even per job. The

diagnostis allow users to trak jobs from when they are plaed in the queue until

ompletion.

Other options for administrators inlude the Quality of Servie, or QOS, feature

and the throttling poliies available. The QOS allows poliies to be geared toward

the mission statement or purpose of a given organization. Speial privileges an be

provided to users or aounts that have a greater priority in the funded researh by

the fs.fg �le. This �le would speify exemptions from poliies restriting aess to

proessing time or resoures.

Throttling poliies are some of the poliies that QOS might exempt a user from.

These poliies are implemented by an administrator to resrit the ow of jobs through

a system at any given moment in time. These restritions an be for a single job, a

single user, or for the entire system. Suh restritions an be on the number of jobs

presented, the number of proessors or nodes being aessed, a job's duration, or the

amount of memory being utilized.

15

Capabilities for the atual sheduling of resoures inlude options suh as advane

reservations, bak�ll, and node alloation poliies. Advane reservations \guarantees

the availability of a set of resoures at a partiular time" [8℄. Reservations must

inlude the resoures required, the time{frame to reserve, and an aess ontrol list,

or ACL. When the reservation is �lled only users or aounts in the ACL an aess

those restrited resoures.

Bak�ll is the method used by Maui to try to utilize the system as muh as

possible. For this algorithm to work, eah job must send an estimated wall{lok

runtime. If bak�ll sheduling is turned on some lower priority jobs might run before

a higher priority job, as long as the higher priority job is not delayed. This inident

might our when a high priority proess is waiting on a resoure. The sheduler

knows the approximate time the job urrently using that resoure is going to be free.

Other resoures needed by the high{priority job ould just sit empty, but Maui tries

to �nd other jobs that would run in the remaining time and �ll those jobs early. This

approah is extremely helpful if orret time estimates are used.

There are also many node alloation poliies available in Maui. These algorithms

would be useful in an alloation tool. A ouple of these poliies are termed by

the FASTEST, CPULOAD, and FIRSTAVAILABLE. FASTEST alloates the fastest nodes

�rst, while CPULOAD alloates the nodes with the greatest amount of CPU power still

available. FIRSTAVAILABLE alloates nodes in the order they are reported to the

sheduler by the resoure manager. These are just a few of the many algorithms

available. The one that might be the most important to this researh, is the LOCAL,

or user spei�ed algorithm, that ould ontat an alloator for the manipulation and

borrowing of nodes from other lusters.

Maui is only a sheduler, even though it has the apability to implement alloation

algorithms. For this reason Maui will only run orretly if it is attahed to a resoure

manager that is in plae and operational. A resoure manager is a program that

16

keeps trak of the available resoures and the alloation of eah to spei�ed users. It

often has information stored in a database or in on�guration �les whih allow Maui

to interfae as well as gather statistial information. Certain poliy issues an be

implemented on these managers, suh as whih users are allowed on whih nodes or

partitions.

A partition is a division of the resoures that are available, and by default jobs an

not bridge these resoures. Some speial proesses have spanning apability. It might

be interesting to see if these partitions an be manipulated while Maui is running. If so

\borrowing" between lusters on the Mini{Grid might be implemented by ontrolling

this ability. However, partition implementation in Maui may be inorret, and testing

would need to be done to ensure stability.

Maui urrently has three available resoure manager interfaes, whih would help

with the development of a new one. Maui has a variable alled RMTYPE whih instruts

it to onnet with a partiular manager. The loation of the manager is spei�ed by

the RMNAME, RMHOST, and RMPORT parameters. Four funtions are at the heart of the

interations between Maui and the manager. GETJOBINFO ollets state information

about urrently running jobs. GETNODEINFO ollets state information about on-

neted nodes. STARTJOB and CANCELJOB tell Maui to start or stop a job, respetively,

on the luster.

A possible interfae to Maui may be reated using partitions, the LOCAL alloation

algorithm funtion, and developing the four primary funtions. Other manipulations

might be needed, but the requirements for development are ertainly available.

2.1.2 Bbq

The Syld Beowulf Bath Queuing System, or Bbq [7℄, is an alloator, sheduler,

and queuing system all in one. The alloator is very basi and only takes the next

available node in exlusive use by setting the user and group permissions on eah

17

node. While the alloator does not ful�ll our requirements, it is worth noting that

enforement of Bbq an be aomplished by setting Bpro permissions. This will be

helpful later on.

The queuing system is designed to be easy for user interation and is also fairly

basi. Several di�erent queues are available and labeled with a single harater from

a to z and A to Z. The higher letters have lower priorities and a is the default for Bbq.

There is also a speial queue, labeled =, and is spei�ally for urrently running jobs.

These queues are sorted by the job start times.

Bbq also ontains a sheduler that is a job bathing system based on the Linux

ommand, at [14℄. At was developed by Thomas Koenig and David Parsons. It is

fairly simple to use whih has made it very attrative for researhers. However, its

simpliity has limited its funtionality, and many users soon move on to more omplex

shedulers.

The sheduling in at is straight forward and is reated spei�ally for future reser-

vations. Using the at ommand a proess an be sheduled to be run at a later time,

but no pre-proessing is done to make sure that jobs will not overlap or have to wait

for their spei�ed start time.

The at system omes in two parts. The �rst is a daemon. alled atd, whih runs

jobs that are already queued. This daemon will run bathed jobs based on a limiting

load fator for the system. Administrators an override this fator however, by setting

a di�erent threshold.

The seond part to at, is a text based interfae, where users an interat with the

atd daemon. The ommand at will shedule a job by a spei�ed time, or by typing

now, midnight, or noon. This interfae also ontains the atq ommand, whih will

list all sheduled jobs in a queue, and the atrm ommand, whih will remove a job

from the queue.

18

While this sheduler gives us a better understanding of the interations neessary

for integration with the Syld operating system, it does not to �t our needs for a

sheduler or alloator in the long run. At present, at is not suitable for a system

where users are ompeting for resoures, and would not work well in a Mini-Grid

arhiteture with several di�erent researh groups vying for nodes. However, it may

be worth �nding a temporary interfae for testing purposes.

2.2 Alloators

Many alloators exist for di�erent arhitetures. Most often new tools must be de-

signed, beause of new hardware requirements or the availability of a new alloation

mehanism or algorithm. Several examples of alloation tools will be disussed in this

Setion and the possibility of inorporation into the Mini{Grid arhiteture will be

examined.

2.2.1 Connetion Mahine

The Connetion Mahine, or CM5 [4℄ and [13℄ was �rst released by Thinking Mahines

in Otober, 1991. It tried to ombine the positive aspets of both the MIMD and

SIMD mahines. The \CM5 supports the full data parallel model by providing high

performane for branhing and synhronization alike" [4℄.

The CM{5 operating system, CMOST, is an enhaned version of the UNIX op-

erating system. It supports most of the standards in UNIX and uses the network

standards to ommuniate to all of its proessors through three separate network

onnetions.

The basi arhiteture of the CM{5 an be seen in Figure 2.2. The three networks

that onnet the proessing elements are the ontrol, diagnosti, and data networks.

The ontrol network is used for ommuniations that involve all proessors inluding

19

Figure 2.2: Connetion Mahine, CM{5, Arhiteture.

broadasting and synhronization. The diagnosti network is used for a \bak{door"

entrane for administrators to gain aess to all parts of the mahine. The data

network is used for interproessor ommuniation.

The proessing elements that appear in Figure 2.2 ontain two types. The �rst

is the atual Proessing Nodes (PN) that do the omputations for programs. The

number of PNs an be anywhere from several tens to thousands of proessors. These

nodes ontain general purpose proessors based on the RISC arhiteture and usually

are upgraded to ontain high{performane arithmeti aelerators. These are the

nodes that are alloated to spei� jobs.

The seond type of elements are the Control Proessors (CPs). These nodes

ontain a SPARC miroproessor that is based on the RISC arhiteture. They are

more streamlined than the PNs and are spei�ally made for making deisions about

ommuniations, alloations, and running system alls. These proessors an be

designated one of two types, either an I/O Control Proessor (IOCP) or a Partition

Manager (PM).

The Partition Manager ontrols and alloates the nodes in partitions. A partition

is a grouping of the Proessing Nodes reated by an administrator that would all

20

perform the same approximate funtion. A Control Proessor would be designated

a PM for eah partition reated, and all alloation and sheduling deisions would

be made by hardware. The available modes for these partitions are running a single

high{priority job, a bath mode, and a time{sharing mode.

These partitions an be rearranged to inlude any number of proessors; the only

restrition on the number of partitions is the number of PM's. However, by om-

bining all the partitions into one, it is possible to use the entire CM{5 as a single

mahine. This rearrangement ould be very useful, but it must be done manually

by an administrator and an not be done by the hardware or software without strit

instrutions.

The idea behind partitions is valuable and their ontrol hierarhy is very similar

to a grouping of lusters, but without software dynamially hanging ownership of

these partitions, this alloation sheme annot be developed to work on a Mini-

Grid. The alloation of the atual nodes is also done with hardware in the Partition

Managers and would be very diÆult to probe for more in depth alloation algorithm

information. We should be able to think of the partitions as separate lusters in

the Mini-Grid, and hopefully use this idea to develop a similar hierarhy to a new

alloation tool.

2.2.2 Globus Resoure Alloation Manager

With the omplexity involved in a Grid, a way is needed to manage jobs. The

Globus Projet reated and released the �rst version of the Globus Grid Programming

Toolkit [16℄ in November of 1998. This toolkit \provides a set of standard servies for

authentiation, resoure loation, resoure alloation, on�guration, ommuniation,

�le aess, fault detetion, and exeutable management" [16℄. Not all tools need to

be installed, and an be ombined for the user's spei� needs.

The alloation tools of Globus ome in �ve separate piees. These piees inlude:

21

GRAM GRAMGRAM

Figure 2.3: Globus Resoure Alloation Sheme.

� DUROC: Dynamially Updated Request Online Co{alloator,

� GRAM: Globus Resoure Alloation Manager,

� MDS: Metaomputing Diretory Servie,

� RSL: Resoure Spei�ation Language, and

� the Loal Resoure Manager.

The steps used to alloate resoures and start a proess an be seen in Figure 2.3.

The main Globus programs start with DUROC, inlude several piees to GRAM, and

the MDS daemon. The Loal Resoure Manager is dependent on the site arhiteture

and operating system. The RSL Library is a ommuniation tool used by Globus to

allow a heterogeneous Grid to speify neessary resoures in general terms.

The Globus Toolkit supports an algorithm known as o{alloation, or the simul-

taneous alloation of a resoure to two or more sets in a shared state. The tool

that keeps trak of this information is the Dynamially Updated Request Online Co{

alloator, or DUROC. DUROC keeps trak of the requests for resoures and initializes

the proesses. It monitors the system and keeps trak of new or failed nodes. One it

22

reeives a new request, it disovers any neessary information about the state of the

system and then ontats the GRAM tool to atually start the proess on the remote

mahines.

Before GRAM an start the proesses, it must ontat the MDS to �nd out where

the resoure is loated and what kind of hardware and appliations exist on the

mahines. This diretory an be updated by the Globus system, an appliation,

or another information provider. The MDS helps the GRAM Client know whih

Gatekeepers, or remote seurity daemons, to ontat for alloation.

The main program used for alloation is the Globus Resoure Alloation Manager,

or GRAM. It ontains four omponents. The �rst is the GRAM Client whih sends

requests to the remote mahines to start a partiular proess. The omponent it

ontats is alled the Gatekeeper, whih aesses its Globus Seurity Infrastruture

to authentiate the user trying to start a new proess. One the Gatekeeper allows the

request through, it is passed to the Job Manager. The third part, the Job Manager

translates the request sent by the GRAM Client to the neessary alls for the Loal

Resoure Manager on that mahine. The RSL library is a ommon language for

speifying the job requirements for a partiular mahine and is onsidered the power

behind GRAM. The library makes the ommuniations in a heterogeneous network,

like a Grid, possible.

The last piee is resoure dependent. The Loal Resoure Manager keeps trak

of the available resoures and the alloation of eah to spei�ed users. It often has

information stored in a database or in on�guration �les. Globus urrently supports

the following managers: POE [3℄, Condor [17℄, Easy{LL [10℄, NQE [11℄, Prun [15℄,

Loadleveler [1℄, LSF [2℄, PBS [5℄, GLUnix [6℄, and Pexe [12℄.

The alloation tools in the Globus Toolkit were designed for separate resoures and

lusters that would never ombine, unlike the Mini-Grid arhiteture. The layering

and funtionality of this software would be of great use on the Grid, but its fous

23

on the heterogeneous nature of a Grid would ause it to be too ineÆient for our

purposes.

Many alloators are arhiteture dependent, suh as the CM-5. Others that have

tried to be very generalized for a Grid are very omplex, suh as the Globus Toolkit,

and are usually not very eÆient. Something in between is neessary for our alloation

purposes, that would ombine the exibility of the Grid and lusters, but with the

eÆieny that would allow a program to run on one luster with borrowed nodes.

Chapter 3

Ballo

3.1 Introdution

The researh disussed in this hapter was started beause of the need for a new

alloation tool that would be usable on the new Mini{Grid arhiteture. This Grid is

omprised of separate, homogeneous Beowulf lusters that are ompletely onneted,

inluding the remote nodes. Sine these nodes an belong to any of the lusters, a new

alloation program was needed that ould dynamially and transparently \borrow"

these nodes from one luster to another. By allowing this funtionality, the idea of the

Syld Beowulf is ontinued with the user seeing only a \single omputer" as opposed

to the large Beowulf Grid. The use of the tool should be transparent and needs to be

enfored. This alloation tool needs to be extensible, simple for the user, and robust.

It must be able to proess multiple users requesting large numbers of nodes and run

in an appropriate amount of time when alloating and freeing resoures.

The Beowulf Alloator, or Ballo, was reated as an alloation tool for the new

Mini{Grid. It ontains a system daemon that keeps trak of alloations and resoures,

and a user API that allows sets to be obtained through an mpirun all or diretly

through the daemon itself. The funtionality of Ballo will be disussed through

25

a desription of the user interation. The atual implementation will be disussed

through a desription of the system daemon and the algorithms used for alloation.

3.2 End User Funtionality

Ballo is purely an alloation tool. When a request arrives, it responds by returning

whih nodes are now reserved for use by the job and user. This list of nodes is

onsidered a set, available to the user until the set is freed. It keeps a log of whih

users are allowed on whih nodes and traks all sets, available nodes, and alloated

resoures.

Using Ballo an either be diret or indiret, but will always our when a user

exeutes a parallel program. A proess must all Ballo to get appropriate usage

permissions set. The only exeption to this is the root user, whih an exeute

proesses on any node. Normally the user will not work diretly with the Ballo

interfae, but will use MPI alls, although the diret interation is available via simple

funtion alls in an API.

There are three main ways for a user to aess the information and resoures

ontrolled by Ballo. These inlude:

� Using the MPI interfae and alling mpirun,

� Using the Ballo user interfae and the set and node numbers returned, and

� Using the Ballo ontrol manager to alloate and free nodes.

3.2.1 Inorporation into MPI

The Message Passing Interfae, or MPI, is a ommonly used parallel programming

library that stresses the use of standard message passing funtions that allows easier

ommuniation programming between remote proesses. It is widely available and

26

Call mpirun

balloc_job_map

Sets BEOWULF_JOB_MAP

send request

return set

Balloc Daemon

Allocates Nodes

Balloc Daemon

Frees Set

Execute Program

free_job_map

Exit Program

send request

Preprocessing

Postprocessing

Parse Arguments

Figure 3.1: Mpirun exeution sequene.

both free and vendor versions exist. The user is able to start an MPI program with

the mpirun sript. This sript attempts to hide some of the bakground work that

starts, exeutes, and leans up an MPI parallel program.

The Syld operating system has adapted mpirun to exeute Bpro ode that mi-

grates all of the remote proesses. Bpro deides where to send these proesses in two

separate ways. The �rst is by defaults. The number of proessors requested is plaed

in an environment variable NP, or the number of proessors. By default, Bpro plaes

the �rst proess on the head node, and the rest on onseutive nodes. The seond

way takes a di�erent environment variable, BEOWULF JOB MAP. This variable ontains

a list of nodes that the program wishes its proesses to run on. The argument to

BEOWULF JOB MAP looks like \3:15:8:2:25", where eah value is a node number. This

example argument would migrate �ve proesses, the �rst to node 3, the seond to

node 15, and so on.

27

Using existing programs, we took advantage of the fat that Syld's designation

of resoures is as easy as setting an environment variable. By modifying the mpirun

sript we were able to reate a way that the user an interat with Ballo indiretly.

Often the user may not even know that Ballo was aessed. This ours when the user

alls mpirun and the mpirun sript aesses two C programs alled ballo job map

and free job map. The funtion order that ours when a user alls mpirun an be

seen in Figure 3.1

When a user alls the mpirun sript, it �rst parses all arguments used in the

ommand line. The available arguments that are Ballo spei� will be disussed in

more detail in the Alloation Options Subsetion in Setions 3.3.1 and 3.3.2. They

inlude:

� --ba--ex = Alloate nodes in Exlusive mode (Default is Shared mode),

� --ba--less = Aept a set with less nodes than requested (Default is strit

setting),

� --ba--borr = If neessary borrow nodes from another luster (Default is no

borrowing),

� --ba--one = Only alloate resoures on one luster (Default is mixed alloa-

tions allowed),

� --ba--group \har" = Borrow nodes from lusters with spei�ed \m", by most

�rst, or \p", by priority grouping (Default is by luster priority).

After the arguments have been parsed, the sript then alls the ballo job map

program. This program sends an alloation request to Ballo. When Ballo returns

the node information, ballo job map on�gures the node numbers into the orret

argument sequene for BEOWULF JOB MAP, and sets the environment variable. This

is not the only environment variable set however. BALLOC SETNUM is also exported.

This variable is the set number used to designate the grouping of nodes alloated by

ballo job map's all to Ballo.

28

After the preproessing, the atual program exeutes and Bpro migrates the

proesses to the orret nodes. One the program is ompleted, some lean up is

needed. This is where BALLOC SETNUM is used. Mpirun alls free job map, whih

sends a free request to Ballo. This request spei�es whih grouping of nodes to free

by BALLOC SETNUM. If everything exeutes appropriately, the sript then exits. This

interation with Ballo should be the safest, but user requests are not always going

to be in the form of an mpirun all. This is where the other two available interfaes

beome useful.

3.2.2 Ballo API Funtions

It may be neessary for a user to alloate and manipulate a set within a program.

The user API was reated for this purpose to allow diret interation with the Be-

owulf Alloator. The funtion alls available set up the neessary request pakets and

ommuniate with Ballo without the user having to worry about any soket pro-

gramming. The API does the entire ommuniation inluding formatting, sending,

and reeiving the pakets. It even manipulates the byte order of the responses, in

ase di�erent operating systems or arhitetures are being used. Currently the API

is only in C, but a Java API would be useful in reating a web based monitoring

system. More information about eah funtion and its delaration an be found in

the user manual in Appendix A.

The alloation funtion alls available to the user are:

� int ballo(int nodes, int mode, node info *data, int gro,

int all, int bor, int ltn, har *bheadname)

� int bfree(int set, har *bheadname)

� int free node info(node info *data)

� int bnodestat(int *data, int *datanode, int node, int *mode,

int *sets, int *ount, har * bheadname)

29

� int btypestat(node info *data, int mode, int *nodes,

har *bheadname)

� int bsetstat(node info *data, int set, int *uid, int *mode,

int *nodes, har *bheadname)

� int batset(int *data, int *sets, har *bheadname)

The �rst three alls should be all that the user needs to interfae diretly with Ballo.

The �rst all ballo, is the funtion that atually alloates the resoures requested.

The nodes argument ontains the number of nodes requested in the spei�ed mode.

When Ballo reeives this request, it does all of the proessing neessary to reate

a set of nodes on the system. The remote nodes in this set might be spread out

aross several di�erent lusters, but the user will only see them as nodes belonging

to the luster that the request ourred on. The node numbers, node addresses, and

number of users on eah node are returned in the node info linked{list struture.

The funtion free node info simply frees the memory malloed for this struture.

The arguments gro, or groupings of nodes, bor, or whether or not to borrow from

another luster, all, or nodes all on one luster, and ltn, or whether or not less

nodes would be aepted, are disussed in further detail in the Alloation Options

Subsetion in Setions 3.3.1 and Setion 3.3.2.

One the user has exeuted the program, the user frees the set that was reated.

When bfree is alled, the set number and all memory alloated to keep trak of

the group is freed. The nodes are set to mode Free, if no other users are on those

mahines. If bfree is not alled, the set ontinues to exist until the user is �nished

with his projet and alls bfree. If the user forgets, an administrator must all bfree

or a reboot of the head node will free the nodes.

The API also inludes funtion alls that will monitor and return the status of the

ondition of the system. These alls are espeially helpful with the ontrol manager

developed in Setion 3.2.3. These funtions are fairly self{explanatory and use mainly

pointers to return the requested information. The bnodestat funtion returns the

30

status information of the proessor with the number node. The btypestat funtion

returns a list of all nodes that are in the spei�ed state, mode, bsetstat returns all

information about the spei�ed grouping of nodes with the set number, set, and

batset returns a list of all ative sets. Together these four status funtions an give

a general idea about the ondition of the luster.

There are also several funtions that are listed in the API, but would normally

only be used by the Ballo daemon, an administrator, or for testing purposes. These

inlude:

� int bresv(int nodes, int *return nodes, har *bheadname)

� int balloresv(int nodes, int setnum, borr node info *data,

har *bheadname)

� int free borr node info(borr node info *data)

� int breturn(int set, int importane, har *borrlustername,

har *bheadname)

� int breset(har *bheadname)

Both bresv and balloresv are used when one luster must try and borrow nodes

from another. The borr node info struture returned in balloresv is the same

as node info, but inludes the Ethernet address of eah node. The implementation

of these two alls is disussed further in Setion 3.3.2. free borr node info is a

leanup funtion and frees the information returned in the borr node info struture.

The breturn funtion fores a return on a borrowed set from a luster. This an either

be done when the nodes are �nished running the urrent jobs, or auses the return

to be immediate with no regard to the exeuting jobs. More information about the

implementation an be found in Setion 3.3.2. The �nal funtion in Ballo is a bail

out funtion alled, breset. This ompletely reinitializes the luster immediately.

This all should be removed, and only implemented when expansion and testing of

Ballo are in proess.

31

3.2.3 Ballo Control Manager and Status Reports

The Ballo Control Manager, or batl, is a text appliation that allows an admin-

istrator to hek and ontrol the status of the system. It an be run on any Linux

mahine on the network, and onnets to the Beowulf luster by use of sokets. The

instrution newluster an be used to instrut batl to onnet to a spei� head

node, There are several di�erent ommands available that an be listed with the ?

help instrution. All of these ommands work by exeuting the user API funtions

desribed in the previous Setion.

The status heks available inlude a request on eah state, suh as freestat,

or Free nodes, and exstat, or Exlusive nodes. Atual alloations and releases of

resoures an be aomplished from this program as well. If an administrator needed

to free all sets held by a spei� user, an atsets ould be exeuted whih would

return a list of all ative sets. This list of set numbers ould then be passed to

setstat, whih would return all the information about that set, inluding the user

id. If the spei� user owned the set a freeset ommand ould be alled, and would

release those resoures. All information returned is printed to the sreen in a readable

format.

3.3 System Daemon Ballo

The daemon Ballo runs with the Bpro daemon on the head node of eah sepa-

rate luster. It ontains node information neessary for alloation purposes. This

information is gathered using system alls to Bpro, inluding bpro nodestatus,

bpro numnodes, and bpro nodeinfo. Bpro nodestatus returns the state of a

spei�ed node, whih in Bpro an be boot, up, down, error, unavailable, reboot,

halt, and pwro�. Bpro numnodes returns the total number of nodes urrently in-

stalled on the system. Bpro nodeinfo is only used for initialization and ontains

32

state, IP address, and user and group permissions. The Ethernet address is obtained

by reading the Beowulf on�guration �le loated in /et/beowulf/on�g. Hardware

information ould also be available by adding a separate on�guration �le or a ex-

ploratory program. The hardware struture is inorporated into the node database,

but not used for any of the urrent alloation algorithms beause the Mini{Grid is a

homogeneous system.

The implementation of Ballo an be broken down into two groups. The �rst group

is the basi alloation mehanism neessary on any luster or parallel omputer to

keep trak of loal resoures. This inludes databases, alloation types, options for

alloation, and enforement, or seurity. The seond group of funtions are new to

alloators. These have to do with the neessary interations for \borrowing" nodes

between lusters. Separate databases for loal and borrowed nodes must be used. New

funtions, inluding borrowing, returning, reserving, and freeing must be implemented

to work with the Syld operating system and the Bpro daemon.

3.3.1 One Cluster Implementation

Using other available alloation programs as a starting point, the �rst goal of this

projet was to reate a reliable alloation tool that ould be run on a single luster.

This tool had to interfae orretly with the Syld operating system and MPI. The

MPI interfae is disussed more thoroughly in Setion 3.2.1. This daemon had to

allow quik aess to nodes, sine the majority of use of the Grid is assumed to be

loated within the bounds of a single luster.

The �rst step in developing this new tool was to examine what types of databases

would be required for quik, diret aess to omplete node and alloation information.

Two separate databases were used for this purpose. The �rst database was designed

to keep the state information for the loal nodes. This database is an array of a

node strutures, whih inludes the state, the IP address, and the Ethernet address

33

of the node. The node numbers are assigned by Syld, and the information is plaed

in the database suh that the index orresponds to the node number. The seond

database required was used to keep trak of the alloations. Eah grouping of nodes is

onsidered a \set" of nodes. A set is onsidered \ative" if the grouping is designated

to a user. Di�erent ative sets an ontain the same nodes, if those nodes are in a

multi{user state. The ative sets database is an array of nodeset strutures, whih

inludes the user id that owns the set, the request id of the paket that alloated

the set, the number of nodes in the set, and a list of node numbers that have been

alloated to that set. Set numbers are assigned to eah ative set and are the index

into the database.

One the databases were designed the manipulation of nodes needed to be im-

plemented. Several topis will be disussed in the next few Subsetions, inluding

the neessary states or modes for the nodes, options available for alloations, and

enforing the use of the Ballo program.

Alloation Types

Several states for the nodes need to be de�ned for the orret alloation and aess

in eah set. The modes used in Ballo for the one{luster ase are Free, Shared,

Exlusive, Unknown, and Down. The Unknown and Down states are self{explanatory

and orrespond to the state information returned by Bpro. A ow hart of the rest

of the available states is found in Figure 3.2.

When Ballo �rst initializes, all nodes that are not Unknown or Down will be

plaed in the Free state. This state an transition into any other state. Whenever

a new alloation is requested, these nodes are alloated �rst, sine they should not

urrently be used by any proesses.

The Shared mode, orresponds to the required multi{user aess to partiular

nodes. This state allows for multiple sets, owned by di�erent users, to ontain the

34

���
���
���
���

���
���
���
���

���
���
���
���

States are in UAB

A= able to be allocated

B = able to be borrowed

U = number of users

Exclusive

Free
Free

Allocate

Free

Allocate

Free

Allocate

Free

Allocate

Shared

100

011

110 210

Figure 3.2: State transitions available for nodes in Ballo.

same node. This state would normally be used by researhers that are not testing

timing issues or researhers with tasks that do not have timing onstraints. If a

user requests a Shared set, the Free nodes are �rst searhed, and then the nodes

that already ontain users are alloated. By alloating the Free nodes �rst, the most

system resoures are being utilized and the best performane possible will be delivered

to eah job.

Some users with higher priorities might hoose to run a large job and do not wish

anyone else to be able to aess the nodes exeuting the proesses. The Exlusive

state was reated for a single{user aess to a set. Unfortunately, if all the nodes in

a luster are plaed in an Exlusive state, a Shared job annot be run until nodes

beome available. This state gives exellent user performane, but limits the ability

of the luster to ful�ll other jobs.

Available Options For Alloation

Users will want to alloate nodes on a luster in di�erent ways. Options must be

implemented to allow exibility with Ballo. Sine the urrent hardware on�guration

35

is a homogeneous system, not many options were implemented, but the base format

was reated. This format is extensible for future use, beause it uses an integer ag

with bit{representations of eah option.

The main option developed was to allow Ballo to alloate and return a set of

nodes that ontains less than the number of nodes that were initially requested. This

ag LESSTHAN is one bit in an integer ag that is set in the API funtion alled ballo.

When alling ballo, LESSON or LESSOFF an be plaed in the ltn argument. If using

mpirun, --ba--less an be used to set this option. If LESSTHAN is not set, Ballo

will try to �ll the request, but if it is unable to do so, it returns an error.

More options were developed for the two or more luster ase and are disussed

in Setion 3.3.2.

Enforement

Enforing the use of Ballo was important in reating a stable environment for a

sheduler to be able to �ll the appropriate tasks. If every user did not ontat Bal-

lo for nodes, then jobs that were supposed to run on Exlusive nodes might have

multiple users. This also beomes a problem with borrowing nodes as an be seen in

Setion 3.3.2. If users started jobs on nodes that Ballo thought were Free, and then

tried to loan those nodes out, the nodes would be rebooted and all information about

the proess would be lost.

The Syld operating system has its own enforement poliies. Bpro only al-

lows users that have the appropriate permissions on nodes aess to those resoures.

This information is stored in the /et/beowulf/on�g �le for initialization of Bpro.

Root an hange these permissions by alling bpro hown(node number, user id,

group id), whih sets the user and group id's to have aess to the spei� node

number.

36

Ballo hanges the on�guration �le and alls bpro hown every time an alloa-

tion or free is requested. The on�guration �le is hanged in ase the Bpro daemons

are restarted. This way on initialization, the orret users have the appropriate per-

missions and an ontinue working.

On startup all nodes are initialized to allow only root aess. This fores all

alloations to be done by Ballo, but still allows root to have aess to the nodes. If

the nodes are alloated in Exlusive mode, the user id is set to the user who sent the

request and the group id is kept as root. If the nodes are alloated in Shared mode,

the user id is set to any to allow multiple users and the group id is kept as root.

The reason any must be set is there is urrently no way to speify two or more users.

Groups ould be set up, but sine nodes an be in multiple sets, and no two nodes

need be in the same ombination of sets, a group would have to be reated for eah

node. Sine a node in Shared mode an not be borrowed and aess to these lusters

is fairly restritive, the any option was hosen for use in this version of Ballo.

3.3.2 Two or More Cluster Implementation

The main purpose of Ballo was to reate a new alloation program that an trans-

parently \borrow" nodes between lusters. It was designed for the new arhiteture

that an be seen in Figure 1.1. This Figure illustrates the new Mini{Grid, whih

an be depited as a large luster broken down into separate sub{lusters. These

sub{lusters are ompletely onneted in the bakground and any remote node an

belong to any of the head nodes.

To allow these sub{lusters to ombine, Ballo had to be able to move nodes

to di�erent lusters, or \borrow" nodes. Borrowing nodes onsists of transferring

ownership of a node from one luster to another so, while a node is still physially

loser to the loaning head node, it nows reeives instrutions and proesses from

37

011

000

���
���
���
���

���
���
���
���

���
���
���
���

States are in UAB

A= able to be allocated

B = able to be borrowed

U = number of users

Free

Return

Allocate

Free

Borrow

Allocate

Free

Exclusive

Borrowed

Shared

Free

Allocate

Free

Allocate

100

110 210

Figure 3.3: State transitions by a loaner, available on Beowulf Grid.

the borrowing head node. With the onnetions between the loal nodes and the

borrowed nodes, lateny should be fairly negligible.

Borrowing nodes an be seen from two di�erent perspetives. The �rst is from the

loaner. The available state transitions for the owning node an be seen in Figure 3.3.

This is very similar to the single luster ase, but a new mode Borrowed is introdued.

The loaning luster does not keep trak of who the borrowed nodes were alloated

to, just whih luster borrowed the nodes. For this reason, the Borrowed state only

exists on the loaning luster.

The borrowing luster sees the node as one of its own and plaes it in a di�erent

state in a separate database. The state transitions available to the borrowing luster

an be seen in Figure 3.3. This state diagram ontains some unusual states. The

main ones are the Exlusive modes with multiple users. This ours when a luster

requests that its nodes be returned, and is disussed further in following Subsetions.

38

�������� ����

�������� ������������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������

States are in UAB

A= able to be allocated

B = able to be borrowed

U = number of users

100

After Being Borrowed Return When DoneReturn When Done Return When Done

Allocate Allocate Allocate

FreeFree

Free Free

Free

Free

In Exclusive Mode

In Shared Mode

Free

Free

110 210 310

300200

Figure 3.4: State transitions by a borrower, available on Beowulf Grid.

The borrowing luster treats the node as a loal one, alloating and freeing it as

it would any remote node. The only exeption is where the information is stored. A

separate database for borrowed nodes was reated. This database ontains nodes that

were borrowed from other lusters, and is omprised mostly of the same information

as in the loal node database. This database however, must ontain additional infor-

mation, inluding the original set number, the original node number, and the original

owning luster.

The neessity for keeping trak of the original information, espeially the set

number, an be seen in Figure 3.5. When the luster borrows the set, it must keep

trak of the original set number and owner to be able to all bfree on that set when

the entire group is Free. The user never sees this set number and it would only

appear on the loaning luster's batset funtion all. This helps keep the borrowing

transparent from the user.

Borrowed nodes are added on to the end of the list of available nodes. They are

the last to be alloated in any request. The loal node database has a spei� size,

whih is the number of nodes available on the luster. When a node is borrowed its

39

User Recieves

Local Set Number

Set Number For Freeing
User Returns Local

Includes borrowed
nodes

Borrowed

Loaning Cluster

Borrowing

Set Number

Borrowed Set Number

Borrowed Set Number With Local Set Number
New User Set

Borrowing Cluster

Figure 3.5: Traking set numbers while borrowing nodes.

node number beomes its index into the borrowed database plus the loal database

size. The index might not be the same on onseutive borrows of the same node,

beause the node numbers are �lled as nodes are reeived from another luster.

The next steps were deiding on available options for two or more lusters an

atually implementing the funtions that borrowed and returned nodes. The options

implemented for the Grid are disussed in the next Subsetion. To borrow a node,

a remove from the original luster and a add to the new luster were required. To

return a node, a return from the new luster and a reset on the original luster were

required. These implementations are disussed in later Subsetions.

Available Options For Alloation

The available options for alloating nodes on more than one luster inlude three

di�erent alternatives. All are implemented using the integer ag reated in the ballo

API all. The three options and their orresponding arguments in the API ballo

all in Setion 3.2.2 and mpirun all in Setion 3.2.1 are:

40

� option; API arg.; MPI arg.

� borrowing; bor; --ba--borr

� grouping; gro; --ba--group

� allonone; all; --ba--one

The �rst bit added to the ag, is whether or not to borrow nodes if neessary.

Ballo always tries to alloate nodes on the loal mahine, if possible, but if this ag

is set it will try to �ll any remaining nodes on other lusters on the Grid. The API

an be �lled in with BORROWON or BORROWOFF. The way Ballo hooses to alloate

nodes is set by the other two ags.

The grouping ag takes four bits in the integer ag and an urrently either be

PRIORITY or MOSTFIRST. This preferene spei�es whih lusters to borrow nodes

from. If PRIORITY is set, the nodes are taken from the luster with the highest

priority listed in its luster on�guration �le. If MOSTFIRST is set, the nodes are taken

from the luster with the most available free nodes �rst. If MOSTFIRST is set and two

or more lusters ontain the same number of free nodes, the luster with the highest

priority is alloated �rst. The default for this ag is to alloate by PRIORITY.

The �nal preferene implemented is the allonone bit ag, whih an be set in the

API with ALLON or ALLOFF. This option spei�es whether or not the entire set of

nodes must physially exist on one mahine. Borrowed nodes are allowed, if they

all ome from the same luster. This ag takes preedene over the LESSTHAN ag

desribed in Setion 3.3.1; if this ag is set Ballo will not return fewer nodes than

the amount requested. The default for this ag is ALLOFF.

Borrowing Implementation

When borrowing nodes, Ballo has to do some proessing before the alloation atu-

ally ours. Depending on the poliy of the system, Ballo might hose one available

set over another on a di�erent luster. One example of this ourrene might be if a

41

luster needed to borrow �ve nodes. If one luster had three nodes free and another

had �ve, it would make more sense to take the �ve nodes, than three and two.

To allow an exploration of the available nodes on the Grid, a reservation system

was used. This system uses the bresv API all to reserve a spei�ed number of

nodes. If that number of nodes is not available, the maximum number of reservable

nodes is returned. The reserved nodes are plaed in a set on the loaning luster. The

borrowing luster then sorts through the available nodes, and sends a balloresv

all to the loaning luster. This funtion takes a set number, whih is the reserved

set, and the number of nodes to alloate from that set. The loaning luster sets an

alarm to go o�, allowing ten seonds for the borrowing luster to deide. If it does

not reeive a balloresv all on the set number by the alarm, it frees the nodes that

were reserved.

If a balloresv is reeived from the borrowing luster, the nodes requested must

be removed from the Bpro on the owning mahine. When a remote node is booted

in the Syld operating system, it is a two step proess. The node �rst sends out a

RARP, or a request to �nd an owning luster. A Beoserv daemon, part of Bpro that

handles the remote node bootings, will respond and reboot the node with the orret

kernel version. To remove a node from a luster the Bpro and Beoserv daemons

must be told that this node no longer belongs to this luster.

To get the daemons to realize this, the on�guration �le, /et/beowulf/on�g,

must be hanged. The �le is �rst read into a bu�er and several node strutures. The

�le is then rewritten, and as the nodes are being printed, eah one is heked whether

or not it is in the set being alloated. If it is, it is turned o� by writing \node o� root

root" in the orresponding node line. One the on�guration �le has been altered, the

set must be rebooted by alling bpro setnodestatus for eah node. The daemons

must then be HUPed to fore them to reread the new on�guration �le, and know

42

not to respond to the RARPs of the rebooted nodes. The node is now e�etively

removed from the luster.

One removed, the borrowing luster must add the rebooted nodes to its list.

This is basially done the same way as removing the nodes from the original luster.

A ouple of di�erenes are the on�guration �le is hanged to inlude the node,

e.g. \node ETHERNETADDRESS root root", the nodes are not rebooted, and the

/var/beowulf/unknown addresses �le must be altered. The unknown address �le

is used by Bpro to know whih addresses not to respond to. It ontains a list of

Ethernet addresses that a RARP was reeived from, but no node number was assigned

to. This �le is read in by Ballo and heked for any of the Ethernet addresses of

the borrowed set. If any are present they are removed before the Bpro and Beoserv

daemons on the borrowing luster are HUPed. One these daemons are restarted, the

nodes are then booted into the luster.

One the borrowing is omplete, the nodes must be booted with the orret kernel

from the new luster. This may take up several minutes depending on the mahine

speed and the whether or not an error ours with the remote node. The new luster

will try rebooting the mahine up to three times. If the node still will not ome up,

it is marked as down, and may be returned to the original luster when a free ours.

If this is the ase, an administrator may have to go in and reset the node by hand.

If Ballo returns while the nodes are in the boot state, the user will not be able to

use the borrowed nodes and an error ours. Therefore, right before Ballo sets the

permissions on those nodes, it waits for eah one to ome up. As stated this an take

several minutes, but this design is assuming large jobs, that take a long time to run.

With only a few minutes before and after, for preproessing, this is not expeted to

be a major fator.

43

Returning Implementation

When returning nodes, the entire set must be returned. A single node annot be

restored, unless it is a set of one. The reason for this is to keep onsisteny and

simpliity for borrowing. As an be seen in Figure 3.5, the original set number is

required for returning a set to its owner. This allows the borrowed nodes to be

treated muh the same as loal nodes.

Returning nodes is done muh the same way as borrowing, but there are two ways

a return an be started. The �rst is with a breturn API all. The breturn ontains

a ag whih ommands a return to be done NOW or WHENDONE. A NOW argument auses

the entire set to be returned immediately with no regard for any user job urrently

running on that mahine. The nodes are returned and any set ontaining those nodes

has a -1 plaed in the node list. A WHENDONE argument only has e�et if the nodes

were alloated in a Shared state as an be seen in Figure 3.4. It auses the nodes to

move into an Exlusive state suh that no other jobs an be plaed on them. The

nodes will return when the urrent users are �nished and no other jobs an be started.

The breturn is not alled by Ballo, but is atually alled by the administrator,

normally using the Ballo Control Manager. The all ould be plaed in Ballo, but

the timing of when it would be alled needs to be strongly onsidered.

The other way to return nodes, is simply when every node in the set is Free, to

immediately give bak the borrowed nodes. In Figure 3.4, there is a �nal free that

allows the nodes to no longer be part of the new luster. This free heks every node

in the set, and returns only if the entire set is free. If it is entirely free not, these

nodes remain part of the luster and an be alloated again if in Shared mode.

The implementation of returning and reseting the nodes is the same as borrow-

ing them. The /et/beowulf/on�g and /var/beowulf/unknown addresses �les are

altered aordingly and the appropriate nodes are rebooted. The daemons are then

HUPed and fored to reread the �les.

44

However the loaning luster does not wait for the nodes to be rebooted or-

retly before responding to the borrowing Ballo. This saves some time in the post-

proessing for the user. The loaning luster sends the response, and then waits for

the nodes before setting the appropriate permissions.

One the nodes have been set as up on the owning luster, the entire borrow-

ing proess has been ompleted. This proess an be repeated whenever neessary,

however the user wishes to alloate the nodes.

Chapter 4

Results

Ballo was designed spei�ally for a Mini-Grid arhiteture and the Syld Operating

System for a Beowulf luster. The main goals of this researh have been met by

the implementation of the alloator. The eÆay of borrowing nodes an be demon-

strated with a ouple of examples. These objetives inlude maintaining the state

of all nodes distributed aross the Grid, the implementation of a borrowing meh-

anism, multi{user and single{user support, available options for poliy exploration,

and transpareny to the user. Example usage is explored in Setion 1.2.

One goal, simpliity of use orresponds to the transpareny to the user and is

ful�lled with the inorporation of the three ways for a user to aess the information,

inluding mpirun, the API, and the Ballo Control Manager. In the �rst ase the

user does not even need to aess the Ballo daemon, therefore being transparent,

and in the other two a user interfae allows any interation to be limited to simple

funtion alls. Borrowing is also transparent, beause the user sees all alloated nodes

as belonging to the queried luster. The only hint that this ours, is through the

option that must be set.

Extensibility is available through development of the user API, options for allo-

ation, and new funtions that an be developed into Ballo. In eah one of these

46

Internet

Figure 4.1: Grendel Testbed Arhiteture

parts, a format is followed that would allow a programmer to develop new poliies

and implementations that would expand the apabilities of Ballo.

The last two goals that were required for this program were an eÆient imple-

mentation and an enforement poliy. EÆieny is disussed further in Setion 4.2.

Enforement of Ballo's alloations ours with the appliation setting the appro-

priate permissions for the request's user id. For our purpose, this poliy is enough

seurity to neessitate aess to Ballo before any omputations an be performed.

4.1 Testbeds

To test the new alloation tool, Ballo, a testbed had to be reated. The initial

testbed onsists of two lusters of six remote nodes and one head node eah, and

whose arhiteture an be seen in Figure 4.1. This testbed was slow in omparison

to the �nal target arhiteture disussed below, but was suÆient for implementation

testing. The nodes onsisted of 150 MHz Pentium proessors, 64 MB EDO DRAM,

two GB IDE hard drives, and SMC Tulip-Based Fast Ethernet ards. This test Mini-

Grid was developed from an older Beowulf Cluster named Grendel. Only the initial

head node was allowed to have aess to the outside network.

The target arhiteture for Ballo was the Clemson University Mini-Grid, as seen

in Figure 4.2. The Clemson University Mini{Grid an be illustrated as one large

47

PARL Cluster

(128 Processors)

Gigabit Fiber Private Network

Internet

CUGI Cluster

(64 Processors)

CAEFF Cluster

(64 Processors)

Processor Pool

(256+ Processors)

Figure 4.2: Clemson University's Mini-Grid Struture

48

luster that is broken into four separate smaller sub{lusters. These sub{lusters

belong to di�erent researh groups on ampus, allowing them to ombine resoures

to build an even larger parallel omputer than one group alone ould a�ord. The

three groups working on this projet are the Center for Advaned Engineering Fibers

and Films (CAEFF), the Clemson University Genomis Institute (CUGI), and the

Parallel Arhiteture Researh Lab (PARL).

These sub{lusters exist around the ampus and eah luster is onneted with

gigabit �ber on a private network. The nodes use Ethernet swithes to allow any

node to belong to any head. Eah luster is on�gured to ontain 256 nodes, the

total number of nodes in the Grid, and eah node ontains dual Intel Pentium 3

1GHz proessors. Due to hardware problems, I was unable to do any testing on the

Clemson Mini-Grid, but Ballo was run suessfully on the Grendel Testbed.

4.2 Experiments Completed with Timing Informa-

tion

EÆieny is a small issue that will be addressed briey. The main aspet is that the

alloation tool should not slow down development. Given the expeted size of a Mini-

Grid and its sublusters, it an be assumed that when a user fores Ballo to borrow

nodes, the number of nodes requested is very large. Sine the number of nodes in

the set is very large, the size of the omputations must also be very large and involve

a great deal of time. Therefore, if allowing the user to spread the omputation over

nodes that may have fewer users on them dereases the amount of time to perform

the funtions, then some lenieny an be given to the alloation tool.

A test program was used to time the omputations with and without Ballo. This

program multiplied two matries one of 1280�320 and the other 320�160. Using the

Grendel Grid, the program was run on di�erent number of proessors ten times. The

49

run time of the program was taken using the wall lok time, and an vary depending

on the state of the system.

Taking this into onsideration, the ommon ase, or one luster ase, must take

plae quikly, while borrowing nodes may take a greater amount of time. However,

it was disovered that using Ballo for the ommon ase, might atually speed up

the test program. More studies would have to be performed for this statement to

be justi�ed, but with the test program running on �ve proessors, the average time

without Ballo was 34.22 seonds and the average time with Ballo was 31.91 seonds.

While 6.75% is not a great di�erene, it is enough to take notie. This di�erene ould

be in the way Ballo and MPI on Syld alloate nodes. With this example, it is shown

that the ommon one-luster ase is not slowed down at all by using Ballo.

The rarer ase, where nodes must be borrowed, omes in to play with very large

jobs, or multiple jobs that require Exlusive aess. The test program was used with

twelve nodes, using the entire Grendel Grid. Unfortunately, the test program did not

seem to be as eÆient on multiple nodes, and proessing took around 40 seonds with

Ballo. Borrowing on the other hand is extremely slow on Grendel. With an average

time of 5.5 minutes for borrowing all six nodes, when none fail or have to be rebooted,

proessing time would need to be muh greater than that to justify borrowing nodes.

A problem ours when a node fails or does not boot orretly and adds an average

of 2 minutes per node to the borrowing time. On Grendel this ourred approximately

50% of the time. It is assumed that some of this ours beause of slow hardware

and implementation on the Clemson Mini-Grid would help. Even though the nodes

have a tendeny to not boot, Ballo handles this and only one out of ten times did

the node not eventually ome up. In this ase the node is deleted from the set and

the set is sent with one fewer that requested.

Chapter 5

Conlusions and Future Work

This paper disussed the design and implementation of a new alloation tool for the

Mini-Grid arhiteture. The requirements for suh an alloator were examined and

were determined to be to:

� Maintain the state of nodes distributed aross the grid,

� Allow for multi{user and single{user aess to nodes,

� Provide a mehanism for transferring nodes between lusters,

� Provide borrowing and alloation options for poliy implementation in a shed-

uler,

� Be transparent to the user,

� Enfore usage poliies,

� Have an eÆient implementation, and

� Be able to integrate with existing software.

Several shedulers were examined for neessary interfae omponents, and then several

alloators were examined for possible integration. It was determined that the existing

alloators did not meet the neessary requirements for this arhiteture.

The design and implementation of a new Beowulf alloation tool, Ballo, was

disussed, inluding the development of a user API and a system daemon. The

51

user API was shown to hide the user from the omplexities of soket programming,

and allowed simple aess to Ballo. The system daemon was shown to omplete all

funtionality requirements neessary inluding integrating with the Syld software and

providing a new borrowing mehanism. Ballo is robust enough to handle multiple

users requesting large numbers of nodes. It is time eÆient when alloating nodes

and does not e�et the timing statistis of ertain types of MPI programs. When

borrowing nodes, the alloation time is inreased, but sine borrowing nodes implies

a large program, the time required is small in omparison.

There are many avenues available for future work on Ballo. The �rst is to test

the alloator on the atual Clemson University Mini-Grid. This Mini-Grid is muh

larger in size and would give a greater estimate of the amount of time required for

borrowing and alloating nodes. Database searhes would be greater and rebooting

large numbers of nodes might ause problems. Attempts should be made to see if a

speedup is neessary for reading and writing on�guration �les. This larger testbed

would give better insight into the operations of Ballo.

Another venue, is the integration of Ballo with an existing sheduler. This would

make the use of Ballo on a large luster more e�etive. This integration should be

able to aess Ballo for nodes and tell it when to alloate, but Ballo should deide

whih nodes to use. By sheduling jobs into the Mini-Grid, more throughput ould

be ahieved.

Also, a reservation sheme with the sheduler will need to be implemented for

future use. This requires developing a funtionality that allows groups of users onto

the same group of reserved nodes. One way to aomplish this might be to reate a

set management program. It ould keep trak of a larger set and be able to alloate

smaller sets within that group. This would allow a researh group to designate a set

of nodes for their exlusive use, and only allow those people on the nodes in a shared

funtionality.

52

A program that might inrease the reognition of the Clemson Mini-Grid is a

GUI program that would be available on the web for use by anyone. This program

would allow users to see the status of the Mini-Grid at any time. This appliation

would require a Java API to be developed and should not be too diÆult, sine the

ommuniation pakets are already plaed in network-byte order. This API would

need to ontat Ballo and use the status requests to graphially display the urrent

status.

Another GUI that might be developed is for the Ballo Control Manager. The

urrent interfae to the manager is purely text based and an make it hard for the

admin to keep trak of the status of the Mini-Grid. This GUI would make ontrolling

and maintaining the Mini-Grid easier for an administrator.

Finally, Ballo ould be developed to have more ontrol over the way Bpro sees

the luster. Currently, the luster must be on�gured to ontain IP addresses and

node numbers for the entire size of the Mini-Grid. The on�guration �les ould be

written to expand and ollapse the size of the luster aording to when nodes are

borrowed from another luster. This on�guration �le ontains all information about

the luster, inluding the IP address range, a list of node Ethernet addresses, and

and the net mask used for ommuniations.

Ballo was developed for use on the new Mini-Grid arhiteture. This thesis

examined the neessary requirements for suh an alloator. How these requirements

were developed and implemented in Ballo was disussed.

Appendies

Appendix A

Ballo API Manual

A.1 Overview of Ballo API

The ballo appliation protool interfae (API) onsists of nine user funtions and

four system funtions. The prototypes of both the user and system funtions are

de�ned in the \ballo.h" header �le, and the implementation of these funtions is

de�ned in the \balib." soure �le. The user funtions provide a means to alloate,

free, and query sets and a means to reate a job map from a set. The system funtions

are provided primarily for use by the ballo daemon soure and for the ballo API

soure itself. The system funtions give the daemon soure the ability to temporarily

reserve nodes on a luster for possible alloation. Other system funtions give the

API soure the ability to onvert data from network-byte-order to host-byte-order.

A brief desription of the user funtions and system funtions an be found in Tables

1 and 2 respetively. Next some oding examples are given. Finally, a more detailed

desription of eah funtion is listed.

There are four user funtions provided to reate and free sets. These funtions

are ballo(), bfree(), breturn(), and breset(). The funtion ballo() is used to alloate

sets. Several attributes of the set an be spei�ed whih inludes the number of

54

nodes in the set, the mode the set should be alloated in, the grouping of the set,

whether or not all nodes must be alloated on one luster, whether or not borrowing

is allowed, and whether or not less nodes than requested will be aepted. One a set

has been alloated, it an be freed with bfree(). If a set has been loaned to another

luster it an be returned with breturn() when the urrent proesses are �nished or

immediately. Finally, breset() an be used to reset the alloation tables. However,

this funtion should only be used for testing purposes.

There are four user funtions provided to query nodes and sets. These funtions

are batset(), bnodestat(), bsetstat(), and btypestat(). The funtion batset() will

return a list of all ative sets. The funtion bnodestat() is used to determine the

status of the spei�ed node. The returned information about the node inludes the

IP address, the mode, the number of users urrently using the node, the number of

sets that ontain the node, and a list of the sets that ontain the node. The funtion

bsetstat() is used to determine the information about a spei� set. The returned

information inludes the mode the set is in, the user ID of the owner of the set, the

number of nodes in the set, and a list of the nodes in the set. The funtion btypestat()

is used to get a list of nodes in a spei� mode.

One a set has been reated with ballo(), the funtion node info to job map()

is used to reate a job map from the spei�ed list of nodes. A job map is a string on-

taining a list of node numbers seperated by olons. Typially, a job map is reated for

the environment variable BEOWULF JOB MAP. One the BEOWULF JOB MAP

variable is set to the job map, a job an be exeuted on nodes listed in the job map.

The two system funtions used by the ballo daemon soure are bresv() and bal-

loresv(). The bresv() funtion is �rst alled to reserve the spei�ed number of nodes

for ten seonds while ballo determines whether or not the nodes are needed. If ballo

deides the nodes are needed, the balloresv() funtion is alled to alloate the nodes

in the set that were just reserved.

55

The other two system funtions are ntoh borr info() and ntoh node info(). These

funtions are mainly used by the ballo API funtions. They both take returned

network-byte-order data and onvert it to host-byte-order. The ntoh borr info()

funtion organizes the data into borr node info strutures and the ntoh node info()

funtion organizes the data into node info strutures.

A typial senario will involve �rst using ballo() to alloate some sets. Next

querying may be done to determine the status of nodes and sets. Then the funtion

node info to job map() will be alled to reate a job map. The job map will be used

to set the BEOWULF JOB MAP environment varaiable. At this point jobs an be

run on the nodes spei�ed by the BEOWULF JOB MAP variable. Finally after all

jobs have ended on a partiular set, the set is freed.

56

Table 1 - User Funtions

Funtion prototype Desription

int batset(int *data, int *sets, har

*bheadname)

Returns a list of ative sets.

int ballo (int nodes, int mode, node info *data,

int gro, int all, int bor, int ltn, har *bheadname)

Alloates the number of

nodes requested if the given

onstraints are met.

int bfree(int set, har *bheadname) Frees the spei�ed set.

int bnodestat(int *data, int *datanode, int

node, int *mode, int *sets, int *ount, har

*bheadname)

Returns information on a

spei�ed node.

int breset(har *bheadname) Resets ballo. All nodes are

freed and removed from all

sets. Should only be used

for testing purposes.

int breturn(int set, int importane, har

*borrlustername, har *bheadname)

Request the set that 'bor-

rlustername' loaned to

'bheadname' to be returned

to 'borrlustername'.

int bsetstat(node info *data, int set, int *uid,

int *mode, int *nodes, har *bheadname)

Returns information on the

spei�ed set.

int btypestat(node info *data, int mode, int

*nodes, har *bheadname)

Returns a list of nodes that

are in the spei�ed mode.

har *node info to job map(node info

*data)

Returns a job map of the

form \X1:X2:...:XN" where

X1 through XN are the

node numbers stored in the

list 'data'.

Table 2 - System Funtions

Funtion prototype Desription

int balloresv(int nodes, int setnum,

borr node info *data, har *bheadname)

Alloates nodes that are in

the reserved set 'setnum'.

int bresv(int nodes, int *return nodes, har

*bheadname)

Reserves a set of nodes for

10 seonds that ontains

less than or equal to the

number requested.

int ntoh borr info(int *new data, int

numnodes, borr node info *data)

Converts the returned

data 'new data' to a

borr node info list.

int ntoh node info(int *new data, int

numnodes, node info *data)

Converts the returned data

'new data' to a node info

list.

57

A.2 Example Coding

1. Below is an example that alloates a set of 16 nodes on the loal luster-head.

Borrowing will not be allowed and less nodes will not be aepted. The nodes

will be alloated in SHARED mode. After the nodes are alloated, a job map

is reated from the nodes. Finally, the set of nodes are freed.

node_info * theNodes;

node_info *finger1, *finger2;

har bheadname[MAXHOSTNAME + 1℄;

har *jobMap;

int set = 0;

int status = 0;

// get the loal host name

gethostname(bheadname, MAXHOSTNAME);

// alloate the set

theNodes = (node_info *) mallo(sizeof(node_info));

set = ballo(16, SHARED, theNodes, MOSTFIRST, ALLOFF, BORROWOFF,

LESSOFF, bheadname);

if(set < 0)

{

fprintf(stderr, "Failed to alloate Set!\n");

exit(-1);

}

// get the job map

jobMap = node_info_to_job_map(theNodes);

if(jobMap == NULL)

{

fprintf(stderr, "Failed to reate job map!\n");

exit(-1);

}

...

// use the job map to exeute jobs

...

// free the set

status = bfree(set, bheadname);

if(status < 0)

{

fprintf(stderr, "Failed to free set!\n");

exit(-1);

}

58

// free the node_info list from memory

finger1 = theNodes;

while(finger1 != NULL)

{

finger2 = finger1->next_node;

free(finger1);

finger1 = finger2;

}

2. Below is an example of alloating 32 nodes in EXCLUSIVE mode. Priority

gouping will be used. Alloating all the nodes on one luster will not be required.

Borrowing will be allowed. Finally, less nodes than requested will be aepted.

node_info * theNodes;

har bheadname[MAXHOSTNAME + 1℄;

int set = 0;

int status = 0;

// get the loal host name

gethostname(bheadname, MAXHOSTNAME);

set = ballo(32, EXCLUSIVE, theNodes, PRIORITY, ALLOFF, BORROWON,

LESSON, bheadname);

if(set < 0)

{

fprintf(stderr, "Failed to alloate Set!\n");

exit(-1);

}

...

status = bfree(set, bheadname);

if(status < 0)

{

fprintf(stderr, "Failed to free Set!\n");

exit(-1);

}

// free vars, et...

3. Below is an example of how to use batset() and bsetstat(). The returned list

of sets from batset() are printed to the display. For eah set, the user id of the

owner of the set, the mode the set is in, and the number of nodes in the set are

retrieved using batset() and printed to the display.

har bheadname[MAXHOSTNAME + 1℄;

int status = 0;

int i = 0;

59

int sets = 0;

int *data;

// get the loal host name

gethostname(bheadname, MAXHOSTNAME);

status = batset(&data, &sets, bheadname);

if(status < 0)

{

fprintf(stderr, "Failed to get ative sets!\n");

exit(-1);

}

// print out all the set numbers

for(i = 0; i < sets; i++)

{

node_info *node_list;

int uid = 0;

int mode = 0;

int nodes = 0;

printf("set #: %d\n",data[i℄);

status = bsetstat(node_list, data[i℄, &uid, &mode, &nodes,

bheadname);

if(status < 0)

{

fprintf(stderr, "Error getting status of set!\n");

exit(-1);

}

printf("\tuser id: %d\n", uid);

printf("\tmode: %d\n", mode);

printf("\tnum nodes: %d\n", nodes);

// free vars, et...

}

4. Below is an example of how to use bnodestat() and btypestat().

har bheadname[MAXHOSTNAME + 1℄;

int *data;

node_info *node_list;

int ount = 0;

int status = 0;

int sets = 0;

60

int datanode = 0;

int uid = 0;

int mode = 0;

int nodes = 0;

// get the loal host name

gethostname(bheadname, MAXHOSTNAME);

node_list = (node_info *) mallo(sizeof(node_info));

status = btypestat(node_list, SHARED, &nodes, bheadname);

if(status < 0)

{

fprintf(stderr, "Error retrieving list of nodes in

speified mode!\n");

exit(-1);

}

if(nodes > 0)

{

status = bnodestat(data, &datanode, node_list[0℄, &mode,

&sets, &ount, bheadname);

if(status < 0)

{

fprintf(stderr, "Error retrieving information on node!\n");

exit(-1);

}

printf("node: %d\n", node_list[0℄);

printf("\tip address: %d\n", datanode);

printf("\tmode: %d\n", mode);

printf("\tnum sets: %d\n", sets);

printf("\tnum users: %d\n", ount);

}

else

{

printf("There were no nodes found in the speified mode\n");

}

// free vars, et...

61

A.3 Funtion Desriptions

batset()

Funtion Prototype

int batset(int *data, int *sets, har *bheadname);

Desription

The funtion 'batset' will return a list of all ative sets in the 'data' argument. The

number of ative sets found will be returned in the 'sets' argument.

Arguments

int *data : output

int *sets : output

har *bheadname : input

The argument 'data' is used by batset() to return a list of all the ative sets.

The argument 'sets' is used by batset() to return the number of ative sets.

The 'bheadname' argument must point to a null terminating string that ontains

the network name of the luster head to send request to. This argument will

typially be loalhost for users.

Return Value

If batset() is suessful, 0 is returned. If it is not suessful, -1 is returned and

errno is set.

Errno

EBADREQ The request was not valid.

62

ballo()

Funtion Prototype

int ballo(int nodes, int mode, node info *data, int gro, int all, int bor, int ltn, har

*bheadname);

Desription

The funtion ballo() attempts to alloate the number of nodes spei�ed by 'nodes'.

The nodes an be alloated in one of two modes as desribed by the 'mode'

argument. The 'ltn' argument allows the user to speify that less nodes than

requested are aeptable.

ballo() an borrow nodes from other lusters if there are not enough available on

the loal luster and the 'bor' variable is set to allow borrowing. When borrowing

nodes, there are two options that speify how the nodes should be borrowed. The

argument 'gro' allows the user to speify the grouping. The argument 'all' allows

the user to speify whether or not all nodes must be borrowed from one luster.

Arguments

int nodes : input

int mode : input

node info *data : output

int gro : input

int all : input

int bor : input

int ltn : input

har *bheadname : input

63

The 'nodes' argument spei�es the number of nodes to alloate. This number

should be greater than 0.

The 'mode' argument allows the user to speify what mode the nodes should be

alloated in. The possible modes are either SHARED or EXCLUSIVE. SHARED

means that the nodes alloated an belong to more than one set. EXCLUSIVE

means that the nodes alloated annot be alloated to any other sets until they are

freed.

The 'data' argument is used by ballo() to return the list of nodes alloated to the

set. The 'data' objet must point to a valid node info struture. The struture

must have memory alloated to it before alling ballo().

The 'gro' argument allows the user to speify the grouping of borrowed nodes. The

possible values of 'gro' are PRIORITY or MOSTFIRST. PRIORITY means that

nodes should be borrowed from lusters with the highest priority �rst. The priority

of the lusters is de�ned in the ballo luster on�g �le. MOSTFIRST means that

nodes should be borrowed from lusters with the most available nodes �rst. If two or

more lusters have teh same number of nodes available, then PRIORITY is used.

The 'all' argument is used to speify whether or not all of the borrowed nodes must

ome from one luster. The possible values for this argument are ALLON or

ALLOFF. ALLON means that all of the borrowed nodes must ome from the same

luster. ALLOFF means that all of the borrowed nodes do not need to ome from

the same luster. If there are enough available nodes on the loal luster, this

argument is ignored.

The 'bor' argument is used to speify whether or not nodes should be borrowed if

there are not enough available nodes on the loal luster. The possible values for

this argument are BORROWON or BORROWOFF. BORROWNON means that

64

ballo() should attempt to borrow nodes if there are not enough available.

BORROWOFF means that ballo() should not attempt to borrow nodes.

The 'ltn' argument is used to speify whether or not less nodes are aeptable. The

possible values for this argument are LESSON or LESSOFF. LESSON means that

less nodes are aeptable. LESSOFF means that either the number of nodes

requested are alloated or none are alloated.

The 'bheadname' argument must point to a null terminating string that ontains

the network name of the luster head to send request to. This argument will

typially be loalhost for users.

Return Value

If ballo() is suessful, the set number is returned and the argument 'data' ontains

the returned node addresses. If ballo() annot meet the request, -1 is returned and

errno is set.

Errno

EBADREQ The request was not valid.

EUNAVAIL The amount of requested nodes are not available.

ENOSETS No more sets ould be reated.

EBADNUM There were more nodes requested than the number of reserved nodes.

65

bfree()

Funtion Prototype

int bfree(int set, har *bheadname);

Desription

The bfree() funtion will remove all nodes from the set spei�ed by the argument

'set'. If the set ontained a set of borrowed nodes and those nodes do not belong to

any other set, bfree() will return the group of borrowed nodes to it's original luster.

Arguments

int set : input

har *bheadname : input

The 'set' argument is the set number that will be freed.

The 'bheadname' argument must point to a null terminating string that ontains

the network name of the luster head to send request to. This argument will

typially be loalhost for users.

Return Value

If bfree() is suessful, 0 will be returned. If it is not suessful, -1 will be returned

and errno will be set.

Errno

EBADREQ The request was not valid.

EBADSET The set spei�ed was not found.

66

bnodestat()

Funtion Prototype

int bnodestat(int *data, int *datanode, int node, int *mode, int *sets, int *ount,

har *bheadname);

Desription

The funtion bnodestat() returns information on the spei�ed node 'node'. The

information returned inludes a list of set numbers that ontain the node, address of

the node, the mode of the node, the number of sets ontaining the node, and the

number of users on the node.

Arguments

int *data : output

int *datanode : output

int node : input

int *mode : output

int *sets : output

int *ount : output

har *bheadname : input

The 'data' argument is used by bnodestat() to return a list of set numbers that the

node belongs to.

The 'datanode' is used by bnodestat() to return the IP address of the node.

The 'node' argument is the spei�ed node to look up.

The 'mode' argument is used by bnodestat() to return the mode that the node is in.

The possible modes are: UNKNOWN, FREE, SHARED, EXCLUSIVE,

67

RESERVED, DOWN, BORROWED. UNKNOWN means that the status of the

node annot be determined. FREE means that the node is urrently available.

SHARED means that the set belongs to one or more SHARED sets. The node an

be alloated to more SHARED sets. EXLUSIVE means that the node belongs to an

EXCLUSIVE set and annot be alloated to another set until it is freed.

RESERVED means that the node has been RESERVED by the system for future

use. The node annot be alloated. DOWN means that the node is not urrently

operating. BORROWED means that the node has been loaned to another luster.

The 'sets' argument is used by bnodestat() to return the number of sets that the

node belong to. This is the size of the 'data' list.

The 'ount' argument is number of users that are urrently using the node.

The 'bheadname' argument must point to a null terminating string that ontains

the network name of the luster head to send request to. This argument will

typially be loalhost for users.

Return Value

If bnodestat() is suessful, 0 is returned. If it is not suessful, -1 is returned and

errno is set.

Errno

EBADREQ The request was not valid.

EBADNODE The node spei�ed was not available

68

breset()

Funtion Prototype

int breset(har *bheadname);

Desription

The funtion breset() reinitializes the entire set database. All of the nodes are freed

and removed from all sets. This funtion should only be used for testing purposes

and should be depreated.

Arguments

har *bheadname : input

The 'bheadname' argument must point to a null terminating string that ontains

the network name of the luster head to send request to. This argument will

typially be loalhost for users.

Return Value

If breset() is suessful, 0 is returned. If it is not suessful, -1 is returned and errno

is set.

Errno

EBADREQ The request was not valid.

69

breturn()

Funtion Prototype

int breturn(int set, int importane, har *borrlustername, har *bheadname);

Desription

The breturn() funtion returns the set of borrowed nodes to it's original owner.

This request should be sent to the luster head that borrowed the nodes.

Arguments

int set : input

int importane : input

har *borrlustername : input

har *bheadname : input

The 'set' argument is the set that ontains the loaned nodes.

The 'importane' argument an be either NOW or WHENDONE. NOW means that

the nodes must be returned immediately. There is no warning given, and any set

ontaining those nodes will loose those nodes. WHENDONE means to wait until

the jobs sheduled on the nodes are done, but no additional jobs an be sheduled.

The 'borrlustername' argument must point to a null terminating string that

ontains the network name of the luster head that loaned the set.

The 'bheadname' argument must point to a null terminating string that ontains

the network name of the luster head to send request to. This argument will

typially be loalhost for users.

70

Return Value

If breturn() is suessful, 0 is returned. If it is not suessful, -1 is returned and

errno is set.

Errno

EBADREQ The request was not valid.

EBADSET The set spei�ed was not found.

71

bsetstat()

Funtion Prototype

int bsetstat(node info *data, int set, int *uid, int *mode, int *nodes, har

*bheadname);

Desription

The funtion bsetstat() returns information about the set spei�ed by 'set'. The

information returned is the list of the nodes in the set, user ID of the owner of the

set, mode the set is in, and number of nodes in the set. The information returned

about eah node in the set inludes the node number, IP address, and the number

of users urrently on the node.

Arguments

node info *data : output

int set : input

int *uid : output

int *mode : output

int *nodes : output

har *bheadname : input

The 'data' argument is used by bsetstat() to return a list of nodes in the set. It

must point to a valid node info struture. This memory must be alloated before

alling bsetstat().

The 'set' argument should ontain the set number for the set that is being queried.

The 'uid' argument is used by bsetstat() to return the user ID of the owner of the

set.

72

The 'mode' argument is used by bsetstat() to return the mode of the set. The mode

an be one of the following: SHARED, EXCLUSIVE, or BORROWED. SHARED

means that any node in the set an be alloated to another set that is also in the

SHARED mode. EXCLUSIVE means that all nodes in the set are exlusively

alloated to the set. None of the nodes an be alloated to future sets until they are

freed from this set. BORROWED means that the set is not part of the luster's

urrent resoures. The nodes in the set have been loaned to another luster.

The 'nodes' argument is used by bsetstat() to returned the number of nodes in the

set.

The 'bheadname' argument must point to a null terminating string that ontains

the network name of the luster head to send request to. This argument will

typially be loalhost for users.

Return Value

If bsetstat() is suessful, 0 is returned. If it is not suessful, -1 is returned and

errno is set.

Errno

EBADREQ The request was not valid.

EBADSET The set spei�ed was not found.

73

btypestat()

Funtion Prototype

int btypestat(node info *data, int mode, int *nodes, har *bheadname);

Desription

The funtion btypestat() returns a list of nodes that are in the spei�ed mode.

Arguments

node info *data : output

int mode : input

int *nodes : output

har *bheadname : input

The 'data' argument is used by btypestat() to return the list of nodes that are in

the mode spei�ed by 'mode'. The 'data' argument must point to a valid node info

struture. The struture must have memory alloated to it before alling

btypestat().

The 'mode' argument should speify the mode to look up.

The 'nodes' argument returns the number of nodes that are in the spei�ed mode.

The 'bheadname' argument must point to a null terminating string that ontains

the network name of the luster head to send request to. This argument will

typially be loalhost for users.

Return Value

74

If btypestat() is suessful, 0 is returned. If it is not suessful, -1 is returned and

errno is set.

Errno

EBADREQ The request was not valid.

75

node info to job map()

Funtion Prototype

har * node info to job map(node info *node ount);

Desription

The funtion node info to job map() takes a list of nodes 'node ount' and

returns a list of node numbers in the job map format for the environment variable

BEOWULF JOB MAP.

Arguments

node info *node ount : input

The 'node ount' argument should ontain a list of nodes that will be returned in

job map format.

Return Value

If node info to job map() is suessful, a job map is returned with the form

nodenumber: nodenumber:...:nodenumber. If it is not suessful, NULL is returned

and errno is set.

Errno

EBADREQ The request was not valid.

76

balloresv()

Funtion Prototype

int balloresv(int nodes, int setnum, borr node info *data, har *bheadname);

Desription

The funtion balloresv() alloates previously reserved nodes in the spei�ed set.

Arguments

int nodes : input

int setnum : input

borr node info *data : output

har *bheadname : input

The 'nodes' argument spei�es the number of nodes to alloate. This an be less

than or equal to the number originally reserved.

The 'setnum' argument spei�es the reserved set that the nodes are in.

The 'data' is used by balloresv() to return the list of nodes that have been

alloated. The 'data' objet must point to a valid borr node info struture. The

struture must have memory alloated to it before alling balloresv().

The 'bheadname' argument must point to a null terminating string that ontains

the network name of the luster head to send request to. This argument will

typially be loalhost for users.

Return Value

77

If balloresv() is suessful, the new set number is returned. If it is not suessful, -1

is returned and errno is set.

Errno

EBADREQ The request was not valid.

EBADNUM There were more nodes requested than the number of reserved nodes.

78

bresv()

Funtion Prototype

int bresv(int nodes, int *return nodes, har *bheadname);

Desription

The funtion bresv() reserves the number of nodes spei�ed by 'nodes' for 10

seonds. During the 10 seonds ballo() will deide whether or not it needs to

borrow those nodes. If ballo does not laim the nodes within 10 seonds, they are

freed.

Arguments

int nodes : input

int *return nodes : output

har *bheadname : input

The 'nodes' argument spei�es how many nodes to reserve.

The 'return nodes' argument is used by bresv() to return the atual number of

nodes reserved, beause ballo assumes less nodes are aeptable for reservation.

This allows the number of nodes on lusters to be ompared.

The 'bheadname' argument must point to a null terminating string that ontains

the network name of the luster head to send request to. The reserved nodes will be

reserved on the luster referened by this argument.

Return Value

If bresv() is suessful, 0 is returned. If it is not suessful, -1 is returned and errno

is set.

79

Errno

EBADREQ The request was not valid.

ENOSETS No more sets ould be reated.

80

ntoh borr info()

Funtion Prototype

int ntoh borr info(int *new data, int numnodes, borr node info *data);

Desription

The funtion ntoh borr info() takes the returned data 'new data' and onverts it

to the borr node info list 'data'. The data is translated from network to host byte

order and organized into the 'data' list. This funtion is used by ballo alls to

hange byte order of data returned from the ballo daemon.

Arguments

int *new data : input

int numnodes : input

borr node info *data : output

The 'new data' argument ontains a list of data that is in network byte order. The

sequene of data, as found int the borr node info struture, is nodenum, nodeaddr,

ount, eaddr, repeat.

The 'numnodes' argument is the number of nodes in the list.

The 'data' argument is used by ntoh borr info() to return the list of nodes.

Return Value

If ntoh node info() is suessful, 0 is returned. If it is not suessful, -1 is returned

and errno is set.

Errno

EBADREQ The request was not valid.

81

ntoh node info()

Funtion Prototype

int ntoh node info(int *new data, int numnodes, node info *data);

Desription

The funtion ntoh node info() takes the returned data 'new data' and onverts it

to a node info list. The data is translated from network to host byte order and

organized into the 'data' list. This funtion is used by ballo alls to hange byte

order of data returned from the ballo daemon.

Arguments

int *new data : input

int numnodes : input

node info *data : output

The 'new data' argument ontains a list of data that is in network byte order. The

sequene of data, as found in the node info struture, is nodenum, nodeaddr, ount,

next node, repeat.

The 'numnodes' argument is the number of nodes in the list.

The 'data' argument is used by ntoh node info() to return the list of nodes.

Return Value

If ntoh node info() is suessful, 0 is returned. If it is not suessful, -1 is returned

and errno is set.

Errno

EBADREQ The request was not valid.

Bibliography

[1℄ IBM Corporation. RS/6000 SP System Management: Easy, Lean, and Mean.

Tehnial report, International Tehnial Support Organization, June 1995.

[2℄ Platform Computing Corporation. LSF Referene Guide: Version 4.2. Tehnial

report, June 1994.

[3℄ Platform Computing Corporation. Using LSF with IBM SP-2. Tehnial report,

2000.

[4℄ Thinking Mahines Corporation. The Connetion Mahine: CM-5 Tehnial

Summary. Tehnial report, Thinking Mahines Corporation, Cambridge, Mas-

sahusetts, Otober 1991.

[5℄ Veridian Corporation. PBS Unix Manual Pages. Tehnial report, June 2000.

[6℄ Amin Vahdat Douglas Ghormley, David Petrou and Keith Vetter. Global Layer

Unix: GLUnix. http://now.s.berkeley.edu/Glunix/glunix.html, 1997.

[7℄ et. al. Dr. Walter B. Ligon, Dr. Daniel C. Stanzione. Syld Beowulf Training.

Tehnial report, Syld Computing Corporation, 2001.

[8℄ Superluster Development Group. Maui Doumentation: Setions: His-

tory, Overview, Quik Start Guide, User's Manual, Administrator's Guide.

http://www.superluster.org, 2000.

[9℄ Superluster Development Group. Wiki RM Interfae Spei�ations Version 1.1.

http://www.superluster.org, 2000.

[10℄ Cornell University IBM SP. Extensible Argonne Sheduling System Load Leveler.

http://www.t.ornell.edu/UserDo/SP/Bath/Easy.

[11℄ Cray Inorporated. Network Queueing Environment(NQE): Software Guide.

http://www.ray.om/produts/software/nqe.html, 2001.

[12℄ Southampton Oeanography Center James Rennell Division. Pexe man pages.

http://www.so.soton.a.uk/JRD, Otober 1997.

[13℄ Charles E. Leiserson. The Network Arhiteture of the Connetion Mahine

CM-5. pages 1{18, Otober 1992.

83

[14℄ LINUX. LINUX man pages: at, atd, 2000.

[15℄ University of Utah. Usage of the Compaq Sierra. Tehnial report, Center for

High Performane Computing, July 2001.

[16℄ The Globus Projet Team. The Globus Grid Programming Toolkit Tutorial.

Tehnial report, The Globus Projet Team, ANL, and USC/ISI, November 1999.

[17℄ University of Wisonsin-Madison The Condor Team. Condor High Throughput

Computing. http://www.s.wis.edu/ondor.

[18℄ Donald J. Beker Thomas Sterling, John Salmon and Daniel F. Savarese. How to

Build a Beowulf: A Guide to the Implementation and Appliation of PC Clusters.

1999.

