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ABSTRACT

Parallel computers are becoming increasingly important for modern engineering
and scientific simulation. A successful type of parallel computer is the Beowulf clus-
ter. These clusters emphasize using many commodity processors in parallel to try
to achieve the performance levels of more expensive supercomputers. A growing re-
search area is in connecting multiple Beowulfs into a Computational Grid to create a
distributed system of clusters.

With multiple resources distributed across a system, an effective way to combine
their processing power must be examined. A way to transfer the ownership of the
remote processors on a cluster to a separate cluster on the Grid is needed to be able
to combine the resources into a larger computer. This paper explores the different
aspects of scheduling and allocating resources in a Grid of Beowulfs. It also describes
the design of a specialized node allocation mechanism for a such a cluster. This
mechanism integrates with current Beowulf software which allows the user to see a
“single” computer instead of a distributed system.

The techniques used by this new mechanism to borrow and return nodes between
separate clusters is discussed, as well as methods for order of contact and ownership of
nodes. This paper also surveys a few different allocation and scheduling tools that are
currently used in parallel computers. By using these ideas and the new mechanism,

the organization and the computational power of a Grid of Beowulfs will be improved.



DEDICATION

To my friends and family, for their love and support through the last five years.
Without your help and patience, none of this would have been possible.

Especially to my parents, each of whom has given me love, knowledge, and a spe-
cial trait that has helped me to succeed. To my mother, who has given me her strength
and commitment to excellence. To my father, who has given me his adaptivity and
technical skills. To my step-father, who has helped me to develop management and
organizational skills. To my step-mother, who has helped me to develop persistence

and patience.



ACKNOWLEDGMENTS

I would like to especially thank Dr. Walt Ligon for his guidance and support. Your
commitment to research has helped me to expand my knowledge in many directions.
I would also like to thank my committee members and Dr. Daniel Stanzione for their

direction and advice.



TABLE OF CONTENTS

TITLE PAGE . . . . . . . .
ABSTRACT . . . .
DEDICATION . . . . . .
LIST OF FIGURES . . . . . . . . . .
1 Introduction . . . . . . . ..
1.1 Computational Grids . . . . . ... ... ... ... .......
1.2 Ideal Mini-Grid Capability . . . . . . ... ... ... ... ...
1.2.1  One Cluster Example . . . . . ... ... ... ... ... ...
1.2.2  Mini-Grid Example . . . . . .. ... o 0oL
1.3 Allocation and Scheduling Issues . . . . . . ... ... ... ...
1.4 Proposed Solution . . . . . . . ... ... ... ... ... .. ..
1.5 Outline. . . ... .. ... .
2 Related Work . . . . . . . . . . .. ...
2.1 Schedulers . . . ... .. ...
2.1.1 MAUL . ..o
21.2 Bbq . ...
2.2 Allocators . . . . . . . . .. ...
2.2.1 Connection Machine . . . . ... ... ... ... .......
2.2.2  Globus Resource Allocation Manager . . . . . . . ... .. ..
3 Balloc . . . . . . . .
3.1 Introduction . . . . . .. ... ... ... ...
3.2 End User Functionality . . . . . ... . ... ... ... .....
3.2.1 Incorporation into MPT . . . . .. .. ... ... ... ... .
3.2.2 Balloc API Functions . . . . . . ... ... .. .. .......
3.2.3 Balloc Control Manager and Status Reports . . . . . . . ...
3.3 System Daemon Balloc . . . .. ... ... ... ... ... ..
3.3.1 One Cluster Implementation . . . . . ... ... ........
3.3.2  Two or More Cluster Implementation . . . . . . . ... . ...
4 Results . . . . . . . . . .
4.1 Testbeds . . . . . . . . .

4.2  Experiments Completed with Timing Information . . . . . . ..

Page

i
i

vi



5 Conclusions and Future Work . . . . . . . .. ... .. ... .....
APPENDICES . . . . . . .
A Balloc API Manual . . .. . .. .. . .. ... ...
A.1 Overview of Balloc API. . . .. ... .. ... ... .......
A2 Example Coding. . . . . .. .. . ... ...
A.3 Function Descriptions . . . . . . ... ... ... ... ......

BIBLIOGRAPHY . . . . . .



LisT OF FIGURES

Figure

1.1  Mini—-Grid Architecture . . . . . . . . ... ... oL
1.2 Example of allocation on one cluster. . . . . . .. .. ... ... ...
1.3  Example of use on Mini-Grid. . . . . . . . .. ... L.
1.4 Proposed structure for a Beowulf allocation tool. . . . . . . .. .. ..
2.1 Steps taken by services to run user processes. . . . . . . . .. .. ..
2.2 Connection Machine, CM-5, Architecture. . . . . . . . .. ... ...
2.3 Globus Resource Allocation Scheme. . . . . . . ... ... .. ....
3.1 Mpirun execution sequence. . . . . . . . . . .. ...
3.2 State transitions available for nodes in Balloc. . . . . . . . ... ...
3.3 State transitions by a loaner, available on Beowulf Grid. . . . . . ..
3.4 State transitions by a borrower, available on Beowulf Grid. . . . . . .
3.5 Tracking set numbers while borrowing nodes. . . . . . . . .. ... ..
4.1 Grendel Testbed Architecture . . . . . . .. ... ... ... .....
4.2 Clemson University’s Mini-Grid Structure . . . . ... .. ... ...



Chapter 1

Introduction

The amount of information gathered around the world, from satellites to hospital re-
search, is increasing at a dramatic rate. This data could hold the answers to weather
forecasting, environmental situations, or even the early detection and treatment of
genetic diseases. Processing this data is becoming increasingly difficult, due to the
enormous amounts available for different types of testing. Computers have become
key in getting results quickly. Even so, many different algorithms can be performed
on the same data, causing an even greater need for computational power. Demand for
faster computers has driven research in processor speed and caused an almost expo-
nential increase in performance, but this increase is still not enough. By finding ways
to increase the computational power of existing machines, researchers can process the
available data with much greater speed.

Several architectures exist that use computers in parallel to process information.
By scheduling jobs and allocating these computers in efficient ways, several users can
be running processes at the same time. The more competent the scheduling and
allocation services are, the less time users must wait for answers. If these tools were

capable of combining several existing parallel computers into one large computer, the



2
available computational power for a single user would allow an increase in computa-

tional research in almost any area or field.

1.1 Computational Grids

High performance computing is filling the gap between the processing speed required
and what is currently available. On large data sets that require certain computations,
parallel machines can almost achieve a linear speedup over single processor computers.
For a time, this power was only available to a limited few who could afford large,
expensive supercomputers. However, in the last few years a movement has been made
to use many commodity processors in parallel to try to achieve the same performance
levels. The original project was named Beowulf and was started by Tom Sterling and
Donald Becker in 1994 [18]. The first cluster contained sixteen processors and was
created at NASA’s Goddard Space Flight Center.

A Beowulf cluster is a grouping of computers, each with its own processors, mem-
ory, hard drives, and network cards. Normally these computers use the Linux oper-
ating system and Ethernet switches for communication. On each cluster there exists
a “head node” that is usually connected to an external network. This head node
contains connections to the “remote nodes”, or the nodes that would do the actual
computation of a program. Each node in the cluster is dedicated to the cluster and
since the remote nodes are not subject to the external network, their performance
corresponds only to the program currently executing.

Beowulfs have grown in popularity and are found in a wide range of places. Their
affordability and computational power encourages experimentation. A problem occurs
though, when a single user tries to manage a large number of processors. Scalability
becomes an issue, because of the number of concurrent processes that are actively

communicating with each other. To check the status of each computer, the user
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must log on to each node to find out any information. Debugging becomes especially
difficult when communication between computers fails for unknown reasons. Special
software has been developed to simplify this process.

The Scyld operating system is designed to allow a user to see a Beowulf as a
single computer, simplifying programming and administration. The core of the Scyld
system is a distributed process space created by a set of daemons, called Bproc.
Processes are started on the head node and migrated out to the remote nodes, for
actual computation. A “ghost” process can still be seen on the head node that mirrors
all information about the actual process on the remote node, which allows simplified
management. This single image view of a cluster computer and the success of this
system encourages the development of other user software specifically designed for
Beowulfs.

More recently researchers have been trying to find a way to combine resources
that are spread out over great distances to allow for even greater computational
power. These resources include a variety of hardware including extremely powerful
supercomputers, databases, networks, and clusters. These groupings are known as
Computational Grids and programs for these arrays usually include a great deal of
data partitioned over the Grid. A Computational Grid is similar to a Power Grid,
where access to the Grid is available at many points. A user can plug in anywhere
on the Grid to get the necessary power, whether it be computational or electrical.
Timing, security, and stability become issues when dealing with the extensive size
and heterogeneous nature of such a system.

Simpler versions of Computational Grids are in development. These “Mini—Grids”
try to use a localized setting as an advantage for communications, instead of relying
on slow Internet connections to transfer data and process information. They also
contain a homogeneous mixture of resources consisting of Scyld Beowulfs. These

Mini-Grids can be illustrated as one large cluster that is broken into several smaller
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sub—clusters, which helps to simplify administration, as seen in Figure 1.1. Each
sub—cluster contains its own head node, and no hierarchy exists between them, so
each one can be used as a full cluster. The sub—clusters’ remote nodes are connected
in the background with communication devices on a private network. This allows
any remote node to belong to any head node. In this way the entire Mini-Grid

architecture can be combined to be one massive Beowulf computer.

1.2 Ideal Mini-Grid Capability

The capabilities that should be available in a Mini-Grid can be described with two
example allocations, or jobs with different allotments of nodes. The first is on a
single cluster and concerns the basic functionality necessary in an allocation tool.
The second is an example on our target architecture the Mini-Grid with four separate
clusters. Three of those clusters are owned by different groups, and the fourth cluster

is a node pool that is available to all the other clusters.

1.2.1 One Cluster Example

The first example is the use of a single cluster. The architecture used for this demon-
stration contains thirty-two nodes and can be seen in Figure 1.2. This example shows
multiple users accessing a single cluster at the same time.

The first job to arrive is a Shared allocation request for eight nodes. The second
job that is filled requests Exclusive use, because it is time-restrictive, and requests
twenty nodes. These two requests are fulfilled with out any problems.

The next request asks for sixteen nodes, but only twelve are available for shared
mode, eight of which already have a user on them. At this point the allocator checks

to see if the user will except fewer nodes. If not, an error occurs and a acknowledgment
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Figure 1.2: Example of allocation on one cluster.

is sent telling the user that the nodes are not available. However, for this example,
the flag is set and the nodes are allocated.
Several other Shared jobs could still access twelve nodes. No Exclusive jobs could

be started and no nodes could be borrowed though, until nodes became Free.

1.2.2 Mini-Grid Example

The second example shows several users on each each cluster of a Mini-Grid. This
illustration can be seen in Figure 1.3. The architecture for this example is taken
from a testbed that is discussed further in Section 4.1. All options are represented
by different jobs on the cluster. There are three groups that have access to this Mini-
Grid, the Center for Advanced Engineering Fibers and Films (CAEFF), the Clemson
University Genomics Institute (CUGI), and the Parallel Architecture Research Lab
(PARL).
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Figure 1.3: Example of use on Mini-Grid.

This example consists of five jobs. The first arrives on the CAEFF cluster re-
questing 96 nodes in Shared mode. This cluster only contains 32 nodes, and must
borrow nodes if any are available. The first place every cluster queries for borrowed
nodes is the Node Pool. This Pool is used only to provide the other clusters with
spare nodes. Assuming the borrowing is allowed, the cluster accesses the other nodes,
and allocates those nodes once the request can be filled.

The next job is on the same cluster. This request is for 48 Shared nodes, which
can be filled on the local nodes and the currently borrowed nodes. Since the nodes
have already been borrowed, the reboot delay is not encountered.

The third job is on the PARL cluster and is requesting 32 Exclusive nodes. It can
be filled on the local cluster. The next job is requesting 48 Exclusive nodes, but it
requests that all of the nodes are on the same cluster. This request cannot be filled on
the local cluster, so the other allocators are queried and the allocation is completed
on the Farm.

The final job is on the CUGI cluster and is requesting 64 Shared nodes. This

request has set to take the most nodes available first, instead of by the priority of the
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clusters. All the clusters are queried and it is discovered that the PARL cluster can
loan the entire amount needed. The CUGI cluster borrows from it before the Pool
and only has nodes spread across two clusters instead of three.

These two examples show the primary implementation requirements that are nec-
essary in the allocation tool. However, these are just two examples of the wide range
of available allocations of nodes that should be available, and the efficacy of such

functions should be shown.

1.3 Allocation and Scheduling Issues

Allocators and schedulers are incorporated into almost every computer. Schedulers
organize jobs to be run on machines in many different ways, each trying to deal with
separate issues such as speed of completion, priorities, and efficiency. A scheduler
says when, where, and how long each job will be executed. While schedulers are
trying to set the order of jobs, allocation tools are trying to set the resources being
used. A couple of the main issues in allocation are locality, speed of communication,
and security policies (which users are allowed which resources). These tools vary in
use and are usually hardware specific.

Allocation and scheduling problems arise with each new architecture developed.
Many tools dealing with particular problems in clusters are already in development.
Such problems addressed are choosing which nodes to use, balancing the number of
users on each node, and allowing the cluster to be reserved for large jobs. By changing
the architecture of a cluster, and creating the Mini—Grid, new problems arise. One of
the main aspects of the Mini—Grid is its ability to be combined into one large cluster,
however no allocator currently exists that performs this function.

Using Scyld Beowulf and currently available allocation tools, the only way to com-

bine the nodes into one cluster is manually, changing configuration files and rebooting
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the Bproc daemons. A new way to dynamically and transparently “borrow” nodes

between the clusters needs to be developed in an allocation tool. This service must:

e Maintain the state of nodes distributed across the grid,
e Allow for multi-user and single-user access to nodes,
e Provide a mechanism for transferring nodes between clusters,

e Provide borrowing and allocation options for policy implementation in a sched-
uler,

e Be transparent to the user,
e Enforce usage policies,
e Have an efficient implementation, and

e Be able to integrate with existing software.

While a few tools offer some of these options, none work with the Scyld operating

system and allow nodes to be transferred from one cluster to another.

1.4 Proposed Solution

We propose the design of a new Beowulf allocation tool (Balloc) which would allow
nodes to be transparently “borrowed” between locally connected clusters and pro-
vide extensibility and simplicity of use. This tool would fulfill the previously listed
requirements.

This new service would contain a structure like that in Figure 1.4. The user would
have several options to access the allocator, including MPI scripts, function calls, and
a control manager. The Balloc tool would consist of daemons running on each cluster
listening on communication ports. These daemons would have the ability to send

information between each other and transfer nodes between the clusters.
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Figure 1.4: Proposed structure for a Beowulf allocation tool.

1.5 Outline

In this thesis, we start with background about differences between schedule and al-
location services. Two examples of schedulers are discussed to give background on
necessary interfaces for allocation software. We then review two previous allocators.
The first is of an early supercomputer allocator for the Connection Machine CMS5.
The second service is the allocator used in the Globus Toolkit, the Globus Resource
Allocation Manager (GRAM) in coordination with the Dynamically Updated Request
Online Co—Allocator (DUROC), designed for a Computational Grid. Each of the al-
location tools are analyzed for possible use in the Clemson University Mini—Grid.
Next, the development of a new allocation tool designed for our architecture and
operating system is discussed. The success of this tool is based upon the requirements
for our structure. This daemon reaches the listed requirements, using a separate API
for the user, functions implemented in Scyld for node manipulation, and two separate

databases for owned and borrowed nodes.
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The Beowulf Allocator, or Balloc, is examined in two separate discussions. The
first discussion is of the basic functionality of Balloc. This functionality includes an
examination of the user API and describes the possible Balloc function calls avail-
able. The description of the user API also includes the incorporation of Balloc into an
existing parallel programming language environment called the Message—Passing In-
terface, or MPI. Administrators for the Mini—Grid also need a Balloc control manager
application, that would allow easy examination of the state of the Grid.

The second discussion is a description of the actual Balloc daemon implementa-
tion. The basic uses of an allocator that would exist on a single cluster are incor-
porated, such as multi—user or single—user access and an organized way of keeping
track of set information. Also in this Section, the borrowing functions needed for the
Mini-Grid are described. The implementation of borrowing and loaning nodes be-
tween clusters is examined, with the manipulation of databases and Scyld operating
files.

Once the implementation is discussed, actual experiments are performed, and the
success of the system is evaluated. The experiments are described using the mpirun
function call, with some test parallel programs. Timing for these experiments is
also evaluated. With file manipulations occurring whenever nodes are borrowed and
reboots necessary, timing becomes a difficult issue. Evaluation of this requirement
and its fulfillment are examined, along with the success of the allocator for the other
Mini—Grid requirements.

Finally, we conclude whether or not Balloc meets the design goals and is capable

of borrowing nodes on a Mini-Grid. We then examine future work related to Balloc.



Chapter 2

Related Work

In this chapter we discuss an overview of schedulers and allocators. The interfaces to
schedulers are illustrated and several examples of allocators are examined.
Schedulers and allocators are used as a system to allow organized access to com-
puter resources. This access is restricted to the programs entered into a queuing
manager. The main steps of this process can be seen in Figure 2.1. First a problem
solving environment or user level program starts a job on the Beowulf cluster. This
job is put into a queue of waiting jobs. The queue manager contacts the scheduler
to let it know there is a new process waiting to run. The scheduler looks at the
system, and decides when the next job should be allowed to start. It contacts the
allocator for the appropriate resources and the allocator returns which processors,
networks, databases, etc. are now reserved for use by the job. The scheduler would
then dequeue the appropriate job, and start the processes on the required resources.
While this scheme may vary from system to system, the main components are the
same. In some cases the queue manager or allocator might take more control over
the actual start time of the job. For our purposes though, the above arrangement is

a good abstract representation.
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Figure 2.1: Steps taken by services to run user processes.

The function of an allocator and a scheduler should not be confused. While the
scheduler decides when and how much to allocate to a given job, the allocator controls

the availablity of the resources and actually makes the allocation decisions.

2.1 Schedulers

Since schedulers play such a large part in organizing and starting processes, it is
imperative that an appropriate interface be examined for integrating any allocator
into an existing scheme. Two commonly used schedulers on Beowulf clusters are the

MAUI Scheduler and the Beowulf Batch Queue, or Bbq.

2.1.1 MAUI

Maui [8] was initially part of a Master’s Thesis on Scheduling Optimizations. It was
first created in 1995 at Brigham Young University(BYU). It uses its own allocation
algorithms, but needs a resource manager to work appropriately. The resource man-
agers that currently have an interface to Maui are Wikiman [9], IBM’s Loadlever

[1], and PBS [5]. Several other institutions are involved with the current form of
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the project, including, but not limited to, the University of Utah, the University of
Pennsylvania, Pacific Northwest National Laboratory, Boeing, SAIC, and the Maui
High Performance Computing Center (MHPCC) at the University of Hawaii.

“Maui is an advanced batch scheduler with a large feature set well suited for high
performance computing(HPC) platforms including large Alpha and PC clusters...it
makes decisions about where, when, and how to run jobs as specified by admin—
configurable policies” [8]. It was designed to be able to be installed transparently
without user knowledge. This allows users to be able to continue to submit jobs as
previously, but with added scheduling algorithms taking place in the background to
increase system throughput.

The capabilities of Maui include several available statistics gathering and diagnos-
tic utilities. These utilities make this scheduler very attractive to administrators, as
well as users. The statistics can be gathered per user, per node, or even per job. The
diagnostics allow users to track jobs from when they are placed in the queue until
completion.

Other options for administrators include the Quality of Service, or QOS, feature
and the throttling policies available. The QOS allows policies to be geared toward
the mission statement or purpose of a given organization. Special privileges can be
provided to users or accounts that have a greater priority in the funded research by
the fs.cfg file. This file would specify exemptions from policies restricting access to
processing time or resources.

Throttling policies are some of the policies that QOS might exempt a user from.
These policies are implemented by an administrator to resrict the flow of jobs through
a system at any given moment in time. These restrictions can be for a single job, a
single user, or for the entire system. Such restrictions can be on the number of jobs
presented, the number of processors or nodes being accessed, a job’s duration, or the

amount of memory being utilized.
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Capabilities for the actual scheduling of resources include options such as advance
reservations, backfill, and node allocation policies. Advance reservations “guarantees
the availability of a set of resources at a particular time” [8]. Reservations must
include the resources required, the time—frame to reserve, and an access control list,
or ACL. When the reservation is filled only users or accounts in the ACL can access
those restricted resources.

Backfill is the method used by Maui to try to utilize the system as much as
possible. For this algorithm to work, each job must send an estimated wall-clock
runtime. If backfill scheduling is turned on some lower priority jobs might run before
a higher priority job, as long as the higher priority job is not delayed. This incident
might occur when a high priority process is waiting on a resource. The scheduler
knows the approximate time the job currently using that resource is going to be free.
Other resources needed by the high—priority job could just sit empty, but Maui tries
to find other jobs that would run in the remaining time and fill those jobs early. This
approach is extremely helpful if correct time estimates are used.

There are also many node allocation policies available in Maui. These algorithms
would be useful in an allocation tool. A couple of these policies are termed by
the FASTEST, CPULOAD, and FIRSTAVAILABLE. FASTEST allocates the fastest nodes
first, while CPULOAD allocates the nodes with the greatest amount of CPU power still
available. FIRSTAVAILABLE allocates nodes in the order they are reported to the
scheduler by the resource manager. These are just a few of the many algorithms
available. The one that might be the most important to this research, is the LOCAL,
or user specified algorithm, that could contact an allocator for the manipulation and
borrowing of nodes from other clusters.

Maui is only a scheduler, even though it has the capability to implement allocation
algorithms. For this reason Maui will only run correctly if it is attached to a resource

manager that is in place and operational. A resource manager is a program that
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keeps track of the available resources and the allocation of each to specified users. It
often has information stored in a database or in configuration files which allow Maui
to interface as well as gather statistical information. Certain policy issues can be
implemented on these managers, such as which users are allowed on which nodes or
partitions.

A partition is a division of the resources that are available, and by default jobs can
not bridge these resources. Some special processes have spanning capability. It might
be interesting to see if these partitions can be manipulated while Maui is running. If so
“borrowing” between clusters on the Mini-Grid might be implemented by controlling
this ability. However, partition implementation in Maui may be incorrect, and testing
would need to be done to ensure stability.

Maui currently has three available resource manager interfaces, which would help
with the development of a new one. Maui has a variable called RMTYPE which instructs
it to connect with a particular manager. The location of the manager is specified by
the RMNAME, RMHOST, and RMPORT parameters. Four functions are at the heart of the
interactions between Maui and the manager. GETJOBINFO collects state information
about currently running jobs. GETNODEINFO collects state information about con-
nected nodes. STARTJOB and CANCELJOB tell Maui to start or stop a job, respectively,
on the cluster.

A possible interface to Maui may be created using partitions, the LOCAL allocation
algorithm function, and developing the four primary functions. Other manipulations

might be needed, but the requirements for development are certainly available.

2.1.2 Bbgq

The Scyld Beowulf Batch Queuing System, or Bbq [7], is an allocator, scheduler,
and queuing system all in one. The allocator is very basic and only takes the next

available node in exclusive use by setting the user and group permissions on each
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node. While the allocator does not fulfill our requirements, it is worth noting that
enforcement of Bbq can be accomplished by setting Bproc permissions. This will be
helpful later on.

The queuing system is designed to be easy for user interaction and is also fairly
basic. Several different queues are available and labeled with a single character from
a to z and A to Z. The higher letters have lower priorities and a is the default for Bbq.
There is also a special queue, labeled =, and is specifically for currently running jobs.
These queues are sorted by the job start times.

Bbq also contains a scheduler that is a job batching system based on the Linux
command, at [14]. At was developed by Thomas Koenig and David Parsons. It is
fairly simple to use which has made it very attractive for researchers. However, its
simplicity has limited its functionality, and many users soon move on to more complex
schedulers.

The scheduling in at is straight forward and is created specifically for future reser-
vations. Using the at command a process can be scheduled to be run at a later time,
but no pre-processing is done to make sure that jobs will not overlap or have to wait
for their specified start time.

The at system comes in two parts. The first is a daemon. called atd, which runs
jobs that are already queued. This daemon will run batched jobs based on a limiting
load factor for the system. Administrators can override this factor however, by setting
a different threshold.

The second part to at, is a text based interface, where users can interact with the
atd daemon. The command at will schedule a job by a specified time, or by typing
now, midnight, or noon. This interface also contains the atq command, which will
list all scheduled jobs in a queue, and the atrm command, which will remove a job

from the queue.
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While this scheduler gives us a better understanding of the interactions necessary
for integration with the Scyld operating system, it does not to fit our needs for a
scheduler or allocator in the long run. At present, at is not suitable for a system
where users are competing for resources, and would not work well in a Mini-Grid
architecture with several different research groups vying for nodes. However, it may

be worth finding a temporary interface for testing purposes.

2.2 Allocators

Many allocators exist for different architectures. Most often new tools must be de-
signed, because of new hardware requirements or the availability of a new allocation
mechanism or algorithm. Several examples of allocation tools will be discussed in this
Section and the possibility of incorporation into the Mini—Grid architecture will be

examined.

2.2.1 Connection Machine

The Connection Machine, or CM5 [4] and [13] was first released by Thinking Machines
in October, 1991. It tried to combine the positive aspects of both the MIMD and
SIMD machines. The “CM5 supports the full data parallel model by providing high
performance for branching and synchronization alike” [4].

The CM-5 operating system, CMOST, is an enhanced version of the UNIX op-
erating system. It supports most of the standards in UNIX and uses the network
standards to communicate to all of its processors through three separate network
connections.

The basic architecture of the CM-5 can be seen in Figure 2.2. The three networks
that connect the processing elements are the control, diagnostic, and data networks.

The control network is used for communications that involve all processors including
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Figure 2.2: Connection Machine, CM-5, Architecture.

broadcasting and synchronization. The diagnostic network is used for a “back—door”
entrance for administrators to gain access to all parts of the machine. The data
network is used for interprocessor communication.

The processing elements that appear in Figure 2.2 contain two types. The first
is the actual Processing Nodes (PN) that do the computations for programs. The
number of PNs can be anywhere from several tens to thousands of processors. These
nodes contain general purpose processors based on the RISC architecture and usually
are upgraded to contain high-performance arithmetic accelerators. These are the
nodes that are allocated to specific jobs.

The second type of elements are the Control Processors (CPs). These nodes
contain a SPARC microprocessor that is based on the RISC architecture. They are
more streamlined than the PNs and are specifically made for making decisions about
communications, allocations, and running system calls. These processors can be
designated one of two types, either an I/O Control Processor (I0OCP) or a Partition
Manager (PM).

The Partition Manager controls and allocates the nodes in partitions. A partition

is a grouping of the Processing Nodes created by an administrator that would all
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perform the same approximate function. A Control Processor would be designated
a PM for each partition created, and all allocation and scheduling decisions would
be made by hardware. The available modes for these partitions are running a single
high—priority job, a batch mode, and a time—sharing mode.

These partitions can be rearranged to include any number of processors; the only
restriction on the number of partitions is the number of PM’s. However, by com-
bining all the partitions into one, it is possible to use the entire CM-5 as a single
machine. This rearrangement could be very useful, but it must be done manually
by an administrator and can not be done by the hardware or software without strict
instructions.

The idea behind partitions is valuable and their control hierarchy is very similar
to a grouping of clusters, but without software dynamically changing ownership of
these partitions, this allocation scheme cannot be developed to work on a Mini-
Grid. The allocation of the actual nodes is also done with hardware in the Partition
Managers and would be very difficult to probe for more in depth allocation algorithm
information. We should be able to think of the partitions as separate clusters in
the Mini-Grid, and hopefully use this idea to develop a similar hierarchy to a new

allocation tool.

2.2.2 Globus Resource Allocation Manager

With the complexity involved in a Grid, a way is needed to manage jobs. The
Globus Project created and released the first version of the Globus Grid Programming
Toolkit [16] in November of 1998. This toolkit “provides a set of standard services for
authentication, resource location, resource allocation, configuration, communication,
file access, fault detection, and executable management” [16]. Not all tools need to
be installed, and can be combined for the user’s specific needs.

The allocation tools of Globus come in five separate pieces. These pieces include:
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the Local Resource Manager.

The steps used to allocate resources and start a process can be seen in Figure 2.3.
The main Globus programs start with DUROC, include several pieces to GRAM, and
the MDS daemon. The Local Resource Manager is dependent on the site architecture
and operating system. The RSL Library is a communication tool used by Globus to
allow a heterogeneous Grid to specify necessary resources in general terms.

The Globus Toolkit supports an algorithm known as co—allocation, or the simul-
taneous allocation of a resource to two or more sets in a shared state. The tool
that keeps track of this information is the Dynamically Updated Request Online Co—
allocator, or DUROC. DUROC keeps track of the requests for resources and initializes

the processes. It monitors the system and keeps track of new or failed nodes. Once it
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receives a new request, it discovers any necessary information about the state of the
system and then contacts the GRAM tool to actually start the process on the remote
machines.

Before GRAM can start the processes, it must contact the MDS to find out where
the resource is located and what kind of hardware and applications exist on the
machines. This directory can be updated by the Globus system, an application,
or another information provider. The MDS helps the GRAM Client know which
Gatekeepers, or remote security daemons, to contact for allocation.

The main program used for allocation is the Globus Resource Allocation Manager,
or GRAM. It contains four components. The first is the GRAM Client which sends
requests to the remote machines to start a particular process. The component it
contacts is called the Gatekeeper, which accesses its Globus Security Infrastructure
to authenticate the user trying to start a new process. Once the Gatekeeper allows the
request through, it is passed to the Job Manager. The third part, the Job Manager
translates the request sent by the GRAM Client to the necessary calls for the Local
Resource Manager on that machine. The RSL library is a common language for
specifying the job requirements for a particular machine and is considered the power
behind GRAM. The library makes the communications in a heterogeneous network,
like a Grid, possible.

The last piece is resource dependent. The Local Resource Manager keeps track
of the available resources and the allocation of each to specified users. It often has
information stored in a database or in configuration files. Globus currently supports
the following managers: POE [3], Condor [17], Easy-LL [10], NQE [11], Prun [15],
Loadleveler [1], LSF [2], PBS [5], GLUnix [6], and Pexec [12].

The allocation tools in the Globus Toolkit were designed for separate resources and
clusters that would never combine, unlike the Mini-Grid architecture. The layering

and functionality of this software would be of great use on the Grid, but its focus
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on the heterogeneous nature of a Grid would cause it to be too inefficient for our
purposes.

Many allocators are architecture dependent, such as the CM-5. Others that have
tried to be very generalized for a Grid are very complex, such as the Globus Toolkit,
and are usually not very efficient. Something in between is necessary for our allocation
purposes, that would combine the flexibility of the Grid and clusters, but with the

efficiency that would allow a program to run on one cluster with borrowed nodes.



Chapter 3

Balloc

3.1 Introduction

The research discussed in this chapter was started because of the need for a new
allocation tool that would be usable on the new Mini—Grid architecture. This Grid is
comprised of separate, homogeneous Beowulf clusters that are completely connected,
including the remote nodes. Since these nodes can belong to any of the clusters, a new
allocation program was needed that could dynamically and transparently “borrow”
these nodes from one cluster to another. By allowing this functionality, the idea of the
Scyld Beowulf is continued with the user seeing only a “single computer” as opposed
to the large Beowulf Grid. The use of the tool should be transparent and needs to be
enforced. This allocation tool needs to be extensible, simple for the user, and robust.
It must be able to process multiple users requesting large numbers of nodes and run
in an appropriate amount of time when allocating and freeing resources.

The Beowulf Allocator, or Balloc, was created as an allocation tool for the new
Mini—Grid. It contains a system daemon that keeps track of allocations and resources,
and a user API that allows sets to be obtained through an mpirun call or directly

through the daemon itself. The functionality of Balloc will be discussed through
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a description of the user interaction. The actual implementation will be discussed

through a description of the system daemon and the algorithms used for allocation.

3.2 End User Functionality

Balloc is purely an allocation tool. When a request arrives, it responds by returning
which nodes are now reserved for use by the job and user. This list of nodes is
considered a set, available to the user until the set is freed. It keeps a log of which
users are allowed on which nodes and tracks all sets, available nodes, and allocated
resources.

Using Balloc can either be direct or indirect, but will always occur when a user
executes a parallel program. A process must call Balloc to get appropriate usage
permissions set. The only exception to this is the root user, which can execute
processes on any node. Normally the user will not work directly with the Balloc
interface, but will use MPI calls, although the direct interaction is available via simple
function calls in an APIL.

There are three main ways for a user to access the information and resources

controlled by Balloc. These include:

e Using the MPI interface and calling mpirun,
e Using the Balloc user interface and the set and node numbers returned, and

e Using the Balloc control manager to allocate and free nodes.

3.2.1 Incorporation into MPI

The Message Passing Interface, or MPI, is a commonly used parallel programming
library that stresses the use of standard message passing functions that allows easier

communication programming between remote processes. It is widely available and



26

Call mpirun
Preprocessing
Parse Arguments
balloc_job_map send request Balloc Daemon
Sets BEOWULF_JOB_MAP Allocates Nodes
return set
Execute Program
oy posprocessing
) send request Balloc Daemon
free_job_map
Frees Set
Exit Program

Figure 3.1: Mpirun execution sequence.

both free and vendor versions exist. The user is able to start an MPI program with
the mpirun script. This script attempts to hide some of the background work that
starts, executes, and cleans up an MPI parallel program.

The Scyld operating system has adapted mpirun to execute Bproc code that mi-
grates all of the remote processes. Bproc decides where to send these processes in two
separate ways. The first is by defaults. The number of processors requested is placed
in an environment variable NP, or the number of processors. By default, Bproc places
the first process on the head node, and the rest on consecutive nodes. The second
way takes a different environment variable, BEOWULF_JOB_MAP. This variable contains
a list of nodes that the program wishes its processes to run on. The argument to
BEOWULF_JOB_MAP looks like “3:15:8:2:25”, where each value is a node number. This
example argument would migrate five processes, the first to node 3, the second to

node 15, and so on.
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Using existing programs, we took advantage of the fact that Scyld’s designation
of resources is as easy as setting an environment variable. By modifying the mpirun
script we were able to create a way that the user can interact with Balloc indirectly.
Often the user may not even know that Balloc was accessed. This occurs when the user
calls mpirun and the mpirun script accesses two C programs called balloc_job_map
and free_job_map. The function order that occurs when a user calls mpirun can be
seen in Figure 3.1
When a user calls the mpirun script, it first parses all arguments used in the
command line. The available arguments that are Balloc specific will be discussed in
more detail in the Allocation Options Subsection in Sections 3.3.1 and 3.3.2. They

include:

e --ba--exc = Allocate nodes in Exclusive mode (Default is Shared mode),

e —-ba--less = Accept a set with less nodes than requested (Default is strict
setting),

e ——ba--borr = If necessary borrow nodes from another cluster (Default is no
borrowing),

e —-ba--one = Ouly allocate resources on one cluster (Default is mixed alloca-
tions allowed),

e ——ba--group “char” = Borrow nodes from clusters with specified “m”, by most

first, or “p”, by priority grouping (Default is by cluster priority).

After the arguments have been parsed, the script then calls the balloc_job_map
program. This program sends an allocation request to Balloc. When Balloc returns
the node information, balloc_job_map configures the node numbers into the correct
argument sequence for BEOWULF_JOB_MAP, and sets the environment variable. This
is not the only environment variable set however. BALLOC_SETNUM is also exported.
This variable is the set number used to designate the grouping of nodes allocated by

balloc_job_map’s call to Balloc.
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After the preprocessing, the actual program executes and Bproc migrates the
processes to the correct nodes. Once the program is completed, some clean up is
needed. This is where BALLOC_SETNUM is used. Mpirun calls free_job_map, which
sends a free request to Balloc. This request specifies which grouping of nodes to free
by BALLOC_SETNUM. If everything executes appropriately, the script then exits. This
interaction with Balloc should be the safest, but user requests are not always going
to be in the form of an mpirun call. This is where the other two available interfaces

become useful.

3.2.2 Balloc API Functions

It may be necessary for a user to allocate and manipulate a set within a program.
The user API was created for this purpose to allow direct interaction with the Be-
owulf Allocator. The function calls available set up the necessary request packets and
communicate with Balloc without the user having to worry about any socket pro-
gramming. The API does the entire communication including formatting, sending,
and receiving the packets. It even manipulates the byte order of the responses, in
case different operating systems or architectures are being used. Currently the API
is only in C, but a Java API would be useful in creating a web based monitoring
system. More information about each function and its declaration can be found in
the user manual in Appendix A.

The allocation function calls available to the user are:

e int balloc(int nodes, int mode, node_info *data, int gro,
int all, int bor, int 1ltn, char *bheadname)

e int bfree(int set, char *bheadname)
e int free_node_info(node_info *data)

e int bnodestat(int *data, int *datanode, int node, int *mode,
int *sets, int *count, char * bheadname)
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e int btypestat(node_info *data, int mode, int *nodes,
char *bheadname)

e int bsetstat(node_info *data, int set, int *uid, int *mode,
int *nodes, char *bheadname)

e int bactset(int *data, int #*sets, char *bheadname)

The first three calls should be all that the user needs to interface directly with Balloc.
The first call balloc, is the function that actually allocates the resources requested.
The nodes argument contains the number of nodes requested in the specified mode.
When Balloc receives this request, it does all of the processing necessary to create
a set of nodes on the system. The remote nodes in this set might be spread out
across several different clusters, but the user will only see them as nodes belonging
to the cluster that the request occurred on. The node numbers, node addresses, and
number of users on each node are returned in the node_info linked-list structure.
The function free_node_info simply frees the memory malloced for this structure.
The arguments gro, or groupings of nodes, bor, or whether or not to borrow from
another cluster, all, or nodes all on one cluster, and 1tn, or whether or not less
nodes would be accepted, are discussed in further detail in the Allocation Options
Subsection in Sections 3.3.1 and Section 3.3.2.

Once the user has executed the program, the user frees the set that was created.
When bfree is called, the set number and all memory allocated to keep track of
the group is freed. The nodes are set to mode Free, if no other users are on those
machines. If bfree is not called, the set continues to exist until the user is finished
with his project and calls bfree. If the user forgets, an administrator must call bfree
or a reboot of the head node will free the nodes.

The API also includes function calls that will monitor and return the status of the
condition of the system. These calls are especially helpful with the control manager
developed in Section 3.2.3. These functions are fairly self-explanatory and use mainly

pointers to return the requested information. The bnodestat function returns the
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status information of the processor with the number node. The btypestat function
returns a list of all nodes that are in the specified state, mode, bsetstat returns all
information about the specified grouping of nodes with the set number, set, and
bactset returns a list of all active sets. Together these four status functions can give
a general idea about the condition of the cluster.

There are also several functions that are listed in the API, but would normally
only be used by the Balloc daemon, an administrator, or for testing purposes. These

include:

e int bresv(int nodes, int *return_nodes, char *bheadname)

e int ballocresv(int nodes, int setnum, borr_node_info *data,
char *bheadname)

e int free_borr_node_info(borr_node_info *data)

e int breturn(int set, int importance, char *borrclustername,
char *bheadname)

e int breset(char *bheadname)

Both bresv and ballocresv are used when one cluster must try and borrow nodes
from another. The borr_node_info structure returned in ballocresv is the same
as node_info, but includes the Ethernet address of each node. The implementation
of these two calls is discussed further in Section 3.3.2. free_borr_node_info is a
cleanup function and frees the information returned in the borr_node_info structure.
The breturn function forces a return on a borrowed set from a cluster. This can either
be done when the nodes are finished running the current jobs, or causes the return
to be immediate with no regard to the executing jobs. More information about the
implementation can be found in Section 3.3.2. The final function in Balloc is a bail
out function called, breset. This completely reinitializes the cluster immediately.
This call should be removed, and only implemented when expansion and testing of

Balloc are in process.
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3.2.3 Balloc Control Manager and Status Reports

The Balloc Control Manager, or bactl, is a text application that allows an admin-
istrator to check and control the status of the system. It can be run on any Linux
machine on the network, and connects to the Beowulf cluster by use of sockets. The
instruction newcluster can be used to instruct bactl to connect to a specific head
node, There are several different commands available that can be listed with the ?
help instruction. All of these commands work by executing the user API functions
described in the previous Section.

The status checks available include a request on each state, such as freestat,
or Free nodes, and excstat, or Exclusive nodes. Actual allocations and releases of
resources can be accomplished from this program as well. If an administrator needed
to free all sets held by a specific user, an actsets could be executed which would
return a list of all active sets. This list of set numbers could then be passed to
setstat, which would return all the information about that set, including the user
id. If the specific user owned the set a freeset command could be called, and would
release those resources. All information returned is printed to the screen in a readable

format.

3.3 System Daemon Balloc

The daemon Balloc runs with the Bproc daemon on the head node of each sepa-
rate cluster. It contains node information necessary for allocation purposes. This
information is gathered using system calls to Bproc, including bproc_nodestatus,
bproc_numnodes, and bproc_nodeinfo. Bproc_nodestatus returns the state of a
specified node, which in Bproc can be boot, up, down, error, unavailable, reboot,
halt, and pwroff. Bproc_numnodes returns the total number of nodes currently in-

stalled on the system. Bproc_nodeinfo is only used for initialization and contains
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state, IP address, and user and group permissions. The Ethernet address is obtained
by reading the Beowulf configuration file located in /etc/beowulf/config. Hardware
information could also be available by adding a separate configuration file or a ex-
ploratory program. The hardware structure is incorporated into the node database,
but not used for any of the current allocation algorithms because the Mini-Grid is a
homogeneous system.

The implementation of Balloc can be broken down into two groups. The first group
is the basic allocation mechanism necessary on any cluster or parallel computer to
keep track of local resources. This includes databases, allocation types, options for
allocation, and enforcement, or security. The second group of functions are new to
allocators. These have to do with the necessary interactions for “borrowing” nodes
between clusters. Separate databases for local and borrowed nodes must be used. New
functions, including borrowing, returning, reserving, and freeing must be implemented

to work with the Scyld operating system and the Bproc daemon.

3.3.1 One Cluster Implementation

Using other available allocation programs as a starting point, the first goal of this
project was to create a reliable allocation tool that could be run on a single cluster.
This tool had to interface correctly with the Scyld operating system and MPI. The
MPT interface is discussed more thoroughly in Section 3.2.1. This daemon had to
allow quick access to nodes, since the majority of use of the Grid is assumed to be
located within the bounds of a single cluster.

The first step in developing this new tool was to examine what types of databases
would be required for quick, direct access to complete node and allocation information.
Two separate databases were used for this purpose. The first database was designed
to keep the state information for the local nodes. This database is an array of a

node structures, which includes the state, the IP address, and the Ethernet address
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of the node. The node numbers are assigned by Scyld, and the information is placed
in the database such that the index corresponds to the node number. The second
database required was used to keep track of the allocations. Each grouping of nodes is
considered a “set” of nodes. A set is considered “active” if the grouping is designated
to a user. Different active sets can contain the same nodes, if those nodes are in a
multi-user state. The active sets database is an array of nodeset structures, which
includes the user id that owns the set, the request id of the packet that allocated
the set, the number of nodes in the set, and a list of node numbers that have been
allocated to that set. Set numbers are assigned to each active set and are the index
into the database.

Once the databases were designed the manipulation of nodes needed to be im-
plemented. Several topics will be discussed in the next few Subsections, including
the necessary states or modes for the nodes, options available for allocations, and

enforcing the use of the Balloc program.

Allocation Types

Several states for the nodes need to be defined for the correct allocation and access
in each set. The modes used in Balloc for the one—cluster case are Free, Shared,
Exclusive, Unknown, and Down. The Unknown and Down states are self—explanatory
and correspond to the state information returned by Bproc. A flow chart of the rest
of the available states is found in Figure 3.2.

When Balloc first initializes, all nodes that are not Unknown or Down will be
placed in the Free state. This state can transition into any other state. Whenever
a new allocation is requested, these nodes are allocated first, since they should not
currently be used by any processes.

The Shared mode, corresponds to the required multi—user access to particular

nodes. This state allows for multiple sets, owned by different users, to contain the
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Figure 3.2: State transitions available for nodes in Balloc.

same node. This state would normally be used by researchers that are not testing
timing issues or researchers with tasks that do not have timing constraints. If a
user requests a Shared set, the Free nodes are first searched, and then the nodes
that already contain users are allocated. By allocating the Free nodes first, the most
system resources are being utilized and the best performance possible will be delivered
to each job.

Some users with higher priorities might choose to run a large job and do not wish
anyone else to be able to access the nodes executing the processes. The Exclusive
state was created for a single—user access to a set. Unfortunately, if all the nodes in
a cluster are placed in an Exclusive state, a Shared job cannot be run until nodes
become available. This state gives excellent user performance, but limits the ability

of the cluster to fulfill other jobs.

Available Options For Allocation

Users will want to allocate nodes on a cluster in different ways. Options must be

implemented to allow flexibility with Balloc. Since the current hardware configuration
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is a homogeneous system, not many options were implemented, but the base format
was created. This format is extensible for future use, because it uses an integer flag
with bit-representations of each option.

The main option developed was to allow Balloc to allocate and return a set of
nodes that contains less than the number of nodes that were initially requested. This
flag LESSTHAN is one bit in an integer flag that is set in the API function called balloc.
When calling balloc, LESSON or LESSOFF can be placed in the 1tn argument. If using
mpirun, -—-ba--less can be used to set this option. If LESSTHAN is not set, Balloc
will try to fill the request, but if it is unable to do so, it returns an error.

More options were developed for the two or more cluster case and are discussed

in Section 3.3.2.

Enforcement

Enforcing the use of Balloc was important in creating a stable environment for a
scheduler to be able to fill the appropriate tasks. If every user did not contact Bal-
loc for nodes, then jobs that were supposed to run on Exclusive nodes might have
multiple users. This also becomes a problem with borrowing nodes as can be seen in
Section 3.3.2. If users started jobs on nodes that Balloc thought were Free, and then
tried to loan those nodes out, the nodes would be rebooted and all information about
the process would be lost.

The Scyld operating system has its own enforcement policies. Bproc only al-
lows users that have the appropriate permissions on nodes access to those resources.
This information is stored in the /etc/beowulf/config file for initialization of Bproc.
Root can change these permissions by calling bproc_chown(node number, user id,
group id), which sets the user and group id’s to have access to the specific node

number.
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Balloc changes the configuration file and calls bproc_chown every time an alloca-
tion or free is requested. The configuration file is changed in case the Bproc daemons
are restarted. This way on initialization, the correct users have the appropriate per-
missions and can continue working.

On startup all nodes are initialized to allow only root access. This forces all
allocations to be done by Balloc, but still allows root to have access to the nodes. If
the nodes are allocated in Exclusive mode, the user id is set to the user who sent the
request and the group id is kept as root. If the nodes are allocated in Shared mode,
the user id is set to any to allow multiple users and the group id is kept as root.
The reason any must be set is there is currently no way to specify two or more users.
Groups could be set up, but since nodes can be in multiple sets, and no two nodes
need be in the same combination of sets, a group would have to be created for each
node. Since a node in Shared mode can not be borrowed and access to these clusters

is fairly restrictive, the any option was chosen for use in this version of Balloc.

3.3.2 Two or More Cluster Implementation

The main purpose of Balloc was to create a new allocation program that can trans-
parently “borrow” nodes between clusters. It was designed for the new architecture
that can be seen in Figure 1.1. This Figure illustrates the new Mini-Grid, which
can be depicted as a large cluster broken down into separate sub—clusters. These
sub—clusters are completely connected in the background and any remote node can
belong to any of the head nodes.

To allow these sub—clusters to combine, Balloc had to be able to move nodes
to different clusters, or “borrow” nodes. Borrowing nodes consists of transferring
ownership of a node from one cluster to another so, while a node is still physically

closer to the loaning head node, it nows receives instructions and processes from
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Figure 3.3: State transitions by a loaner, available on Beowulf Grid.

the borrowing head node. With the connections between the local nodes and the
borrowed nodes, latency should be fairly negligible.

Borrowing nodes can be seen from two different perspectives. The first is from the
loaner. The available state transitions for the owning node can be seen in Figure 3.3.
This is very similar to the single cluster case, but a new mode Borrowed is introduced.
The loaning cluster does not keep track of who the borrowed nodes were allocated
to, just which cluster borrowed the nodes. For this reason, the Borrowed state only
exists on the loaning cluster.

The borrowing cluster sees the node as one of its own and places it in a different
state in a separate database. The state transitions available to the borrowing cluster
can be seen in Figure 3.3. This state diagram contains some unusual states. The
main ones are the Exclusive modes with multiple users. This occurs when a cluster

requests that its nodes be returned, and is discussed further in following Subsections.
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Figure 3.4: State transitions by a borrower, available on Beowulf Grid.

The borrowing cluster treats the node as a local one, allocating and freeing it as
it would any remote node. The only exception is where the information is stored. A
separate database for borrowed nodes was created. This database contains nodes that
were borrowed from other clusters, and is comprised mostly of the same information
as in the local node database. This database however, must contain additional infor-
mation, including the original set number, the original node number, and the original
owning cluster.

The necessity for keeping track of the original information, especially the set
number, can be seen in Figure 3.5. When the cluster borrows the set, it must keep
track of the original set number and owner to be able to call bfree on that set when
the entire group is Free. The user never sees this set number and it would only
appear on the loaning cluster’s bactset function call. This helps keep the borrowing
transparent from the user.

Borrowed nodes are added on to the end of the list of available nodes. They are
the last to be allocated in any request. The local node database has a specific size,

which is the number of nodes available on the cluster. When a node is borrowed its
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Figure 3.5: Tracking set numbers while borrowing nodes.

node number becomes its index into the borrowed database plus the local database
size. The index might not be the same on consecutive borrows of the same node,
because the node numbers are filled as nodes are received from another cluster.

The next steps were deciding on available options for two or more clusters an
actually implementing the functions that borrowed and returned nodes. The options
implemented for the Grid are discussed in the next Subsection. To borrow a node,
a remove from the original cluster and a add to the new cluster were required. To
return a node, a return from the new cluster and a reset on the original cluster were

required. These implementations are discussed in later Subsections.

Available Options For Allocation

The available options for allocating nodes on more than one cluster include three
different alternatives. All are implemented using the integer flag created in the balloc
APT call. The three options and their corresponding arguments in the API balloc

call in Section 3.2.2 and mpirun call in Section 3.2.1 are:
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option; API arg.; MPI arg.
e borrowing; bor; ——ba--borr

e grouping; gro; ——ba--group

allonone; all; --ba--one

The first bit added to the flag, is whether or not to borrow nodes if necessary.
Balloc always tries to allocate nodes on the local machine, if possible, but if this flag
is set it will try to fill any remaining nodes on other clusters on the Grid. The API
can be filled in with BORROWON or BORROWOFF. The way Balloc chooses to allocate
nodes is set by the other two flags.

The grouping flag takes four bits in the integer flag and can currently either be
PRIORITY or MOSTFIRST. This preference specifies which clusters to borrow nodes
from. If PRIORITY is set, the nodes are taken from the cluster with the highest
priority listed in its cluster configuration file. If MOSTFIRST is set, the nodes are taken
from the cluster with the most available free nodes first. If MOSTFIRST is set and two
or more clusters contain the same number of free nodes, the cluster with the highest
priority is allocated first. The default for this flag is to allocate by PRIORITY.

The final preference implemented is the allonone bit flag, which can be set in the
API with ALLON or ALLOFF. This option specifies whether or not the entire set of
nodes must physically exist on one machine. Borrowed nodes are allowed, if they
all come from the same cluster. This flag takes precedence over the LESSTHAN flag
described in Section 3.3.1; if this flag is set Balloc will not return fewer nodes than

the amount requested. The default for this flag is ALLOFF.

Borrowing Implementation

When borrowing nodes, Balloc has to do some processing before the allocation actu-
ally occurs. Depending on the policy of the system, Balloc might chose one available

set over another on a different cluster. One example of this occurrence might be if a
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cluster needed to borrow five nodes. If one cluster had three nodes free and another
had five, it would make more sense to take the five nodes, than three and two.

To allow an exploration of the available nodes on the Grid, a reservation system
was used. This system uses the bresv API call to reserve a specified number of
nodes. If that number of nodes is not available, the maximum number of reservable
nodes is returned. The reserved nodes are placed in a set on the loaning cluster. The
borrowing cluster then sorts through the available nodes, and sends a ballocresv
call to the loaning cluster. This function takes a set number, which is the reserved
set, and the number of nodes to allocate from that set. The loaning cluster sets an
alarm to go off, allowing ten seconds for the borrowing cluster to decide. If it does
not receive a ballocresv call on the set number by the alarm, it frees the nodes that
were reserved.

If a ballocresv is received from the borrowing cluster, the nodes requested must
be removed from the Bproc on the owning machine. When a remote node is booted
in the Scyld operating system, it is a two step process. The node first sends out a
RARP, or a request to find an owning cluster. A Beoserv daemon, part of Bproc that
handles the remote node bootings, will respond and reboot the node with the correct
kernel version. To remove a node from a cluster the Bproc and Beoserv daemons
must be told that this node no longer belongs to this cluster.

To get the daemons to realize this, the configuration file, /etc/beowulf/config,
must be changed. The file is first read into a buffer and several node structures. The
file is then rewritten, and as the nodes are being printed, each one is checked whether
or not it is in the set being allocated. If it is, it is turned off by writing “node off root
root” in the corresponding node line. Once the configuration file has been altered, the
set must be rebooted by calling bproc_setnodestatus for each node. The daemons

must then be HUPed to force them to reread the new configuration file, and know
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not to respond to the RARPs of the rebooted nodes. The node is now effectively
removed from the cluster.

Once removed, the borrowing cluster must add the rebooted nodes to its list.
This is basically done the same way as removing the nodes from the original cluster.
A couple of differences are the configuration file is changed to include the node,
e.g. “‘node ETHERNETADDRESS root root”, the nodes are not rebooted, and the
/var/beowulf/unknown_addresses file must be altered. The unknown address file
is used by Bproc to know which addresses not to respond to. It contains a list of
Ethernet addresses that a RARP was received from, but no node number was assigned
to. This file is read in by Balloc and checked for any of the Ethernet addresses of
the borrowed set. If any are present they are removed before the Bproc and Beoserv
daemons on the borrowing cluster are HUPed. Once these daemons are restarted, the
nodes are then booted into the cluster.

Once the borrowing is complete, the nodes must be booted with the correct kernel
from the new cluster. This may take up several minutes depending on the machine
speed and the whether or not an error occurs with the remote node. The new cluster
will try rebooting the machine up to three times. If the node still will not come up,
it is marked as down, and may be returned to the original cluster when a free occurs.
If this is the case, an administrator may have to go in and reset the node by hand.

If Balloc returns while the nodes are in the boot state, the user will not be able to
use the borrowed nodes and an error occurs. Therefore, right before Balloc sets the
permissions on those nodes, it waits for each one to come up. As stated this can take
several minutes, but this design is assuming large jobs, that take a long time to run.
With only a few minutes before and after, for preprocessing, this is not expected to

be a major factor.
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Returning Implementation

When returning nodes, the entire set must be returned. A single node cannot be
restored, unless it is a set of one. The reason for this is to keep consistency and
simplicity for borrowing. As can be seen in Figure 3.5, the original set number is
required for returning a set to its owner. This allows the borrowed nodes to be
treated much the same as local nodes.

Returning nodes is done much the same way as borrowing, but there are two ways
a return can be started. The first is with a breturn API call. The breturn contains
a flag which commands a return to be done NOW or WHENDONE. A NOW argument causes
the entire set to be returned immediately with no regard for any user job currently
running on that machine. The nodes are returned and any set containing those nodes
has a -1 placed in the node list. A WHENDONE argument only has effect if the nodes
were allocated in a Shared state as can be seen in Figure 3.4. It causes the nodes to
move into an Exclusive state such that no other jobs can be placed on them. The
nodes will return when the current users are finished and no other jobs can be started.

The breturn is not called by Balloc, but is actually called by the administrator,
normally using the Balloc Control Manager. The call could be placed in Balloc, but
the timing of when it would be called needs to be strongly considered.

The other way to return nodes, is simply when every node in the set is Free, to
immediately give back the borrowed nodes. In Figure 3.4, there is a final free that
allows the nodes to no longer be part of the new cluster. This free checks every node
in the set, and returns only if the entire set is free. If it is entirely free not, these
nodes remain part of the cluster and can be allocated again if in Shared mode.

The implementation of returning and reseting the nodes is the same as borrow-
ing them. The /etc/beowulf/config and /var/beowulf/unknown_addresses files are
altered accordingly and the appropriate nodes are rebooted. The daemons are then

HUPed and forced to reread the files.
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However the loaning cluster does not wait for the nodes to be rebooted cor-

rectly before responding to the borrowing Balloc. This saves some time in the post-

processing for the user. The loaning cluster sends the response, and then waits for
the nodes before setting the appropriate permissions.

Once the nodes have been set as up on the owning cluster, the entire borrow-

ing process has been completed. This process can be repeated whenever necessary,

however the user wishes to allocate the nodes.



Chapter 4

Results

Balloc was designed specifically for a Mini-Grid architecture and the Scyld Operating
System for a Beowulf cluster. The main goals of this research have been met by
the implementation of the allocator. The efficacy of borrowing nodes can be demon-
strated with a couple of examples. These objectives include maintaining the state
of all nodes distributed across the Grid, the implementation of a borrowing mech-
anism, multi—user and single—user support, available options for policy exploration,
and transparency to the user. Example usage is explored in Section 1.2.

One goal, simplicity of use corresponds to the transparency to the user and is
fulfilled with the incorporation of the three ways for a user to access the information,
including mpirun, the API, and the Balloc Control Manager. In the first case the
user does not even need to access the Balloc daemon, therefore being transparent,
and in the other two a user interface allows any interaction to be limited to simple
function calls. Borrowing is also transparent, because the user sees all allocated nodes
as belonging to the queried cluster. The only hint that this occurs, is through the
option that must be set.

Extensibility is available through development of the user API, options for allo-

cation, and new functions that can be developed into Balloc. In each one of these
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Figure 4.1: Grendel Testbed Architecture

parts, a format is followed that would allow a programmer to develop new policies
and implementations that would expand the capabilities of Balloc.

The last two goals that were required for this program were an efficient imple-
mentation and an enforcement policy. Efficiency is discussed further in Section 4.2.
Enforcement of Balloc’s allocations occurs with the application setting the appro-
priate permissions for the request’s user id. For our purpose, this policy is enough

security to necessitate access to Balloc before any computations can be performed.

4.1 Testbeds

To test the new allocation tool, Balloc, a testbed had to be created. The initial
testbed consists of two clusters of six remote nodes and one head node each, and
whose architecture can be seen in Figure 4.1. This testbed was slow in comparison
to the final target architecture discussed below, but was sufficient for implementation
testing. The nodes consisted of 150 MHz Pentium processors, 64 MB EDO DRAM,
two GB IDE hard drives, and SMC Tulip-Based Fast Ethernet cards. This test Mini-
Grid was developed from an older Beowulf Cluster named Grendel. Only the initial
head node was allowed to have access to the outside network.

The target architecture for Balloc was the Clemson University Mini-Grid, as seen

in Figure 4.2. The Clemson University Mini-Grid can be illustrated as one large
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(256+ Processors) CUGI Cluster
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Gigabit Fiber Private Network

AR Cluster
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Figure 4.2: Clemson University’s Mini-Grid Structure
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cluster that is broken into four separate smaller sub—clusters. These sub—clusters
belong to different research groups on campus, allowing them to combine resources
to build an even larger parallel computer than one group alone could afford. The
three groups working on this project are the Center for Advanced Engineering Fibers
and Films (CAEFF), the Clemson University Genomics Institute (CUGI), and the
Parallel Architecture Research Lab (PARL).

These sub—clusters exist around the campus and each cluster is connected with
gigabit fiber on a private network. The nodes use Ethernet switches to allow any
node to belong to any head. Each cluster is configured to contain 256 nodes, the
total number of nodes in the Grid, and each node contains dual Intel Pentium 3
1GHz processors. Due to hardware problems, I was unable to do any testing on the

Clemson Mini-Grid, but Balloc was run successfully on the Grendel Testbed.

4.2 Experiments Completed with Timing Informa-
tion

Efficiency is a small issue that will be addressed briefly. The main aspect is that the
allocation tool should not slow down development. Given the expected size of a Mini-
Grid and its subclusters, it can be assumed that when a user forces Balloc to borrow
nodes, the number of nodes requested is very large. Since the number of nodes in
the set is very large, the size of the computations must also be very large and involve
a great deal of time. Therefore, if allowing the user to spread the computation over
nodes that may have fewer users on them decreases the amount of time to perform
the functions, then some leniency can be given to the allocation tool.

A test program was used to time the computations with and without Balloc. This
program multiplied two matrices one of 1280 x 320 and the other 320 x 160. Using the

Grendel Grid, the program was run on different number of processors ten times. The
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run time of the program was taken using the wall clock time, and can vary depending
on the state of the system.

Taking this into consideration, the common case, or one cluster case, must take
place quickly, while borrowing nodes may take a greater amount of time. However,
it was discovered that using Balloc for the common case, might actually speed up
the test program. More studies would have to be performed for this statement to
be justified, but with the test program running on five processors, the average time
without Balloc was 34.22 seconds and the average time with Balloc was 31.91 seconds.
While 6.75% is not a great difference, it is enough to take notice. This difference could
be in the way Balloc and MPI on Scyld allocate nodes. With this example, it is shown
that the common one-cluster case is not slowed down at all by using Balloc.

The rarer case, where nodes must be borrowed, comes in to play with very large
jobs, or multiple jobs that require Exclusive access. The test program was used with
twelve nodes, using the entire Grendel Grid. Unfortunately, the test program did not
seem to be as efficient on multiple nodes, and processing took around 40 seconds with
Balloc. Borrowing on the other hand is extremely slow on Grendel. With an average
time of 5.5 minutes for borrowing all six nodes, when none fail or have to be rebooted,
processing time would need to be much greater than that to justify borrowing nodes.

A problem occurs when a node fails or does not boot correctly and adds an average
of 2 minutes per node to the borrowing time. On Grendel this occurred approximately
50% of the time. It is assumed that some of this occurs because of slow hardware
and implementation on the Clemson Mini-Grid would help. Even though the nodes
have a tendency to not boot, Balloc handles this and only one out of ten times did
the node not eventually come up. In this case the node is deleted from the set and

the set is sent with one fewer that requested.



Chapter 5

Conclusions and Future Work

This paper discussed the design and implementation of a new allocation tool for the
Mini-Grid architecture. The requirements for such an allocator were examined and

were determined to be to:

e Maintain the state of nodes distributed across the grid,
e Allow for multi-user and single-user access to nodes,
e Provide a mechanism for transferring nodes between clusters,

e Provide borrowing and allocation options for policy implementation in a sched-
uler,

e Be transparent to the user,
e Enforce usage policies,
e Have an efficient implementation, and

e Be able to integrate with existing software.

Several schedulers were examined for necessary interface components, and then several
allocators were examined for possible integration. It was determined that the existing
allocators did not meet the necessary requirements for this architecture.

The design and implementation of a new Beowulf allocation tool, Balloc, was

discussed, including the development of a user API and a system daemon. The
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user API was shown to hide the user from the complexities of socket programming,
and allowed simple access to Balloc. The system daemon was shown to complete all
functionality requirements necessary including integrating with the Scyld software and
providing a new borrowing mechanism. Balloc is robust enough to handle multiple
users requesting large numbers of nodes. It is time efficient when allocating nodes
and does not effect the timing statistics of certain types of MPI programs. When
borrowing nodes, the allocation time is increased, but since borrowing nodes implies
a large program, the time required is small in comparison.

There are many avenues available for future work on Balloc. The first is to test
the allocator on the actual Clemson University Mini-Grid. This Mini-Grid is much
larger in size and would give a greater estimate of the amount of time required for
borrowing and allocating nodes. Database searches would be greater and rebooting
large numbers of nodes might cause problems. Attempts should be made to see if a
speedup is necessary for reading and writing configuration files. This larger testbed
would give better insight into the operations of Balloc.

Another venue, is the integration of Balloc with an existing scheduler. This would
make the use of Balloc on a large cluster more effective. This integration should be
able to access Balloc for nodes and tell it when to allocate, but Balloc should decide
which nodes to use. By scheduling jobs into the Mini-Grid, more throughput could
be achieved.

Also, a reservation scheme with the scheduler will need to be implemented for
future use. This requires developing a functionality that allows groups of users onto
the same group of reserved nodes. One way to accomplish this might be to create a
set management program. It could keep track of a larger set and be able to allocate
smaller sets within that group. This would allow a research group to designate a set
of nodes for their exclusive use, and only allow those people on the nodes in a shared

functionality.
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A program that might increase the recognition of the Clemson Mini-Grid is a
GUI program that would be available on the web for use by anyone. This program
would allow users to see the status of the Mini-Grid at any time. This application
would require a Java API to be developed and should not be too difficult, since the
communication packets are already placed in network-byte order. This API would
need to contact Balloc and use the status requests to graphically display the current
status.

Another GUI that might be developed is for the Balloc Control Manager. The
current interface to the manager is purely text based and can make it hard for the
admin to keep track of the status of the Mini-Grid. This GUI would make controlling
and maintaining the Mini-Grid easier for an administrator.

Finally, Balloc could be developed to have more control over the way Bproc sees
the cluster. Currently, the cluster must be configured to contain IP addresses and
node numbers for the entire size of the Mini-Grid. The configuration files could be
written to expand and collapse the size of the cluster according to when nodes are
borrowed from another cluster. This configuration file contains all information about
the cluster, including the IP address range, a list of node Ethernet addresses, and
and the net mask used for communications.

Balloc was developed for use on the new Mini-Grid architecture. This thesis
examined the necessary requirements for such an allocator. How these requirements

were developed and implemented in Balloc was discussed.
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Appendix A

Balloc API Manual

A.1 Overview of Balloc API

The balloc application protocol interface (API) consists of nine user functions and
four system functions. The prototypes of both the user and system functions are
defined in the “balloc.h” header file, and the implementation of these functions is
defined in the “balib.c” source file. The user functions provide a means to allocate,
free, and query sets and a means to create a job map from a set. The system functions
are provided primarily for use by the balloc daemon source and for the balloc API
source itself. The system functions give the daemon source the ability to temporarily
reserve nodes on a cluster for possible allocation. Other system functions give the
API source the ability to convert data from network-byte-order to host-byte-order.
A brief description of the user functions and system functions can be found in Tables
1 and 2 respectively. Next some coding examples are given. Finally, a more detailed
description of each function is listed.

There are four user functions provided to create and free sets. These functions
are balloc(), bfree(), breturn(), and breset(). The function balloc() is used to allocate

sets. Several attributes of the set can be specified which includes the number of
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nodes in the set, the mode the set should be allocated in, the grouping of the set,
whether or not all nodes must be allocated on one cluster, whether or not borrowing
is allowed, and whether or not less nodes than requested will be accepted. Once a set
has been allocated, it can be freed with bfree(). If a set has been loaned to another
cluster it can be returned with breturn() when the current processes are finished or
immediately. Finally, breset() can be used to reset the allocation tables. However,
this function should only be used for testing purposes.

There are four user functions provided to query nodes and sets. These functions
are bactset(), bnodestat(), bsetstat(), and btypestat(). The function bactset() will
return a list of all active sets. The function bnodestat() is used to determine the
status of the specified node. The returned information about the node includes the
IP address, the mode, the number of users currently using the node, the number of
sets that contain the node, and a list of the sets that contain the node. The function
bsetstat() is used to determine the information about a specific set. The returned
information includes the mode the set is in, the user ID of the owner of the set, the
number of nodes in the set, and a list of the nodes in the set. The function btypestat()
is used to get a list of nodes in a specific mode.

Once a set has been created with balloc(), the function node_info_to_job_map()
is used to create a job map from the specified list of nodes. A job map is a string con-
taining a list of node numbers seperated by colons. Typically, a job map is created for
the environment variable BEOWULF_JOB_MAP. Once the BEOWULF_JOB_MAP
variable is set to the job map, a job can be executed on nodes listed in the job map.

The two system functions used by the balloc daemon source are bresv() and bal-
locresv(). The bresv() function is first called to reserve the specified number of nodes
for ten seconds while balloc determines whether or not the nodes are needed. If balloc
decides the nodes are needed, the ballocresv() function is called to allocate the nodes

in the set that were just reserved.
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The other two system functions are ntoh_borr_info() and ntoh_node_info(). These
functions are mainly used by the balloc API functions. They both take returned
network-byte-order data and convert it to host-byte-order. The ntoh_borr_info()
function organizes the data into borr_node_info structures and the ntoh_node_info()
function organizes the data into node_info structures.

A typical scenario will involve first using balloc() to allocate some sets. Next
querying may be done to determine the status of nodes and sets. Then the function
node_info_to_job_map() will be called to create a job map. The job map will be used
to set the BEOWULF_JOB_MAP environment varaiable. At this point jobs can be
run on the nodes specified by the BEOWULF _JOB_MAP variable. Finally after all

jobs have ended on a particular set, the set is freed.
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Table 1 - User Functions

Function prototype

Description

int bactset(int *data, int *sets, char
*bheadname)

Returns a list of active sets.

int balloc (int nodes, int mode, node_info *data,
int gro, int all, int bor, int Itn, char *bheadname)

Allocates the number of
nodes requested if the given
constraints are met.

int bfree(int set, char *bheadname)

Frees the specified set.

int bnodestat(int *data, int *datanode, int
node, int *mode, int *sets, int *count, char
*bheadname)

Returns information on a
specified node.

int breset(char *bheadname)

Resets balloc. All nodes are
freed and removed from all
sets. Should only be used
for testing purposes.

int breturn(int set, int importance, char
*borrclustername, char *bheadname)

Request the set that 'bor-
rclustername’ loaned to
"bheadname’ to be returned
to ’borrclustername’.

int bsetstat(node_info *data, int set, int *uid,
int *mode, int *nodes, char *bheadname)

Returns information on the
specified set.

int btypestat(node_info *data, int mode, int
*nodes, char *bheadname)

Returns a list of nodes that
are in the specified mode.

char *node_info_to_job_map(node_info
*data)

Returns a job map of the

X1 through XN are the
node numbers stored in the
list ’data’.

Table 2 - System Functions

Function prototype

Description

int ballocresv(int nodes, int setnum,
borr_node_info *data, char *bheadname)

Allocates nodes that are in
the reserved set ’setnum’.

int bresv(int nodes, int *return_nodes, char
*bheadname)

Reserves a set of nodes for
10 seconds that contains
less than or equal to the
number requested.

int ntoh_borr_info(int *new_data, int
numnodes, borr_node_info *data)

Converts  the  returned
data ’new_data’ to a
borr_node_info list.

int ntoh_node_info(int *new_data, int
numnodes, node_info *data)

Converts the returned data
'new_data’ to a node_info
list.
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A.2 Example Coding

1. Below is an example that allocates a set of 16 nodes on the local cluster-head.
Borrowing will not be allowed and less nodes will not be accepted. The nodes
will be allocated in SHARED mode. After the nodes are allocated, a job map
is created from the nodes. Finally, the set of nodes are freed.

node_info * theNodes;

node_info *fingerl, *finger2;
char bheadname [MAXHOSTNAME + 1];
char *jobMap;

int set = 0;

int status = 0;

// get the local host name
gethostname (bheadname, MAXHOSTNAME) ;

// allocate the set
theNodes = (node_info *) malloc(sizeof (node_info));
set = balloc(16, SHARED, theNodes, MOSTFIRST, ALLOFF, BORROWOFF,
LESSOFF, bheadname) ;
if(set < 0)
{
fprintf(stderr, "Failed to allocate Set!\n");
exit(-1);

// get the job map

jobMap = node_info_to_job_map(theNodes);

if (jobMap == NULL)

{
fprintf(stderr, "Failed to create job map!'!\n");
exit(-1);

}

// use the job map to execute jobs

// free the set

status = bfree(set, bheadname);

if (status < 0)

{
fprintf(stderr, "Failed to free set!\n");
exit(-1);
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// free the node_info list from memory
fingerl = thelNodes;
while(fingerl != NULL)

{
finger2 = fingerl->next_node;
free(finger1);
fingerl = finger2;

I

. Below is an example of allocating 32 nodes in EXCLUSIVE mode. Priority
gouping will be used. Allocating all the nodes on one cluster will not be required.
Borrowing will be allowed. Finally, less nodes than requested will be accepted.

node_info * theNodes;

char bheadname [MAXHOSTNAME + 1];
int set = 0;

int status = 0;

// get the local host name
gethostname (bheadname, MAXHOSTNAME) ;

set = balloc(32, EXCLUSIVE, theNodes, PRIORITY, ALLOFF, BORROWON,
LESSON, bheadname) ;
if(set < 0)
{
fprintf(stderr, "Failed to allocate Set!\n");
exit(-1);
+

status = bfree(set, bheadname);

if (status < 0)

{
fprintf(stderr, "Failed to free Set!\n");
exit(-1);

}

// free vars, etc...

. Below is an example of how to use bactset() and bsetstat(). The returned list
of sets from bactset() are printed to the display. For each set, the user id of the
owner of the set, the mode the set is in, and the number of nodes in the set are
retrieved using bactset() and printed to the display.

char bheadname [MAXHOSTNAME + 1];
int status = 0;
int i = 0;



int sets = 0;
int *data;

// get the local host name
gethostname (bheadname, MAXHOSTNAME) ;

status = bactset(&data, &sets, bheadname);

if (status < 0)

{
fprintf(stderr, "Failed to get active sets!\n");
exit(-1);

// print out all the set numbers
for(i = 0; i < sets; i++)
{

node_info *node_list;

int uid = 0;

int mode = 0;

int nodes = 0;

printf("set #: %d\n",datalil);
status = bsetstat(node_list, datalil], &uid, &mode, &nodes,
bheadname) ;
if (status < 0)
{
fprintf (stderr, "Error getting status of set!\n");
exit(-1);

printf ("\tuser id: %d\n", uid);
printf ("\tmode: %d\n", mode);
printf ("\tnum nodes: %d\n", nodes);

// free vars, etc...

}

4. Below is an example of how to use bnodestat() and btypestat().

char bheadname [MAXHOSTNAME + 1];
int *data;

node_info *node_list;

int count = 0
int status

=O;
int sets = 0;

29
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int datanode = 0;
int uid = 0;

int mode = 0;

int nodes = 0;

// get the local host name
gethostname (bheadname, MAXHOSTNAME) ;

node_list = (node_info *) malloc(sizeof (node_info));
status = btypestat(node_list, SHARED, &nodes, bheadname);
if (status < 0)

{
fprintf(stderr, "Error retrieving list of nodes in
specified mode!\n");
exit(-1);
+
if (nodes > 0)
{
status = bnodestat(data, &datanode, node_list[0], &mode,
&sets, &count, bheadname);
if (status < 0)
{
fprintf (stderr, "Error retrieving information on node!\n");
exit(-1);
+
printf("node: %d\n", node_list[0]);
printf ("\tip address: %d\n", datanode);
printf ("\tmode: %d\n", mode);
printf ("\tnum sets: %d\n", sets);
printf ("\tnum users: %d\n", count);
+
else
{
printf ("There were no nodes found in the specified mode\n");
+

// free vars, etc...
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A.3 Function Descriptions
bactset()

Function Prototype

int bactset(int *data, int *sets, char *bheadname);

Description

The function ’bactset’ will return a list of all active sets in the 'data’ argument. The

number of active sets found will be returned in the ’sets’ argument.

Arguments

int *data : output
int *sets : output

char *bheadname : input
The argument 'data’ is used by bactset() to return a list of all the active sets.
The argument ’sets’ is used by bactset() to return the number of active sets.

The 'bheadname’ argument must point to a null terminating string that contains
the network name of the cluster head to send request to. This argument will

typically be localhost for users.

Return Value

If bactset() is successful, 0 is returned. If it is not successful, -1 is returned and

errno is set.

Errno

EBADREQ The request was not valid.
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balloc()
Function Prototype

int balloc(int nodes, int mode, node_info *data, int gro, int all, int bor, int ltn, char

*bheadname);

Description

The function balloc() attempts to allocate the number of nodes specified by 'nodes’.
The nodes can be allocated in one of two modes as described by the 'mode’
argument. The ’ltn’ argument allows the user to specify that less nodes than

requested are acceptable.

balloc() can borrow nodes from other clusters if there are not enough available on
the local cluster and the ’bor’ variable is set to allow borrowing. When borrowing
nodes, there are two options that specify how the nodes should be borrowed. The
argument ’gro’ allows the user to specify the grouping. The argument ’all’ allows

the user to specify whether or not all nodes must be borrowed from one cluster.

Arguments

int nodes : input

int mode : input
node_info *data : output
int gro : input

int all : input

int bor : input

int 1tn : input

char *bheadname : input
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The 'nodes’ argument specifies the number of nodes to allocate. This number

should be greater than 0.

The 'mode’ argument allows the user to specify what mode the nodes should be
allocated in. The possible modes are either SHARED or EXCLUSIVE. SHARED
means that the nodes allocated can belong to more than one set. EXCLUSIVE
means that the nodes allocated cannot be allocated to any other sets until they are

freed.

The 'data’ argument is used by balloc() to return the list of nodes allocated to the
set. The ’data’ object must point to a valid node_info structure. The structure

must have memory allocated to it before calling balloc().

The 'gro’ argument allows the user to specify the grouping of borrowed nodes. The
possible values of 'gro’ are PRIORITY or MOSTFIRST. PRIORITY means that
nodes should be borrowed from clusters with the highest priority first. The priority
of the clusters is defined in the balloc cluster config file. MOSTFIRST means that
nodes should be borrowed from clusters with the most available nodes first. If two or

more clusters have teh same number of nodes available, then PRIORITY is used.

The ’all” argument is used to specify whether or not all of the borrowed nodes must
come from one cluster. The possible values for this argument are ALLON or
ALLOFF. ALLON means that all of the borrowed nodes must come from the same
cluster. ALLOFF means that all of the borrowed nodes do not need to come from
the same cluster. If there are enough available nodes on the local cluster, this

argument is ignored.

The 'bor’ argument is used to specify whether or not nodes should be borrowed if
there are not enough available nodes on the local cluster. The possible values for

this argument are BORROWON or BORROWOFF. BORROWNON means that
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balloc() should attempt to borrow nodes if there are not enough available.

BORROWOFF means that balloc() should not attempt to borrow nodes.

The ’ltn’ argument is used to specify whether or not less nodes are acceptable. The
possible values for this argument are LESSON or LESSOFF. LESSON means that
less nodes are acceptable. LESSOFF means that either the number of nodes

requested are allocated or none are allocated.

The 'bheadname’ argument must point to a null terminating string that contains
the network name of the cluster head to send request to. This argument will

typically be localhost for users.

Return Value

If balloc() is successful, the set number is returned and the argument ’'data’ contains
the returned node addresses. If balloc() cannot meet the request, -1 is returned and

errno is set.

Errno

EBADREQ The request was not valid.
EUNAVAIL The amount of requested nodes are not available.
ENOSETS  No more sets could be created.

EBADNUM There were more nodes requested than the number of reserved nodes.
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bfree()

Function Prototype

int bfree(int set, char *bheadname);

Description

The bfree() function will remove all nodes from the set specified by the argument
‘set’. If the set contained a set of borrowed nodes and those nodes do not belong to

any other set, bfree() will return the group of borrowed nodes to it’s original cluster.

Arguments

int set : input

char *bheadname : input
The ’set’ argument is the set number that will be freed.

The 'bheadname’ argument must point to a null terminating string that contains
the network name of the cluster head to send request to. This argument will

typically be localhost for users.

Return Value

If bfree() is successful, 0 will be returned. If it is not successful, -1 will be returned

and errno will be set.

Errno

EBADREQ The request was not valid.
EBADSET The set specified was not found.
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bnodestat()

Function Prototype

int bnodestat(int *data, int *datanode, int node, int *mode, int *sets, int *count,

char *bheadname);

Description

The function bnodestat() returns information on the specified node 'node’. The
information returned includes a list of set numbers that contain the node, address of
the node, the mode of the node, the number of sets containing the node, and the

number of users on the node.

Arguments

int *data : output

int *datanode : output
int node : input

int *mode : output

int *sets : output

int *count : output

char *bheadname : input

The 'data’ argument is used by bnodestat() to return a list of set numbers that the

node belongs to.
The 'datanode’ is used by bnodestat() to return the IP address of the node.
The 'node’ argument is the specified node to look up.

The 'mode’ argument is used by bnodestat() to return the mode that the node is in.

The possible modes are: UNKNOWN, FREE, SHARED, EXCLUSIVE,
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RESERVED, DOWN, BORROWED. UNKNOWN means that the status of the
node cannot be determined. FREE means that the node is currently available.
SHARED means that the set belongs to one or more SHARED sets. The node can
be allocated to more SHARED sets. EXLUSIVE means that the node belongs to an
EXCLUSIVE set and cannot be allocated to another set until it is freed.
RESERVED means that the node has been RESERVED by the system for future
use. The node cannot be allocated. DOWN means that the node is not currently

operating. BORROWED means that the node has been loaned to another cluster.

The ’sets” argument is used by bnodestat() to return the number of sets that the

node belong to. This is the size of the 'data’ list.
The ’count’ argument is number of users that are currently using the node.

The 'bheadname’ argument must point to a null terminating string that contains
the network name of the cluster head to send request to. This argument will

typically be localhost for users.

Return Value

If bnodestat() is successful, 0 is returned. If it is not successful, -1 is returned and

errno is set.

Errno

EBADREQ The request was not valid.
EBADNODE The node specified was not available
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breset()
Function Prototype

int breset(char *bheadname);

Description

The function breset() reinitializes the entire set database. All of the nodes are freed
and removed from all sets. This function should only be used for testing purposes

and should be deprecated.

Arguments
char *bheadname : input

The 'bheadname’ argument must point to a null terminating string that contains
the network name of the cluster head to send request to. This argument will

typically be localhost for users.

Return Value

If breset() is successful, 0 is returned. If it is not successful, -1 is returned and errno

is set.

Errno

EBADREQ The request was not valid.



breturn()
Function Prototype

int breturn(int set, int importance, char *borrclustername, char *bheadname);

Description

The breturn() function returns the set of borrowed nodes to it’s original owner.

This request should be sent to the cluster head that borrowed the nodes.

Arguments

int set : input
int importance : input
char *borrclustername : input

char *bheadname : input

The ’set” argument is the set that contains the loaned nodes.
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The ’importance’ argument can be either NOW or WHENDONE. NOW means that

the nodes must be returned immediately. There is no warning given, and any set

containing those nodes will loose those nodes. WHENDONE means to wait until

the jobs scheduled on the nodes are done, but no additional jobs can be scheduled.

The "borrclustername’ argument must point to a null terminating string that

contains the network name of the cluster head that loaned the set.

The 'bheadname’ argument must point to a null terminating string that contains

the network name of the cluster head to send request to. This argument will

typically be localhost for users.



Return Value

If breturn() is successful, 0 is returned. If it is not successful, -1 is returned and

errno is set.

Errno

EBADREQ The request was not valid.
EBADSET  The set specified was not found.
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bsetstat()

Function Prototype

int bsetstat(node_info *data, int set, int *uid, int *mode, int *nodes, char

*bheadname);

Description

The function bsetstat() returns information about the set specified by ’set’. The

information returned is the list of the nodes in the set, user ID of the owner of the
set, mode the set is in, and number of nodes in the set. The information returned
about each node in the set includes the node number, IP address, and the number

of users currently on the node.

Arguments

node_info *data : output
int set : input

int *uid : output

int *mode : output

int *nodes : output

char *bheadname : input

The 'data’ argument is used by bsetstat() to return a list of nodes in the set. It
must point to a valid node_info structure. This memory must be allocated before

calling bsetstat().
The ’set’ argument should contain the set number for the set that is being queried.

The ’'uid’ argument is used by bsetstat() to return the user ID of the owner of the

set.
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The 'mode’ argument is used by bsetstat() to return the mode of the set. The mode
can be one of the following: SHARED, EXCLUSIVE, or BORROWED. SHARED
means that any node in the set can be allocated to another set that is also in the
SHARED mode. EXCLUSIVE means that all nodes in the set are exclusively
allocated to the set. None of the nodes can be allocated to future sets until they are
freed from this set. BORROWED means that the set is not part of the cluster’s

current resources. The nodes in the set have been loaned to another cluster.

The 'nodes’ argument is used by bsetstat() to returned the number of nodes in the

set.

The 'bheadname’ argument must point to a null terminating string that contains
the network name of the cluster head to send request to. This argument will

typically be localhost for users.

Return Value

If bsetstat() is successful, 0 is returned. If it is not successful, -1 is returned and

errno is set.

Errno

EBADREQ The request was not valid.
EBADSET  The set specified was not found.
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btypestat()
Function Prototype

int btypestat(node_info *data, int mode, int *nodes, char *bheadname);

Description

The function btypestat() returns a list of nodes that are in the specified mode.

Arguments

node_info *data : output
int mode : input
int *nodes : output

char *bheadname : input

The 'data’ argument is used by btypestat() to return the list of nodes that are in
the mode specified by 'mode’. The 'data’ argument must point to a valid node_info
structure. The structure must have memory allocated to it before calling

btypestat().
The 'mode’ argument should specify the mode to look up.
The 'nodes’ argument returns the number of nodes that are in the specified mode.

The 'bheadname’ argument must point to a null terminating string that contains
the network name of the cluster head to send request to. This argument will

typically be localhost for users.

Return Value
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If btypestat() is successful, 0 is returned. If it is not successful, -1 is returned and

errno is set.

Errno

EBADREQ The request was not valid.
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node_info_to_job_map()
Function Prototype

char * node_info_to_job_map(node_info *node_count);

Description

The function node_info_to_job_map() takes a list of nodes 'node_count’ and

returns a list of node numbers in the job map format for the environment variable

BEOWULF_JOB_MAP.

Arguments
node_info *node_count : input

The 'node_count’ argument should contain a list of nodes that will be returned in

job map format.

Return Value

If node_info_to_job_map() is successful, a job map is returned with the form

and errno is set.

Errno

EBADREQ The request was not valid.



ballocresv()
Function Prototype

int ballocresv(int nodes, int setnum, borr_node_info *data, char *bheadname);

Description

The function ballocresv() allocates previously reserved nodes in the specified set.

Arguments

int nodes : input
int setnum : input
borr_node_info *data : output

char *bheadname : input

The 'nodes’ argument specifies the number of nodes to allocate. This can be less

than or equal to the number originally reserved.
The 'setnum’ argument specifies the reserved set that the nodes are in.

The 'data’ is used by ballocresv() to return the list of nodes that have been
allocated. The ’data’ object must point to a valid borr_node_info structure. The

structure must have memory allocated to it before calling ballocresv().

The 'bheadname’ argument must point to a null terminating string that contains
the network name of the cluster head to send request to. This argument will

typically be localhost for users.

Return Value
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If ballocresv() is successful, the new set number is returned. If it is not successful, -1

is returned and errno is set.

Errno

EBADREQ The request was not valid.

EBADNUM There were more nodes requested than the number of reserved nodes.
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bresv()

Function Prototype

int bresv(int nodes, int *return_nodes, char *bheadname);

Description

The function bresv() reserves the number of nodes specified by 'nodes’ for 10
seconds. During the 10 seconds balloc() will decide whether or not it needs to
borrow those nodes. If balloc does not claim the nodes within 10 seconds, they are

freed.

Arguments

int nodes : input
int *return_nodes : output

char *bheadname : input
The 'nodes’ argument specifies how many nodes to reserve.

The 'return_nodes’ argument is used by bresv() to return the actual number of
nodes reserved, because balloc assumes less nodes are acceptable for reservation.

This allows the number of nodes on clusters to be compared.

The 'bheadname’ argument must point to a null terminating string that contains
the network name of the cluster head to send request to. The reserved nodes will be

reserved on the cluster referenced by this argument.

Return Value

If bresv() is successful, 0 is returned. If it is not successful, -1 is returned and errno

is set.



Errno

EBADREQ The request was not valid.

ENOSETS

No more sets could be created.
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ntoh_borr_info()

Function Prototype

int ntoh_borr_info(int *new_data, int numnodes, borr_node_info *data);

Description

The function ntoh_borr_info() takes the returned data new_data’ and converts it
to the borr_node_info list ’data’. The data is translated from network to host byte
order and organized into the ’data’ list. This function is used by balloc calls to

change byte order of data returned from the balloc daemon.

Arguments

int *new_data : input
int numnodes : input

borr_node_info *data : output

The 'new_data’ argument contains a list of data that is in network byte order. The
sequence of data, as found int the borr_node_info structure, is nodenum, nodeaddr,

count, eaddr, repeat.
The 'mumnodes’ argument is the number of nodes in the list.

The 'data’ argument is used by ntoh_borr_info() to return the list of nodes.

Return Value

If ntoh_node_info() is successful, 0 is returned. If it is not successful, -1 is returned

and errno is set.

Errno

EBADREQ The request was not valid.
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ntoh_node_info()
Function Prototype

int ntoh_node_info(int *new_data, int numnodes, node_info *data);

Description

The function ntoh_node_info() takes the returned data 'new_data’ and converts it
to a node_info list. The data is translated from network to host byte order and
organized into the ’data’ list. This function is used by balloc calls to change byte

order of data returned from the balloc daemon.

Arguments

int *new_data : input
int numnodes : input

node_info *data : output

The 'new_data’ argument contains a list of data that is in network byte order. The
sequence of data, as found in the node_info structure, is nodenum, nodeaddr, count,

next_node, repeat.
The 'mumnodes’ argument is the number of nodes in the list.

The 'data’ argument is used by ntoh_node_info() to return the list of nodes.

Return Value

If ntoh_node_info() is successful, 0 is returned. If it is not successful, -1 is returned

and errno is set.

Errno

EBADREQ The request was not valid.
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