
Deember 14, 2001

To the Graduate Shool:

This thesis entitled \Design and Analysis of a Network Transfer Layer for Parallel

File Systems" and written by Philip H. Carns is presented to the Graduate Shool

of Clemson University. I reommend that it be aepted in partial ful�llment of

the requirements for the degree of Master of Siene with a major in Computer

Engineering.

Walter B. Ligon III, Advisor

We have reviewed this thesis

and reommend its aeptane:

Ron Sass

Adam Hoover

Aepted for the Graduate Shool:

Design and Analysis of a Network

Transfer Layer for Parallel File Systems

A Thesis

Presented to

the Graduate Shool of

Clemson University

In Partial Ful�llment

of the Requirements for the Degree

Master of Siene

Computer Engineering

by

Philip H. Carns

Deember 2001

Advisor: Dr. Walter B. Ligon III

Abstrat

This doument desribes the design and analysis of a network transfer layer for

the Parallel Virtual File System (PVFS). PVFS [6℄ is a parallel �le system developed

at Clemson University for use on Linux based Beowulf [23, 2℄ lusters. It is intended

to serve as a platform for high performane I/O researh while also meeting the need

for a prodution parallel �le system for the sienti� omputing ommunity. Over

time, omputational apability has improved so rapidly that there is now typially a

large gap between I/O performane and proessing power, even in the most powerful

omputer systems. This has led to a situation in whih �le system performane is

the primary bottlenek for a variety of appliations. PVFS seeks to provide a so-

lution to this problem. Many omponents must be brought together in order to do

this, inluding network ommuniations, data storage, appliation or system inter-

faes, and sheduling. This doument will fous on network ommuniations. We

intend to demonstrate and analyze a system for improving network eÆieny and

usability for the purpose of high performane I/O. This system will take advantage

of lessons learned from urrent �le system implementations, as well as advanes in

luster ommuniation tehnology, to help ahieve the speialized goals of parallel �le

systems.

Dediation

To all of my family and friends who have supported me through the years.

Aknowledgments

I would like to thank my advisor, Dr. Walt Ligon for his support and diretion. I

would also like to thank Dr. Rob Ross for his invaluable help.

Table of Contents

Page

TITLE PAGE . i

ABSTRACT . ii

DEDICATION . ii

LIST OF FIGURES . vii

1 Introdution . 1

1.1 Beowulf lusters . 1

1.2 Parallel �le systems . 2

1.3 New tehnologies . 3

1.3.1 Networking . 3

1.3.2 Data storage . 5

1.4 New researh �ndings . 5

1.4.1 Sheduling . 5

1.4.2 MPI-IO . 6

1.4.3 Software engineering . 7

1.5 A new �le system design . 7

1.6 Network layer requirements . 8

1.7 Approah . 10

2 Bakground and related work . 11

2.1 The Parallel Virtual File System 11

2.1.1 Motivation and goals . 11

2.1.2 Arhiteture and implementation 12

2.1.3 Low level I/O . 15

2.1.4 Unix I/O ompatability . 16

2.2 Virtual Interfae Arhiteture 17

2.2.1 User level networking bakground 17

2.2.2 VIA spei�ation . 18

2.2.3 Arhitetural overview . 18

2.2.4 Usage . 20

2.2.5 Implementations . 21

2.3 Virtual Mahine Interfae . 23

2.3.1 Shared memory . 24

2.3.2 VIA . 24

2.3.3 TCP/IP sokets . 24

v

2.4 Message Passing Interfae . 25

2.4.1 MPICH . 25

2.5 Bringing together related work 27

3 Design of the network transfer layer 29

3.1 Communiations model . 29

3.2 Memory bu�ers . 30

3.3 Tags and unexpeted messages 31

3.4 Client/Server paradigm . 31

3.5 Arhiteture . 32

3.6 Method ontrol . 33

3.7 Methods . 34

3.8 BMI user interfae . 34

3.9 Immediate ompletion . 37

3.10 Method interfae . 38

3.11 Support libraries . 41

3.11.1 Operation queues . 41

3.11.2 Method address support . 42

3.11.3 Logging and debugging . 43

3.11.4 Operation id's . 45

3.12 Method ontrol implementation 45

3.12.1 Method initialization . 46

3.12.2 Posting and testing single operations 46

3.12.3 Aggregate operation tests . 47

3.12.4 Address resolution . 48

3.13 Bringing together the BMI library 48

4 BMI method ase studies . 50

4.1 Method support libraries . 51

4.2 TCP/IP . 51

4.2.1 Challenges . 51

4.2.2 Approah . 52

4.2.3 Possible optimizations . 59

4.3 GM . 61

4.3.1 Challenges . 61

4.3.2 Approah . 62

4.3.3 Possible optimizations . 68

5 Results . 70

5.1 Test environment . 71

5.2 Initial TCP/IP results . 71

5.2.1 Bandwidth . 72

5.2.2 Lateny . 75

vi

5.2.3 Simulated server load . 76

5.3 Initial GM results . 78

5.3.1 Bandwidth . 78

5.3.2 Lateny . 82

5.3.3 Simulating server load . 83

5.4 Evaluating problem areas . 84

5.4.1 TCP/IP method lateny . 85

5.4.2 GM bandwidth for large messages 87

5.4.3 GM method lateny . 89

6 Conlusion . 93

6.1 Future work . 94

6.1.1 Improvement of existing methods 94

6.1.2 Expansion of supported methods 94

6.1.3 Sheduling . 95

6.1.4 Prodution level availability 95

BIBLIOGRAPHY . 96

List of Figures

Figure Page

2.1 PVFS System Overview . 12

2.2 PVFS kernel arhiteture . 16

3.1 BMI Arhiteture . 32

4.1 TCP method (typial send senario) 57

4.2 TCP method (typial reeive senario) 58

4.3 GM method (typial send senario) 66

4.4 GM method (typial reeive senario) 67

5.1 Small message TCP/IP bandwidth (send) 73

5.2 Small message TCP/IP bandwidth (reeive) 73

5.3 Larger message TCP/IP bandwidth (send) 74

5.4 Larger message TCP/IP bandwidth (reeive) 75

5.5 TCP/IP round trip lateny . 76

5.6 TCP/IP many to one performane (10K messages) 77

5.7 TCP/IP many to one performane (100K messages) 78

5.8 Small message GM bandwidth (send) 80

5.9 Small message GM bandwidth (reeive) 80

5.10 Large message GM bandwidth (send) 81

5.11 Large message GM bandwidth (reeive) 81

5.12 GM round trip lateny . 82

5.13 GM many to one performane (10K messages) 83

5.14 GM many to one performane (100K messages) 84

5.15 TCP/IP round trip lateny . 85

5.16 small message TCP/IP bandwidth (send) 86

5.17 larger message TCP/IP bandwidth (send) 86

5.18 Large message GM bandwidth (send) 88

5.19 GM round trip lateny . 90

5.20 GM round trip lateny . 91

Chapter 1

Introdution

1.1 Beowulf lusters

Beowulf lusters have beome inreasingly popular over the last few years for parallel

proessing tasks [23, 2℄. The beowulf arhiteture onsists of a olletion of ommodity

workstations onneted through a dediated loal network. These systems use open

soure system software to provide the features expeted of a parallel omputer, suh

as message passing, proess management, and global �le storage spae. They are

intended to be used almost exlusively for parallel appliations, and are thus not

restrited to maintaining the funtionality of individual workstations. This is a very

ost e�etive approah to performing omputationally intense researh, beause all

of the omponents are either available as ommodity hardware or freely distributed

software.

Beowulf lusters have also provided many new avenues for systems software re-

searh. One reason for this is the diversity inherent in building ustom omputing

mahinery out of ommodity parts. For example, this approah makes it more hal-

lenging to reate algorithms and sheduling poliies that work well in the general

ase, beause almost no two lusters are exatly alike. Today it is no longer suÆient

2

to just tune software for a spei� vendor's hardware implementation. Assumptions

made on one arhiteture may not be valid on another.

Systems researh is also enouraged by the use of open soure software. The ability

to inspet, modify and redistribute modi�ations to even the most low level software

omponents makes it relatively easy to ontribute improvements to the ommunity.

This leads to a yle of gradual improvement in overall Beowulf luster tehnology.

1.2 Parallel �le systems

One important element of Beowulf system software is the �le system. This has beome

inreasingly important as proessor speeds ontinue to inrease at a faster rate than

data transfer speeds. In the past deade, CPU speed has inreased from 10MHz to

1000MHz (a 100 fold inrease) while average disk transfer speeds have inreased from

3 Mbytes/se to 12 Mbytes/se (only a four fold inrease) [13℄. This means that

appliations that require large amounts of �le I/O are �nding disk aess to be an

inreasingly larger bottlenek ompared to omputation time. In order to ease this

problem, we must make more eÆient use of existing storage tehnology. One way to

do this is through the use of parallel �le systems.

Parallel �le systems are used to distribute data over several independent stor-

age devies. This data is then presented to all of the appliation proesses with a

onsistent name spae. This ombination of parallelism on both the appliation and

storage side allows the I/O load to be distributed aross an entire luster (or at least

a subset of the luster) so that there is no single bottlenek point for �le aess. The

bandwidth and storage apaity of this arrangement is typially muh larger than

what an be obtained by using a single shared �le server.

One example of suh a �le system is the Parallel Virtual File System (PVFS)

[6℄ whih was developed at Clemson University. PVFS was designed to serve as a

3

platform for high performane I/O researh on Linux lusters. It has also grown into

a stable prodution �le system for use in the luster omputing ommunity as a whole.

PVFS makes use of ommon Linux features and brings them together to present a

homogeneous parallel �le system. In its urrent form it utilizes the standard Linux

�le system available at eah node for data storage and the TCP/IP protool for data

ommuniation between nodes.

1.3 New tehnologies

Sine the initial PVFS design, many new tehnologies have beome available whih

ould potentially impat parallel �le system design for Linux lusters. New hardware

developments have gradually reahed near-ommodity status, and the olletion of

reliable open soure system software has grown tremendously.

1.3.1 Networking

Networking infrastruture for lusters has experiened rapid development sine the

�rst Beowulf lusters were built, both in terms of hardware and software. The most

ommon hardware available for the earliest Linux lusters was 100Mb Fast Ethernet.

Sine that time, Gigabit Ethernet has also beome ommodity hardware. Gigabit

Ethernet provides muh higher network bandwidth without introduing any hange

in appliation software. Several vendors have also introdued speialized luster net-

working hardware, some of whih an take advantage of ustomized network software

as well. While this hardware has not reahed onsumer level ommodity status, it

is muh more a�ordable than the ustom networking hardware traditionally used in

ommerial superomputers. Hardware of this ategory inludes (but is not limited

to): Myrinet hardware from Myriom, In. [3℄, SCI hardware from Dolphin Interon-

net LLC [1℄, and Giganet hardware from Emulex Corporation [10℄.

4

There are also more hoies in network software and protools. TCP/IP has long

been the standard for internet ommuniations and was easily adopted for Linux

luster use. However, TCP/IP has disadvantages in some environments. Muh of

the overhead introdued in TCP/IP to handle geographially large networks and

unreliable hardware simply is not neessary in a typial luster environment [15℄.

Beowulf lusters, by de�nition, possess dediated loal networks. This type of network

allows the use of muh lighter weight protools.

Alternatives for network software and protools inlude the Virtual Interfae Ar-

hiteture [28℄, Sore/PM [26℄, GAMMA [8℄, Ative Messages [29℄, and vendor spei�

software suh as GM [19℄. Some of the features that may be provided by alternative

networking systems suh as these are:

� User level operation that bypasses the overhead of interating with the operating

system kernel during ommuniation

� EÆient abstration of the underlying hardware

� Lightweight transmission protools

� Low level programming interfaes that allow developers to avoid the use of high

overhead software features

Shared memory is another tehnology that has been around for a long time but

is perhaps now easier to use on Linux lusters. Multiproessor systems have beome

available at ommodity pries. They allow faster interproessor ommuniation in

some ases by using loal shared memory rather than external networking hardware.

At the same time, some vendors have produed produts whih enable the use of

shared memory aross a olletion of nodes that would normally only ommuniate

through traditional message passing.

5

1.3.2 Data storage

The most interesting tehnologial advanements in ommodity data storage reently

have ome from software developments. The Linux platform now has standard C li-

brary support for Posix asynhronous I/O [5℄, while the Linux kernel now has support

for raw I/O. Asynhronous I/O allows multiple non bloking �le I/O operations to

be initiated and later heked for ompletion. This potentially allows for more eÆ-

ient handling of multiple requests and the ability to overlap other appliation work

with �le I/O. Another new development is the Raw I/O interfae. It is a mehanism

for diretly aessing disk devies at the blok level without using the Linux kernel's

ahe and abstration path. This opens up the possibility of writing appliations that

handle their own ahing and devie I/O independent of kernel algorithms. This an

potentially boost performane of appliations that have very spei� I/O optimization

needs that ontradit generi operating system poliies.

1.4 New researh �ndings

In addition to advanes in ommonly available software and hardware tehnology,

reent researh and implementation has inreased the knowledge base in the �eld of

parallel I/O. There are many new ideas and implementation lessons that an now be

used in parallel �le system design.

1.4.1 Sheduling

One of the most important researh topis explored in the �rst generation PVFS

design is Reative Sheduling [24℄. Reative Sheduling is a new approah to making

server side sheduling deisions for parallel �le systems. The main goal is to dynam-

ially hoose appropriate sheduling poliies depending on the state of the system.

6

This is in ontrast to the traditional approah of trying to optimize a single sheduling

strategy to meet all of the needs of the �le system.

The state of the system an be determined by system parameters, suh as net-

work or disk utilization, and also by the workload produed by the appliation. These

parameters an be used as input to a system model. This system model then indi-

ates what sheduling poliy should be used to obtain the best performane, and

dynamially swithes to this poliy. The sheduling poliies are hosen from existing

researh, and ould inlude ideas suh as disk direted I/O, network direted I/O,

or two phase I/O. The most important onept is the ability to orretly determine

whih poliy is best suited to the urrent state.

This researh has shown that sheduling deisions have an important impat on

parallel I/O performane. We must be able to support eÆient, modular sheduling

in future work. Further work an also be done to explore poliy deisions at other

levels of the �le system abstration.

1.4.2 MPI-IO

MPI-IO is a standard appliation interfae for performing parallel I/O. This standard

was released as part of the MPI-2 spei�ation in 1997 [12, 18℄. It provides a portable

interfae for both C and Fortran appliations. MPI-IO provides optimizations for

disontiguous and parallel �le aess (through features suh as derived data types

and olletive I/O).

MPI-IO has been widely adopted. Several implementations, suh as ROMIO [27℄,

are available. This has enouraged the reation of portable appliations that take

advantage of high performane I/O. The traditional portable Unix I/O interfae does

not provide many of the features neessary to ahieve eÆient parallel throughput,

and the vendor spei� I/O interfae implementations do not work outside of their

7

native hardware. Thus it has beome important to support MPI-IO and to provide

features that make it's implementation easier and more eÆient.

To obtain the best performane in an MPI-IO implementation, it is helpful for a

given �le system to provide two features. The �rst is the ability to desribe and servie

disontiguous patterns similar to those ommon in MPI-IO. This redues the amount

of data paking and translation that must our outside of the �le system. Seondly,

the �le system needs to provide an eÆient, high throughput interfae. MPI-IO adds

a layer of abstration whih an potentially be detrimental to performane, so it is

important to lower the overhead in the I/O path as muh as possible to minimize this

penalty.

1.4.3 Software engineering

PVFS has gradually beome an aepted tool for use in prodution environments over

the past few years. This has lead to its use in many diverse situations. This expanded

use of PVFS has made it important to loate and orret software errors as quikly

as possible. It has also fored the developers to ontinually update PVFS in order to

trak hanges in tehnology.

From this we have learned the importane of thorough software engineering pra-

tie. This inludes modular design, well de�ned interfaes, and omprehensive dou-

mentation. The use of these praties makes it muh easier to support a large software

projet suh as a parallel �le system. New design deisions must aknowledge these

lessons in order to be suessful over the life of the projet.

1.5 A new �le system design

All of these hanges in tehnology, as well as new information gained from researh

and implementation, have prompted the design of a new parallel �le system based on

8

PVFS. This new �le system is urrently transitioning from design to implementation.

It will build upon new ideas and knowledge in order to provide a more e�etive parallel

�le system for Linux lusters.

The next generation Parallel Virtual File System will be made up of several om-

ponents. Some of the most important omponents inlude the network transfer meh-

anism, the storage transfer mehanism, the appliation interfaes, the server daemons,

and the sheduling mehanisms. Eah of these omponents (and several others) will

be neessary in order to build a suessful implementation.

1.6 Network layer requirements

This doument will fous on just one omponent of a parallel �le system for luster

omputers: the network transfer layer. The network transfer layer is responsible for

moving data between proesses on a parallel omputer. There are many ways to

provide this funtionality, but parallel �le systems impose many requirements upon

the design of suh a omponent. The speial needs of parallel I/O and the the lessons

learned from urrent designs have prompted the following list of requirements:

� Simple appliation interfae: The interfae to the network transfer layer should

be onise and eÆient. It should well suited to desribing the types of om-

muniation most often needed to perform parallel I/O, without introduing

additional omplexity in the design of other �le system omponents.

� Overlap of network I/O with other system tasks: The network transfer layer

should be designed to allow other appliation ativity to ontinue as network

I/O tasks are performed. This is of partiular importane to server implemen-

tation, where data storage I/O an be performed simultaneously with network

I/O in many ases to improve eÆieny. This will beome even more useful as

multiproessor systems beome more ommon in the ommodity market and

9

thus more ommon in luster appliations. Multiproessor nodes stand to ben-

e�t signi�antly from the ability to overlap network ommuniation with other

tasks.

� Support for both user level and kernel level network API's: As pointed out in

setion 1.3.1, there are now a variety of approahes to network ommuniations.

Some of these approahes inlude operating system interation, while others

perform I/O diretly from the user level. It is important for implementors to

be able to utilize both types of aess eÆiently.

� Abstration and modularity : Aess to the underlying network software interfae

should be abstrated from the user level system omponents. This will prevent

the ore design and algorithms of the parallel �le system from being inextriably

bound to a spei� networking tehnology. It should be possible to modify or

ompletely replae the underlying network tehnology without disturbing the

implementation of other system omponents.

� EÆieny : Almost any software abstration layer indues a performane penalty

to the appliation. The network transfer layer should seek to minimize this

penalty as muh as possible. Network I/O is a performane bottlenek in many

ommon situations, and we annot a�ord to onstrain it further in exhange

for additional features. The �le system will be sensitive to both bandwidth and

lateny overhead.

� Ability to interat with multiple networks simultaneously : If the network transfer

mehanism is not bound to a single network devie, then it opens up the pos-

sibility of more exoti luster topologies. Hosts may interat with peers whih

exist on dissimilar networks in order to take advantage of the most eÆient

ommuniation route to eah.

10

1.7 Approah

Advanes in tehnology and software engineering have suggested that a networking

abstration that an support a variety of network protools would be bene�ial to the

development of parallel �le systems. We believe that it is possible to reate a network

abstration that supports multiple protools in this manner while still maintaining

high performane. The Bu�ered Method Interfae (or BMI) has been implemented

as a platform for testing the feasibility of suh an interfae. This implementation is

intended to meet the requirements listed in setion 1.6.

The remainder of this doument is organized as follows. First, related work will

be disussed in order to provide bakground for the BMI design. Next, we will

outline the atual arhiteture of the Bu�ered Message Interfae. Case studies of

BMI implementation on top of various network protools will be used to demonstrate

its feasibility.

The results setion will provide an analysis of the performane of the Bu�ered

Message Interfae. We will ompare BMI performane to standard approahes to

network data transfer to verify its e�etiveness and determine if it meets our require-

ments. Finally, we will present the onlusions based on the �ndings of this researh

and propose future work.

Chapter 2

Bakground and related work

2.1 The Parallel Virtual File System

2.1.1 Motivation and goals

PVFS is a parallel �le system for Linux lusters that was developed at Clemson

University. It was originally designed to serve two main purposes. First of all, it is

intended to be a platform for parallel I/O researh. Seondly, it is intended to meet

the high performane ommunity's need for a parallel �le system for Linux lusters.

It has been suessful in both of these goals, prompting several researh papers and

gaining aeptane as a high performane �le system for use on prodution lusters.

The following is a list of some of the key goals of PVFS:

� High bandwidth for parallel read and write operations to a single �le system

� Flexible appliation interfaes, inluding support from the ROMIO pakage for

MPI-IO [27℄

� Compatability with existing appliations that use the native Unix I/O interfae

[14℄

� Ability to tune �le system parameters from the appliation level

12

Figure 2.1: PVFS System Overview

...

ION

ION

ION

ION

0

1

n

2

0

1

2

nCN

CN

CN

CN

InterconnectCompute
Nodes

I/O Nodes Secondary
Storage

...
...

� Salability

� Robustness

� Ease of installation

PVFS emphasizes performane and researh viability over high availability fea-

tures. It therefore does not provide software level redundany. It also does not provide

any loking mehanism within the �le system itself, nor any advaned network se-

urity features suh as enryption. These features are best met by other �le system

projets.

2.1.2 Arhiteture and implementation

The Parallel Virtual File System is implemented almost entirely in user spae. It

does not require any kernel level support for its default mode of operation. However,

optional kernel level support is required to obtain ompatability with appliations

that interat with the Unix I/O API [14℄. PVFS makes use of existing tehnology

for its most low level operations, inluding TCP/IP for networking and any standard

Linux �le system (suh as EXT2 or ReiserFS) for �le data storage. It is portable

aross 32 bit and 64 bit Linux arhitetures.

13

The basi layout of a PVFS system is shown in Figure 2.1. File data is striped

aross multiple luster nodes that are onneted by a loal area network. No ustom

hardware is required sine PVFS makes use of existing operating system features.

Eah node that possesses a portion of the �le system data must run one or more loal

PVFS daemons that make the resoures of that node available to the �le system.

Client appliations may run on these server nodes, or they may run on separate nodes

that are onneted by the loal area network. Client appliations may aess the �le

system through either a user level library, the ROMIO MPI-IO implementation, or

the Linux kernel interfae (outlined in setion 2.1.4).

Manager

PVFS is made up of three primary omponents. The �rst is the manager. There

is exatly one manager per �le system, regardless of its size. It is responsible for

maintaining metadata. In PVFS, metadata refers to the olletion of properties and

harateristis of �les stored on the �le system. This inludes information suh as

ownership and permissions that are not atually part of the �le data.

In addition to the standard Unix �le properties suh as those listed above, the

manager also maintains metadata that is unique to PVFS. This inludes the physial

distribution information for eah �le. This is used to determine whih I/O servers in

the �le system possess �le data, and how the �le data is distributed among them.

The PVFS manager serializes all metadata operations from lients and ensures

metadata onsisteny. This is made easier by the fat that there is only one manager,

eliminating the need to maintain synhronization with another node for important

metadata information. It may seem like a performane bottlenek to rely on a single

manager, but this is eased by the fat that the manager does not partiipate in �le

I/O operations. One a lient has veri�ed permissions and metadata information, it

14

does not ommuniate with the manager when reading or writing �le data. This is

handled by the PVFS I/O daemons, whih will be outlined shortly.

I/O daemon

The I/O daemon is responsible for serviing I/O requests and storing �le data. There

may be any number of I/O daemons, from as few as one to as many as the salability

of the system will permit. Eah I/O daemon stores data on the loal �le system of

the node that it is running on. When multiple I/O daemons are being used, the data

is striped aross them in round robin fashion. The stripe size, o�set, and number of

I/O daemons to use an be spei�ed by the user on a per �le basis.

The use of multiple I/O daemons introdues parallelism on the server side of the

�le system. A lient may have parts of its request servied from several di�erent

servers, thus leading to utilization of several separate disks and network onnetions

simultaneously, rather than waiting for servie at one partiular bottlenek point.

This style of aess is tailored to improving throughput for parallel appliations,

espeially those whih demand large amounts of I/O. It may not be optimal for non-

parallel appliations, beause the lient beomes a bottlenek for the ow of data,

thus negating the advantage gained by having servers operate in parallel.

Eah I/O daemon operates independently of other I/O daemons in the system. It

is only aware of the portions of a �le that it is in ontrol of at any given time. File

distribution remains stati over the lifetime of a �le in PVFS.

Client library

The PVFS lient library enables appliations to interat with the �le system. It

is a C library for use in user level programs, and does not require any interation

with the Linux kernel for ommuniation. It provides a native PVFS API, whih is

derived from the standard Unix I/O API. Among other things, it inludes funtions

15

for opening, losing, reading, and writing to PVFS �les. It also adds the ability to

speify PVFS spei� parameters for �les, suh as physial stripe size and number of

I/O daemons to use.

The native PVFS library also provides the ability to make disontiguous I/O

requests. This is an important feature for parallel appliations that is not provided

in standard Unix interfaes. This is done by using a partitioned �le interfae. File

partitioning allows a proess to alter its view of a �le logial �le so that it an aess

disontiguous regions with single read or write requests. It is similar to Vesta's logial

�le partitioning [9℄ and to �le views provided by MPI-IO [12, 18℄.

The PVFS library is responsible for orhestrating ommuniation with the man-

ager and any I/O daemons as neessary. For large systems, this may involve ommu-

niating with hundreds of servers. All of this is hidden from the appliation.

2.1.3 Low level I/O

All PVFS data is stored on standard loal �le systems. Eah I/O daemon stores

its portion of the data �les on a loal �le system, and the manager stores metadata

information on its loal �le system as well. This is in ontrast to other �le system

implementations whih write raw data to disks. By avoiding the use of raw disk bloks,

omplexity is redued, and PVFS bene�ts from features of the loal �le system suh

as ahing or journaling.

All inter-node ommuniation is arried out using the standard TCP/IP protool.

This was the primary ommuniation mehanism available for Linux lusters when

PVFS was �rst designed. It provides reliable, ordered delivery and ow ontrol for

data ommuniations. It is also available on almost every Linux luster.

16

Figure 2.2: PVFS kernel arhiteture

Application

VFS Interface

PVFS Lowlevel
Interface

Pvfsd

PVFS Device

PVFS

File System

Library
PVFS

User Level

Network

Kernel Level

2.1.4 Unix I/O ompatability

The PVFS lient library provides an optimized path for appliations to interat with

PVFS. It also provides aess to PVFS spei� parameters. However, it is not om-

patible with existing appliations. This prompted the design of the PVFS kernel

pakage as an alternative. It provides a kernel path for PVFS so that appliations

an interat with it just as they would any other �le system. When using this pak-

age, PVFS is mostly indistinguishable from a more traditional �le system from the

user's point of view.

The arhiteture of the PVFS kernel implementation is shown in Figure 2.2. It

onsists of both a user level and kernel level omponent. The kernel level omponents

are implemented as a module, while the user level omponents are implemented in a

lient side daemon known as the pvfsd. The pvfsd is responsible for atually translat-

ing �le requests to native PVFS requests and ommuniating them over the network

to the PVFS �le system. This is done at user level beause it provides more exi-

bility than a full kernel implementation. It allows the lient to utilize any network

mehanism that is required (some of whih may not be available within the operating

17

system kernel). It also allows the use of the standard PVFS library for handling

requests, rather than maintaining an independent interfae within the kernel.

Communiation between the user level pvfsd proess and the kernel module is

arried out through use of a speial devie �le. Requests are read out of the devie �le

by the pvfsd, and responses are written bak into it. Several methods of transferring

bulk data through this interfae are provided, but their operation is beyond the sope

of this doument.

This implementation attempts to be as modular and portable as possible, so that

it an survive multiple generations of �le system design. All ode spei� to the PVFS

�le system implementation is maintained within a strit interfae.

2.2 Virtual Interfae Arhiteture

2.2.1 User level networking bakground

Communiations hardware has advaned rapidly in reent years, reating a variety of

alternatives for high performane ommuniations. Most Linux lusters were origi-

nally onstruted with 10 Mbit or 100 Mbit Ethernet, but suh networks have reently

been augmented with more advaned ommodity options, suh as Gigabit Ethernet,

as well as speialized system area networks, suh as Myrinet [3℄.

These advanes in hardware have prompted researh into the software aspet of

ommuniation as well. Cluster spei� system area networks, in partiular, may

bene�t from software interfaes and protools whih take advantages of assumptions

that do not apply to general ase loal area networks. There are several aspets of

this level of ommuniation that may be targeted for improvement. Two notable

weaknesses in the use of general purpose ommuniations in lusters are in the level

of protool omplexity and the amount of operating system interation that takes

plae during data transfer [4℄. Protool omplexity arises from multi-layer software

18

implementations that provide a wide abstration from hardware, as well as from the

inlusion of a large suite of features whih may or may not be utilized. Operating

system overhead arises from relying on the system kernel to provide memory prote-

tion and resoure alloation. These issues an be addressed by designing messaging

systems that more losely math the ability of the underlying hardware, and also by

removing the kernel as muh as possible from the ritial path of data ommuniation.

This broad approah to optimizing appliation interation with the network has

been termed user level networking. This approah was largely pioneered by the Ative

Messages projet [29℄, whih also enompassed several other topis within applia-

tion and network interation. This work ontinues today and has progressed beyond

researh to inlude spei� vendor o�erings, suh as GM [19℄, as well as ooperative

industry initiatives suh as VIA [28℄.

2.2.2 VIA spei�ation

The Virtual Interfae Arhiteture is an attempt at standardizing both the semantis

and interfae to user level networking aross a variety of hardware and software ven-

dors and implementors. It oÆially ame into being in 1997 with the release of the

Virtual Interfae Arhiteture Spei�ation, whih was the result of a ollaboration

being several leading vendors, inluding Mirosoft, Compaq, and Intel [28℄. This do-

ument outlines the arhiteture of VIA from both an implementation and usage point

of view. It draws heavily from well known researh e�orts suh as Ative Messages,

but its aim is to provide a usable, prodution level standard for user level networking

on system area networks.

2.2.3 Arhitetural overview

The Virtual Interfae Arhiteture model onsists of several omponents, inluding

the VI Provider, VI Consumer, Virtual Interfaes, and Completion Queues.

19

The VI Provider is made up of the hardware and software omponents that inter-

at to provide the resoures neessary for a virtual interfae. These resoures inlude

memory protetion, onnetion setup and teardown, and error management. The

hardware utilized is generally a network interfae ard. The hardware may be speif-

ially designed to support VIA (and is thus onsidered \VIA aware") or it may be a

more traditional design, for whih ertain features of the VIA arhiteture must be

emulated. The software omponent of the VI Provider is usually a kernel level driver.

Note that this kernel driver is only responsible for a limited number of resoures, and

is typially only invoked during initial setup of ommuniation between two hosts. It

is not diretly involved in the data path for ommuniation.

The VI Consumer an roughly be thought of as the user of the VI resoures.

This is of ourse inludes the appliation, but also enompasses the interfae that

the appliation uses to interat with the other VI omponents. This level of the

interfae is normally implemented as a user level library, and it has a stritly de�ned

set of funtions that are used to invoke ommuniation mehanisms. These funtions

trigger the neessary kernel level setup mehanisms and abstrat the omplexity of

the other omponents.

The Virtual Interfae itself is the mehanism that allows the onsumer to diretly

interat with with the provider in order to atually transfer data. There is one

Virtual Interfae per peer that the host wishes to ommuniate with. It inludes

work queues for both send and reeive operations. These work queues are a key

onept in understanding how VIA operates. The queues do not atually ontain the

data to be transfered in ommuniation operations. Instead, they ontain ompat

desriptors that desribe the data to transfered, as well as other details (suh as

status information) that are neessary to desribe the ommuniation. When the

VI posts desriptors to the work queues, it uses doorbells to indiate to the network

adapter that new work is available. Doorbells are very small, simple triggers that are

20

intended to be implemented diretly from the hardware so that no operating system

intervention is required to notify the hardware. The doorbells may be emulated if

needed, however. The goal is to provide information to the network hardware as

eÆiently as possible so that it an use hardware mehanisms suh as diret DMA

transfers to move appliation data, rather than relying on additional kernel level

bu�ers for this purpose.

Completion Queues are provided as a mehanism for the VI to notify the Consumer

that messages have been ompleted. One desriptors have been proessed from the

work queues, their status is �lled in to indiate suess or failure. They may then

be transfered to ompletion queues that were spei�ed by the Consumer so that the

appliation an be made aware of the ompletion. Again, the goal is to indiate

status hanges and to transfer information about ommuniation without invoking

kernel ontext swithes or unneessary interrupts.

2.2.4 Usage

The VIA model for ommuniation implies that the appliation has more responsi-

bilities in the ommuniation proess than would be expeted of traditional software

interfaes. First of all, the appliation must be able to reate and manage the de-

sriptor and doorbell strutures that are neessary for initiating data transfers. It

must expliitly post these strutures and inspet them upon ompletion.

Additional onstraints are also plaed upon the memory regions that the appli-

ation may use for ommuniation. Networking hardware normally requires message

data to be loked into physial memory and spei�ed in terms of physial, rather than

virtual addresses before being sent aross the network. Traditional network protool

implementations allow the operating system driver to handle this requirement rather

than expose it to the user. VIA, however, requires that the user expliitly perform

this memory registration before submitting a desriptor that referenes the region.

21

Only memory that has been registered with the VI Provider may be transfered. This

advane registration allows the Provider to diretly aess the region without utilizing

an intermediate bu�er. These regions may also be reused, so that the overhead of

registration need not be inurred for every message.

The ommuniation semantis of VIA are very lightweight. For example, no mes-

sage bu�ering is provided for reeive operations. This means that all reeive bu�ers

must be posted before the message data arrives, or else it may be disarded. This

introdues more management responsibilities on the part of the appliation to en-

sure that bu�ers are provided in a timely manner. In addition, the VIA spei�ation

outlines three levels of reliability whih may optionally be provided. These levels of

reliability di�er in the amount of assurane that the appliation is given onerning

the suessful arrival of messages. If a VIA implementation does not provide a high

enough level or reliability for the needs of an appliation, it may require another layer

of software in order to provide this funtionality.

Due to the above appliation implementation requirements, VIA is most often

used as a foundation for a higher level API, suh as MPI [18℄, or for use in implemen-

tation of system software. These environments an take advantage of the eÆieny

of the Virtual Interfae Arhiteture without requiring a new learning urve for the

appliations programmer.

2.2.5 Implementations

There have been several adopters of the VIA spei�ation thus far. A few notable

ones are listed below with a brief outline of the approah taken to providing the VIA

features. This is a sampling of the level of aeptane within the high performane

omputing ommunity.

22

Berkeley VIA

The Berkeley VIA projet (based at UC Berkeley) is a researh oriented projet that

has provided ross platform VIA implementations for Myriom's Myrinet hardware

[3℄. They seek to provide a high quality VIA implementation, explore its performane

harateristis, and investigate possible improvements to the arhiteture. It is not a

full implementation of the spei�ation, but it provides enough funtionality to eval-

uate performane and support most VIA appliations. The Myrinet hardware that

it utilizes, though not designed expliitly for use with VIA, is highly programmable

and provides most of the hardware features suggested for VIA implementation.

M-VIA

M-VIA is a researh prototype VIA implementation from the National Energy Re-

searh Sienti� Computing Center [16℄. Its primary features inlude a modular

design whih should ease the work of porting to new hardware. It provides a full

implementation of the VIA standard and also allows oexistene with other protools

whih may be supported by target hardware devies. M-VIA urrently supports a

variety of Ethernet hardware by emulating in software some of the neessary devie

features, though it an also take advantage of VIA aelerated hardware. Future

releases target a more ambitious range of networking hardware.

Giganet

Giganet is a vendor hardware o�ering from Emulex Corporation [10℄. It inludes a

full VIA software implementation, and network interfae ards that are designed with

VIA support in mind.

23

2.3 Virtual Mahine Interfae

The Virtual Mahine Interfae [21℄ is a high performane messaging API developed by

The University of Illinois, Urbana-Champaign and the National Center for Superom-

puting Appliations. It provides a uniform interfae for interating with dissimilar

networking systems. This interfae may be used diretly by an appliation, or used

as the foundation for implementing a higher level interfae suh as MPI[18℄. VMI

provides onnetionless, reliable, ordered delivery. It also requires ommuniation

bu�ers to be registered, muh like VIA [28℄.

VMI also provides several other advaned features that make it stand out among

other network abstration implementations:

� Di�erent network types are supported through the use of dynamially loadable

modules. This means that appliations do not need to be reompiled in order to

take advantage of new devies, nor to aomidate hanges in luster arhiteture.

� VMI provides olletive noti�ation of proess failure. If a single proess in a

omputation rashes, then all peer proesses are noti�ed. This aommodates

graeful termination of the omputation as a whole.

� VMI is intended to be portable aross dissimilar platforms. It has been tested

with both Linux and Mirosoft Windows luster environments, and allows both

to interat on the same omputation.

� A single host is allowed to ommuniate over multiple devies simultaneously.

This allows VMI to be used in heterogeneous network environments. Further-

more, extensions to VMI allow it to serve as a bridge aross dissimilar networks,

thus allowing full interproess ommuniation when only a limited number of

nodes share onnetions to both networking systems.

24

As of this writing, VMI supports shared memory, VIA, and TCP/IP soket om-

muniations. Support is planned for Myrinet and SCI networks as well.

2.3.1 Shared memory

The VMI shared memory devie is used between proesses that are loated on the

same physial node within a luster. It operates by providing a unique shared bu�er

and synhronization struture between eah pair of ommuniating proesses. The

shared bu�er onsists of a ontiguous 1 Mbyte region that is writable by one proess

and read only for another. It may be alloated in 1 Kbyte pages. Synhronization is

handled through a bounded irular queue that indiates the send window between

a pair of nodes. Lok based synhronization is avoided beause the bu�er is only

writable by one proess at any given time.

2.3.2 VIA

The VIA devie has been implemented using the Giganet devie driver. VIA already

provides many of the primitives required for VMI module implementation. However,

it does not provide ow ontrol. VMI therefore implements a redit based ow ontrol

mehanism on top of VIA within the module.

2.3.3 TCP/IP sokets

The TCP/IP soket interfae is not as lose of a math to the VMI module require-

ments as VIA or shared memory ommuniations are. Thus implementation for this

protool is more diÆult. VMI urrently supports a proof of onept TCP/IP module

that has not yet been optimized for performane.

25

2.4 Message Passing Interfae

The Message Passing Interfae is a spei�ation for appliation level message passing.

It was de�ned by the MPI Forum in an attempt to provide a standard to ensure porta-

bility between parallel omputers from a variety of vendors and researh groups. Prior

to the drafting of the MPI spei�ation, many vendors provided their own unique li-

braries for message passing whih made it diÆult to reate portable appliations.

Many of these libraries shared the same fundamental features but di�ered widely in

terms of interfaes and syntax.

The initial MPI Standard (Version 1.0) was ompleted in May of 1994. Work on

this standard was later ontinued, resulting in the 1.1, 1.2, and 2.0 MPI Standards

[17℄.

The MPI Standard enompasses both the appliation interfaes and semantis of

the message passing system. This system provides many features, inluding point

to point as well as olletive ommuniation. It also provides other servies suh

as onsistent proess naming, virtual topologies, heterogeneous data onversion, per-

formane monitoring tools, and pro�ling interfaes. The MPI-2 Standard brought

enhanements suh as parallel I/O, remote memory operations, and dynami proess

management.

MPI has quikly beome the default message passing library for parallel applia-

tions. There are implementations available for every major modern arhiteture.

2.4.1 MPICH

MPICH (or MPI Chameleon) is a portable implementation of the MPI standard

supported by Argonne National Laboratory [11℄. MPICH is unique in that its devel-

opment began while the initial standard was still being drafted. This provided the

MPI Forum with immediate feedbak from a design that traked the standard as it

26

was developed. This also resulted in the availability of a working MPI implementation

as soon as the standard was �nalized, whih aided in its aeptane.

MPICH was originally onstruted by taking advantage of existing ode from

preeding systems. One of these was parallel programming library known as P4,

whih provided portable shared memory and message passing omponents. Another

was Chameleon, a pakage whih foused on portability over a variety of message

passing arhitetures. The �nal preursor was zipode, whih provided onepts for

salable libraries, suh as ontexts and groups.

The two most important design goals of MPICH were portability and eÆieny.

MPICH runs on a variety of systems and provides low level interfaes for implementers

to quikly port it to other environments. However, it strives to do this without

sari�ing overall performane.

MPICH arhiteture

The MPICH arhiteture was arefully designed to meet the goals of eÆieny and

portability. It an best be desribed in terms of three major omponents:

� High level ode: The highest level MPICH ode inludes many onepts (suh

as groups, ommuniators, and opaque objets) whih are independent of the

ommuniations mehanism. Therefore, this portion of the design is provided

as a portable implementation that an be expressed in terms of lower level

abstrations.

� Abstrat Devie Interfae: All high level MPICH ode is written on top of the

Abstrat Devie Interfae (ADI). There are many separate implementations of

the ADI for di�erent arhitetures. It provides an interfae for implementers

to quikly integrate new arhitetures without having to rewrite the full MPI

library from srath.

27

� Channel Interfae: One implementation of the ADI uses the hannel interfae.

The hannel interfae is a very small abstration of the ommuniations meh-

anism whih an be implemented with as few as �ve funtions. This provides

the quikest path to implement a new devie, but at the ost of eÆieny.

The idea is for implementors to rapidly prototype a new devie by implemented

support for it at the hannel interfae level. As the implementation progresses, higher

levels of abstration an be replaed by devie spei� ode, so that the devie even-

tually has its own ADI implementation and perhaps even optimizations of higher level

funtionality. Implementors therefore have the advantage of a portable implementa-

tion for rapid prototyping but are not onstrained by it in the long term.

2.5 Bringing together related work

Three distint messaging abstrations have been disussed in the previous setion:

the Virtual Interfae Arhiteture, the Virtual Mahine Interfae, and the Message

Passing Interfae. These tools are all urrently available and perform their respetive

tasks quite well. However, the realm of parallel I/O on Linux lusters has spei�

needs whih are not yet met by any single message passing implementation.

In order to be suessful within the �eld of parallel I/O, a network abstration

needs to bring together a hybrid of several features. It must be robust in the fae of

small network failures so that errors on individual hosts do not impat system wide

ativity. It furthermore must be apable of sustained lient/server style operation.

Unexpeted hosts may onnet and disonnet from a �le system many times while

the system is running.

A network abstration for parallel I/O must also be eÆient for the problem do-

main that it is solving. There are many features ritial to general purpose messag-

ing tools that simply are not appliable in a lient/server based system level toolkit.

28

Supporting unneessary features is almost undoubtably a soure of overhead and

maintenane diÆulties.

Finally, the network abstration must share the �le system's ability to work eÆ-

iently and reliably on a variety of existing luster arhitetures. Many prodution

lusters an not a�ord to experiment with sweeping system level hanges at the risk

of disrupting ongoing omputational work. We want to support these traditional

systems while also leaving the door open for work with more exoti systems when

possible.

Chapter 3

Design of the network transfer

layer

The Bu�ered Message Interfae (BMI) has been designed to serve as the network

transfer layer for a next generation parallel �le system. It is implemented as a library

that provides a standard interfae for ommuniation between system software om-

ponents. Although designed for use within the Parallel Virtual File System, BMI is

an independent entity whih may be useful in other environments as well.

3.1 Communiations model

BMI is a message passing system that provides reliability, ordering, and ow ontrol.

If a partiular underlying network protool does not provide one of these features,

then BMI is responsible for implementing it.

All ommuniations operations in BMI are nonbloking. In order to send a mes-

sage, the user must �rst post the message to the interfae, then test it for ompletion.

The same holds for reeiving messages. One testing indiates that a message has

ompleted, the user must hek the status of the message in order to determine if it

ompleted suessfully or not. Partial ompletion is not allowed.

30

In fat, every funtion de�ned as part of the BMI interfae is nonbloking. Eah

funtion may perform work before ompleting, but this work is guaranteed to omplete

within a bounded amount of time. This restrition implies that it may be neessary

to test for ompletion of a message several times before it atually ompletes. There

is no mehanism that allows the interfae to \wait" inde�nitely for ompletion of

a partiular operation. This design deision was made beause bloking network

alls (espeially in large parallel systems) are prone to problems with robustness

and salability. They may ause an appliation to hang in the event of network or

programming errors. This is not aeptable within low level system servies.

When posting reeive operations, the user must speify the address of the sending

host and the size of the message to aept. The user annot post reeives that math

wildard addresses. The only exeptions to this rule are unexpeted messages, as

de�ned in setion 3.3.

BMI is a onnetionless interfae; the user does not have to establish or main-

tain any link between hosts before sending messages. The BMI implementation may

maintain onnetions internally if needed for a partiular network devie, but suh

details are not exposed to the user.

3.2 Memory bu�ers

The user must speify a memory bu�er to use when posting send and reeive oper-

ations. This bu�er may be a normal memory region, or it may be a bu�er that was

alloated using BMI memory management funtions. If the user elets to alloate

the memory using the BMI failities, then BMI has the opportunity to optimize the

bu�er for the type of network being used. This mode of operation is preferred for

ahieving optimal performane. However, normal memory bu�ers are also allowed in

order to better support ertain senarios ommon to �le system operations. Some

31

�le system operations at upon existing memory regions (for example, the lient side

Unix read() system all). In these situations, we would like to avoid imposing a bu�er

opy, and instead give the BMI layer the exibility to handle the bu�er at a lower

level if possible.

If a memory bu�er is alloated using BMI funtion alls, then it must also be deal-

loated using BMI. These bu�ers are not guaranteed to be manageable by standard

operating system libraries.

3.3 Tags and unexpeted messages

The BMI interfae allows the user to speify a tag for eah message. A send operation

with a spei� tag may only be aepted by a reeive operation that spei�es a math-

ing tag. This therefore provides for the user a mehanism to di�erentiate between

distint lasses of messages. However, one partiular tag is reserved by the interfae

to have speial meaning. This tag marks a message as unexpeted. Unexpeted mes-

sages are messages that are sent without the reeiving host expliitly requesting the

ommuniation. In other words, the reeiving host does not post a mathing reeive

for this type of message. Instead, it must periodially hek to see if any unexpeted

messages have arrived in order to reeive them suessfully. This is the equivalent

of \listening" for new requests in a more traditional networking system. Unexpeted

messages may ome from any host on the network. Communiation between two

hosts is typially initiated by one of the hosts sending an unexpeted message to the

other.

3.4 Client/Server paradigm

The BMI system is better suited for lient/server appliation models than peer to

peer models. This is made evident by the onept of unexpeted messages as de�ned

32

Method InterfaceMethod Interface

BMI Interface

Network Address Reference List

Method Control

Operation Queues Operation Queues

Method One Method Two

Figure 3.1: BMI Arhiteture

above. Consider the simple example of ommuniation between two hosts. Typially

only one of the hosts will look for unexpeted messages. This is the \server". The

other host ats as a \lient" by sending unexpeted messages to the server that prompt

it to perform some servie. This servie may involve the exhange of further messages

between the two hosts.

3.5 Arhiteture

The overall arhiteture of BMI is shown in Figure 3.1. Support for individual network

protools is provided by BMI methods. There may be any number of methods ative

at a given time. This olletion of methods is managed by the method ontrol layer.

The method ontrol layer is also responsible for presenting the top level BMI interfae

to the appliation.

33

3.6 Method ontrol

From a high level, the method ontrol layer is responsible for orhestrating network

operations and managing the network methods. This inludes several responsibilities,

inluding address resolution, method multiplexing, and providing a stable BMI user

interfae. It also provides a library of support funtions that may be useful to method

implementors.

One of the most important tasks of the method ontrol layer is the multiplexing

of network methods. When an operation is posted by the user, it is up to the method

ontrol to deide whih method will servie the operation. Likewise, when the user

tests for ompletion, the method ontrol must test the appropriate methods for the

operations of interest.

The method ontrol layer provides the BMI user interfae. This is the API used by

appliations that ommuniate using BMI. The BMI interfae funtions are onverted

into the appropriate low level method requests that are needed to omplete operations.

Address resolution is the �nal major responsibility of the method ontrol. The

method ontrol manages the BMI level addresses and makes sure that the name

spae is onsistent to the user, regardless of whih methods are in use. It does so

by maintaining an internal referene list for addresses. Eah network address has a

unique referene that provides mappings between BMI user level addresses, the string

representation of addresses, and the method spei� representation of addresses. The

BMI user level addresses are handles for network hosts that the appliation uses when

alling BMI funtions. The string representation is the ASCII host name of the hosts

before they are resolved by BMI (as read from a \hosts" �le, for example). Finally,

the method address is the representation that that methods use for identifying hosts,

whih may ontain information spei� to that partiular protool. Note that method

addresses are never, under any irumstanes, exposed to the appliation. They are

reserved for internal BMI use only.

34

3.7 Methods

Eah method is implemented as a dynamially loadable module. This module must

provide (and stritly adhere to) a prede�ned method interfae. It supports reliable,

ordered delivery and ow ontrol for the protool that it ontrols. Aside from meeting

these semantis and adhering to the method interfae, there are no other restritions

on how the method should be implemented. Support libraries are provided for ertain

features that are ommon to many methods, but their use is optional.

Eah method is responsible for maintaining the olletion of operations that it is

working on, usually through operation queues. These olletions of operations are

private to eah method.

3.8 BMI user interfae

The BMI interfae an be separated into four small ategories of funtions: message

initiation, message testing, memory management, and utilities.

The message initiation funtions are used by an appliation to request the sending

or reeiving of network bu�ers:

� BMI post send(id, destination, bu�er, size, bu�er ags, message tag):

Posts a send operation from the spei�ed bu�er. The id is written in by the

funtion and serves as a unique handle for the operation to be used when testing

for ompletion. The bu�er ags are used to indiate whether the bu�er was

alloated by the appliation or by BMI.

� BMI post rev(id, soure, bu�er, size, bu�er ags, message tag):

Posts a reeive operation. The argument semantis are the same as those used

in BMI post send().

35

� BMI unpost(id): Forefully aborts a previously posted operation. The status

of the target operation should still be retrieved through the use of a BMI test

funtion(), however. It may have ompleted suessfully before the BMI unpost()

was proessed.

� BMI addr lookup(new addr, id string): Performs a lookup on the tex-

tual representation of the host address spei�ed by id string. The resulting

BMI spei� address handle is �lled into the new addr parameter and may be

used for subsequent network initiation funtions.

The message testing funtions are used to hek for ompletion of network oper-

ations:

� BMI test(id, outount, state): Tests for ompletion of a single network

operation, as spei�ed by the id argument. Outount indiates how many op-

erations ompleted (whih will either be zero or one in this ase). The state

parameter is �lled in with the state of the operation in question one it om-

pletes.

� BMI testsome(inount, id array, outount, index array, state array):

Tests for ompletion of any of a spei�ed set of operations. The set of operations

to look for is spei�ed by an array of id's of size inount. Outount is �lled in to

indiate how many of the target operations ompleted, while index array and

state array indiate exatly whih operations ompleted and what their �nal

state was. BMI testsome() ignores any id's within the id array that have been

set to the null value of zero.

� BMI testglobal(inount, id array, outount, state array): Tests for

ompletion of any operations that are urrently in progress. Inount spei-

�es how many operations the aller is willing to aept with one invoation of

36

BMI testglobal. Id array, outount, and state array are �lled in to indiate

whih operations ompleted and what their �nal state was.

� BMI testunexpeted(inount, outount, info array): Tests for omple-

tion of any newly arrived unexpeted messages. The inount indiates how

many operations the aller is willing to aept, while the outount indiates

how many atually ompleted. The info array is �lled in with a desription

of eah ompleted operation, inluding the soure address, bu�er loation, and

size. These parameters are not known in advane by the aller (hene the

unexpeted nomenlature).

The BMI memory management funtions are used to ontrol memory bu�ers that

are optimized for use with BMI:

� BMI memallo(address, size, send rev ag): Alloates an optimized

memory bu�er of the requested size. The address parameter indiates the re-

mote host that will partiipate in the transmission of the bu�er. The send/rev

ag indiates whether the bu�er will be sent or reeived from the loal host.

� BMI memfree(address, bu�er, send rev): Frees a memory bu�er that

was alloated with BMI memallo(). The address and send rev parameters

possess the same semantis as those used in BMI memallo().

The �nal olletion of funtions perform various utility tasks that are not diretly

involved in network I/O:

� BMI initialize(module string, listen addr, ags): Initializes the BMI

system. This funtion must be alled before any other BMI interfae funtions.

The module string is a omma separated list of dynami method modules to

use. The listen addr is a omma separated list of parameters that the network

methods use for reeiving messages (if needed).

37

� BMI �nalize(): Shuts down the BMI library. This funtion should only be

alled one all network ommuniation is ompleted. It will forefully terminate

any outstanding operations.

� BMI set info(address, option, parameter): Sets optional BMI parame-

ters. If the address is spei�ed, the funtion will on a�et the method that is

responsible for that address. Otherwise, the funtion has a global impat on

the BMI methods.

� BMI get info(address, option, parameter): Queries BMI for optional

parameters.

3.9 Immediate ompletion

The default model for eah network operation is to �rst post it and then test for

ompletion. However, there are often instanes in whih operations an omplete

immediately (during the post proedure) and thus do not require the extra test step.

Examples of this our when TCP sokets bu�ers are large enough to allow a message

to be sent in one step without bloking. This may also our on the reeive side of

ommuniations if the required data has already been bu�ered by the BMI library

when the reeive operation is posted.

In these situations, it would be good to avoid the overhead of needlessly alling

the test funtion. We therefore allow immediate ompletion from any post funtion.

Immediate ompletion is indiated from post funtions by a return value of one.

BMI library users should always hek this return value so that they are aware of

opportunities to skip the test phase of ommuniation.

38

3.10 Method interfae

The method interfae is very similar to the BMI user interfae. It implements roughly

the same funtions. However, it inludes minor variations that take into aount the

fat that operations at this level are targeted for a single spei� method.

The following listing desribes the BMI method interfae. Note that the address

arguments in this interfae (soure, destination, and new addr) are of the speial

method address struture type. Eah method address ontains binary format infor-

mation that an only be understood by the spei� method that reated it.

� BMI method post send(id, destination, bu�er, size, bu�er ags, mes-

sage tag): Posts a send operation from the spei�ed bu�er. The id is written

in by the funtion and serves as a unique handle for the operation to be used

when testing for ompletion. The bu�er ags are used to indiate whether the

bu�er was alloated by the appliation or by BMI.

� BMI method post rev(id, soure, bu�er, size, bu�er ags, mes-

sage tag): Posts a reeive operation. The argument semantis are the same

as those used in BMI method post send().

� BMI method unpost(id): Forefully aborts a previously posted operation.

The status of the target operation should still be retrieved through the use of

a BMI method test() funtion, however. It may have ompleted suessfully

before the BMI method unpost() was proessed.

� BMI method addr lookup(id string): Performs a lookup on the textual

representation of the host address spei�ed by id string. The return value is

the resulting method address struture as generated by the method to represent

the address.

39

� BMI method test(id, outount, state): Tests for ompletion of a single

network operation, as spei�ed by the id argument. Outount indiates how

many operations ompleted (whih will either be zero or one in this ase). The

state parameter is �lled in with the state of the operation in question one it

ompletes.

� BMI method testsome(inount, id array, outount, index array, state array):

Tests for ompletion of any of a spei�ed set of operations. The set of operations

to look for is spei�ed by an array of id's of size inount. Outount is �lled in to

indiate how many of the target operations ompleted, while index array and

state array indiate exatly whih operations ompleted and what their �nal

state was.

� BMI method testglobal(inount, id array, outount, state array):

Tests for ompletion of any operations that are urrently in progress within

a single method. Inount spei�es how many operations the aller is willing

to aept with one invoation of BMI method testglobal. Id array, outount,

and state array are �lled in to indiate whih operations ompleted and what

their �nal state was.

� BMI method testunexpeted(inount, outount, method unexpeted info array):

Tests for ompletion of any newly arrived unexpeted messages. The inount

indiates how many operations the aller is willing to aept, while the outount

indiates how many atually ompleted. The method unexpeted info array is

�lled in with a desription of eah ompleted operation. Note that this struture

is di�erent from the info array argument to the top level BMI testunexpeted()

funtion. This is beause it ontains information that is private to the BMI li-

brary and therefore should not be visible to a BMI user.

40

� BMI method memallo(size, send rev ag): Alloates an optimized

memory bu�er of the requested size. The send/rev ag indiates whether the

bu�er will be sent or reeived from the loal host. No address argument is given

beause the top level interfae has already used that data to determine whih

method to use. It is not needed at this level.

� BMI method memfree(bu�er, send rev): Frees a memory bu�er that

was alloated with BMI memallo(). The send rev parameter has the same

semantis as in BMI method memallo().

� BMI method initialize(listen addr, method id, ags): Initializes the

method. This funtion must be alled before any operations are proessed by the

method. The listen addr is a method address that ontains information about

how the method should listen for new messages. The method id parameter is

used to inform the method of the id handle that will be used to referene the

method and it's address strutures. This is assigned by the method ontrol ode

to prevent ollisions between method identi�ers.

� BMI method �nalize(): Shuts down the method. This funtion should

only be alled one all network ommuniation is ompleted. It will forefully

terminate any outstanding operations. Eah individual method an be shut

down independently without disrupting any other operations.

� BMI method set info(address, option, parameter): Sets optional method

spei� parameters.

� BMI method get info(address, option, parameter): Queries the method

for optional parameters.

41

3.11 Support libraries

The BMI library provides several support funtions whih may aid method program-

mers when implementing support for new protools. Eah method an expet these

funtions to be visible to it one it has been dynamially loaded into the library.

These funtions are intended to be as generi as possible so that they may be used

by a variety of di�erent methods.

3.11.1 Operation queues

Every prototype method implemented so far makes use of FIFO queues to keep trak

of pending operations. Operations are desribed by generi operation strutures that

inlude ommon parameters (suh as bu�er size and loation). This struture also

inludes abstrat storage spae for private method spei� parameters (suh as ow

ontrol or devie management information). The operation queue mehanism in BMI

is based heavily on the doubly linked list implementation found in the 2.2 and 2.4

series Linux kernels. This implementation is used throughout the kernel in areas

suh as CPU sheduling and the TCP/IP stak whih require data strutures to be

optimized for speed.

� op queue new(): Creates a new operation queue.

� op queue leanup(old op queue): Destroys an existing operation queue

as well as any operations ontained within it.

� op queue add(target op queue, method op): Adds a method opera-

tion onto the tail of a queue.

� op queue remove(method op): Removes a spei� operation from the

queue in whih it resides.

42

� op queue searh(target op queue, key): Searhes for an operation that

mathes the harateristis spei�ed by the key. All searhes begin at the head

of the target operation queue.

� op queue empty(target op queue): Determines whether a queue is empty

or not.

� op queue ount(target op queue): Counts the number of entries within

an operation queue. This funtion requires iteration through every element

of the queue. It is therefore only suitable for debugging purposes in whih

performane is not ritial.

� op queue dump(target op queue): Prints out information about every

operation in the queue. Only used for debugging and prototyping purposes.

Two related funtions are also provided for managing the reation of operation

strutures:

� allo method op(payload size): Alloates a new operation struture, in-

luding enough room for the private data payload that a partiular method

may wish to store within it. Note that this private data is provided in a region

ontiguous to the generi struture for eÆieny.

� deallo method op(target op): Dealloates an existing method operation.

3.11.2 Method address support

Method address strutures are used by methods to identify network hosts. Like

operation strutures, they ontain private storage for internal method use. Three

funtions are provided to aid in managing these strutures:

43

� allo method addr(method id, payload size): Creates a new address

struture. The method id �eld is used to tag the struture as belonging to the

method that reated it. The payload size indiates how muh spae should be

set aside within the struture for private use by the method.

� deallo method addr(old method addr): Destroys an existing method

address struture.

� bmi method addr reg allbak(target method addr): This is alled

by a method to inform the method ontrol layer that it should register a new

method address struture. The funtion is typially invoked when an unex-

peted message arrives and the method must autonomously reate a new ad-

dress struture to represent the soure host. The new method address struture

must be registered with the method ontrol layer so that it is aware of the new

struture for bookkeeping purposes.

3.11.3 Logging and debugging

The BMI library inludes a set of funtions known as the gossip library whih may

be used for reporting errors, logging messages, or providing debugging information.

The gossip library was reated to provide a onsistent interfae for performing these

tasks. It also an be implemented with various bakends that an be swithed at

runtime to ontrol where the log messages are atually reorded. As of this writing

it supports stderr, syslog, and �le based logging. In the future it will support other

mehanisms suh as in ore ring bu�ers.

Gossip also supports setting debugging masks, whih an ontrol whih lasses of

messages are atually reorded. This is useful in BMI for seleting whih methods

atually display debugging output.

44

� gossip set debug mask(debug on, mask): Controls whether debugging

messages are on or o�. The mask parameter spei�es what lass of debugging

messages will be displayed if debugging is turned on. Note that ritial error

messages annot be disabled.

� gossip enable syslog(priority): Enables the syslog logging faility and sets

the syslog priority that will be assigned to eah message.

� gossip enable stderr(): Enables the printing of error messages to stderr.

� gossip enable �le(�lename, mode): Enables the logging of error messages

to a spei� �le. The mode parameter is useful for speifying if the �le should

be trunated or appended.

� gossip disable(): Turns o� the gossip library.

� gossip debug(level, format, ...): Logs a printf() style message with the

spei�ed debugging level.

� gossip err(format, ...): Logs a printf() style error message. This message

will be reorded regardless of the urrent debugging mask.

� gossip ldebug(level, format, ...): Same as the gossip debug() funtion, ex-

ept that it also displays the �le name and line number from whih the message

originated on systems with preproessors that support this feature.

� gossip lerr(format, ...): Same as the gossip err() funtion, exept that it

also displays the �le name and line number from whih the message originated

on systems with preproessors that support this feature.

45

3.11.4 Operation id's

Eah method is responsible for reating opaque id's that an be used to refer to

operations that are urrently in progress. Typially these id's will be used to map

user requests to spei� operation strutures. The id generator library is available

to aid methods in performing this mapping operation. This funtionality is provided

within a disrete interfae to allow for multiple implementations whih may use hash

tables or other data strutures to store mapping information. It also insures that the

id spae is onsistent aross all methods.

� id gen fast register(new id, void* item): Registers a new struture with

the interfae and reates a new id that may be used to referene it.

� id gen fast lookup(id): Returns a pointer to the original data struture

that was assoiated with the given id.

All of the interfaes listed in the preeding setion ome together to form the

method support libraries that method implementors should take advantage of when

reating new methods.

3.12 Method ontrol implementation

The method ontrol layer (as introdued in setion 3.6) is responsible for performing

onversions between the BMI user interfae and the method interfae, inluding any

method multiplexing that this implies. This is a relatively thin layer of software, but

it plays a ritial role in providing ore BMI features. Some of the more interesting

tasks that it performs are outlined in the following setions.

46

3.12.1 Method initialization

The BMI library must perform several steps when it is �rst initialized. This is the

point at whih it must enable all of the ative modules and initialize any internal

bookkeeping information. The steps that it performs at this time an roughly be

outlined as follows:

1. Parse the list of modules that will be used by the library.

2. Create a table to trak eah method and its instantiation of the method inter-

fae.

3. Load eah method module one at a time and verify that it provides the orret

symbols required by the method interfae.

4. Create a referene list to use for mapping host addresses between various inter-

faes.

5. Initialize eah method individually.

If any of these steps fails, then the initializer leans up any work that it had done

to that point and exits.

3.12.2 Posting and testing single operations

Posting and testing individual operations is relatively simple beause it involves in-

terating with only one method at a time. These funtions are arried out as follows:

1. Verify any arguments passed in by the user so that the method funtions an

assume that they are safe.

2. Searh through the referene list for an entry that mathes the address spei�ed

by the aller.

47

3. If suh an entry is not found, return an error beause the user spei�ed address

is invalid.

4. Find the method interfae that mathes the address (as indiated by the ref-

erene struture) and all the appropriate method to arry out the desired

operation.

3.12.3 Aggregate operation tests

Testing operations from multiple methods within one library all is a a more om-

pliated version of the senario outlined in setion 3.12.2. This situation must be

handled by the BMI testsome() and BMI testglobal() funtion alls, whih have the

ability to interat with multiple operations at one.

In the BMI testsome() ase, the array of operations that the user submits is

segregated based on whih methods ontrol whih operations. Eah method is then

tested in a round robin manner to determine if any of those operations have ompleted.

The results of the tests are aggregated bak into a single array and returned to the

user.

In the BMI testglobal() funtion is similar exept that the set of operations is not

known in advane; therefore the initial sorting phase an be skipped.

The order in whih round robin testing ours is determined by the order in whih

the user previously spei�ed the list of method modules at initialization time. Thus,

high throughput interfaes an be given a somewhat higher priority by simply listing

them �rst in the set of available method modules.

48

3.12.4 Address resolution

Address resolution is the �nal ritial omponent of the method ontrol layer. The

following steps are performed in order to lookup an address based on a text desrip-

tion:

1. Searh the referene list to determine if this lookup has already been performed.

If so, immediately return the orret BMI address.

2. Contat eah ative method until one of them indiates that it was able to

suessfully parse the host name.

3. Create a new referene struture to trak the address.

4. Fill in the referene struture with information about whih module is respon-

sible for it and whih address handles may be used to refer to it.

5. Store the referene struture and return a valid BMI address to the user.

Note that sine BMI is a onnetionless interfae, there is no way to guarantee

that an address is truly valid until a user attempts to ommuniate with that host.

3.13 Bringing together the BMI library

The preeding setions outline all of the omponents that make up the protool

agnosti portion of the BMI arhiteture. All of these omponents are arefully

onstruted to limit eah interfae to only those omponents that need to aess it.

A user has no mehanism for diretly interating with method data strutures or

funtionality, nor does any method have the ability to interfere with the operation

of other methods. Modularity is preserved by only providing the absolute neessities

of eah interfae to a given omponent. This helps to provide a safe environment

for both the BMI user and the method implementer. It also insures that individual

49

portions of the BMI arhiteture may be modi�ed or optimized without interfering

with ore funtionality. This is important in supporting future researh.

The method ontrol layer, support libraries, and user interfae only provide a

framework for the use of various network protools, however. The real work of arrying

out ommuniations and emulating neessary network features is arried out within

the BMI methods. The design of a set of prototype methods is outlined in the

following hapters.

Chapter 4

BMI method ase studies

For BMI to be suessful, we must be able to eÆiently implement methods for

highly diverse networking environments. Thus we have hosen two distint messaging

systems as examples of the potential of the Bu�ered Message Interfae. The �rst is

TCP/IP. TCP/IP is a well known and widely adopted network protool. It is a

stream based and onnetion oriented, and provides full ow ontrol and reliability.

The seond is GM. GM is a user level protool that is supported on Myriom's Myrinet

series of network adapters. GM is onnetionless and provides no ow ontrol.

These two protools were hosen for two reasons. The �rst is their lak of similar-

ity. If BMI an be shown to work eÆiently over both protools, then it should give

at least some indiation that the design is exible. The implementation ase studies

will outline the hallenges that were overome for eah method in more detail. Se-

ondly, both protools are mature and readily available on prodution level systems.

Their behavior is well known and does not introdue any unexpeted anomalies when

studying network implementations.

Note that both implementations are essentially referene designs. More optimiza-

tions are available then have been implemented. Some of these have been identi�ed

51

for future work and will be noted where appropriate. The primary emphasis here is

on obtaining dependable behavior and evaluating the Bu�ered Message Interfae.

4.1 Method support libraries

Several support funtions are provided for use by the BMI methods. These support

funtions were previously outlined beginning in setion 3.11. The most important set

of funtions provide queuing apability. Almost every network method will utilize

queues to keep trak of network operations. Other support funtions are provided to

manage two important data strutures: the method addresses and method operations.

Method addresses are used as handles for hosts on the network. Operation strutures

are used to represent individual operations that are posted by the appliation. Both

strutures ontain generi �elds that apply to all methods while also allowing room

for eah method to store its own private information.

4.2 TCP/IP

4.2.1 Challenges

� Connetionless emulation: The TCP/IP soket interfae is onnetion ori-

ented. This means that a onnetion must be established between two hosts

before ommuniation an our between them. It should also be terminated

after all ommuniation is omplete. BMI, however, is a onnetionless inter-

fae. The at of setting up and tearing down onnetions must be managed

below the appliation interfae, transparent to the appliation.

� Data streams: TCP/IP sokets operate as data streams. The interfae has

no expliit onept of message boundaries. Any amount of data an be sent

or reeived in a single operation, but it may not neessarily omplete at one.

52

Partial sends and reeives are legal when using nonbloking TCP/IP sokets.

This behavior does not math the BMI model of ommuniations. BMI treats

eah message as an atomi unit that is either sent orretly or not.

� Error reovery: Reovery from ommuniation failure using TCP/IP is some-

what ompliated within the BMI environment. TCP/IP sokets ontain a quite

a bit of state beause of the presene of a onnetion and a data stream. If a

single operation fails, it is important to properly tear down any soket state

and safely handle any further pending operations that intended to use the same

soket.

4.2.2 Approah

Building bloks

The TCP/IP method implementation is based on three primary building bloks. The

�rst is the sokio library, whih provides a very small abstration of the Unix sokets

interfae. It implements the basi operations, suh as reating sokets, onneting

sokets, setting TCP options, and performing read and write operations. The sokio

library has been used extensively in the urrent PVFS implementation and is known

to perform reliably.

The seond building blok is the soket olletion library. The soket olletion

library provides a mehanism for managing groups of ative sokets. Sokets are

added to it as they are reated, and removed from it as they are destroyed. The

soket olletion traks all of the sokets and determines whih ones an potentially

send or reeive data. When the TCP/IP method is prompted to do work, the soket

olletion is tested to determine whih sokets are ready to handle operations. The

internal polling set is dynamially resized as neessary to aommodate arbitrarily

large olletions of sokets. This interfae also allows the possibility of implement-

53

ing new polling strategies without ompromising ode that depends on the soket

olletions.

The �nal building blok for the TCP/IP method is the operation queuing library

provided by the method ontrol layer. The queues are neessary to preserve the

ordering of messages and to keep trak of operations that are urrently in progress.

There are a �xed number of queues available that are used for ommuniation with

all hosts. This approah is hosen over maintaining separate queues for eah host for

reasons of simpliity and maintainability. We intend to show that the use of global

method queues is not detrimental to performane as long as the queue management

and searhing is performed in an eÆient manner.

Message modes

The TCP/IP method o�ers three modes of operation depending on the parameters

of the message to be sent. The �rst, unexpeted mode, is spei�ed by the user

when sending unexpeted messages as outlined in setion 3.3. The other two, eager

and rendezvous mode, are transparent to the user and are internally hosen by the

TCP/IP method based on the size of the data region to be transfered.

The semantis of eah mode of operation are de�ned as follows:

� rendezvous: This is the simplest messaging mode supported by the TCP/IP

method. It is hosen for larger messages (the default threshold spei�es that

rendezvous mode will be used for any message over 16 Kbyte in size). In this

situation, the sender will �rst send a header desribing the message and then

immediately follow it with message data. The reeiving method an aept the

header at any time. However, it will not begin to read in the message data

until the reeiving user has posted a mathing reeive operation. This is why

this mehanism is termed \rendezvous" mode; the bulk data transfer is not

54

allowed to our until both the sending and reeiving user have prepared for

the operation.

� eager: This messaging mode is hosen by the TCP/IP method for smaller

message sizes (by default, less than 16 Kbyte in size). The sender (as in the

rendezvous ase) �rst transmits a header desribing the message and then fol-

lows it with the atual message data. The reeiver will aept this header and

then make a deision about how the message data should be handled. If a

mathing reeive operation has already been posted by the user, then the mes-

sage data will be read into the reeive bu�er for that operation. If a mathing

reeive has not yet been posted, then the reeiving method will dynamially

alloate a temporary bu�er for the data to be stored in. This allows the oper-

ation to make progress even if the reeiving user is not yet ready for the data.

One the mathing reeive operation is posted, the data an be opied into the

�nal bu�er and the temporary bu�er is destroyed.

� unexpeted: Unexpeted messages are handled in an almost idential manner

to eager messages. The only variation is that there is no �nal bu�er opy step if

the sender transmits data before the reeiver is ready. Instead, the temporary

bu�er is passed to the user when the user heks to see if any unexpeted

messages have been reeived. The semantis of unexpeted messages ditates

the the reeiver does not get a hane to speify the destination bu�er for the

message. It is reated by the method.

It is interesting to note that in all three ases the sending method behaves the

same. This seems ounter-intuitive at �rst beause it would appear that (at least

in the rendezvous ase) that the sender should wait until the reeiver is prepared

before transmitting the atual message data. However, we an rely on the natural

behavior of the TCP/IP sokets interfae in this ontext. TCP/IP sokets allow a

55

sender to start sending data before a reeiver is ready. The data is simply bu�ered at

the operating system level until it an be transferred. This bu�ering of data improves

overall lateny and throughput beause the operating system does not have to wait

on user intervention to begin moving data one the opportunity arises.

Queuing model

As mentioned earlier, the TCP/IP method uses queues to keep trak of network

operations that are either in progress, awaiting resoures, or ompleted. Six separate

queues are used:

� Send queue: Contains all send operations (for any mode or address) that

annot be initiated yet. Operations are typially queued here beause a previous

operation to the same address has not yet ompleted. This queue ensures proper

message ordering when multiple send operations are posted.

� Completed queue: Contains all operations that have ompleted transmission,

whether suessful or not. Operations are removed from this queue one the

user has queried with the appropriate BMI test funtion.

� In-ight reeive queue: Contains a list of reeive operations that have already

begun but are not yet ompleted. It provides a fast mehanism for identifying

where inoming data should be plaed one a soket has data available.

� Eager reeive queue: Contains reeive operations that are small enough to

be aepted in eager mode. These operations have not yet reeived any data.

One data begins to arrive for a partiular operation, it will be moved to the

in-ight reeive queue.

� Rendezvous reeive queue: Contains reeive operations that will be aepted

using rendezvous mode. These operations have not yet reeived any data. One

56

data begins to arrive for a partiular operation, it will be moved to the in-ight

reeive queue.

� Bu�ering reeive queue: Contains eager or unexpeted reeive operations

whih have begun bu�ering data before the user posted a mathing bu�er. This

queue is searhed when an eager message is posted to determine if the operation

has already been ompleted.

Notie that there are more reeive queues available than send queues. There are

two reasons for this design. First of all, as noted earlier, all send operations are

treated the same from the method's point of view. There is no distintion between

TCP/IP sends that our for di�erent message modes. Seondly, the handling of

reeive operations requires more queue searhing than in the send ase. We therefore

gain a measurable boost in performane by simply splitting up the queues to minimize

searh time.

Senarios

The internal workings of the TCP/IP method an best be summarized with a few

simple examples. The �rst example is an eager mode send operation, as shown in

Figure 4.1. The operation begins with the user alling BMI post send(). The method

will �rst hek to see if there are any sends already sheduled for the same address.

If it �nds one, the message is immediately queued to preserve ordering. Otherwise,

the method makes an attempt to send the message envelope and as muh data as it

an (without bloking) before queuing. If the message is ompleted at this time, it is

never queued, and the return value of BMI post send() indiates its ompletion.

If the send does not omplete on the �rst try, it will remain in the send queue

until the internal soket olletion indiates that work may ontinue on the operation.

Sine the TCP/IP method does not possess its own thread of ontrol, it annot do

57

Figure 4.1: TCP method (typial send senario)

Key

BMI interface call

Operation queue

Action

SEND QUEUE

find first send
op for socket

poll detects that
socket will accept data

COMPLETION
QUEUE

BMI_test

found completed
operation

BMI_post_send

messages are already
queued for this address

immediately
send envelope

no messages previously
queued for this address

look for
completed operation

envelope
not completed

immediately
send payload

envelope
completed

payload
not completed

payload
completed

send envelope/payload

payload
not completed

payload
completed

58

Figure 4.2: TCP method (typial reeive senario)

Key

BMI interface call

Operation queue

Action

EAGER RECEIVE
QUEUE

receive payload

found matching
operation (if available)

IN FLIGHT RECEIVE
QUEUE

receive envelope
to identify operation

operation not
in flight

found operation
in flight

BUFFERED RECEIVE
QUEUE

BMI_post_recv

copy buffer
and return

COMPLETION
QUEUE

BMI_test

completed operations
found

message not
yet buffered

message is
already buffered

check for completed
operations

poll for presence
of new data

check for operation
in flight

see if operation
is posted

did not
complete payload

completed payload;
receive not posted

completed payload;
receive posted

work until the user alls BMI test(). One an operation is �nished, it is stored in

the ompletion queue, where it will be reovered by the user in subsequent alls to

BMI test().

The ommon reeive senario is slightly more ompliated than the send ase. Fig-

ure 4.2 outlines the ow of events for an eager mode reeive. When BMI post rev()

is alled by the user, it �rst heks to see if the reeive has already been bu�ered.

If so, it opies the payload out of the temporary bu�er and returns immediately.

Otherwise, the reeive operation is queued.

When the soket olletion indiates that data is available, the method �rst heks

the in ight reeive queue to see if the data belongs to an operation that is already

in progress. If the method �nds a math, it ontinues reeiving data. If there is

no mathing operation in ight, then the method reads the envelope data from the

soket to determine the parameters of the message.

If an operation ompletes before the mathing reeive has been posted by the user,

it will be stored in the bu�ered reeive queue. Otherwise, the operation is plaed in

the ompletion queue where it remains until the user tests to see if it has ompleted.

59

4.2.3 Possible optimizations

The approah outlined thus far for implementing a TCP/IP BMI method is suÆient

to provide the orret messaging semantis. However, there are several optimizations

whih may be implemented to improve performane. Some of these tehniques are

presented below. A few of them will be explored more fully in setion 5.

� Nagle's algorithm: Nagle's algorithm [20℄ attempts to improve eÆieny on

distributed networks by limiting the number of small pakets in ight at any

given time. If TCP/IP messages have been sent for whih no aknowledgment

has been reeived, then Nagle's algorithm prevents pakets below a ertain size

threshold from being transmitted until all aknowledgments have been reeived.

This may ause exessive delay for small messages if the network is reliable and

does not need suh a onservative approah to small messages. Therefore, most

modern TCP/IP implementations have a mehanism for disabling this algorithm

from the appliation level.

� Eager reeive opportunities: Immediate ompletion of any network opera-

tion is bene�ial to performane beause it avoids the overhead of testing for

ompletion later. The TCP/IP method does not yet take advantage of every

suh opportunity in the reeive ase. One example ours if a reeive is posted

when no other reeive is queued for that address. In this situation, it ould take

the optimisti approah and immediately hek the mathing soket for data.

If the sender has already begun transmitting, then the reeive operation an

make progress before it is even queued.

� Tuning soket bu�ers: The amount of data that an be bu�ered during a

send or reeive is determined by the operating system's TCP/IP soket bu�er

size. This parameter may be spei�ed globally for the entire system, or it may

be spei�ed on a per soket basis. If it is set on a per soket basis, then the

60

method has the ability to adjust the bu�er size dynamially in response to

the type of operations being handled. It may be lowered to onserve system

resoures, or inreased in order to allow the kernel to do more work per system

all.

� Reduing memory alloation: Dynami alloation of memory is typially

an expensive operation. At this time, the TCP/IP method alloates several

internal bookkeeping strutures as needed, rather than reusing a pool of existing

strutures. This may be hindering small message lateny in some situations.

In partiular, the method operation struture (whih traks the state of all

network messages) is alloated for almost every message that is transmitted.

This ould be alleviated by simply replaing the method operation interfae

with an implementation that maintains a pool of strutures that are already

initialized and ready for use. Similar tehniques are used in most operating

system kernels to limit the overhead of aquiring ommon data strutures.

� Queue separation: The range of available operation queues was hosen as a

ompromise between method omplexity and queue searh time. However, this

may not be optimal for all work loads. The queues ould be instrumented to

provide more information about searh times. This may indiate problem areas

that ould be targeted for improvement in queue layout.

� Alternative polling algorithms: The urrent implementation polls in the

same order through the soket olletion on eah iteration. This strategy ould

be replaed with a round robin or other simple polling mehanism that more

evenly distributes work among ative sokets. We may also be able to identify

situations in whih more than one message an be plaed in a single soket per

iteration. Right now the test funtions try to send or reeive only one message

per soket for eah funtion all.

61

4.3 GM

4.3.1 Challenges

� Memory management: GM requires all data bu�ers to be pinned into phys-

ial memory before transmission. We an take advantage of this using the BMI

memory management funtions. However, we must also support the use of arbi-

trary user bu�ers at the BMI interfae level. This requires either internal bu�er

opies or memory registration to maintain interfae semantis.

� Flow ontrol: GM does not provide any form of message level ow ontrol. In

fat, it requires that all reeive bu�ers be posted before message transmission

begins. Therefore, the BMI method must implement ow ontrol in order to

relax the message ordering semantis. BMI does not guarantee synhronization

between sender and reeiver.

� Mathing posted bu�ers: There is no way to speify whih inoming message

will math a given reeive bu�er posted by the GM user. The user annot speify

that a bu�er is only to be used for messages from a partiular host, for example.

Therefore, one a message is reeived, the method must analyze it to determine

its origin and perform a memory opy if neessary to put the data in the orret

user spei�ed loation.

� Limited token resoures: The GM interfae fores the user to refrain from

posting sends or reeives unless it possesses an appropriate token. There are

a �nite number of tokens. They are onsumed when a send is initiated or a

reeive bu�er is posted. The tokens are then returned when a send or reeive

ompletes.

62

4.3.2 Approah

The BMI GM method implementation relies heavily on the queuing mehanism pro-

vided by BMI to preserve message ordering and maintain the state of the system.

It also takes advantage of several features spei� to the GM library interfae that

assist in managing message ompletion.

Message modes

The GM method supports two messaging modes. The deision to use one or the

other is based solely on the message size. The most omplex messaging mode is the

eager handshake mode. It is used by default for any message larger than 8 Kbyte, but

this parameter is tunable. This mode is onsidered eager beause it allows messages

to be bu�ered at the reeiving side before the user posts a mathing reeive opera-

tion. However, the sending and reeiving hosts must negotiate at a low level before

transmitting the message.

Smaller messages are sent using immediate mode. Immediate mode requires no

handshaking at all. The sender assumes that the reeiver is always prepared to reeive

messages of this size.

Methods are apable of sending and reeiving ontrol messages independent of

atual message data. These ontrol messages may ontain ow ontrol information,

handshaking information, or atual message data in the ase of immediate mode

messages. When the GM method is initialized, its �rst task is to provide a large

number of reeive bu�ers for aepting ontrol messages. These bu�ers are reused

after proessing ontrol messages and are replaed as quikly as possible to ensure

that there are always bu�ers available to handle new ontrol messages.

When a sender initiates an eager handshake ommuniation, it �rst sends a ontrol

message to the reeiver to announe that it wishes to transmit. The reeiver then

prepares a bu�er of the appropriate size for reeiving the message. One the bu�er

63

is ready, it sends a ontrol message bak to the reeiver in response to announe that

the bu�er is ready. The atual message payload is then transfered.

When a sender initiates an immediate ommuniation, it simply sends the data

as payload on a ontrol message. The reeiver will aept these messages without

negotiating in advane.

Flow ontrol

The GM method implements very basi ow ontrol mehanisms. The atual om-

muniations mehanism on Myrinet networks are extremely reliable, so the goal of

ow ontrol is not to avoid ongestion or lost pakets, but rather to onserve memory

resoures. Only a �nite number of reeive bu�ers may be posted at a given time, and

one must be areful not to exhaust the memory resoures of a host mahine.

There are two types of bu�ers whih may be posted by a reeiving host. The

�rst is the large data payload bu�er used during eager handshake ommuniations.

The use of these bu�ers an be easily ontrolled by the reeiver sine they are only

used in this spei� mode. One the reeiver proesses a ontrol message requesting

a bu�er of this type, the reeiver has the option of waiting as long as it needs to

before posting the bu�er. If it runs out of memory resoures, it simply delays sending

a ontrol response until the resoures are available. This prevents a sender from

transmitting the payload too quikly.

Control message bu�ers are the seond resoure that must be onserved. The GM

method attempts to keep as many of these available as possible, but it is still possible

for a lient to overrun the available bu�ers by sending small messages faster than they

an be proessed. In order to prevent this situation, a limit is plaed on the number

of send messages that may be in ight between hosts at any given time. A message

is onsidered to no longer be in ight one the sender is sure that the reeiver has

proessed it. The number of messages allowed per host is tunable. Inreasing this

64

parameter improves performane beause it allows deeper pipelining if many messages

are allowed to be transmitted bak to bak. However, this parameter must be redued

in larger networks to ensure that eah host an aept messages from every other host

simultaneously without exhausting memory resoures.

Message pipelining

Note that pipelining is used extensively in eager handshake mode. There are several

steps to arrying out eager handshake messages. One message may be in step one

while another message is in step two, and so on. The available resoures determine

how many messages may arry out the same step at the same time. If one resoure is

exhausted, other steps are allowed to ontinue up until stalling on that resoure. This

approah is very similar to instrution pipelining in modern miroproessors [22℄.

Retransmission

Even with the above ow ontrol sheme, the salability of the GM method is limited.

With enough hosts on the network, any �nite number of available bu�ers ould be

onsumed in a degenerate ase, suh as a many to one ommuniation. Therefore,

the method must be able to reover from paket loss that ours when messages are

sent before bu�ers are ready.

The GM library provides extensions to detet and reover from this situation.

However, the doumentation for these extensions is inomplete at the time of this

writing beause these features have undergone modi�ations during reent release

yles. Implementation of a retransmission poliy for the BMI GMmethod is therefore

being postponed for future work.

65

Senarios

The GM method an be understood more fully by observing a few senarios. The

immediate mode messages are just a simpli�ed version of the eager handshake mes-

sages, so we will fous on eager handshake mode. Keep in mind that this method is

not implemented using threads. Therefore, the state mahine is only driven when the

aller invokes BMI funtion alls.

A state diagram of the send ase is shown in Figure 4.3. When the appliation

posts a send bu�er, the method �rst heks to see if the data needs to be opied

into a suitable bu�er. One the bu�er is ready, it must hek three resoures before

ontinuing. First it makes sure that a send token is available. Then it heks to see if

any messages are queued ahead of it. Finally, it heks to see how many messages are

already in ight to the target host. If any requirement is not met, then the message

is queued. Otherwise, it ontinues by sending a ontrol request to the target host.

If the target host responds and grants permission to send the data payload, then

the method must again either obtain a send token or queue the message until a

token is available. Finally the data payload is sent and the operation is plaed in a

ompletion queue to be reovered when the appliation alls BMI test().

The mathing reeive example is shown in Figure 4.4. When a ontrol request is

reeived from a sending host, the method must obtain a token to reeive the data

payload. If no token is available, the operation is temporarily queued. A bu�er is

then posted to aept the payload, and a ontrol response is sent to inform the sender

that it may proeed. The operation is then queued until the data arrives.

One the data arrives, the method heks to see if a mathing reeive operation

has been posted in the ontrol math queue. If so, the operation is �nished and

moved to the ompletion queue to be reovered during a BMI test() all. If not, the

operation is plaed in the reeive post queue to wait until BMI post rev() is alled.

66

Figure 4.3: GM method (typial send senario)

Key

BMI interface call

Operation queue

Action

SEND TOKEN
QUEUE

send data
payload

clear to send
payload

SEND QUEUE
(PER HOST)

send control
message

clear to send

COMPLETION
QUEUE

BMI_test

message
completed

BMI_post_send

prepare memory buffer
if needed

check for
completion

messages are already
queued for this address

no tokens available

clear to send

receive control
response

need send token

message
denied

clear to send
payload

check status

67

Figure 4.4: GM method (typial reeive senario)

Key

BMI interface call

Operation queue

Action

RECV TOKEN
QUEUE

create receive
buffer

tokens
available

RECV QUEUE

CONTROL MATCH
QUEUE

check for
receive post

RECV POST
QUEUE

message not ready;
wait for sender

copy to
user buffer

buffered message
found

wait for
receive post

COMPLETION
QUEUE

receive post and
message complete

BMI_test

message
complete

BMI_post_recv

see if message
already arrived

look for
complete message

operation
complete

ctrl message
received

no tokens available

tokens
available

send control
response

wait for
data payload

68

BMI post rev() will omplete immediately in this ase beause the data will already

be available before the funtion is invoked.

4.3.3 Possible optimizations

The GM messaging library provides tools for implementing many ommuniation

optimizations. The original GM method implementation is foused on orretness

rather than speed, so several of these possibilities have been left for later work:

� Registering memory: All memory bu�ers transmitted using GM must either

be alloated by the GM library or registered by the GM library. Currently,

if a BMI user passes in a bu�er that was not prealloated, a new bu�er is

reated and the data is opied into it. This is done so that extra room may

be provided in the bu�er for storing header information. However, it would

probably be muh faster to register the existing bu�er. Alloating room for the

header ould be avoided by transmitting the data using ontrol messages.

� Fast GM messages: GM optimizes for very small messages by transmitting

them within the low level GM ontrol paket. If the appliation elets to handle

this type of message, it an operate diretly on the data bu�er from the GM

ontrol paket. If it ignores this type of message, then the data is transparently

opied into a normal GM bu�er and handled just like any other message. This

bu�er opy ould be avoided if the method proessed this speial type of message

(alled \fast" messages by GM).

� Avoiding memory opy on reeive: Sine the GM method does not allow

the aller to speify whih inoming messages are plaed in whih bu�er, inom-

ing messages are always opied to ensure that they end up in the orret user

bu�er. In some ases, this is unneessary beause the aller doesn't atually

are where the data is plaed. We ould take advantage of this by allowing a

69

speial type of reeive operation that provides the bu�er to the aller one the

operation ompletes, rather than speifying it in advane. This would require

a modi�ation to the BMI interfae.

� Advaned ow ontrol: The BMI GM method implements a very rudimen-

tary ow ontrol sheme. A more advaned approah ould potentially yield a

speedup, but is beyond the sope of this doument.

� Pooling ontrol bu�ers: As mentioned earlier, ontrol reeive bu�ers are

pooled and reused one they are proessed to avoid the overhead of alloating

new memory regions. This is not done in the send ase, however, beause it

is more diÆult to loate available bu�ers when they are needed. A simple

lookaside list implementation ould resolve this issue, however, and avoid extra

memory alloation time.

� Reduing memory alloation for bookkeeping: The BMI methods allo-

ate several strutures to trak pending operations and network addresses. If

these strutures were alloated in advaned and reused as needed it would help

to ut down on message lateny.

Chapter 5

Results

We must measure the performane of the BMI implementation in several senarios

to evaluate its eÆieny. MPICH will be used for omparison purposes so that there

is a point of referene for observing the results. MPICH was hosen beause it is

apable of providing almost all of the messaging ability that BMI possesses, and

there is an MPICH devie available for both TCP/IP and GM (the two BMI referene

implementations).

In all ases, the benhmarks were implemented using MPI funtions that most

losely math the apabilities of BMI. However, sine MPI is a muh broader imple-

mentation, there are often MPI funtions available that would be more optimal. These

funtions are ignored for this omparison, however, beause we are more interested

in general purpose baseline performane.

It must be emphasized that this is not a diret omparison of the two interfaes.

In general they solve very di�erent problems and thus are subjet to di�erent design

onstraints. BMI has an advantage in these tests beause it is a muh less featureful

interfae and the test appliations do not always take advantage of the most optimal

MPI appliation approah.

71

The �rst analysis of BMI performane will fous on point to point bandwidth,

round trip lateny, and many to one and one to many ommuniations. The �rst

two lasses of tests will hopefully point out fundamental strengths and weaknesses of

the interfaes, while the latter tests will attempt to evaluate BMI in situation more

similar to what would our in a real life �le server implementation.

5.1 Test environment

These tests were all arried out on the Chiba City salable luster at Argonne National

Laboratory [7℄. The luster was on�gured as follows at the time of our experiments.

There were 256 nodes, eah with two 500-MHz Pentium III proessors, 512 Mbytes of

RAM, a 100 Mbits/se Intel EtherExpress Pro Fast Ethernet network ard operating

in full-duplex mode, and a 64-bit Myrinet ard (Revision 3). The nodes were running

Linux 2.4.2. There were two MPI implementations: MPICH 1.2.1 for Fast Ethernet

and MPICH-GM 1.2.0 for Myrinet. None of the tests were performed using more

than 65 nodes at a time.

5.2 Initial TCP/IP results

All TCP/IP tests were performed using the Ethernet network on Chiba City with

MPICH 1.2.1. In addition, baseline bandwidth measurements were performed using

the ttp test utility, version 1.12 [25℄. The ttp utility operates diretly on TCP/IP

sokets with no abstration layer. It should therefore give a good indiation of the

maximum obtainable TCP/IP bandwidth.

72

5.2.1 Bandwidth

Bandwidth was measured by transmitting a predetermined amount of data between

two hosts using a variety of message sizes. The data was marked with a pattern before

timing began so that its orretness ould be veri�ed after reeipt. All messages were

posted in order before testing for ompletion. Timing for both sender and reeiver

hosts inludes the time required to post and test for ompletion of all messages. MPI

tests were performed using the MPI Isend(), MPI Irev() and MPI Test() funtions.

BMI tests were performed using BMI post send(), BMI post rev() and BMI test().

Memory bu�ers were not alloated using the BMI interfae in any TCP tests.

This sort of alloation has no impat on performane in the TCP/IP method beause

TCP/IP has no mehanism for optimizing message bu�ers.

All �gures shown are the result of averaging �ve measurements. The BMI and

MPI tests were run within seonds of eah other in eah ase in order to ensure that

the system was in a onsistent state for eah test.

Figure 5.1 shows the TCP/IP bandwidth as measured from the sending host for

very small message sizes, ranging from 100 bytes to 1000 bytes. The total amount of

data transfered in every ase was 1,000,000 bytes, or nearly one Mbyte. This means

that the total number of message sent for eah data point ranged from 10,000 to 1,000

messages.

The raw TCP performane (as measured by ttp) shows negligible impat from

hoie of message size. However, both MPI and BMI demonstrate the penalty imposed

from an extra layer of abstration over the sokets interfae. BMI does not reah its

peak bandwidth apability until the message size is 500 bytes or greater. These results

also show that the BMI interfae imposes an overhead of about 5% ompared to diret

soket ommuniations for message sizes larger than 500 bytes. MPI does not reah

its peak apaity within this message range.

73

Figure 5.1: Small message TCP/IP bandwidth (send)

0

2

4

6

8

10

12

100 200 300 400 500 600 700 800 900 1000

B
an

dw
id

th
 (

M
by

te
s/

se
c)

Message Size

TCP/IP send bandwidth over ethernet

BMI
MPI

TTCP

Figure 5.2: Small message TCP/IP bandwidth (reeive)

0

2

4

6

8

10

12

100 200 300 400 500 600 700 800 900 1000

B
an

dw
id

th
 (

M
by

te
s/

se
c)

Message Size

TCP/IP receive bandwidth over ethernet

BMI
MPI

TTCP

74

Figure 5.3: Larger message TCP/IP bandwidth (send)

8

8.5

9

9.5

10

10.5

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

B
an

dw
id

th
 (

M
by

te
s/

se
c)

Message Size

TCP/IP send bandwidth over ethernet

BMI
MPI

TTCP

Figure 5.2 shows very similar results for bandwidth measured from the reeiving

host.

Figures 5.3 and 5.4 show bandwidth results for the transfer of 10,000,000 bytes

(nearly 10 Mbytes) of data, using message sizes ranging from 1,000 bytes to 10,000

bytes. This means that the number of message needed to omplete the transfer varied

between 10,000 and 1000, just as in the previous ase.

Notie that with 10,000 byte messages, the BMI method only obtains about 9.8

Mbytes/se for a 10 Mbyte transfer, as opposed to 10.75 Mbytes/se for the 1 Mbyte

transfer shown in the previous graphs. This shows that both message size and number

of messages sent have an impat on performane. Again, the interfae is imposing a

notieable overhead when a large number of messages are queued up.

75

Figure 5.4: Larger message TCP/IP bandwidth (reeive)

8.6

8.8

9

9.2

9.4

9.6

9.8

10

10.2

10.4

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

B
an

dw
id

th
 (

M
by

te
s/

se
c)

Message Size

TCP/IP receive bandwidth over ethernet

BMI
MPI

TTCP

As the message size gets larger and the total number of messages being sent

dereases, the BMI performane begins to math the raw TCP/IP performane. For

large messages the overhead imposed by the interfae is less than 1%.

5.2.2 Lateny

Lateny results were obtained by measuring the round trip transmission time of a

message between two mahines. All ommuniations were done using nonbloking

funtion alls. Timing started just before posting the �rst send operation and ended

just after the reeipt of the response message ompleted suessfully. All measure-

ments were arried out from the appliation level.

Figure 5.5 shows the round trip lateny as measured using both BMI and MPI.

The message sizes ranged from 4 bytes to 4 Kbytes (on a logarithmi sale). The

MPI lateny is muh lower than the BMI lateny in this test, though they begin to

76

Figure 5.5: TCP/IP round trip lateny

300

400

500

600

700

800

900

1000

1 10 100 1000 10000

L
at

en
cy

 (
m

ic
ro

se
co

nd
s)

Message Size

TCP/IP round trip application latency over ethernet

BMI
MPI

onverge for larger message sizes. Setion 5.4.1 explores tehniques for lowering the

lateny found in the BMI TCP/IP method.

5.2.3 Simulated server load

This test is strutured as follows. A single host is setup to listen for MPI or BMI

messages. When it reeives a message (formatted as a small request), it replies by

sending another message of the requested size bak to the sender. The lients that

ommuniate with it are synhronized using MPI so that they all attempt to ontat

the server simultaneously. This is intended to measure BMI performane under a

load that resembles what would happen if many lients were to ontat a single

server simultaneously for a small data read operation.

In addition, the server is given no advane knowledge of whih lients will ontat

it, nor in what order they will ommuniate. The BMI portion of the server deals

77

Figure 5.6: TCP/IP many to one performane (10K messages)

0

0.05

0.1

0.15

0.2

0.25

0 10 20 30 40 50 60 70

Se
rv

ic
e

tim
e

(s
ec

on
ds

)

Number of clients

TCP/IP serverload benchmark

BMI maximum
BMI average

BMI minimum
MPI maximum

MPI average
MPI minimum

with this by using the BMI unexpeted message faility. The MPI portion of the

server handles it by posted a olletion of reeives that will math a wildard (any)

sender.

Timing information (round trip appliation lateny) is measured from the lient

side. The average, maximum, and minimum times among all lients are averaged

aross �ve test runs. Figure 5.6 shows the results of this test using 10 Kbyte messages

for anywhere from 2 to 64 lients.

The BMI method performs well for this message size and exhibits a very stable

performane urve.

Figure 5.7 shows results from the same test senario, but with a message size of

100 Kbytes rather than 10 Kbytes. The interesting behavior from this test ase is that

the BMI and MPI tests exhibit very similar average performane aross the range of

lients. However, the MPI interfae obtains this average through a muh wider range

78

Figure 5.7: TCP/IP many to one performane (100K messages)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60

Se
rv

ic
e

tim
e

(s
ec

on
ds

)

Number of clients

TCP/IP serverload benchmark

BMI maximum
BMI average

BMI minimum
MPI maximum

MPI average
MPI minimum

of individual lient measurements. MPI obtains muh lower lateny for some lients

while also obtaining muh higher lateny on other lients when ompared with BMI.

5.3 Initial GM results

All GM tests were performed using the Myrinet network on Chiba City with MPICH-

GM 1.2.0. All tests were setup in an idential manner to those presented in setion

5.2, but using the GM method for BMI and Myriom's MPICH-GM implementation

for MPI.

5.3.1 Bandwidth

The bandwidth was measured again by transmitting a �xed amount of data using a

variety of message sizes. The BMI GM method has the ability to take advantage of

79

optimized bu�ers, so the performane was also measured with the bu�ers being allo-

ated in advane using BMI memallo(). In test ases with this BMI prealloation,

the memory alloation time was not inluded in the timing. This is onsistent with

the normal test ases in whih the time needed to mallo() the data bu�ers was not

inluded in ommuniation timing. All data points shown are the result of averaging

�ve test runs.

The original intent was to measure performane over the same range of message

sizes used in the TCP/IP tests. However, it was disovered that the MPICH-GM

implementation was inapable of ompleting the 1 Mbyte bandwidth test using 100

Byte message sizes. The test generally failed with memory alloation errors.

As a result, performane measurements had to be taken from a larger message

size range to provide data points from both interfaes.

Figure 5.8 shows bandwidth as measured for the transfer of a 1,000,000 byte region

using message sizes ranging from 1,000 bytes to 10,000 bytes. This resulted in a total

number of messages ranging from 1,000 to 10,000.

Both MPICH-GM and BMI were on�gured by default to swith into three way

handshake mode at the 8 Kbyte message size. This an learly be seen in Figure 5.8

from the jumps in the urve. BMI performane (both for normal and prealloated

memory) dropped o� at 8 Kbytes, while the MPICH-GM performane improved at 8

Kbytes. The MPI performane below 8 Kbytes was surprisingly poor.

Figure 5.9 results from the same test run as measured from the reeiving side.

The results are very similar, exept that MPICH-GM performane doesn't improve

quite as muh on the 8 Kbyte boundary as it did in the send ase.

Figures 5.10 and 5.11 show the bandwidth as measured for the transfer of 10,000,000

bytes of data using messages sizes ranging from 10,000 bytes to 100,000 bytes. The

BMI method plateaus at about 27 Mbytes/se if the memory bu�ers are not allo-

ated in advane. The steps arried out for this transfer are idential to those done

80

Figure 5.8: Small message GM bandwidth (send)

0

10

20

30

40

50

60

70

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

B
an

dw
id

th
 (

M
by

te
s/

se
c)

Message Size

GM send bandwidth

BMI
MPI

BMI with preallocation

Figure 5.9: Small message GM bandwidth (reeive)

0

10

20

30

40

50

60

70

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

B
an

dw
id

th
 (

M
by

te
s/

se
c)

Message Size

GM receive bandwidth

BMI
MPI

BMI with preallocation

81

Figure 5.10: Large message GM bandwidth (send)

10

20

30

40

50

60

70

80

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

B
an

dw
id

th
 (

M
by

te
s/

se
c)

Message Size

GM send bandwidth

BMI
MPI

BMI with preallocation

Figure 5.11: Large message GM bandwidth (reeive)

10

20

30

40

50

60

70

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

B
an

dw
id

th
 (

M
by

te
s/

se
c)

Message Size

GM receive bandwidth

BMI
MPI

BMI with preallocation

82

Figure 5.12: GM round trip lateny

0

50

100

150

200

250

300

350

400

1 10 100 1000 10000

L
at

en
cy

 (
m

ic
ro

se
co

nd
s)

Message Size

GM round trip application latency

BMI latency
MPI latency

BMI latency with advance memory registration

with prealloation exept that an extra memory opy is inurred for every message.

The penalty introdued by this approah is quite evident here. Setion 5.4.2 ex-

plores methods of reduing this overhead for memory bu�ers that are not alloated

in advane.

5.3.2 Lateny

Round trip appliation was measured for GM in the same manner as done in the

preeeding TCP/IP tests. The results are shown on a logarithmi sale in Figure

5.12.

Prealloation of memory bu�ers had negligible impat on overall performane,

whih demonstrates that the additional memory opy is not terribly expensive for

bu�ers in this size range.

83

Figure 5.13: GM many to one performane (10K messages)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 5 10 15 20 25 30 35

Se
rv

ic
e

tim
e

(s
ec

on
ds

)

Number of clients

GM serverload benchmark

BMI maximum with preallocation
BMI average with preallocation

BMI maximum
BMI average

MPI maximum
MPI average

Figure 5.12 also shows that the BMI method was unable to obtain the low la-

teny �gures demonstrated by MPI at any message size. The disrepany is quite

large, with the BMI approah taking at least four times as long as the MPICH-GM

implementation.

5.3.3 Simulating server load

The serverload benhmark was exeuted over GM following the same parameters as

in the TCP/IP tests in setion 5.2.3. Figure 5.13 shows the results of this benhmark

for 10,000 byte message sizes.

Performane was errati for all three ases (MPI, BMI, and BMI with bu�er pre-

alloation). The MPI performane was very similar to the BMI performane with

prealloation. The BMI performane without prealloation was found to be substan-

tially slower.

84

Figure 5.14: GM many to one performane (100K messages)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 5 10 15 20 25 30 35

Se
rv

ic
e

tim
e

(s
ec

on
ds

)

Number of clients

GM serverload benchmark

BMI maximum with preallocation
BMI average with preallocation

BMI maximum
BMI average

MPI maximum
MPI average

Figure 5.14 shows the results of the same tests when using 100,000 byte message

sizes. The performane is muh more preditable in this ase. Again, the MPI

performane exeeded that of BMI. The margin was espeially large when the BMI

bu�ers were not prealloated.

5.4 Evaluating problem areas

The initial BMI performane results indiate that some aspets of BMI are not reah-

ing the potential o�ered by the underlying ommuniations systems. In this setion

we will attempt to analyze and address these issues.

85

Figure 5.15: TCP/IP round trip lateny

300

400

500

600

700

800

900

1000

1 10 100 1000 10000

L
at

en
cy

 (
m

ic
ro

se
co

nd
s)

Message Size

TCP/IP round trip application latency over ethernet

BMI
MPI

BMI without Nagle’s algorithm

5.4.1 TCP/IP method lateny

Figure 5.5 indiates that the BMI method is exhibiting relatively poor performane in

terms of lateny. The MPICH TCP/IP implementation is as muh as 80 miroseonds

faster in round trip appliation measurements.

In order to �nd the soure of this problem, the MPICH implementation was an-

alyzed �rst. It was disovered that MPICH disables Nagle's algorithm by default

on BSD based systems that support this option. This option is ontrolled by the

TCP NODELAY ag in the setsokopt() funtion. See setion 4.2.3 for more infor-

mation about Nagle's algorithm.

Figure 5.15 shows the results of the same lateny test with the TCP NODELAY

option set for all sokets ontrolled by the BMI method. MPI and BMI exhibit almost

idential behavior with this approah.

86

Figure 5.16: small message TCP/IP bandwidth (send)

0

2

4

6

8

10

12

100 200 300 400 500 600 700 800 900 1000

B
an

dw
id

th
 (

M
by

te
s/

se
c)

Message Size

TCP/IP send bandwidth over ethernet

BMI
MPI

TTCP
BMI without Nagle’s algorithm

Figure 5.17: larger message TCP/IP bandwidth (send)

8

8.5

9

9.5

10

10.5

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

B
an

dw
id

th
 (

M
by

te
s/

se
c)

Message Size

TCP/IP send bandwidth over ethernet

BMI
MPI

TTCP
BMI without Nagle’s algorithm

87

The raw bandwidth tests were also reevaluated to see if this approah impated

BMI bandwidth results. Figures 5.16 and 5.17 show that this option has minimal

e�et on the overall TCP/IP bandwidth. The only measurable impat ourred for

messages smaller than 700 bytes. In order to redue even this impat, it may be

possible to implement an adaptive delay poliy. Suh a poliy ould elet to disable

or enable Nagle's algorithm on a per soket basis depending on the harateristis of

the messages that are queued up to be sent for that soket.

5.4.2 GM bandwidth for large messages

Initial bandwidth measurements for the GM method indiate that performane was

quite good if user bu�ers were alloated in advane using the BMI library. However,

if existing user bu�ers were utilized, then the performane was limited to around 27

Mbytes/se (see Figure 5.10). This is not aeptable. The MPI performane �gures

indiate that a muh higher performane an be obtained without using prealloation.

As explained in setion 4.3.1, the GM library requires that all bu�ers to be trans-

mitted be loated in regions of memory that have been prepared in advane for DMA

purposes. The initial BMI implementation met this requirement by alloating new

DMA-able bu�ers for eah message and opying the user bu�er into it. This opy

operation learly was onsuming a relatively large amount of time for large message

sizes.

The alternative is to atually register the existing user bu�ers using the gm register -

memory funtion all. Bu�ers registered in this manner must later be released using

the gm deregister memory funtion. One drawbak to this approah is that low level

BMI header information an no longer be piggy-baked onto the message data be-

ause there is no way to append ontiguous memory to the message. However, this

header information is not neessary for BMI messages that are transmitted using a

88

Figure 5.18: Large message GM bandwidth (send)

0

20

40

60

80

100

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

B
an

dw
id

th
 (

M
by

te
s/

se
c)

Message Size

GM send bandwidth

BMI
MPI

BMI with preallocation
BMI registering user buffers

BMI registering user buffers without deregistration

handshaking protool, beause the ontrol messages ontain a omplete desription

for the message.

To explore this possibility, the BMI GM implementation was modi�ed to register

user bu�ers that had not been alloated using BMI. Eah bu�er was registered when

posted, and then deregistered on ompletion. This would avoid the extra memory

opy step. However, Figure 5.18 shows that the performane for this approah was

absolutely terrible (see the \BMI bandwidth registering user bu�ers" data points).

The MPICH-GM implementation was then inspeted to disover Myriom's so-

lution to this problem. As it turns out, the MPICH devie uses a speial memory

management system that registers user bu�ers as needed, but does not neessarily re-

lease them upon message ompletion. The bu�ers remained registered when returned

to the user. This optimization is intended to be helpful if bu�ers are reused quikly.

89

The MPICH devie keeps up with whih memory regions have been registered, and

only deregisters regions if system memory resoures run low.

The BMI bandwidth benhmark used for the preeding experiments only uses 10

Mbyte of system memory per host. Therefore, for experimentation purposes it is

possible to disable deregistration entirely to observe the impat. Figure 5.18 (\BMI

bandwidth registering without unregistering user bu�ers" data points) shows the

result. The performane was muh higher, and in fat exeeded MPI bandwidth for

most message sizes shown. Note that eah bu�er was used only one, so reuse of

bu�ers was not an issue.

This experiment revealed that the at of deregistering GM memory bu�ers is ex-

tremely high overhead, whih was an unexpeted result. In order for BMI bandwidth

with existing bu�ers to ahieve the same level of MPICH, the BMI method must

implement a similar memory management library whih takes a lazy approah to

deregistering system memory.

Note that reeive bu�ers in the BMI GM implementation are always opied. There

is no easy way to relax this onstraint, due the messaging system's inability to speify

the role of eah reeive bu�er posted. Eah time a message is reeived, it must be

analyzed to determine whih user bu�er it mathes. The data is then opied to that

bu�er.

5.4.3 GM method lateny

Earlier GM method measurements (partiularly for the round trip lateny and server

load appliations) show that the lateny of the implementation is not reahing its

expeted potential. The MPICH-GM implementation is as muh as four to �ve times

faster in terms of lateny.

90

Figure 5.19: GM round trip lateny

0

50

100

150

200

250

300

350

400

1 10 100 1000 10000

L
at

en
cy

 (
m

ic
ro

se
co

nd
s)

Message Size

GM round trip application latency

BMI with 123 control buffers
BMI with 2 control buffers

MPI

We therefore set out to investigate this disrepany. A variety of optimizations

were attempted, ranging from alternative GM interfae funtions to optimized allo-

ation of internal strutures. A few interesting results were found.

Note that the GM method implementation (like the MPICH-GM implementation)

requires that a olletion of reeive bu�ers be posted as soon as the method initializes.

This ensures that it will be able to aept ontrol messages from its peers. It was

disovered that tuning the number of bu�ers that were provided had a signi�ant

impat on lateny, as shown in Figure 5.19.

The extra line in this graph indiates performane if only 2 bu�ers were posted

in advane, rather than the typial 123. Note that the time required to atually post

these bu�ers is not inluded in these measurements.

The di�erene in performane is nearly 100 miroseonds. This margin is about

double the total round trip time of the MPICH-GM implementation. This is odd

91

Figure 5.20: GM round trip lateny

0

50

100

150

200

250

300

350

400

1 10 100 1000 10000

L
at

en
cy

 (
m

ic
ro

se
co

nd
s)

Message Size

GM round trip application latency

BMI
BMI with optimizations

MPI

beause the MPICH-GM implementation defaults to posting 123 bu�ers as well, and

learly it does not su�er from the same performane penalty that the BMI imple-

mentation does. This seems to indiate that there is a subtle di�erene in how

MPICH-GM and BMI methods approah ommuniation management that is still

to be disovered. This may be aused by an operation that sales poorly with the

number of posted bu�ers that should be avoided.

Note that a prodution quality method implementation must provide more than

two ontrol bu�ers at startup time. Otherwise the user risks the danger of overrunning

the amount of available bu�ers when too many ontrol messages ood the network.

The algorithm that determines how muh work should be done during a BMI test()

funtion all was also found to have a signi�ant impat on lateny. The original ap-

proah was to only perform one gm reeive operation per yle. The implementation

was modi�ed so that after eah all to gm reeive(), gm reeive pending() was also

92

alled to determine if there was any more work that ould be immediately performed.

If so, gm reeive() was alled repeatedly (up to a bounding limit) until the event

queue was emptied. This uts down on the overall number of funtion alls to the

BMI interfae per ommuniation. The results of this optimization are shown in

Figure 5.20. This trimmed around 20 miroseonds from the total round trip time.

Despite these disoveries, the BMI method still displays inferior results in the la-

teny sensitive appliations. The servload appliation is sensitive to this shortoming

and thus will not be re-evaluated until a solution is found to the lateny problem.

Chapter 6

Conlusion

We presented the Bu�ered Message Interfae in order to meet the need for a net-

work abstration layer for implementing parallel �le systems on Linux lusters. This

interfae provides a simple appliation interfae for aessing all the features of a

ommuniations network neessary for high performane I/O.

BMI demonstrates that a modular mehanism an be built and used e�etively

for ommuniating over various dissimilar networks. None of the performane testing

appliations were reompiled to adapt to the protools used. All that was neessary

was the presene of the proper BMI module and (in this ase) a on�guration �le

indiating whih module to use.

The BMI interfae was also apable of ommuniating with multiple dissimilar

protools simultaneously. The performane testing of this feature is beyond the sope

of this doument, but the semantis are implemented orretly.

We also observed that the eÆieny of this implementation was on par with expe-

tations in the majority of the tested senarios. We hope that the obvious de�ienies

will be addressed in future work on the method modules.

BMI will be a key omponent of the forthoming Parallel Virtual File System

version 2. PVFS2 is being designed with ollaboration between Clemson University,

94

Argonne National Laboratory, and Goddard Spae Flight Center to provide the next

step in parallel I/O tehnology to Linux lusters. BMI will insure that this implemen-

tation keeps pae with trends in networking tehnology without the need for redesign

of the ore �le system. One this new PVFS implementation has arrived, we will be

able to evaluate the performane and usability of BMI within the ontext of an atual

�le system implementation.

6.1 Future work

There is still muh researh and development to be performed within the Bu�ered

Message Interfae. This work revolves around three ritial areas: improvement of

existing protool methods, expansion into new protools, and bringing the urrent

implementation up to prodution level availability.

6.1.1 Improvement of existing methods

Both the TCP/IP and GM method implementations were quite suessful. However,

both messaging systems have room for improvement. Setions 4.2.3 and 4.3.3 list

several possible optimizations, only a few of whih have been realized thus far. The

lateny performane of the GM module is of partiular interest after the results shown

in setion 5.4.3.

6.1.2 Expansion of supported methods

TCP/IP and GM methods were implemented as a proof of onept for dissimilar

networks. There are several other method implementations that ould be explored,

however. Some possibilities inlude shared memory, VIA, and UDP methods. Eah

of these should be feasible within the previously de�ned Bu�ered Message Interfae.

VIA in partiular should be relatively straightforward to implement beause it shares

95

several overall onepts with the GM interfae. A shared memory method would

perhaps be most interesting in terms of proving BMI's suess in abstration beause it

does not fall into the broad ategory of message passing ommuniation. UDP would

interesting beause it would prove the feasibility of implementing reliable delivery

within a BMI method.

6.1.3 Sheduling

BMI was designed so that it will be possible to ouple it with a higher level omponent

apable of making sheduling deisions. This is of partiular interest in I/O server

design. A sheduling mehanism should be able to obtain load information from BMI

by using the get info() funtion. Poliy hints may be provided using the set info()

funtion. This approah remains untested at this time, however.

6.1.4 Prodution level availability

The Bu�ered Message Interfae is relevant not only as a researh projet but also

as a prodution level omponent of a true parallel �le system. This plaes added

emphasis on its ability to provide prodution level robustness. In partiular, it must

be very resilient (or at least very preditable) in the fae of individual network errors.

A �le system annot tolerate deadlok or ritial failure of the underlying network

subsystem.

Extensive stress testing will be neessary to bring BMI to prodution level quality.

All of the tests performed in this doument were done with an emphasis on measur-

ing performane. More rigorous testing should examine degenerate ases and fored

network failures to ensure that the interfae is robust.

Bibliography

[1℄ The Dolphin SCI interonnet white paper. Tehnial report, Dolphin Interon-

net Solutions, In., February 1996.

[2℄ Donald J. Beker, Thomas Sterling, John E. Dorband Daniel Savarese, Udaya A.

Ranawak, and Charles V. Paker. Beowulf: A parallel workstation for sienti�

omputation. In Proeedings, International Conferene on Parallel Proessing,

1995.

[3℄ N.J. Boden, D. Cohen, R.E. Felderman, A.E. Kulawik, C.L. Seitz, J.N. Seizovi,

and W. Su. Myrinet a gigabit per seond loal area network. IEEE Miro, 15,

February 1995.

[4℄ Philip Buonadonna, Andrew Geweke, and David Culler. An implementation and

analysis of the Virtual Interfae Arhiteture. In Proeedings of SC98, Orlando,

Florida, November 1998.

[5℄ Bill O. Callmeister. POSIX.4: Programming for the Real World. O'Reilly and

Assoiates, In., Sebastopol, CA, 1995.

[6℄ Philip H. Carns, Walter B. Ligon III, Robert B. Ross, and Rajeev Thakur. PVFS:

A parallel �le system for linux lusters. In Proeedings of the 4th Annual Linux

Showase and Conferene, pages 317{327, Atlanta, GA, Otober 2000. USENIX

Assoiation.

[7℄ Chiba City, the Argonne salable luster. http://www.ms.anl.gov/hiba/.

[8℄ G. Chiola and G. Ciaio. GAMMA: a low-ost network of workstations based

on ative messages. In Proeedings of PDP'97 (5th EUROMICRO workshop on

Parallel and Distributed Proessing), London, UK, January 1997.

[9℄ Peter F. Corbett and Dror G. Feitelson. The Vesta parallel �le system. ACM

Transations on Computer Systems, 14(3):225{264, August 1996.

[10℄ Emulex IP storage networking. http://wwwip.emulex.om/ip/index.html.

[11℄ William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. A high-

performane, portable implementation of the MPI message-passing interfae

standard. Parallel Computing, 22(6):789{828, September 1996.

97

[12℄ William Gropp, Ewing Lusk, and Rajeev Thakur. Using MPI-2: Advaned Fea-

tures of the Message-Passing Interfae. MIT Press, Cambridge, MA, 1999.

[13℄ M. Halem, F. Sha�er, N. Palm, E. Salmon, S. Raghavan, and L. Kempster. Can

we avoid a data survivability risis? Siene Information Systems Newsletter,

(51), 1999.

[14℄ IEEE/ANSI Std. 1003.1. Portable operating system interfae (POSIX){part 1:

System appliation program interfae (API) [C language℄, 1996 edition.

[15℄ W. B. Ligon III, S. P. MMillan, and R. B. Ross. Tuning TCP performane in

beowulf omputers. Tehnial report, Parallel Arhiteture Researh Laboratory,

Clemson University, 1999.

[16℄ M-VIA: A high performane modular VIA for linux.

http://www.ners.gov/researh/FTG/via/.

[17℄ Message Passing Interfae Forum. MPI douments.

http://www.mpi-forum.org/dos/dos.html.

[18℄ Message Passing Interfae Forum. MPI-2: Extensions to the Message-Passing

Interfae, July 1997. http://www.mpi-forum.org/dos/dos.html.

[19℄ Myrinet software and doumentation. http://www.myri.om/ss.

[20℄ John Nagle. Congestion ontrol in ip/tp internetworks (rf-896). Tehnial

report, IETF Network Working Group, January 1984.

[21℄ Avneesh Pant, Sudha Krishnamurthy, Rob Pennington, Mike Showerman, and

Qian Liu. VMI: An eÆient messaging library for heterogeneous luster om-

muniation. Tehnial report, National Center for Superomputing Appliations

(NCSA) at the University of Illinois at Urbana-Champaign, 2000.

[22℄ David A. Patterson and John L. Hennessy. Computer Arhiteture; A Quantita-

tive Approah (2nd Edition). Morgan Kaufmann Publishers, In., San Franiso,

CA, 1996.

[23℄ Daniel Ridge, Donald Beker, Phillip Merkey, and Thomas Sterling. Beowulf:

Harnessing the power of parallelism in a pile-of-ps. In Proeedings, IEEE

Aerospae, 1997.

[24℄ Robert B. Ross. Reative Sheduling for Parallel I/O Systems. PhD thesis,

Eletrial and Computer Engineering Dept., Clemson University, 2000.

[25℄ Test TCP. ftp://ftp.arl.mil/pub/ttp/.

[26℄ Hiroshi Tezuka, Atsushi Hori, Yutaka Ishikawa, and Mitsuhisa Sato. PM: An

Operating System Coordinated High Performane Communiation Library. In

98

Bob Hertzberger, Peter Sloot, editor, High-Performane Computing and Net-

working, volume 1225 of Leture Notes in Computer Siene, pages 708{717.

Springer-Verlag, April 1997.

[27℄ Rajeev Thakur, William Gropp, and Ewing Lusk. On implementing MPI-IO

portably and with high performane. In Proeedings of the Sixth Workshop on

Input/Output in Parallel and Distributed Systems, pages 23{32, May 1999.

[28℄ VI arhiteture. http://www.viarh.org.

[29℄ T. von Eiken, D. E. Culler, S. C. Goldstein, and K. E. Shauser. Ative Mes-

sages: a mehanism for integrated ommuniation and omputation. In Proeed-

ings of the 19th Int'l Symp. on Computer Arhiteture, Gold Coast, Australia,

May 1992.

