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Abstra
t

This do
ument des
ribes the design and analysis of a network transfer layer for

the Parallel Virtual File System (PVFS). PVFS [6℄ is a parallel �le system developed

at Clemson University for use on Linux based Beowulf [23, 2℄ 
lusters. It is intended

to serve as a platform for high performan
e I/O resear
h while also meeting the need

for a produ
tion parallel �le system for the s
ienti�
 
omputing 
ommunity. Over

time, 
omputational 
apability has improved so rapidly that there is now typi
ally a

large gap between I/O performan
e and pro
essing power, even in the most powerful


omputer systems. This has led to a situation in whi
h �le system performan
e is

the primary bottlene
k for a variety of appli
ations. PVFS seeks to provide a so-

lution to this problem. Many 
omponents must be brought together in order to do

this, in
luding network 
ommuni
ations, data storage, appli
ation or system inter-

fa
es, and s
heduling. This do
ument will fo
us on network 
ommuni
ations. We

intend to demonstrate and analyze a system for improving network eÆ
ien
y and

usability for the purpose of high performan
e I/O. This system will take advantage

of lessons learned from 
urrent �le system implementations, as well as advan
es in


luster 
ommuni
ation te
hnology, to help a
hieve the spe
ialized goals of parallel �le

systems.
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Chapter 1

Introdu
tion

1.1 Beowulf 
lusters

Beowulf 
lusters have be
ome in
reasingly popular over the last few years for parallel

pro
essing tasks [23, 2℄. The beowulf ar
hite
ture 
onsists of a 
olle
tion of 
ommodity

workstations 
onne
ted through a dedi
ated lo
al network. These systems use open

sour
e system software to provide the features expe
ted of a parallel 
omputer, su
h

as message passing, pro
ess management, and global �le storage spa
e. They are

intended to be used almost ex
lusively for parallel appli
ations, and are thus not

restri
ted to maintaining the fun
tionality of individual workstations. This is a very


ost e�e
tive approa
h to performing 
omputationally intense resear
h, be
ause all

of the 
omponents are either available as 
ommodity hardware or freely distributed

software.

Beowulf 
lusters have also provided many new avenues for systems software re-

sear
h. One reason for this is the diversity inherent in building 
ustom 
omputing

ma
hinery out of 
ommodity parts. For example, this approa
h makes it more 
hal-

lenging to 
reate algorithms and s
heduling poli
ies that work well in the general


ase, be
ause almost no two 
lusters are exa
tly alike. Today it is no longer suÆ
ient
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to just tune software for a spe
i�
 vendor's hardware implementation. Assumptions

made on one ar
hite
ture may not be valid on another.

Systems resear
h is also en
ouraged by the use of open sour
e software. The ability

to inspe
t, modify and redistribute modi�
ations to even the most low level software


omponents makes it relatively easy to 
ontribute improvements to the 
ommunity.

This leads to a 
y
le of gradual improvement in overall Beowulf 
luster te
hnology.

1.2 Parallel �le systems

One important element of Beowulf system software is the �le system. This has be
ome

in
reasingly important as pro
essor speeds 
ontinue to in
rease at a faster rate than

data transfer speeds. In the past de
ade, CPU speed has in
reased from 10MHz to

1000MHz (a 100 fold in
rease) while average disk transfer speeds have in
reased from

3 Mbytes/se
 to 12 Mbytes/se
 (only a four fold in
rease) [13℄. This means that

appli
ations that require large amounts of �le I/O are �nding disk a

ess to be an

in
reasingly larger bottlene
k 
ompared to 
omputation time. In order to ease this

problem, we must make more eÆ
ient use of existing storage te
hnology. One way to

do this is through the use of parallel �le systems.

Parallel �le systems are used to distribute data over several independent stor-

age devi
es. This data is then presented to all of the appli
ation pro
esses with a


onsistent name spa
e. This 
ombination of parallelism on both the appli
ation and

storage side allows the I/O load to be distributed a
ross an entire 
luster (or at least

a subset of the 
luster) so that there is no single bottlene
k point for �le a

ess. The

bandwidth and storage 
apa
ity of this arrangement is typi
ally mu
h larger than

what 
an be obtained by using a single shared �le server.

One example of su
h a �le system is the Parallel Virtual File System (PVFS)

[6℄ whi
h was developed at Clemson University. PVFS was designed to serve as a
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platform for high performan
e I/O resear
h on Linux 
lusters. It has also grown into

a stable produ
tion �le system for use in the 
luster 
omputing 
ommunity as a whole.

PVFS makes use of 
ommon Linux features and brings them together to present a

homogeneous parallel �le system. In its 
urrent form it utilizes the standard Linux

�le system available at ea
h node for data storage and the TCP/IP proto
ol for data


ommuni
ation between nodes.

1.3 New te
hnologies

Sin
e the initial PVFS design, many new te
hnologies have be
ome available whi
h


ould potentially impa
t parallel �le system design for Linux 
lusters. New hardware

developments have gradually rea
hed near-
ommodity status, and the 
olle
tion of

reliable open sour
e system software has grown tremendously.

1.3.1 Networking

Networking infrastru
ture for 
lusters has experien
ed rapid development sin
e the

�rst Beowulf 
lusters were built, both in terms of hardware and software. The most


ommon hardware available for the earliest Linux 
lusters was 100Mb Fast Ethernet.

Sin
e that time, Gigabit Ethernet has also be
ome 
ommodity hardware. Gigabit

Ethernet provides mu
h higher network bandwidth without introdu
ing any 
hange

in appli
ation software. Several vendors have also introdu
ed spe
ialized 
luster net-

working hardware, some of whi
h 
an take advantage of 
ustomized network software

as well. While this hardware has not rea
hed 
onsumer level 
ommodity status, it

is mu
h more a�ordable than the 
ustom networking hardware traditionally used in


ommer
ial super
omputers. Hardware of this 
ategory in
ludes (but is not limited

to): Myrinet hardware from Myri
om, In
. [3℄, SCI hardware from Dolphin Inter
on-

ne
t LLC [1℄, and Giganet hardware from Emulex Corporation [10℄.
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There are also more 
hoi
es in network software and proto
ols. TCP/IP has long

been the standard for internet 
ommuni
ations and was easily adopted for Linux


luster use. However, TCP/IP has disadvantages in some environments. Mu
h of

the overhead introdu
ed in TCP/IP to handle geographi
ally large networks and

unreliable hardware simply is not ne
essary in a typi
al 
luster environment [15℄.

Beowulf 
lusters, by de�nition, possess dedi
ated lo
al networks. This type of network

allows the use of mu
h lighter weight proto
ols.

Alternatives for network software and proto
ols in
lude the Virtual Interfa
e Ar-


hite
ture [28℄, S
ore/PM [26℄, GAMMA [8℄, A
tive Messages [29℄, and vendor spe
i�


software su
h as GM [19℄. Some of the features that may be provided by alternative

networking systems su
h as these are:

� User level operation that bypasses the overhead of intera
ting with the operating

system kernel during 
ommuni
ation

� EÆ
ient abstra
tion of the underlying hardware

� Lightweight transmission proto
ols

� Low level programming interfa
es that allow developers to avoid the use of high

overhead software features

Shared memory is another te
hnology that has been around for a long time but

is perhaps now easier to use on Linux 
lusters. Multipro
essor systems have be
ome

available at 
ommodity pri
es. They allow faster interpro
essor 
ommuni
ation in

some 
ases by using lo
al shared memory rather than external networking hardware.

At the same time, some vendors have produ
ed produ
ts whi
h enable the use of

shared memory a
ross a 
olle
tion of nodes that would normally only 
ommuni
ate

through traditional message passing.
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1.3.2 Data storage

The most interesting te
hnologi
al advan
ements in 
ommodity data storage re
ently

have 
ome from software developments. The Linux platform now has standard C li-

brary support for Posix asyn
hronous I/O [5℄, while the Linux kernel now has support

for raw I/O. Asyn
hronous I/O allows multiple non blo
king �le I/O operations to

be initiated and later 
he
ked for 
ompletion. This potentially allows for more eÆ-


ient handling of multiple requests and the ability to overlap other appli
ation work

with �le I/O. Another new development is the Raw I/O interfa
e. It is a me
hanism

for dire
tly a

essing disk devi
es at the blo
k level without using the Linux kernel's


a
he and abstra
tion path. This opens up the possibility of writing appli
ations that

handle their own 
a
hing and devi
e I/O independent of kernel algorithms. This 
an

potentially boost performan
e of appli
ations that have very spe
i�
 I/O optimization

needs that 
ontradi
t generi
 operating system poli
ies.

1.4 New resear
h �ndings

In addition to advan
es in 
ommonly available software and hardware te
hnology,

re
ent resear
h and implementation has in
reased the knowledge base in the �eld of

parallel I/O. There are many new ideas and implementation lessons that 
an now be

used in parallel �le system design.

1.4.1 S
heduling

One of the most important resear
h topi
s explored in the �rst generation PVFS

design is Rea
tive S
heduling [24℄. Rea
tive S
heduling is a new approa
h to making

server side s
heduling de
isions for parallel �le systems. The main goal is to dynam-

i
ally 
hoose appropriate s
heduling poli
ies depending on the state of the system.
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This is in 
ontrast to the traditional approa
h of trying to optimize a single s
heduling

strategy to meet all of the needs of the �le system.

The state of the system 
an be determined by system parameters, su
h as net-

work or disk utilization, and also by the workload produ
ed by the appli
ation. These

parameters 
an be used as input to a system model. This system model then indi-


ates what s
heduling poli
y should be used to obtain the best performan
e, and

dynami
ally swit
hes to this poli
y. The s
heduling poli
ies are 
hosen from existing

resear
h, and 
ould in
lude ideas su
h as disk dire
ted I/O, network dire
ted I/O,

or two phase I/O. The most important 
on
ept is the ability to 
orre
tly determine

whi
h poli
y is best suited to the 
urrent state.

This resear
h has shown that s
heduling de
isions have an important impa
t on

parallel I/O performan
e. We must be able to support eÆ
ient, modular s
heduling

in future work. Further work 
an also be done to explore poli
y de
isions at other

levels of the �le system abstra
tion.

1.4.2 MPI-IO

MPI-IO is a standard appli
ation interfa
e for performing parallel I/O. This standard

was released as part of the MPI-2 spe
i�
ation in 1997 [12, 18℄. It provides a portable

interfa
e for both C and Fortran appli
ations. MPI-IO provides optimizations for

dis
ontiguous and parallel �le a

ess (through features su
h as derived data types

and 
olle
tive I/O).

MPI-IO has been widely adopted. Several implementations, su
h as ROMIO [27℄,

are available. This has en
ouraged the 
reation of portable appli
ations that take

advantage of high performan
e I/O. The traditional portable Unix I/O interfa
e does

not provide many of the features ne
essary to a
hieve eÆ
ient parallel throughput,

and the vendor spe
i�
 I/O interfa
e implementations do not work outside of their
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native hardware. Thus it has be
ome important to support MPI-IO and to provide

features that make it's implementation easier and more eÆ
ient.

To obtain the best performan
e in an MPI-IO implementation, it is helpful for a

given �le system to provide two features. The �rst is the ability to des
ribe and servi
e

dis
ontiguous patterns similar to those 
ommon in MPI-IO. This redu
es the amount

of data pa
king and translation that must o

ur outside of the �le system. Se
ondly,

the �le system needs to provide an eÆ
ient, high throughput interfa
e. MPI-IO adds

a layer of abstra
tion whi
h 
an potentially be detrimental to performan
e, so it is

important to lower the overhead in the I/O path as mu
h as possible to minimize this

penalty.

1.4.3 Software engineering

PVFS has gradually be
ome an a

epted tool for use in produ
tion environments over

the past few years. This has lead to its use in many diverse situations. This expanded

use of PVFS has made it important to lo
ate and 
orre
t software errors as qui
kly

as possible. It has also for
ed the developers to 
ontinually update PVFS in order to

tra
k 
hanges in te
hnology.

From this we have learned the importan
e of thorough software engineering pra
-

ti
e. This in
ludes modular design, well de�ned interfa
es, and 
omprehensive do
u-

mentation. The use of these pra
ti
es makes it mu
h easier to support a large software

proje
t su
h as a parallel �le system. New design de
isions must a
knowledge these

lessons in order to be su

essful over the life of the proje
t.

1.5 A new �le system design

All of these 
hanges in te
hnology, as well as new information gained from resear
h

and implementation, have prompted the design of a new parallel �le system based on
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PVFS. This new �le system is 
urrently transitioning from design to implementation.

It will build upon new ideas and knowledge in order to provide a more e�e
tive parallel

�le system for Linux 
lusters.

The next generation Parallel Virtual File System will be made up of several 
om-

ponents. Some of the most important 
omponents in
lude the network transfer me
h-

anism, the storage transfer me
hanism, the appli
ation interfa
es, the server daemons,

and the s
heduling me
hanisms. Ea
h of these 
omponents (and several others) will

be ne
essary in order to build a su

essful implementation.

1.6 Network layer requirements

This do
ument will fo
us on just one 
omponent of a parallel �le system for 
luster


omputers: the network transfer layer. The network transfer layer is responsible for

moving data between pro
esses on a parallel 
omputer. There are many ways to

provide this fun
tionality, but parallel �le systems impose many requirements upon

the design of su
h a 
omponent. The spe
ial needs of parallel I/O and the the lessons

learned from 
urrent designs have prompted the following list of requirements:

� Simple appli
ation interfa
e: The interfa
e to the network transfer layer should

be 
on
ise and eÆ
ient. It should well suited to des
ribing the types of 
om-

muni
ation most often needed to perform parallel I/O, without introdu
ing

additional 
omplexity in the design of other �le system 
omponents.

� Overlap of network I/O with other system tasks: The network transfer layer

should be designed to allow other appli
ation a
tivity to 
ontinue as network

I/O tasks are performed. This is of parti
ular importan
e to server implemen-

tation, where data storage I/O 
an be performed simultaneously with network

I/O in many 
ases to improve eÆ
ien
y. This will be
ome even more useful as

multipro
essor systems be
ome more 
ommon in the 
ommodity market and
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thus more 
ommon in 
luster appli
ations. Multipro
essor nodes stand to ben-

e�t signi�
antly from the ability to overlap network 
ommuni
ation with other

tasks.

� Support for both user level and kernel level network API's: As pointed out in

se
tion 1.3.1, there are now a variety of approa
hes to network 
ommuni
ations.

Some of these approa
hes in
lude operating system intera
tion, while others

perform I/O dire
tly from the user level. It is important for implementors to

be able to utilize both types of a

ess eÆ
iently.

� Abstra
tion and modularity : A

ess to the underlying network software interfa
e

should be abstra
ted from the user level system 
omponents. This will prevent

the 
ore design and algorithms of the parallel �le system from being inextri
ably

bound to a spe
i�
 networking te
hnology. It should be possible to modify or


ompletely repla
e the underlying network te
hnology without disturbing the

implementation of other system 
omponents.

� EÆ
ien
y : Almost any software abstra
tion layer indu
es a performan
e penalty

to the appli
ation. The network transfer layer should seek to minimize this

penalty as mu
h as possible. Network I/O is a performan
e bottlene
k in many


ommon situations, and we 
annot a�ord to 
onstrain it further in ex
hange

for additional features. The �le system will be sensitive to both bandwidth and

laten
y overhead.

� Ability to intera
t with multiple networks simultaneously : If the network transfer

me
hanism is not bound to a single network devi
e, then it opens up the pos-

sibility of more exoti
 
luster topologies. Hosts may intera
t with peers whi
h

exist on dissimilar networks in order to take advantage of the most eÆ
ient


ommuni
ation route to ea
h.
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1.7 Approa
h

Advan
es in te
hnology and software engineering have suggested that a networking

abstra
tion that 
an support a variety of network proto
ols would be bene�
ial to the

development of parallel �le systems. We believe that it is possible to 
reate a network

abstra
tion that supports multiple proto
ols in this manner while still maintaining

high performan
e. The Bu�ered Method Interfa
e (or BMI ) has been implemented

as a platform for testing the feasibility of su
h an interfa
e. This implementation is

intended to meet the requirements listed in se
tion 1.6.

The remainder of this do
ument is organized as follows. First, related work will

be dis
ussed in order to provide ba
kground for the BMI design. Next, we will

outline the a
tual ar
hite
ture of the Bu�ered Message Interfa
e. Case studies of

BMI implementation on top of various network proto
ols will be used to demonstrate

its feasibility.

The results se
tion will provide an analysis of the performan
e of the Bu�ered

Message Interfa
e. We will 
ompare BMI performan
e to standard approa
hes to

network data transfer to verify its e�e
tiveness and determine if it meets our require-

ments. Finally, we will present the 
on
lusions based on the �ndings of this resear
h

and propose future work.



Chapter 2

Ba
kground and related work

2.1 The Parallel Virtual File System

2.1.1 Motivation and goals

PVFS is a parallel �le system for Linux 
lusters that was developed at Clemson

University. It was originally designed to serve two main purposes. First of all, it is

intended to be a platform for parallel I/O resear
h. Se
ondly, it is intended to meet

the high performan
e 
ommunity's need for a parallel �le system for Linux 
lusters.

It has been su

essful in both of these goals, prompting several resear
h papers and

gaining a

eptan
e as a high performan
e �le system for use on produ
tion 
lusters.

The following is a list of some of the key goals of PVFS:

� High bandwidth for parallel read and write operations to a single �le system

� Flexible appli
ation interfa
es, in
luding support from the ROMIO pa
kage for

MPI-IO [27℄

� Compatability with existing appli
ations that use the native Unix I/O interfa
e

[14℄

� Ability to tune �le system parameters from the appli
ation level
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Figure 2.1: PVFS System Overview
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PVFS emphasizes performan
e and resear
h viability over high availability fea-

tures. It therefore does not provide software level redundan
y. It also does not provide

any lo
king me
hanism within the �le system itself, nor any advan
ed network se-


urity features su
h as en
ryption. These features are best met by other �le system

proje
ts.

2.1.2 Ar
hite
ture and implementation

The Parallel Virtual File System is implemented almost entirely in user spa
e. It

does not require any kernel level support for its default mode of operation. However,

optional kernel level support is required to obtain 
ompatability with appli
ations

that intera
t with the Unix I/O API [14℄. PVFS makes use of existing te
hnology

for its most low level operations, in
luding TCP/IP for networking and any standard

Linux �le system (su
h as EXT2 or ReiserFS) for �le data storage. It is portable

a
ross 32 bit and 64 bit Linux ar
hite
tures.
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The basi
 layout of a PVFS system is shown in Figure 2.1. File data is striped

a
ross multiple 
luster nodes that are 
onne
ted by a lo
al area network. No 
ustom

hardware is required sin
e PVFS makes use of existing operating system features.

Ea
h node that possesses a portion of the �le system data must run one or more lo
al

PVFS daemons that make the resour
es of that node available to the �le system.

Client appli
ations may run on these server nodes, or they may run on separate nodes

that are 
onne
ted by the lo
al area network. Client appli
ations may a

ess the �le

system through either a user level library, the ROMIO MPI-IO implementation, or

the Linux kernel interfa
e (outlined in se
tion 2.1.4).

Manager

PVFS is made up of three primary 
omponents. The �rst is the manager. There

is exa
tly one manager per �le system, regardless of its size. It is responsible for

maintaining metadata. In PVFS, metadata refers to the 
olle
tion of properties and


hara
teristi
s of �les stored on the �le system. This in
ludes information su
h as

ownership and permissions that are not a
tually part of the �le data.

In addition to the standard Unix �le properties su
h as those listed above, the

manager also maintains metadata that is unique to PVFS. This in
ludes the physi
al

distribution information for ea
h �le. This is used to determine whi
h I/O servers in

the �le system possess �le data, and how the �le data is distributed among them.

The PVFS manager serializes all metadata operations from 
lients and ensures

metadata 
onsisten
y. This is made easier by the fa
t that there is only one manager,

eliminating the need to maintain syn
hronization with another node for important

metadata information. It may seem like a performan
e bottlene
k to rely on a single

manager, but this is eased by the fa
t that the manager does not parti
ipate in �le

I/O operations. On
e a 
lient has veri�ed permissions and metadata information, it
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does not 
ommuni
ate with the manager when reading or writing �le data. This is

handled by the PVFS I/O daemons, whi
h will be outlined shortly.

I/O daemon

The I/O daemon is responsible for servi
ing I/O requests and storing �le data. There

may be any number of I/O daemons, from as few as one to as many as the s
alability

of the system will permit. Ea
h I/O daemon stores data on the lo
al �le system of

the node that it is running on. When multiple I/O daemons are being used, the data

is striped a
ross them in round robin fashion. The stripe size, o�set, and number of

I/O daemons to use 
an be spe
i�ed by the user on a per �le basis.

The use of multiple I/O daemons introdu
es parallelism on the server side of the

�le system. A 
lient may have parts of its request servi
ed from several di�erent

servers, thus leading to utilization of several separate disks and network 
onne
tions

simultaneously, rather than waiting for servi
e at one parti
ular bottlene
k point.

This style of a

ess is tailored to improving throughput for parallel appli
ations,

espe
ially those whi
h demand large amounts of I/O. It may not be optimal for non-

parallel appli
ations, be
ause the 
lient be
omes a bottlene
k for the 
ow of data,

thus negating the advantage gained by having servers operate in parallel.

Ea
h I/O daemon operates independently of other I/O daemons in the system. It

is only aware of the portions of a �le that it is in 
ontrol of at any given time. File

distribution remains stati
 over the lifetime of a �le in PVFS.

Client library

The PVFS 
lient library enables appli
ations to intera
t with the �le system. It

is a C library for use in user level programs, and does not require any intera
tion

with the Linux kernel for 
ommuni
ation. It provides a native PVFS API, whi
h is

derived from the standard Unix I/O API. Among other things, it in
ludes fun
tions
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for opening, 
losing, reading, and writing to PVFS �les. It also adds the ability to

spe
ify PVFS spe
i�
 parameters for �les, su
h as physi
al stripe size and number of

I/O daemons to use.

The native PVFS library also provides the ability to make dis
ontiguous I/O

requests. This is an important feature for parallel appli
ations that is not provided

in standard Unix interfa
es. This is done by using a partitioned �le interfa
e. File

partitioning allows a pro
ess to alter its view of a �le logi
al �le so that it 
an a

ess

dis
ontiguous regions with single read or write requests. It is similar to Vesta's logi
al

�le partitioning [9℄ and to �le views provided by MPI-IO [12, 18℄.

The PVFS library is responsible for or
hestrating 
ommuni
ation with the man-

ager and any I/O daemons as ne
essary. For large systems, this may involve 
ommu-

ni
ating with hundreds of servers. All of this is hidden from the appli
ation.

2.1.3 Low level I/O

All PVFS data is stored on standard lo
al �le systems. Ea
h I/O daemon stores

its portion of the data �les on a lo
al �le system, and the manager stores metadata

information on its lo
al �le system as well. This is in 
ontrast to other �le system

implementations whi
h write raw data to disks. By avoiding the use of raw disk blo
ks,


omplexity is redu
ed, and PVFS bene�ts from features of the lo
al �le system su
h

as 
a
hing or journaling.

All inter-node 
ommuni
ation is 
arried out using the standard TCP/IP proto
ol.

This was the primary 
ommuni
ation me
hanism available for Linux 
lusters when

PVFS was �rst designed. It provides reliable, ordered delivery and 
ow 
ontrol for

data 
ommuni
ations. It is also available on almost every Linux 
luster.
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Figure 2.2: PVFS kernel ar
hite
ture
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2.1.4 Unix I/O 
ompatability

The PVFS 
lient library provides an optimized path for appli
ations to intera
t with

PVFS. It also provides a

ess to PVFS spe
i�
 parameters. However, it is not 
om-

patible with existing appli
ations. This prompted the design of the PVFS kernel

pa
kage as an alternative. It provides a kernel path for PVFS so that appli
ations


an intera
t with it just as they would any other �le system. When using this pa
k-

age, PVFS is mostly indistinguishable from a more traditional �le system from the

user's point of view.

The ar
hite
ture of the PVFS kernel implementation is shown in Figure 2.2. It


onsists of both a user level and kernel level 
omponent. The kernel level 
omponents

are implemented as a module, while the user level 
omponents are implemented in a


lient side daemon known as the pvfsd. The pvfsd is responsible for a
tually translat-

ing �le requests to native PVFS requests and 
ommuni
ating them over the network

to the PVFS �le system. This is done at user level be
ause it provides more 
exi-

bility than a full kernel implementation. It allows the 
lient to utilize any network

me
hanism that is required (some of whi
h may not be available within the operating
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system kernel). It also allows the use of the standard PVFS library for handling

requests, rather than maintaining an independent interfa
e within the kernel.

Communi
ation between the user level pvfsd pro
ess and the kernel module is


arried out through use of a spe
ial devi
e �le. Requests are read out of the devi
e �le

by the pvfsd, and responses are written ba
k into it. Several methods of transferring

bulk data through this interfa
e are provided, but their operation is beyond the s
ope

of this do
ument.

This implementation attempts to be as modular and portable as possible, so that

it 
an survive multiple generations of �le system design. All 
ode spe
i�
 to the PVFS

�le system implementation is maintained within a stri
t interfa
e.

2.2 Virtual Interfa
e Ar
hite
ture

2.2.1 User level networking ba
kground

Communi
ations hardware has advan
ed rapidly in re
ent years, 
reating a variety of

alternatives for high performan
e 
ommuni
ations. Most Linux 
lusters were origi-

nally 
onstru
ted with 10 Mbit or 100 Mbit Ethernet, but su
h networks have re
ently

been augmented with more advan
ed 
ommodity options, su
h as Gigabit Ethernet,

as well as spe
ialized system area networks, su
h as Myrinet [3℄.

These advan
es in hardware have prompted resear
h into the software aspe
t of


ommuni
ation as well. Cluster spe
i�
 system area networks, in parti
ular, may

bene�t from software interfa
es and proto
ols whi
h take advantages of assumptions

that do not apply to general 
ase lo
al area networks. There are several aspe
ts of

this level of 
ommuni
ation that may be targeted for improvement. Two notable

weaknesses in the use of general purpose 
ommuni
ations in 
lusters are in the level

of proto
ol 
omplexity and the amount of operating system intera
tion that takes

pla
e during data transfer [4℄. Proto
ol 
omplexity arises from multi-layer software
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implementations that provide a wide abstra
tion from hardware, as well as from the

in
lusion of a large suite of features whi
h may or may not be utilized. Operating

system overhead arises from relying on the system kernel to provide memory prote
-

tion and resour
e allo
ation. These issues 
an be addressed by designing messaging

systems that more 
losely mat
h the ability of the underlying hardware, and also by

removing the kernel as mu
h as possible from the 
riti
al path of data 
ommuni
ation.

This broad approa
h to optimizing appli
ation intera
tion with the network has

been termed user level networking. This approa
h was largely pioneered by the A
tive

Messages proje
t [29℄, whi
h also en
ompassed several other topi
s within appli
a-

tion and network intera
tion. This work 
ontinues today and has progressed beyond

resear
h to in
lude spe
i�
 vendor o�erings, su
h as GM [19℄, as well as 
ooperative

industry initiatives su
h as VIA [28℄.

2.2.2 VIA spe
i�
ation

The Virtual Interfa
e Ar
hite
ture is an attempt at standardizing both the semanti
s

and interfa
e to user level networking a
ross a variety of hardware and software ven-

dors and implementors. It oÆ
ially 
ame into being in 1997 with the release of the

Virtual Interfa
e Ar
hite
ture Spe
i�
ation, whi
h was the result of a 
ollaboration

being several leading vendors, in
luding Mi
rosoft, Compaq, and Intel [28℄. This do
-

ument outlines the ar
hite
ture of VIA from both an implementation and usage point

of view. It draws heavily from well known resear
h e�orts su
h as A
tive Messages,

but its aim is to provide a usable, produ
tion level standard for user level networking

on system area networks.

2.2.3 Ar
hite
tural overview

The Virtual Interfa
e Ar
hite
ture model 
onsists of several 
omponents, in
luding

the VI Provider, VI Consumer, Virtual Interfa
es, and Completion Queues.
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The VI Provider is made up of the hardware and software 
omponents that inter-

a
t to provide the resour
es ne
essary for a virtual interfa
e. These resour
es in
lude

memory prote
tion, 
onne
tion setup and teardown, and error management. The

hardware utilized is generally a network interfa
e 
ard. The hardware may be spe
if-

i
ally designed to support VIA (and is thus 
onsidered \VIA aware") or it may be a

more traditional design, for whi
h 
ertain features of the VIA ar
hite
ture must be

emulated. The software 
omponent of the VI Provider is usually a kernel level driver.

Note that this kernel driver is only responsible for a limited number of resour
es, and

is typi
ally only invoked during initial setup of 
ommuni
ation between two hosts. It

is not dire
tly involved in the data path for 
ommuni
ation.

The VI Consumer 
an roughly be thought of as the user of the VI resour
es.

This is of 
ourse in
ludes the appli
ation, but also en
ompasses the interfa
e that

the appli
ation uses to intera
t with the other VI 
omponents. This level of the

interfa
e is normally implemented as a user level library, and it has a stri
tly de�ned

set of fun
tions that are used to invoke 
ommuni
ation me
hanisms. These fun
tions

trigger the ne
essary kernel level setup me
hanisms and abstra
t the 
omplexity of

the other 
omponents.

The Virtual Interfa
e itself is the me
hanism that allows the 
onsumer to dire
tly

intera
t with with the provider in order to a
tually transfer data. There is one

Virtual Interfa
e per peer that the host wishes to 
ommuni
ate with. It in
ludes

work queues for both send and re
eive operations. These work queues are a key


on
ept in understanding how VIA operates. The queues do not a
tually 
ontain the

data to be transfered in 
ommuni
ation operations. Instead, they 
ontain 
ompa
t

des
riptors that des
ribe the data to transfered, as well as other details (su
h as

status information) that are ne
essary to des
ribe the 
ommuni
ation. When the

VI posts des
riptors to the work queues, it uses doorbells to indi
ate to the network

adapter that new work is available. Doorbells are very small, simple triggers that are
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intended to be implemented dire
tly from the hardware so that no operating system

intervention is required to notify the hardware. The doorbells may be emulated if

needed, however. The goal is to provide information to the network hardware as

eÆ
iently as possible so that it 
an use hardware me
hanisms su
h as dire
t DMA

transfers to move appli
ation data, rather than relying on additional kernel level

bu�ers for this purpose.

Completion Queues are provided as a me
hanism for the VI to notify the Consumer

that messages have been 
ompleted. On
e des
riptors have been pro
essed from the

work queues, their status is �lled in to indi
ate su

ess or failure. They may then

be transfered to 
ompletion queues that were spe
i�ed by the Consumer so that the

appli
ation 
an be made aware of the 
ompletion. Again, the goal is to indi
ate

status 
hanges and to transfer information about 
ommuni
ation without invoking

kernel 
ontext swit
hes or unne
essary interrupts.

2.2.4 Usage

The VIA model for 
ommuni
ation implies that the appli
ation has more responsi-

bilities in the 
ommuni
ation pro
ess than would be expe
ted of traditional software

interfa
es. First of all, the appli
ation must be able to 
reate and manage the de-

s
riptor and doorbell stru
tures that are ne
essary for initiating data transfers. It

must expli
itly post these stru
tures and inspe
t them upon 
ompletion.

Additional 
onstraints are also pla
ed upon the memory regions that the appli-


ation may use for 
ommuni
ation. Networking hardware normally requires message

data to be lo
ked into physi
al memory and spe
i�ed in terms of physi
al, rather than

virtual addresses before being sent a
ross the network. Traditional network proto
ol

implementations allow the operating system driver to handle this requirement rather

than expose it to the user. VIA, however, requires that the user expli
itly perform

this memory registration before submitting a des
riptor that referen
es the region.
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Only memory that has been registered with the VI Provider may be transfered. This

advan
e registration allows the Provider to dire
tly a

ess the region without utilizing

an intermediate bu�er. These regions may also be reused, so that the overhead of

registration need not be in
urred for every message.

The 
ommuni
ation semanti
s of VIA are very lightweight. For example, no mes-

sage bu�ering is provided for re
eive operations. This means that all re
eive bu�ers

must be posted before the message data arrives, or else it may be dis
arded. This

introdu
es more management responsibilities on the part of the appli
ation to en-

sure that bu�ers are provided in a timely manner. In addition, the VIA spe
i�
ation

outlines three levels of reliability whi
h may optionally be provided. These levels of

reliability di�er in the amount of assuran
e that the appli
ation is given 
on
erning

the su

essful arrival of messages. If a VIA implementation does not provide a high

enough level or reliability for the needs of an appli
ation, it may require another layer

of software in order to provide this fun
tionality.

Due to the above appli
ation implementation requirements, VIA is most often

used as a foundation for a higher level API, su
h as MPI [18℄, or for use in implemen-

tation of system software. These environments 
an take advantage of the eÆ
ien
y

of the Virtual Interfa
e Ar
hite
ture without requiring a new learning 
urve for the

appli
ations programmer.

2.2.5 Implementations

There have been several adopters of the VIA spe
i�
ation thus far. A few notable

ones are listed below with a brief outline of the approa
h taken to providing the VIA

features. This is a sampling of the level of a

eptan
e within the high performan
e


omputing 
ommunity.
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Berkeley VIA

The Berkeley VIA proje
t (based at UC Berkeley) is a resear
h oriented proje
t that

has provided 
ross platform VIA implementations for Myri
om's Myrinet hardware

[3℄. They seek to provide a high quality VIA implementation, explore its performan
e


hara
teristi
s, and investigate possible improvements to the ar
hite
ture. It is not a

full implementation of the spe
i�
ation, but it provides enough fun
tionality to eval-

uate performan
e and support most VIA appli
ations. The Myrinet hardware that

it utilizes, though not designed expli
itly for use with VIA, is highly programmable

and provides most of the hardware features suggested for VIA implementation.

M-VIA

M-VIA is a resear
h prototype VIA implementation from the National Energy Re-

sear
h S
ienti�
 Computing Center [16℄. Its primary features in
lude a modular

design whi
h should ease the work of porting to new hardware. It provides a full

implementation of the VIA standard and also allows 
oexisten
e with other proto
ols

whi
h may be supported by target hardware devi
es. M-VIA 
urrently supports a

variety of Ethernet hardware by emulating in software some of the ne
essary devi
e

features, though it 
an also take advantage of VIA a

elerated hardware. Future

releases target a more ambitious range of networking hardware.

Giganet

Giganet is a vendor hardware o�ering from Emulex Corporation [10℄. It in
ludes a

full VIA software implementation, and network interfa
e 
ards that are designed with

VIA support in mind.
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2.3 Virtual Ma
hine Interfa
e

The Virtual Ma
hine Interfa
e [21℄ is a high performan
e messaging API developed by

The University of Illinois, Urbana-Champaign and the National Center for Super
om-

puting Appli
ations. It provides a uniform interfa
e for intera
ting with dissimilar

networking systems. This interfa
e may be used dire
tly by an appli
ation, or used

as the foundation for implementing a higher level interfa
e su
h as MPI[18℄. VMI

provides 
onne
tionless, reliable, ordered delivery. It also requires 
ommuni
ation

bu�ers to be registered, mu
h like VIA [28℄.

VMI also provides several other advan
ed features that make it stand out among

other network abstra
tion implementations:

� Di�erent network types are supported through the use of dynami
ally loadable

modules. This means that appli
ations do not need to be re
ompiled in order to

take advantage of new devi
es, nor to a
omidate 
hanges in 
luster ar
hite
ture.

� VMI provides 
olle
tive noti�
ation of pro
ess failure. If a single pro
ess in a


omputation 
rashes, then all peer pro
esses are noti�ed. This a

ommodates

gra
eful termination of the 
omputation as a whole.

� VMI is intended to be portable a
ross dissimilar platforms. It has been tested

with both Linux and Mi
rosoft Windows 
luster environments, and allows both

to intera
t on the same 
omputation.

� A single host is allowed to 
ommuni
ate over multiple devi
es simultaneously.

This allows VMI to be used in heterogeneous network environments. Further-

more, extensions to VMI allow it to serve as a bridge a
ross dissimilar networks,

thus allowing full interpro
ess 
ommuni
ation when only a limited number of

nodes share 
onne
tions to both networking systems.
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As of this writing, VMI supports shared memory, VIA, and TCP/IP so
ket 
om-

muni
ations. Support is planned for Myrinet and SCI networks as well.

2.3.1 Shared memory

The VMI shared memory devi
e is used between pro
esses that are lo
ated on the

same physi
al node within a 
luster. It operates by providing a unique shared bu�er

and syn
hronization stru
ture between ea
h pair of 
ommuni
ating pro
esses. The

shared bu�er 
onsists of a 
ontiguous 1 Mbyte region that is writable by one pro
ess

and read only for another. It may be allo
ated in 1 Kbyte pages. Syn
hronization is

handled through a bounded 
ir
ular queue that indi
ates the send window between

a pair of nodes. Lo
k based syn
hronization is avoided be
ause the bu�er is only

writable by one pro
ess at any given time.

2.3.2 VIA

The VIA devi
e has been implemented using the Giganet devi
e driver. VIA already

provides many of the primitives required for VMI module implementation. However,

it does not provide 
ow 
ontrol. VMI therefore implements a 
redit based 
ow 
ontrol

me
hanism on top of VIA within the module.

2.3.3 TCP/IP so
kets

The TCP/IP so
ket interfa
e is not as 
lose of a mat
h to the VMI module require-

ments as VIA or shared memory 
ommuni
ations are. Thus implementation for this

proto
ol is more diÆ
ult. VMI 
urrently supports a proof of 
on
ept TCP/IP module

that has not yet been optimized for performan
e.
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2.4 Message Passing Interfa
e

The Message Passing Interfa
e is a spe
i�
ation for appli
ation level message passing.

It was de�ned by the MPI Forum in an attempt to provide a standard to ensure porta-

bility between parallel 
omputers from a variety of vendors and resear
h groups. Prior

to the drafting of the MPI spe
i�
ation, many vendors provided their own unique li-

braries for message passing whi
h made it diÆ
ult to 
reate portable appli
ations.

Many of these libraries shared the same fundamental features but di�ered widely in

terms of interfa
es and syntax.

The initial MPI Standard (Version 1.0) was 
ompleted in May of 1994. Work on

this standard was later 
ontinued, resulting in the 1.1, 1.2, and 2.0 MPI Standards

[17℄.

The MPI Standard en
ompasses both the appli
ation interfa
es and semanti
s of

the message passing system. This system provides many features, in
luding point

to point as well as 
olle
tive 
ommuni
ation. It also provides other servi
es su
h

as 
onsistent pro
ess naming, virtual topologies, heterogeneous data 
onversion, per-

forman
e monitoring tools, and pro�ling interfa
es. The MPI-2 Standard brought

enhan
ements su
h as parallel I/O, remote memory operations, and dynami
 pro
ess

management.

MPI has qui
kly be
ome the default message passing library for parallel appli
a-

tions. There are implementations available for every major modern ar
hite
ture.

2.4.1 MPICH

MPICH (or MPI Chameleon) is a portable implementation of the MPI standard

supported by Argonne National Laboratory [11℄. MPICH is unique in that its devel-

opment began while the initial standard was still being drafted. This provided the

MPI Forum with immediate feedba
k from a design that tra
ked the standard as it
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was developed. This also resulted in the availability of a working MPI implementation

as soon as the standard was �nalized, whi
h aided in its a

eptan
e.

MPICH was originally 
onstru
ted by taking advantage of existing 
ode from

pre
eding systems. One of these was parallel programming library known as P4,

whi
h provided portable shared memory and message passing 
omponents. Another

was Chameleon, a pa
kage whi
h fo
used on portability over a variety of message

passing ar
hite
tures. The �nal pre
ursor was zip
ode, whi
h provided 
on
epts for

s
alable libraries, su
h as 
ontexts and groups.

The two most important design goals of MPICH were portability and eÆ
ien
y.

MPICH runs on a variety of systems and provides low level interfa
es for implementers

to qui
kly port it to other environments. However, it strives to do this without

sa
ri�
ing overall performan
e.

MPICH ar
hite
ture

The MPICH ar
hite
ture was 
arefully designed to meet the goals of eÆ
ien
y and

portability. It 
an best be des
ribed in terms of three major 
omponents:

� High level 
ode: The highest level MPICH 
ode in
ludes many 
on
epts (su
h

as groups, 
ommuni
ators, and opaque obje
ts) whi
h are independent of the


ommuni
ations me
hanism. Therefore, this portion of the design is provided

as a portable implementation that 
an be expressed in terms of lower level

abstra
tions.

� Abstra
t Devi
e Interfa
e: All high level MPICH 
ode is written on top of the

Abstra
t Devi
e Interfa
e (ADI). There are many separate implementations of

the ADI for di�erent ar
hite
tures. It provides an interfa
e for implementers

to qui
kly integrate new ar
hite
tures without having to rewrite the full MPI

library from s
rat
h.
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� Channel Interfa
e: One implementation of the ADI uses the 
hannel interfa
e.

The 
hannel interfa
e is a very small abstra
tion of the 
ommuni
ations me
h-

anism whi
h 
an be implemented with as few as �ve fun
tions. This provides

the qui
kest path to implement a new devi
e, but at the 
ost of eÆ
ien
y.

The idea is for implementors to rapidly prototype a new devi
e by implemented

support for it at the 
hannel interfa
e level. As the implementation progresses, higher

levels of abstra
tion 
an be repla
ed by devi
e spe
i�
 
ode, so that the devi
e even-

tually has its own ADI implementation and perhaps even optimizations of higher level

fun
tionality. Implementors therefore have the advantage of a portable implementa-

tion for rapid prototyping but are not 
onstrained by it in the long term.

2.5 Bringing together related work

Three distin
t messaging abstra
tions have been dis
ussed in the previous se
tion:

the Virtual Interfa
e Ar
hite
ture, the Virtual Ma
hine Interfa
e, and the Message

Passing Interfa
e. These tools are all 
urrently available and perform their respe
tive

tasks quite well. However, the realm of parallel I/O on Linux 
lusters has spe
i�


needs whi
h are not yet met by any single message passing implementation.

In order to be su

essful within the �eld of parallel I/O, a network abstra
tion

needs to bring together a hybrid of several features. It must be robust in the fa
e of

small network failures so that errors on individual hosts do not impa
t system wide

a
tivity. It furthermore must be 
apable of sustained 
lient/server style operation.

Unexpe
ted hosts may 
onne
t and dis
onne
t from a �le system many times while

the system is running.

A network abstra
tion for parallel I/O must also be eÆ
ient for the problem do-

main that it is solving. There are many features 
riti
al to general purpose messag-

ing tools that simply are not appli
able in a 
lient/server based system level toolkit.
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Supporting unne
essary features is almost undoubtably a sour
e of overhead and

maintenan
e diÆ
ulties.

Finally, the network abstra
tion must share the �le system's ability to work eÆ-


iently and reliably on a variety of existing 
luster ar
hite
tures. Many produ
tion


lusters 
an not a�ord to experiment with sweeping system level 
hanges at the risk

of disrupting ongoing 
omputational work. We want to support these traditional

systems while also leaving the door open for work with more exoti
 systems when

possible.



Chapter 3

Design of the network transfer

layer

The Bu�ered Message Interfa
e (BMI) has been designed to serve as the network

transfer layer for a next generation parallel �le system. It is implemented as a library

that provides a standard interfa
e for 
ommuni
ation between system software 
om-

ponents. Although designed for use within the Parallel Virtual File System, BMI is

an independent entity whi
h may be useful in other environments as well.

3.1 Communi
ations model

BMI is a message passing system that provides reliability, ordering, and 
ow 
ontrol.

If a parti
ular underlying network proto
ol does not provide one of these features,

then BMI is responsible for implementing it.

All 
ommuni
ations operations in BMI are nonblo
king. In order to send a mes-

sage, the user must �rst post the message to the interfa
e, then test it for 
ompletion.

The same holds for re
eiving messages. On
e testing indi
ates that a message has


ompleted, the user must 
he
k the status of the message in order to determine if it


ompleted su

essfully or not. Partial 
ompletion is not allowed.
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In fa
t, every fun
tion de�ned as part of the BMI interfa
e is nonblo
king. Ea
h

fun
tion may perform work before 
ompleting, but this work is guaranteed to 
omplete

within a bounded amount of time. This restri
tion implies that it may be ne
essary

to test for 
ompletion of a message several times before it a
tually 
ompletes. There

is no me
hanism that allows the interfa
e to \wait" inde�nitely for 
ompletion of

a parti
ular operation. This design de
ision was made be
ause blo
king network


alls (espe
ially in large parallel systems) are prone to problems with robustness

and s
alability. They may 
ause an appli
ation to hang in the event of network or

programming errors. This is not a

eptable within low level system servi
es.

When posting re
eive operations, the user must spe
ify the address of the sending

host and the size of the message to a

ept. The user 
annot post re
eives that mat
h

wild
ard addresses. The only ex
eptions to this rule are unexpe
ted messages, as

de�ned in se
tion 3.3.

BMI is a 
onne
tionless interfa
e; the user does not have to establish or main-

tain any link between hosts before sending messages. The BMI implementation may

maintain 
onne
tions internally if needed for a parti
ular network devi
e, but su
h

details are not exposed to the user.

3.2 Memory bu�ers

The user must spe
ify a memory bu�er to use when posting send and re
eive oper-

ations. This bu�er may be a normal memory region, or it may be a bu�er that was

allo
ated using BMI memory management fun
tions. If the user ele
ts to allo
ate

the memory using the BMI fa
ilities, then BMI has the opportunity to optimize the

bu�er for the type of network being used. This mode of operation is preferred for

a
hieving optimal performan
e. However, normal memory bu�ers are also allowed in

order to better support 
ertain s
enarios 
ommon to �le system operations. Some
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�le system operations a
t upon existing memory regions (for example, the 
lient side

Unix read() system 
all). In these situations, we would like to avoid imposing a bu�er


opy, and instead give the BMI layer the 
exibility to handle the bu�er at a lower

level if possible.

If a memory bu�er is allo
ated using BMI fun
tion 
alls, then it must also be deal-

lo
ated using BMI. These bu�ers are not guaranteed to be manageable by standard

operating system libraries.

3.3 Tags and unexpe
ted messages

The BMI interfa
e allows the user to spe
ify a tag for ea
h message. A send operation

with a spe
i�
 tag may only be a

epted by a re
eive operation that spe
i�es a mat
h-

ing tag. This therefore provides for the user a me
hanism to di�erentiate between

distin
t 
lasses of messages. However, one parti
ular tag is reserved by the interfa
e

to have spe
ial meaning. This tag marks a message as unexpe
ted. Unexpe
ted mes-

sages are messages that are sent without the re
eiving host expli
itly requesting the


ommuni
ation. In other words, the re
eiving host does not post a mat
hing re
eive

for this type of message. Instead, it must periodi
ally 
he
k to see if any unexpe
ted

messages have arrived in order to re
eive them su

essfully. This is the equivalent

of \listening" for new requests in a more traditional networking system. Unexpe
ted

messages may 
ome from any host on the network. Communi
ation between two

hosts is typi
ally initiated by one of the hosts sending an unexpe
ted message to the

other.

3.4 Client/Server paradigm

The BMI system is better suited for 
lient/server appli
ation models than peer to

peer models. This is made evident by the 
on
ept of unexpe
ted messages as de�ned
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Method InterfaceMethod Interface

BMI Interface

Network Address Reference List

Method Control

Operation Queues Operation Queues

Method One Method Two

Figure 3.1: BMI Ar
hite
ture

above. Consider the simple example of 
ommuni
ation between two hosts. Typi
ally

only one of the hosts will look for unexpe
ted messages. This is the \server". The

other host a
ts as a \
lient" by sending unexpe
ted messages to the server that prompt

it to perform some servi
e. This servi
e may involve the ex
hange of further messages

between the two hosts.

3.5 Ar
hite
ture

The overall ar
hite
ture of BMI is shown in Figure 3.1. Support for individual network

proto
ols is provided by BMI methods. There may be any number of methods a
tive

at a given time. This 
olle
tion of methods is managed by the method 
ontrol layer.

The method 
ontrol layer is also responsible for presenting the top level BMI interfa
e

to the appli
ation.
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3.6 Method 
ontrol

From a high level, the method 
ontrol layer is responsible for or
hestrating network

operations and managing the network methods. This in
ludes several responsibilities,

in
luding address resolution, method multiplexing, and providing a stable BMI user

interfa
e. It also provides a library of support fun
tions that may be useful to method

implementors.

One of the most important tasks of the method 
ontrol layer is the multiplexing

of network methods. When an operation is posted by the user, it is up to the method


ontrol to de
ide whi
h method will servi
e the operation. Likewise, when the user

tests for 
ompletion, the method 
ontrol must test the appropriate methods for the

operations of interest.

The method 
ontrol layer provides the BMI user interfa
e. This is the API used by

appli
ations that 
ommuni
ate using BMI. The BMI interfa
e fun
tions are 
onverted

into the appropriate low level method requests that are needed to 
omplete operations.

Address resolution is the �nal major responsibility of the method 
ontrol. The

method 
ontrol manages the BMI level addresses and makes sure that the name

spa
e is 
onsistent to the user, regardless of whi
h methods are in use. It does so

by maintaining an internal referen
e list for addresses. Ea
h network address has a

unique referen
e that provides mappings between BMI user level addresses, the string

representation of addresses, and the method spe
i�
 representation of addresses. The

BMI user level addresses are handles for network hosts that the appli
ation uses when


alling BMI fun
tions. The string representation is the ASCII host name of the hosts

before they are resolved by BMI (as read from a \hosts" �le, for example). Finally,

the method address is the representation that that methods use for identifying hosts,

whi
h may 
ontain information spe
i�
 to that parti
ular proto
ol. Note that method

addresses are never, under any 
ir
umstan
es, exposed to the appli
ation. They are

reserved for internal BMI use only.
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3.7 Methods

Ea
h method is implemented as a dynami
ally loadable module. This module must

provide (and stri
tly adhere to) a prede�ned method interfa
e. It supports reliable,

ordered delivery and 
ow 
ontrol for the proto
ol that it 
ontrols. Aside from meeting

these semanti
s and adhering to the method interfa
e, there are no other restri
tions

on how the method should be implemented. Support libraries are provided for 
ertain

features that are 
ommon to many methods, but their use is optional.

Ea
h method is responsible for maintaining the 
olle
tion of operations that it is

working on, usually through operation queues. These 
olle
tions of operations are

private to ea
h method.

3.8 BMI user interfa
e

The BMI interfa
e 
an be separated into four small 
ategories of fun
tions: message

initiation, message testing, memory management, and utilities.

The message initiation fun
tions are used by an appli
ation to request the sending

or re
eiving of network bu�ers:

� BMI post send(id, destination, bu�er, size, bu�er 
ags, message tag):

Posts a send operation from the spe
i�ed bu�er. The id is written in by the

fun
tion and serves as a unique handle for the operation to be used when testing

for 
ompletion. The bu�er 
ags are used to indi
ate whether the bu�er was

allo
ated by the appli
ation or by BMI.

� BMI post re
v(id, sour
e, bu�er, size, bu�er 
ags, message tag):

Posts a re
eive operation. The argument semanti
s are the same as those used

in BMI post send().
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� BMI unpost(id): For
efully aborts a previously posted operation. The status

of the target operation should still be retrieved through the use of a BMI test

fun
tion(), however. It may have 
ompleted su

essfully before the BMI unpost()

was pro
essed.

� BMI addr lookup(new addr, id string): Performs a lookup on the tex-

tual representation of the host address spe
i�ed by id string. The resulting

BMI spe
i�
 address handle is �lled into the new addr parameter and may be

used for subsequent network initiation fun
tions.

The message testing fun
tions are used to 
he
k for 
ompletion of network oper-

ations:

� BMI test(id, out
ount, state): Tests for 
ompletion of a single network

operation, as spe
i�ed by the id argument. Out
ount indi
ates how many op-

erations 
ompleted (whi
h will either be zero or one in this 
ase). The state

parameter is �lled in with the state of the operation in question on
e it 
om-

pletes.

� BMI testsome(in
ount, id array, out
ount, index array, state array):

Tests for 
ompletion of any of a spe
i�ed set of operations. The set of operations

to look for is spe
i�ed by an array of id's of size in
ount. Out
ount is �lled in to

indi
ate how many of the target operations 
ompleted, while index array and

state array indi
ate exa
tly whi
h operations 
ompleted and what their �nal

state was. BMI testsome() ignores any id's within the id array that have been

set to the null value of zero.

� BMI testglobal(in
ount, id array, out
ount, state array): Tests for


ompletion of any operations that are 
urrently in progress. In
ount spe
i-

�es how many operations the 
aller is willing to a

ept with one invo
ation of
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BMI testglobal. Id array, out
ount, and state array are �lled in to indi
ate

whi
h operations 
ompleted and what their �nal state was.

� BMI testunexpe
ted(in
ount, out
ount, info array): Tests for 
omple-

tion of any newly arrived unexpe
ted messages. The in
ount indi
ates how

many operations the 
aller is willing to a

ept, while the out
ount indi
ates

how many a
tually 
ompleted. The info array is �lled in with a des
ription

of ea
h 
ompleted operation, in
luding the sour
e address, bu�er lo
ation, and

size. These parameters are not known in advan
e by the 
aller (hen
e the

unexpe
ted nomen
lature).

The BMI memory management fun
tions are used to 
ontrol memory bu�ers that

are optimized for use with BMI:

� BMI memallo
(address, size, send re
v 
ag): Allo
ates an optimized

memory bu�er of the requested size. The address parameter indi
ates the re-

mote host that will parti
ipate in the transmission of the bu�er. The send/re
v


ag indi
ates whether the bu�er will be sent or re
eived from the lo
al host.

� BMI memfree(address, bu�er, send re
v): Frees a memory bu�er that

was allo
ated with BMI memallo
(). The address and send re
v parameters

possess the same semanti
s as those used in BMI memallo
().

The �nal 
olle
tion of fun
tions perform various utility tasks that are not dire
tly

involved in network I/O:

� BMI initialize(module string, listen addr, 
ags): Initializes the BMI

system. This fun
tion must be 
alled before any other BMI interfa
e fun
tions.

The module string is a 
omma separated list of dynami
 method modules to

use. The listen addr is a 
omma separated list of parameters that the network

methods use for re
eiving messages (if needed).
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� BMI �nalize(): Shuts down the BMI library. This fun
tion should only be


alled on
e all network 
ommuni
ation is 
ompleted. It will for
efully terminate

any outstanding operations.

� BMI set info(address, option, parameter): Sets optional BMI parame-

ters. If the address is spe
i�ed, the fun
tion will on a�e
t the method that is

responsible for that address. Otherwise, the fun
tion has a global impa
t on

the BMI methods.

� BMI get info(address, option, parameter): Queries BMI for optional

parameters.

3.9 Immediate 
ompletion

The default model for ea
h network operation is to �rst post it and then test for


ompletion. However, there are often instan
es in whi
h operations 
an 
omplete

immediately (during the post pro
edure) and thus do not require the extra test step.

Examples of this o

ur when TCP so
kets bu�ers are large enough to allow a message

to be sent in one step without blo
king. This may also o

ur on the re
eive side of


ommuni
ations if the required data has already been bu�ered by the BMI library

when the re
eive operation is posted.

In these situations, it would be good to avoid the overhead of needlessly 
alling

the test fun
tion. We therefore allow immediate 
ompletion from any post fun
tion.

Immediate 
ompletion is indi
ated from post fun
tions by a return value of one.

BMI library users should always 
he
k this return value so that they are aware of

opportunities to skip the test phase of 
ommuni
ation.
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3.10 Method interfa
e

The method interfa
e is very similar to the BMI user interfa
e. It implements roughly

the same fun
tions. However, it in
ludes minor variations that take into a

ount the

fa
t that operations at this level are targeted for a single spe
i�
 method.

The following listing des
ribes the BMI method interfa
e. Note that the address

arguments in this interfa
e (sour
e, destination, and new addr) are of the spe
ial

method address stru
ture type. Ea
h method address 
ontains binary format infor-

mation that 
an only be understood by the spe
i�
 method that 
reated it.

� BMI method post send(id, destination, bu�er, size, bu�er 
ags, mes-

sage tag): Posts a send operation from the spe
i�ed bu�er. The id is written

in by the fun
tion and serves as a unique handle for the operation to be used

when testing for 
ompletion. The bu�er 
ags are used to indi
ate whether the

bu�er was allo
ated by the appli
ation or by BMI.

� BMI method post re
v(id, sour
e, bu�er, size, bu�er 
ags, mes-

sage tag): Posts a re
eive operation. The argument semanti
s are the same

as those used in BMI method post send().

� BMI method unpost(id): For
efully aborts a previously posted operation.

The status of the target operation should still be retrieved through the use of

a BMI method test() fun
tion, however. It may have 
ompleted su

essfully

before the BMI method unpost() was pro
essed.

� BMI method addr lookup(id string): Performs a lookup on the textual

representation of the host address spe
i�ed by id string. The return value is

the resulting method address stru
ture as generated by the method to represent

the address.
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� BMI method test(id, out
ount, state): Tests for 
ompletion of a single

network operation, as spe
i�ed by the id argument. Out
ount indi
ates how

many operations 
ompleted (whi
h will either be zero or one in this 
ase). The

state parameter is �lled in with the state of the operation in question on
e it


ompletes.

� BMI method testsome(in
ount, id array, out
ount, index array, state array):

Tests for 
ompletion of any of a spe
i�ed set of operations. The set of operations

to look for is spe
i�ed by an array of id's of size in
ount. Out
ount is �lled in to

indi
ate how many of the target operations 
ompleted, while index array and

state array indi
ate exa
tly whi
h operations 
ompleted and what their �nal

state was.

� BMI method testglobal(in
ount, id array, out
ount, state array):

Tests for 
ompletion of any operations that are 
urrently in progress within

a single method. In
ount spe
i�es how many operations the 
aller is willing

to a

ept with one invo
ation of BMI method testglobal. Id array, out
ount,

and state array are �lled in to indi
ate whi
h operations 
ompleted and what

their �nal state was.

� BMI method testunexpe
ted(in
ount, out
ount, method unexpe
ted info array):

Tests for 
ompletion of any newly arrived unexpe
ted messages. The in
ount

indi
ates how many operations the 
aller is willing to a

ept, while the out
ount

indi
ates how many a
tually 
ompleted. The method unexpe
ted info array is

�lled in with a des
ription of ea
h 
ompleted operation. Note that this stru
ture

is di�erent from the info array argument to the top level BMI testunexpe
ted()

fun
tion. This is be
ause it 
ontains information that is private to the BMI li-

brary and therefore should not be visible to a BMI user.
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� BMI method memallo
(size, send re
v 
ag): Allo
ates an optimized

memory bu�er of the requested size. The send/re
v 
ag indi
ates whether the

bu�er will be sent or re
eived from the lo
al host. No address argument is given

be
ause the top level interfa
e has already used that data to determine whi
h

method to use. It is not needed at this level.

� BMI method memfree(bu�er, send re
v): Frees a memory bu�er that

was allo
ated with BMI memallo
(). The send re
v parameter has the same

semanti
s as in BMI method memallo
().

� BMI method initialize(listen addr, method id, 
ags): Initializes the

method. This fun
tion must be 
alled before any operations are pro
essed by the

method. The listen addr is a method address that 
ontains information about

how the method should listen for new messages. The method id parameter is

used to inform the method of the id handle that will be used to referen
e the

method and it's address stru
tures. This is assigned by the method 
ontrol 
ode

to prevent 
ollisions between method identi�ers.

� BMI method �nalize(): Shuts down the method. This fun
tion should

only be 
alled on
e all network 
ommuni
ation is 
ompleted. It will for
efully

terminate any outstanding operations. Ea
h individual method 
an be shut

down independently without disrupting any other operations.

� BMI method set info(address, option, parameter): Sets optional method

spe
i�
 parameters.

� BMI method get info(address, option, parameter): Queries the method

for optional parameters.
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3.11 Support libraries

The BMI library provides several support fun
tions whi
h may aid method program-

mers when implementing support for new proto
ols. Ea
h method 
an expe
t these

fun
tions to be visible to it on
e it has been dynami
ally loaded into the library.

These fun
tions are intended to be as generi
 as possible so that they may be used

by a variety of di�erent methods.

3.11.1 Operation queues

Every prototype method implemented so far makes use of FIFO queues to keep tra
k

of pending operations. Operations are des
ribed by generi
 operation stru
tures that

in
lude 
ommon parameters (su
h as bu�er size and lo
ation). This stru
ture also

in
ludes abstra
t storage spa
e for private method spe
i�
 parameters (su
h as 
ow


ontrol or devi
e management information). The operation queue me
hanism in BMI

is based heavily on the doubly linked list implementation found in the 2.2 and 2.4

series Linux kernels. This implementation is used throughout the kernel in areas

su
h as CPU s
heduling and the TCP/IP sta
k whi
h require data stru
tures to be

optimized for speed.

� op queue new(): Creates a new operation queue.

� op queue 
leanup(old op queue): Destroys an existing operation queue

as well as any operations 
ontained within it.

� op queue add(target op queue, method op): Adds a method opera-

tion onto the tail of a queue.

� op queue remove(method op): Removes a spe
i�
 operation from the

queue in whi
h it resides.
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� op queue sear
h(target op queue, key): Sear
hes for an operation that

mat
hes the 
hara
teristi
s spe
i�ed by the key. All sear
hes begin at the head

of the target operation queue.

� op queue empty(target op queue): Determines whether a queue is empty

or not.

� op queue 
ount(target op queue): Counts the number of entries within

an operation queue. This fun
tion requires iteration through every element

of the queue. It is therefore only suitable for debugging purposes in whi
h

performan
e is not 
riti
al.

� op queue dump(target op queue): Prints out information about every

operation in the queue. Only used for debugging and prototyping purposes.

Two related fun
tions are also provided for managing the 
reation of operation

stru
tures:

� allo
 method op(payload size): Allo
ates a new operation stru
ture, in-


luding enough room for the private data payload that a parti
ular method

may wish to store within it. Note that this private data is provided in a region


ontiguous to the generi
 stru
ture for eÆ
ien
y.

� deallo
 method op(target op): Deallo
ates an existing method operation.

3.11.2 Method address support

Method address stru
tures are used by methods to identify network hosts. Like

operation stru
tures, they 
ontain private storage for internal method use. Three

fun
tions are provided to aid in managing these stru
tures:
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� allo
 method addr(method id, payload size): Creates a new address

stru
ture. The method id �eld is used to tag the stru
ture as belonging to the

method that 
reated it. The payload size indi
ates how mu
h spa
e should be

set aside within the stru
ture for private use by the method.

� deallo
 method addr(old method addr): Destroys an existing method

address stru
ture.

� bmi method addr reg 
allba
k(target method addr): This is 
alled

by a method to inform the method 
ontrol layer that it should register a new

method address stru
ture. The fun
tion is typi
ally invoked when an unex-

pe
ted message arrives and the method must autonomously 
reate a new ad-

dress stru
ture to represent the sour
e host. The new method address stru
ture

must be registered with the method 
ontrol layer so that it is aware of the new

stru
ture for bookkeeping purposes.

3.11.3 Logging and debugging

The BMI library in
ludes a set of fun
tions known as the gossip library whi
h may

be used for reporting errors, logging messages, or providing debugging information.

The gossip library was 
reated to provide a 
onsistent interfa
e for performing these

tasks. It also 
an be implemented with various ba
kends that 
an be swit
hed at

runtime to 
ontrol where the log messages are a
tually re
orded. As of this writing

it supports stderr, syslog, and �le based logging. In the future it will support other

me
hanisms su
h as in 
ore ring bu�ers.

Gossip also supports setting debugging masks, whi
h 
an 
ontrol whi
h 
lasses of

messages are a
tually re
orded. This is useful in BMI for sele
ting whi
h methods

a
tually display debugging output.
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� gossip set debug mask(debug on, mask): Controls whether debugging

messages are on or o�. The mask parameter spe
i�es what 
lass of debugging

messages will be displayed if debugging is turned on. Note that 
riti
al error

messages 
annot be disabled.

� gossip enable syslog(priority): Enables the syslog logging fa
ility and sets

the syslog priority that will be assigned to ea
h message.

� gossip enable stderr(): Enables the printing of error messages to stderr.

� gossip enable �le(�lename, mode): Enables the logging of error messages

to a spe
i�
 �le. The mode parameter is useful for spe
ifying if the �le should

be trun
ated or appended.

� gossip disable(): Turns o� the gossip library.

� gossip debug(level, format, ...): Logs a printf() style message with the

spe
i�ed debugging level.

� gossip err(format, ...): Logs a printf() style error message. This message

will be re
orded regardless of the 
urrent debugging mask.

� gossip ldebug(level, format, ...): Same as the gossip debug() fun
tion, ex-


ept that it also displays the �le name and line number from whi
h the message

originated on systems with prepro
essors that support this feature.

� gossip lerr(format, ...): Same as the gossip err() fun
tion, ex
ept that it

also displays the �le name and line number from whi
h the message originated

on systems with prepro
essors that support this feature.
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3.11.4 Operation id's

Ea
h method is responsible for 
reating opaque id's that 
an be used to refer to

operations that are 
urrently in progress. Typi
ally these id's will be used to map

user requests to spe
i�
 operation stru
tures. The id generator library is available

to aid methods in performing this mapping operation. This fun
tionality is provided

within a dis
rete interfa
e to allow for multiple implementations whi
h may use hash

tables or other data stru
tures to store mapping information. It also insures that the

id spa
e is 
onsistent a
ross all methods.

� id gen fast register(new id, void* item): Registers a new stru
ture with

the interfa
e and 
reates a new id that may be used to referen
e it.

� id gen fast lookup(id): Returns a pointer to the original data stru
ture

that was asso
iated with the given id.

All of the interfa
es listed in the pre
eding se
tion 
ome together to form the

method support libraries that method implementors should take advantage of when


reating new methods.

3.12 Method 
ontrol implementation

The method 
ontrol layer (as introdu
ed in se
tion 3.6) is responsible for performing


onversions between the BMI user interfa
e and the method interfa
e, in
luding any

method multiplexing that this implies. This is a relatively thin layer of software, but

it plays a 
riti
al role in providing 
ore BMI features. Some of the more interesting

tasks that it performs are outlined in the following se
tions.



46

3.12.1 Method initialization

The BMI library must perform several steps when it is �rst initialized. This is the

point at whi
h it must enable all of the a
tive modules and initialize any internal

bookkeeping information. The steps that it performs at this time 
an roughly be

outlined as follows:

1. Parse the list of modules that will be used by the library.

2. Create a table to tra
k ea
h method and its instantiation of the method inter-

fa
e.

3. Load ea
h method module one at a time and verify that it provides the 
orre
t

symbols required by the method interfa
e.

4. Create a referen
e list to use for mapping host addresses between various inter-

fa
es.

5. Initialize ea
h method individually.

If any of these steps fails, then the initializer 
leans up any work that it had done

to that point and exits.

3.12.2 Posting and testing single operations

Posting and testing individual operations is relatively simple be
ause it involves in-

tera
ting with only one method at a time. These fun
tions are 
arried out as follows:

1. Verify any arguments passed in by the user so that the method fun
tions 
an

assume that they are safe.

2. Sear
h through the referen
e list for an entry that mat
hes the address spe
i�ed

by the 
aller.
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3. If su
h an entry is not found, return an error be
ause the user spe
i�ed address

is invalid.

4. Find the method interfa
e that mat
hes the address (as indi
ated by the ref-

eren
e stru
ture) and 
all the appropriate method to 
arry out the desired

operation.

3.12.3 Aggregate operation tests

Testing operations from multiple methods within one library 
all is a a more 
om-

pli
ated version of the s
enario outlined in se
tion 3.12.2. This situation must be

handled by the BMI testsome() and BMI testglobal() fun
tion 
alls, whi
h have the

ability to intera
t with multiple operations at on
e.

In the BMI testsome() 
ase, the array of operations that the user submits is

segregated based on whi
h methods 
ontrol whi
h operations. Ea
h method is then

tested in a round robin manner to determine if any of those operations have 
ompleted.

The results of the tests are aggregated ba
k into a single array and returned to the

user.

In the BMI testglobal() fun
tion is similar ex
ept that the set of operations is not

known in advan
e; therefore the initial sorting phase 
an be skipped.

The order in whi
h round robin testing o

urs is determined by the order in whi
h

the user previously spe
i�ed the list of method modules at initialization time. Thus,

high throughput interfa
es 
an be given a somewhat higher priority by simply listing

them �rst in the set of available method modules.
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3.12.4 Address resolution

Address resolution is the �nal 
riti
al 
omponent of the method 
ontrol layer. The

following steps are performed in order to lookup an address based on a text des
rip-

tion:

1. Sear
h the referen
e list to determine if this lookup has already been performed.

If so, immediately return the 
orre
t BMI address.

2. Conta
t ea
h a
tive method until one of them indi
ates that it was able to

su

essfully parse the host name.

3. Create a new referen
e stru
ture to tra
k the address.

4. Fill in the referen
e stru
ture with information about whi
h module is respon-

sible for it and whi
h address handles may be used to refer to it.

5. Store the referen
e stru
ture and return a valid BMI address to the user.

Note that sin
e BMI is a 
onne
tionless interfa
e, there is no way to guarantee

that an address is truly valid until a user attempts to 
ommuni
ate with that host.

3.13 Bringing together the BMI library

The pre
eding se
tions outline all of the 
omponents that make up the proto
ol

agnosti
 portion of the BMI ar
hite
ture. All of these 
omponents are 
arefully


onstru
ted to limit ea
h interfa
e to only those 
omponents that need to a

ess it.

A user has no me
hanism for dire
tly intera
ting with method data stru
tures or

fun
tionality, nor does any method have the ability to interfere with the operation

of other methods. Modularity is preserved by only providing the absolute ne
essities

of ea
h interfa
e to a given 
omponent. This helps to provide a safe environment

for both the BMI user and the method implementer. It also insures that individual
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portions of the BMI ar
hite
ture may be modi�ed or optimized without interfering

with 
ore fun
tionality. This is important in supporting future resear
h.

The method 
ontrol layer, support libraries, and user interfa
e only provide a

framework for the use of various network proto
ols, however. The real work of 
arrying

out 
ommuni
ations and emulating ne
essary network features is 
arried out within

the BMI methods. The design of a set of prototype methods is outlined in the

following 
hapters.



Chapter 4

BMI method 
ase studies

For BMI to be su

essful, we must be able to eÆ
iently implement methods for

highly diverse networking environments. Thus we have 
hosen two distin
t messaging

systems as examples of the potential of the Bu�ered Message Interfa
e. The �rst is

TCP/IP. TCP/IP is a well known and widely adopted network proto
ol. It is a

stream based and 
onne
tion oriented, and provides full 
ow 
ontrol and reliability.

The se
ond is GM. GM is a user level proto
ol that is supported on Myri
om's Myrinet

series of network adapters. GM is 
onne
tionless and provides no 
ow 
ontrol.

These two proto
ols were 
hosen for two reasons. The �rst is their la
k of similar-

ity. If BMI 
an be shown to work eÆ
iently over both proto
ols, then it should give

at least some indi
ation that the design is 
exible. The implementation 
ase studies

will outline the 
hallenges that were over
ome for ea
h method in more detail. Se
-

ondly, both proto
ols are mature and readily available on produ
tion level systems.

Their behavior is well known and does not introdu
e any unexpe
ted anomalies when

studying network implementations.

Note that both implementations are essentially referen
e designs. More optimiza-

tions are available then have been implemented. Some of these have been identi�ed
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for future work and will be noted where appropriate. The primary emphasis here is

on obtaining dependable behavior and evaluating the Bu�ered Message Interfa
e.

4.1 Method support libraries

Several support fun
tions are provided for use by the BMI methods. These support

fun
tions were previously outlined beginning in se
tion 3.11. The most important set

of fun
tions provide queuing 
apability. Almost every network method will utilize

queues to keep tra
k of network operations. Other support fun
tions are provided to

manage two important data stru
tures: the method addresses and method operations.

Method addresses are used as handles for hosts on the network. Operation stru
tures

are used to represent individual operations that are posted by the appli
ation. Both

stru
tures 
ontain generi
 �elds that apply to all methods while also allowing room

for ea
h method to store its own private information.

4.2 TCP/IP

4.2.1 Challenges

� Conne
tionless emulation: The TCP/IP so
ket interfa
e is 
onne
tion ori-

ented. This means that a 
onne
tion must be established between two hosts

before 
ommuni
ation 
an o

ur between them. It should also be terminated

after all 
ommuni
ation is 
omplete. BMI, however, is a 
onne
tionless inter-

fa
e. The a
t of setting up and tearing down 
onne
tions must be managed

below the appli
ation interfa
e, transparent to the appli
ation.

� Data streams: TCP/IP so
kets operate as data streams. The interfa
e has

no expli
it 
on
ept of message boundaries. Any amount of data 
an be sent

or re
eived in a single operation, but it may not ne
essarily 
omplete at on
e.
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Partial sends and re
eives are legal when using nonblo
king TCP/IP so
kets.

This behavior does not mat
h the BMI model of 
ommuni
ations. BMI treats

ea
h message as an atomi
 unit that is either sent 
orre
tly or not.

� Error re
overy: Re
overy from 
ommuni
ation failure using TCP/IP is some-

what 
ompli
ated within the BMI environment. TCP/IP so
kets 
ontain a quite

a bit of state be
ause of the presen
e of a 
onne
tion and a data stream. If a

single operation fails, it is important to properly tear down any so
ket state

and safely handle any further pending operations that intended to use the same

so
ket.

4.2.2 Approa
h

Building blo
ks

The TCP/IP method implementation is based on three primary building blo
ks. The

�rst is the so
kio library, whi
h provides a very small abstra
tion of the Unix so
kets

interfa
e. It implements the basi
 operations, su
h as 
reating so
kets, 
onne
ting

so
kets, setting TCP options, and performing read and write operations. The so
kio

library has been used extensively in the 
urrent PVFS implementation and is known

to perform reliably.

The se
ond building blo
k is the so
ket 
olle
tion library. The so
ket 
olle
tion

library provides a me
hanism for managing groups of a
tive so
kets. So
kets are

added to it as they are 
reated, and removed from it as they are destroyed. The

so
ket 
olle
tion tra
ks all of the so
kets and determines whi
h ones 
an potentially

send or re
eive data. When the TCP/IP method is prompted to do work, the so
ket


olle
tion is tested to determine whi
h so
kets are ready to handle operations. The

internal polling set is dynami
ally resized as ne
essary to a

ommodate arbitrarily

large 
olle
tions of so
kets. This interfa
e also allows the possibility of implement-
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ing new polling strategies without 
ompromising 
ode that depends on the so
ket


olle
tions.

The �nal building blo
k for the TCP/IP method is the operation queuing library

provided by the method 
ontrol layer. The queues are ne
essary to preserve the

ordering of messages and to keep tra
k of operations that are 
urrently in progress.

There are a �xed number of queues available that are used for 
ommuni
ation with

all hosts. This approa
h is 
hosen over maintaining separate queues for ea
h host for

reasons of simpli
ity and maintainability. We intend to show that the use of global

method queues is not detrimental to performan
e as long as the queue management

and sear
hing is performed in an eÆ
ient manner.

Message modes

The TCP/IP method o�ers three modes of operation depending on the parameters

of the message to be sent. The �rst, unexpe
ted mode, is spe
i�ed by the user

when sending unexpe
ted messages as outlined in se
tion 3.3. The other two, eager

and rendezvous mode, are transparent to the user and are internally 
hosen by the

TCP/IP method based on the size of the data region to be transfered.

The semanti
s of ea
h mode of operation are de�ned as follows:

� rendezvous: This is the simplest messaging mode supported by the TCP/IP

method. It is 
hosen for larger messages (the default threshold spe
i�es that

rendezvous mode will be used for any message over 16 Kbyte in size). In this

situation, the sender will �rst send a header des
ribing the message and then

immediately follow it with message data. The re
eiving method 
an a

ept the

header at any time. However, it will not begin to read in the message data

until the re
eiving user has posted a mat
hing re
eive operation. This is why

this me
hanism is termed \rendezvous" mode; the bulk data transfer is not
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allowed to o

ur until both the sending and re
eiving user have prepared for

the operation.

� eager: This messaging mode is 
hosen by the TCP/IP method for smaller

message sizes (by default, less than 16 Kbyte in size). The sender (as in the

rendezvous 
ase) �rst transmits a header des
ribing the message and then fol-

lows it with the a
tual message data. The re
eiver will a

ept this header and

then make a de
ision about how the message data should be handled. If a

mat
hing re
eive operation has already been posted by the user, then the mes-

sage data will be read into the re
eive bu�er for that operation. If a mat
hing

re
eive has not yet been posted, then the re
eiving method will dynami
ally

allo
ate a temporary bu�er for the data to be stored in. This allows the oper-

ation to make progress even if the re
eiving user is not yet ready for the data.

On
e the mat
hing re
eive operation is posted, the data 
an be 
opied into the

�nal bu�er and the temporary bu�er is destroyed.

� unexpe
ted: Unexpe
ted messages are handled in an almost identi
al manner

to eager messages. The only variation is that there is no �nal bu�er 
opy step if

the sender transmits data before the re
eiver is ready. Instead, the temporary

bu�er is passed to the user when the user 
he
ks to see if any unexpe
ted

messages have been re
eived. The semanti
s of unexpe
ted messages di
tates

the the re
eiver does not get a 
han
e to spe
ify the destination bu�er for the

message. It is 
reated by the method.

It is interesting to note that in all three 
ases the sending method behaves the

same. This seems 
ounter-intuitive at �rst be
ause it would appear that (at least

in the rendezvous 
ase) that the sender should wait until the re
eiver is prepared

before transmitting the a
tual message data. However, we 
an rely on the natural

behavior of the TCP/IP so
kets interfa
e in this 
ontext. TCP/IP so
kets allow a
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sender to start sending data before a re
eiver is ready. The data is simply bu�ered at

the operating system level until it 
an be transferred. This bu�ering of data improves

overall laten
y and throughput be
ause the operating system does not have to wait

on user intervention to begin moving data on
e the opportunity arises.

Queuing model

As mentioned earlier, the TCP/IP method uses queues to keep tra
k of network

operations that are either in progress, awaiting resour
es, or 
ompleted. Six separate

queues are used:

� Send queue: Contains all send operations (for any mode or address) that


annot be initiated yet. Operations are typi
ally queued here be
ause a previous

operation to the same address has not yet 
ompleted. This queue ensures proper

message ordering when multiple send operations are posted.

� Completed queue: Contains all operations that have 
ompleted transmission,

whether su

essful or not. Operations are removed from this queue on
e the

user has queried with the appropriate BMI test fun
tion.

� In-
ight re
eive queue: Contains a list of re
eive operations that have already

begun but are not yet 
ompleted. It provides a fast me
hanism for identifying

where in
oming data should be pla
ed on
e a so
ket has data available.

� Eager re
eive queue: Contains re
eive operations that are small enough to

be a

epted in eager mode. These operations have not yet re
eived any data.

On
e data begins to arrive for a parti
ular operation, it will be moved to the

in-
ight re
eive queue.

� Rendezvous re
eive queue: Contains re
eive operations that will be a

epted

using rendezvous mode. These operations have not yet re
eived any data. On
e
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data begins to arrive for a parti
ular operation, it will be moved to the in-
ight

re
eive queue.

� Bu�ering re
eive queue: Contains eager or unexpe
ted re
eive operations

whi
h have begun bu�ering data before the user posted a mat
hing bu�er. This

queue is sear
hed when an eager message is posted to determine if the operation

has already been 
ompleted.

Noti
e that there are more re
eive queues available than send queues. There are

two reasons for this design. First of all, as noted earlier, all send operations are

treated the same from the method's point of view. There is no distin
tion between

TCP/IP sends that o

ur for di�erent message modes. Se
ondly, the handling of

re
eive operations requires more queue sear
hing than in the send 
ase. We therefore

gain a measurable boost in performan
e by simply splitting up the queues to minimize

sear
h time.

S
enarios

The internal workings of the TCP/IP method 
an best be summarized with a few

simple examples. The �rst example is an eager mode send operation, as shown in

Figure 4.1. The operation begins with the user 
alling BMI post send(). The method

will �rst 
he
k to see if there are any sends already s
heduled for the same address.

If it �nds one, the message is immediately queued to preserve ordering. Otherwise,

the method makes an attempt to send the message envelope and as mu
h data as it


an (without blo
king) before queuing. If the message is 
ompleted at this time, it is

never queued, and the return value of BMI post send() indi
ates its 
ompletion.

If the send does not 
omplete on the �rst try, it will remain in the send queue

until the internal so
ket 
olle
tion indi
ates that work may 
ontinue on the operation.

Sin
e the TCP/IP method does not possess its own thread of 
ontrol, it 
annot do
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Figure 4.1: TCP method (typi
al send s
enario)
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Figure 4.2: TCP method (typi
al re
eive s
enario)
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work until the user 
alls BMI test(). On
e an operation is �nished, it is stored in

the 
ompletion queue, where it will be re
overed by the user in subsequent 
alls to

BMI test().

The 
ommon re
eive s
enario is slightly more 
ompli
ated than the send 
ase. Fig-

ure 4.2 outlines the 
ow of events for an eager mode re
eive. When BMI post re
v()

is 
alled by the user, it �rst 
he
ks to see if the re
eive has already been bu�ered.

If so, it 
opies the payload out of the temporary bu�er and returns immediately.

Otherwise, the re
eive operation is queued.

When the so
ket 
olle
tion indi
ates that data is available, the method �rst 
he
ks

the in 
ight re
eive queue to see if the data belongs to an operation that is already

in progress. If the method �nds a mat
h, it 
ontinues re
eiving data. If there is

no mat
hing operation in 
ight, then the method reads the envelope data from the

so
ket to determine the parameters of the message.

If an operation 
ompletes before the mat
hing re
eive has been posted by the user,

it will be stored in the bu�ered re
eive queue. Otherwise, the operation is pla
ed in

the 
ompletion queue where it remains until the user tests to see if it has 
ompleted.



59

4.2.3 Possible optimizations

The approa
h outlined thus far for implementing a TCP/IP BMI method is suÆ
ient

to provide the 
orre
t messaging semanti
s. However, there are several optimizations

whi
h may be implemented to improve performan
e. Some of these te
hniques are

presented below. A few of them will be explored more fully in se
tion 5.

� Nagle's algorithm: Nagle's algorithm [20℄ attempts to improve eÆ
ien
y on

distributed networks by limiting the number of small pa
kets in 
ight at any

given time. If TCP/IP messages have been sent for whi
h no a
knowledgment

has been re
eived, then Nagle's algorithm prevents pa
kets below a 
ertain size

threshold from being transmitted until all a
knowledgments have been re
eived.

This may 
ause ex
essive delay for small messages if the network is reliable and

does not need su
h a 
onservative approa
h to small messages. Therefore, most

modern TCP/IP implementations have a me
hanism for disabling this algorithm

from the appli
ation level.

� Eager re
eive opportunities: Immediate 
ompletion of any network opera-

tion is bene�
ial to performan
e be
ause it avoids the overhead of testing for


ompletion later. The TCP/IP method does not yet take advantage of every

su
h opportunity in the re
eive 
ase. One example o

urs if a re
eive is posted

when no other re
eive is queued for that address. In this situation, it 
ould take

the optimisti
 approa
h and immediately 
he
k the mat
hing so
ket for data.

If the sender has already begun transmitting, then the re
eive operation 
an

make progress before it is even queued.

� Tuning so
ket bu�ers: The amount of data that 
an be bu�ered during a

send or re
eive is determined by the operating system's TCP/IP so
ket bu�er

size. This parameter may be spe
i�ed globally for the entire system, or it may

be spe
i�ed on a per so
ket basis. If it is set on a per so
ket basis, then the
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method has the ability to adjust the bu�er size dynami
ally in response to

the type of operations being handled. It may be lowered to 
onserve system

resour
es, or in
reased in order to allow the kernel to do more work per system


all.

� Redu
ing memory allo
ation: Dynami
 allo
ation of memory is typi
ally

an expensive operation. At this time, the TCP/IP method allo
ates several

internal bookkeeping stru
tures as needed, rather than reusing a pool of existing

stru
tures. This may be hindering small message laten
y in some situations.

In parti
ular, the method operation stru
ture (whi
h tra
ks the state of all

network messages) is allo
ated for almost every message that is transmitted.

This 
ould be alleviated by simply repla
ing the method operation interfa
e

with an implementation that maintains a pool of stru
tures that are already

initialized and ready for use. Similar te
hniques are used in most operating

system kernels to limit the overhead of a
quiring 
ommon data stru
tures.

� Queue separation: The range of available operation queues was 
hosen as a


ompromise between method 
omplexity and queue sear
h time. However, this

may not be optimal for all work loads. The queues 
ould be instrumented to

provide more information about sear
h times. This may indi
ate problem areas

that 
ould be targeted for improvement in queue layout.

� Alternative polling algorithms: The 
urrent implementation polls in the

same order through the so
ket 
olle
tion on ea
h iteration. This strategy 
ould

be repla
ed with a round robin or other simple polling me
hanism that more

evenly distributes work among a
tive so
kets. We may also be able to identify

situations in whi
h more than one message 
an be pla
ed in a single so
ket per

iteration. Right now the test fun
tions try to send or re
eive only one message

per so
ket for ea
h fun
tion 
all.
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4.3 GM

4.3.1 Challenges

� Memory management: GM requires all data bu�ers to be pinned into phys-

i
al memory before transmission. We 
an take advantage of this using the BMI

memory management fun
tions. However, we must also support the use of arbi-

trary user bu�ers at the BMI interfa
e level. This requires either internal bu�er


opies or memory registration to maintain interfa
e semanti
s.

� Flow 
ontrol: GM does not provide any form of message level 
ow 
ontrol. In

fa
t, it requires that all re
eive bu�ers be posted before message transmission

begins. Therefore, the BMI method must implement 
ow 
ontrol in order to

relax the message ordering semanti
s. BMI does not guarantee syn
hronization

between sender and re
eiver.

� Mat
hing posted bu�ers: There is no way to spe
ify whi
h in
oming message

will mat
h a given re
eive bu�er posted by the GM user. The user 
annot spe
ify

that a bu�er is only to be used for messages from a parti
ular host, for example.

Therefore, on
e a message is re
eived, the method must analyze it to determine

its origin and perform a memory 
opy if ne
essary to put the data in the 
orre
t

user spe
i�ed lo
ation.

� Limited token resour
es: The GM interfa
e for
es the user to refrain from

posting sends or re
eives unless it possesses an appropriate token. There are

a �nite number of tokens. They are 
onsumed when a send is initiated or a

re
eive bu�er is posted. The tokens are then returned when a send or re
eive


ompletes.
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4.3.2 Approa
h

The BMI GM method implementation relies heavily on the queuing me
hanism pro-

vided by BMI to preserve message ordering and maintain the state of the system.

It also takes advantage of several features spe
i�
 to the GM library interfa
e that

assist in managing message 
ompletion.

Message modes

The GM method supports two messaging modes. The de
ision to use one or the

other is based solely on the message size. The most 
omplex messaging mode is the

eager handshake mode. It is used by default for any message larger than 8 Kbyte, but

this parameter is tunable. This mode is 
onsidered eager be
ause it allows messages

to be bu�ered at the re
eiving side before the user posts a mat
hing re
eive opera-

tion. However, the sending and re
eiving hosts must negotiate at a low level before

transmitting the message.

Smaller messages are sent using immediate mode. Immediate mode requires no

handshaking at all. The sender assumes that the re
eiver is always prepared to re
eive

messages of this size.

Methods are 
apable of sending and re
eiving 
ontrol messages independent of

a
tual message data. These 
ontrol messages may 
ontain 
ow 
ontrol information,

handshaking information, or a
tual message data in the 
ase of immediate mode

messages. When the GM method is initialized, its �rst task is to provide a large

number of re
eive bu�ers for a

epting 
ontrol messages. These bu�ers are reused

after pro
essing 
ontrol messages and are repla
ed as qui
kly as possible to ensure

that there are always bu�ers available to handle new 
ontrol messages.

When a sender initiates an eager handshake 
ommuni
ation, it �rst sends a 
ontrol

message to the re
eiver to announ
e that it wishes to transmit. The re
eiver then

prepares a bu�er of the appropriate size for re
eiving the message. On
e the bu�er
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is ready, it sends a 
ontrol message ba
k to the re
eiver in response to announ
e that

the bu�er is ready. The a
tual message payload is then transfered.

When a sender initiates an immediate 
ommuni
ation, it simply sends the data

as payload on a 
ontrol message. The re
eiver will a

ept these messages without

negotiating in advan
e.

Flow 
ontrol

The GM method implements very basi
 
ow 
ontrol me
hanisms. The a
tual 
om-

muni
ations me
hanism on Myrinet networks are extremely reliable, so the goal of


ow 
ontrol is not to avoid 
ongestion or lost pa
kets, but rather to 
onserve memory

resour
es. Only a �nite number of re
eive bu�ers may be posted at a given time, and

one must be 
areful not to exhaust the memory resour
es of a host ma
hine.

There are two types of bu�ers whi
h may be posted by a re
eiving host. The

�rst is the large data payload bu�er used during eager handshake 
ommuni
ations.

The use of these bu�ers 
an be easily 
ontrolled by the re
eiver sin
e they are only

used in this spe
i�
 mode. On
e the re
eiver pro
esses a 
ontrol message requesting

a bu�er of this type, the re
eiver has the option of waiting as long as it needs to

before posting the bu�er. If it runs out of memory resour
es, it simply delays sending

a 
ontrol response until the resour
es are available. This prevents a sender from

transmitting the payload too qui
kly.

Control message bu�ers are the se
ond resour
e that must be 
onserved. The GM

method attempts to keep as many of these available as possible, but it is still possible

for a 
lient to overrun the available bu�ers by sending small messages faster than they


an be pro
essed. In order to prevent this situation, a limit is pla
ed on the number

of send messages that may be in 
ight between hosts at any given time. A message

is 
onsidered to no longer be in 
ight on
e the sender is sure that the re
eiver has

pro
essed it. The number of messages allowed per host is tunable. In
reasing this
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parameter improves performan
e be
ause it allows deeper pipelining if many messages

are allowed to be transmitted ba
k to ba
k. However, this parameter must be redu
ed

in larger networks to ensure that ea
h host 
an a

ept messages from every other host

simultaneously without exhausting memory resour
es.

Message pipelining

Note that pipelining is used extensively in eager handshake mode. There are several

steps to 
arrying out eager handshake messages. One message may be in step one

while another message is in step two, and so on. The available resour
es determine

how many messages may 
arry out the same step at the same time. If one resour
e is

exhausted, other steps are allowed to 
ontinue up until stalling on that resour
e. This

approa
h is very similar to instru
tion pipelining in modern mi
ropro
essors [22℄.

Retransmission

Even with the above 
ow 
ontrol s
heme, the s
alability of the GM method is limited.

With enough hosts on the network, any �nite number of available bu�ers 
ould be


onsumed in a degenerate 
ase, su
h as a many to one 
ommuni
ation. Therefore,

the method must be able to re
over from pa
ket loss that o

urs when messages are

sent before bu�ers are ready.

The GM library provides extensions to dete
t and re
over from this situation.

However, the do
umentation for these extensions is in
omplete at the time of this

writing be
ause these features have undergone modi�
ations during re
ent release


y
les. Implementation of a retransmission poli
y for the BMI GMmethod is therefore

being postponed for future work.
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S
enarios

The GM method 
an be understood more fully by observing a few s
enarios. The

immediate mode messages are just a simpli�ed version of the eager handshake mes-

sages, so we will fo
us on eager handshake mode. Keep in mind that this method is

not implemented using threads. Therefore, the state ma
hine is only driven when the


aller invokes BMI fun
tion 
alls.

A state diagram of the send 
ase is shown in Figure 4.3. When the appli
ation

posts a send bu�er, the method �rst 
he
ks to see if the data needs to be 
opied

into a suitable bu�er. On
e the bu�er is ready, it must 
he
k three resour
es before


ontinuing. First it makes sure that a send token is available. Then it 
he
ks to see if

any messages are queued ahead of it. Finally, it 
he
ks to see how many messages are

already in 
ight to the target host. If any requirement is not met, then the message

is queued. Otherwise, it 
ontinues by sending a 
ontrol request to the target host.

If the target host responds and grants permission to send the data payload, then

the method must again either obtain a send token or queue the message until a

token is available. Finally the data payload is sent and the operation is pla
ed in a


ompletion queue to be re
overed when the appli
ation 
alls BMI test().

The mat
hing re
eive example is shown in Figure 4.4. When a 
ontrol request is

re
eived from a sending host, the method must obtain a token to re
eive the data

payload. If no token is available, the operation is temporarily queued. A bu�er is

then posted to a

ept the payload, and a 
ontrol response is sent to inform the sender

that it may pro
eed. The operation is then queued until the data arrives.

On
e the data arrives, the method 
he
ks to see if a mat
hing re
eive operation

has been posted in the 
ontrol mat
h queue. If so, the operation is �nished and

moved to the 
ompletion queue to be re
overed during a BMI test() 
all. If not, the

operation is pla
ed in the re
eive post queue to wait until BMI post re
v() is 
alled.
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Figure 4.3: GM method (typi
al send s
enario)
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Figure 4.4: GM method (typi
al re
eive s
enario)
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BMI post re
v() will 
omplete immediately in this 
ase be
ause the data will already

be available before the fun
tion is invoked.

4.3.3 Possible optimizations

The GM messaging library provides tools for implementing many 
ommuni
ation

optimizations. The original GM method implementation is fo
used on 
orre
tness

rather than speed, so several of these possibilities have been left for later work:

� Registering memory: All memory bu�ers transmitted using GM must either

be allo
ated by the GM library or registered by the GM library. Currently,

if a BMI user passes in a bu�er that was not preallo
ated, a new bu�er is


reated and the data is 
opied into it. This is done so that extra room may

be provided in the bu�er for storing header information. However, it would

probably be mu
h faster to register the existing bu�er. Allo
ating room for the

header 
ould be avoided by transmitting the data using 
ontrol messages.

� Fast GM messages: GM optimizes for very small messages by transmitting

them within the low level GM 
ontrol pa
ket. If the appli
ation ele
ts to handle

this type of message, it 
an operate dire
tly on the data bu�er from the GM


ontrol pa
ket. If it ignores this type of message, then the data is transparently


opied into a normal GM bu�er and handled just like any other message. This

bu�er 
opy 
ould be avoided if the method pro
essed this spe
ial type of message

(
alled \fast" messages by GM).

� Avoiding memory 
opy on re
eive: Sin
e the GM method does not allow

the 
aller to spe
ify whi
h in
oming messages are pla
ed in whi
h bu�er, in
om-

ing messages are always 
opied to ensure that they end up in the 
orre
t user

bu�er. In some 
ases, this is unne
essary be
ause the 
aller doesn't a
tually


are where the data is pla
ed. We 
ould take advantage of this by allowing a
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spe
ial type of re
eive operation that provides the bu�er to the 
aller on
e the

operation 
ompletes, rather than spe
ifying it in advan
e. This would require

a modi�
ation to the BMI interfa
e.

� Advan
ed 
ow 
ontrol: The BMI GM method implements a very rudimen-

tary 
ow 
ontrol s
heme. A more advan
ed approa
h 
ould potentially yield a

speedup, but is beyond the s
ope of this do
ument.

� Pooling 
ontrol bu�ers: As mentioned earlier, 
ontrol re
eive bu�ers are

pooled and reused on
e they are pro
essed to avoid the overhead of allo
ating

new memory regions. This is not done in the send 
ase, however, be
ause it

is more diÆ
ult to lo
ate available bu�ers when they are needed. A simple

lookaside list implementation 
ould resolve this issue, however, and avoid extra

memory allo
ation time.

� Redu
ing memory allo
ation for bookkeeping: The BMI methods allo-


ate several stru
tures to tra
k pending operations and network addresses. If

these stru
tures were allo
ated in advan
ed and reused as needed it would help

to 
ut down on message laten
y.



Chapter 5

Results

We must measure the performan
e of the BMI implementation in several s
enarios

to evaluate its eÆ
ien
y. MPICH will be used for 
omparison purposes so that there

is a point of referen
e for observing the results. MPICH was 
hosen be
ause it is


apable of providing almost all of the messaging ability that BMI possesses, and

there is an MPICH devi
e available for both TCP/IP and GM (the two BMI referen
e

implementations).

In all 
ases, the ben
hmarks were implemented using MPI fun
tions that most


losely mat
h the 
apabilities of BMI. However, sin
e MPI is a mu
h broader imple-

mentation, there are often MPI fun
tions available that would be more optimal. These

fun
tions are ignored for this 
omparison, however, be
ause we are more interested

in general purpose baseline performan
e.

It must be emphasized that this is not a dire
t 
omparison of the two interfa
es.

In general they solve very di�erent problems and thus are subje
t to di�erent design


onstraints. BMI has an advantage in these tests be
ause it is a mu
h less featureful

interfa
e and the test appli
ations do not always take advantage of the most optimal

MPI appli
ation approa
h.
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The �rst analysis of BMI performan
e will fo
us on point to point bandwidth,

round trip laten
y, and many to one and one to many 
ommuni
ations. The �rst

two 
lasses of tests will hopefully point out fundamental strengths and weaknesses of

the interfa
es, while the latter tests will attempt to evaluate BMI in situation more

similar to what would o

ur in a real life �le server implementation.

5.1 Test environment

These tests were all 
arried out on the Chiba City s
alable 
luster at Argonne National

Laboratory [7℄. The 
luster was 
on�gured as follows at the time of our experiments.

There were 256 nodes, ea
h with two 500-MHz Pentium III pro
essors, 512 Mbytes of

RAM, a 100 Mbits/se
 Intel EtherExpress Pro Fast Ethernet network 
ard operating

in full-duplex mode, and a 64-bit Myrinet 
ard (Revision 3). The nodes were running

Linux 2.4.2. There were two MPI implementations: MPICH 1.2.1 for Fast Ethernet

and MPICH-GM 1.2.0 for Myrinet. None of the tests were performed using more

than 65 nodes at a time.

5.2 Initial TCP/IP results

All TCP/IP tests were performed using the Ethernet network on Chiba City with

MPICH 1.2.1. In addition, baseline bandwidth measurements were performed using

the tt
p test utility, version 1.12 [25℄. The tt
p utility operates dire
tly on TCP/IP

so
kets with no abstra
tion layer. It should therefore give a good indi
ation of the

maximum obtainable TCP/IP bandwidth.
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5.2.1 Bandwidth

Bandwidth was measured by transmitting a predetermined amount of data between

two hosts using a variety of message sizes. The data was marked with a pattern before

timing began so that its 
orre
tness 
ould be veri�ed after re
eipt. All messages were

posted in order before testing for 
ompletion. Timing for both sender and re
eiver

hosts in
ludes the time required to post and test for 
ompletion of all messages. MPI

tests were performed using the MPI Isend(), MPI Ire
v() and MPI Test() fun
tions.

BMI tests were performed using BMI post send(), BMI post re
v() and BMI test().

Memory bu�ers were not allo
ated using the BMI interfa
e in any TCP tests.

This sort of allo
ation has no impa
t on performan
e in the TCP/IP method be
ause

TCP/IP has no me
hanism for optimizing message bu�ers.

All �gures shown are the result of averaging �ve measurements. The BMI and

MPI tests were run within se
onds of ea
h other in ea
h 
ase in order to ensure that

the system was in a 
onsistent state for ea
h test.

Figure 5.1 shows the TCP/IP bandwidth as measured from the sending host for

very small message sizes, ranging from 100 bytes to 1000 bytes. The total amount of

data transfered in every 
ase was 1,000,000 bytes, or nearly one Mbyte. This means

that the total number of message sent for ea
h data point ranged from 10,000 to 1,000

messages.

The raw TCP performan
e (as measured by tt
p) shows negligible impa
t from


hoi
e of message size. However, both MPI and BMI demonstrate the penalty imposed

from an extra layer of abstra
tion over the so
kets interfa
e. BMI does not rea
h its

peak bandwidth 
apability until the message size is 500 bytes or greater. These results

also show that the BMI interfa
e imposes an overhead of about 5% 
ompared to dire
t

so
ket 
ommuni
ations for message sizes larger than 500 bytes. MPI does not rea
h

its peak 
apa
ity within this message range.
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Figure 5.1: Small message TCP/IP bandwidth (send)
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Figure 5.2: Small message TCP/IP bandwidth (re
eive)
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Figure 5.3: Larger message TCP/IP bandwidth (send)
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Figure 5.2 shows very similar results for bandwidth measured from the re
eiving

host.

Figures 5.3 and 5.4 show bandwidth results for the transfer of 10,000,000 bytes

(nearly 10 Mbytes) of data, using message sizes ranging from 1,000 bytes to 10,000

bytes. This means that the number of message needed to 
omplete the transfer varied

between 10,000 and 1000, just as in the previous 
ase.

Noti
e that with 10,000 byte messages, the BMI method only obtains about 9.8

Mbytes/se
 for a 10 Mbyte transfer, as opposed to 10.75 Mbytes/se
 for the 1 Mbyte

transfer shown in the previous graphs. This shows that both message size and number

of messages sent have an impa
t on performan
e. Again, the interfa
e is imposing a

noti
eable overhead when a large number of messages are queued up.
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Figure 5.4: Larger message TCP/IP bandwidth (re
eive)
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As the message size gets larger and the total number of messages being sent

de
reases, the BMI performan
e begins to mat
h the raw TCP/IP performan
e. For

large messages the overhead imposed by the interfa
e is less than 1%.

5.2.2 Laten
y

Laten
y results were obtained by measuring the round trip transmission time of a

message between two ma
hines. All 
ommuni
ations were done using nonblo
king

fun
tion 
alls. Timing started just before posting the �rst send operation and ended

just after the re
eipt of the response message 
ompleted su

essfully. All measure-

ments were 
arried out from the appli
ation level.

Figure 5.5 shows the round trip laten
y as measured using both BMI and MPI.

The message sizes ranged from 4 bytes to 4 Kbytes (on a logarithmi
 s
ale). The

MPI laten
y is mu
h lower than the BMI laten
y in this test, though they begin to
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Figure 5.5: TCP/IP round trip laten
y
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onverge for larger message sizes. Se
tion 5.4.1 explores te
hniques for lowering the

laten
y found in the BMI TCP/IP method.

5.2.3 Simulated server load

This test is stru
tured as follows. A single host is setup to listen for MPI or BMI

messages. When it re
eives a message (formatted as a small request), it replies by

sending another message of the requested size ba
k to the sender. The 
lients that


ommuni
ate with it are syn
hronized using MPI so that they all attempt to 
onta
t

the server simultaneously. This is intended to measure BMI performan
e under a

load that resembles what would happen if many 
lients were to 
onta
t a single

server simultaneously for a small data read operation.

In addition, the server is given no advan
e knowledge of whi
h 
lients will 
onta
t

it, nor in what order they will 
ommuni
ate. The BMI portion of the server deals
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Figure 5.6: TCP/IP many to one performan
e (10K messages)
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with this by using the BMI unexpe
ted message fa
ility. The MPI portion of the

server handles it by posted a 
olle
tion of re
eives that will mat
h a wild
ard (any)

sender.

Timing information (round trip appli
ation laten
y) is measured from the 
lient

side. The average, maximum, and minimum times among all 
lients are averaged

a
ross �ve test runs. Figure 5.6 shows the results of this test using 10 Kbyte messages

for anywhere from 2 to 64 
lients.

The BMI method performs well for this message size and exhibits a very stable

performan
e 
urve.

Figure 5.7 shows results from the same test s
enario, but with a message size of

100 Kbytes rather than 10 Kbytes. The interesting behavior from this test 
ase is that

the BMI and MPI tests exhibit very similar average performan
e a
ross the range of


lients. However, the MPI interfa
e obtains this average through a mu
h wider range
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Figure 5.7: TCP/IP many to one performan
e (100K messages)
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of individual 
lient measurements. MPI obtains mu
h lower laten
y for some 
lients

while also obtaining mu
h higher laten
y on other 
lients when 
ompared with BMI.

5.3 Initial GM results

All GM tests were performed using the Myrinet network on Chiba City with MPICH-

GM 1.2.0. All tests were setup in an identi
al manner to those presented in se
tion

5.2, but using the GM method for BMI and Myri
om's MPICH-GM implementation

for MPI.

5.3.1 Bandwidth

The bandwidth was measured again by transmitting a �xed amount of data using a

variety of message sizes. The BMI GM method has the ability to take advantage of
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optimized bu�ers, so the performan
e was also measured with the bu�ers being allo-


ated in advan
e using BMI memallo
(). In test 
ases with this BMI preallo
ation,

the memory allo
ation time was not in
luded in the timing. This is 
onsistent with

the normal test 
ases in whi
h the time needed to mallo
() the data bu�ers was not

in
luded in 
ommuni
ation timing. All data points shown are the result of averaging

�ve test runs.

The original intent was to measure performan
e over the same range of message

sizes used in the TCP/IP tests. However, it was dis
overed that the MPICH-GM

implementation was in
apable of 
ompleting the 1 Mbyte bandwidth test using 100

Byte message sizes. The test generally failed with memory allo
ation errors.

As a result, performan
e measurements had to be taken from a larger message

size range to provide data points from both interfa
es.

Figure 5.8 shows bandwidth as measured for the transfer of a 1,000,000 byte region

using message sizes ranging from 1,000 bytes to 10,000 bytes. This resulted in a total

number of messages ranging from 1,000 to 10,000.

Both MPICH-GM and BMI were 
on�gured by default to swit
h into three way

handshake mode at the 8 Kbyte message size. This 
an 
learly be seen in Figure 5.8

from the jumps in the 
urve. BMI performan
e (both for normal and preallo
ated

memory) dropped o� at 8 Kbytes, while the MPICH-GM performan
e improved at 8

Kbytes. The MPI performan
e below 8 Kbytes was surprisingly poor.

Figure 5.9 results from the same test run as measured from the re
eiving side.

The results are very similar, ex
ept that MPICH-GM performan
e doesn't improve

quite as mu
h on the 8 Kbyte boundary as it did in the send 
ase.

Figures 5.10 and 5.11 show the bandwidth as measured for the transfer of 10,000,000

bytes of data using messages sizes ranging from 10,000 bytes to 100,000 bytes. The

BMI method plateaus at about 27 Mbytes/se
 if the memory bu�ers are not allo-


ated in advan
e. The steps 
arried out for this transfer are identi
al to those done
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Figure 5.8: Small message GM bandwidth (send)
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Figure 5.9: Small message GM bandwidth (re
eive)
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Figure 5.10: Large message GM bandwidth (send)
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Figure 5.11: Large message GM bandwidth (re
eive)
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Figure 5.12: GM round trip laten
y
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with preallo
ation ex
ept that an extra memory 
opy is in
urred for every message.

The penalty introdu
ed by this approa
h is quite evident here. Se
tion 5.4.2 ex-

plores methods of redu
ing this overhead for memory bu�ers that are not allo
ated

in advan
e.

5.3.2 Laten
y

Round trip appli
ation was measured for GM in the same manner as done in the

pre
eeding TCP/IP tests. The results are shown on a logarithmi
 s
ale in Figure

5.12.

Preallo
ation of memory bu�ers had negligible impa
t on overall performan
e,

whi
h demonstrates that the additional memory 
opy is not terribly expensive for

bu�ers in this size range.
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Figure 5.13: GM many to one performan
e (10K messages)
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Figure 5.12 also shows that the BMI method was unable to obtain the low la-

ten
y �gures demonstrated by MPI at any message size. The dis
repan
y is quite

large, with the BMI approa
h taking at least four times as long as the MPICH-GM

implementation.

5.3.3 Simulating server load

The serverload ben
hmark was exe
uted over GM following the same parameters as

in the TCP/IP tests in se
tion 5.2.3. Figure 5.13 shows the results of this ben
hmark

for 10,000 byte message sizes.

Performan
e was errati
 for all three 
ases (MPI, BMI, and BMI with bu�er pre-

allo
ation). The MPI performan
e was very similar to the BMI performan
e with

preallo
ation. The BMI performan
e without preallo
ation was found to be substan-

tially slower.
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Figure 5.14: GM many to one performan
e (100K messages)
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Figure 5.14 shows the results of the same tests when using 100,000 byte message

sizes. The performan
e is mu
h more predi
table in this 
ase. Again, the MPI

performan
e ex
eeded that of BMI. The margin was espe
ially large when the BMI

bu�ers were not preallo
ated.

5.4 Evaluating problem areas

The initial BMI performan
e results indi
ate that some aspe
ts of BMI are not rea
h-

ing the potential o�ered by the underlying 
ommuni
ations systems. In this se
tion

we will attempt to analyze and address these issues.
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Figure 5.15: TCP/IP round trip laten
y
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5.4.1 TCP/IP method laten
y

Figure 5.5 indi
ates that the BMI method is exhibiting relatively poor performan
e in

terms of laten
y. The MPICH TCP/IP implementation is as mu
h as 80 mi
rose
onds

faster in round trip appli
ation measurements.

In order to �nd the sour
e of this problem, the MPICH implementation was an-

alyzed �rst. It was dis
overed that MPICH disables Nagle's algorithm by default

on BSD based systems that support this option. This option is 
ontrolled by the

TCP NODELAY 
ag in the setso
kopt() fun
tion. See se
tion 4.2.3 for more infor-

mation about Nagle's algorithm.

Figure 5.15 shows the results of the same laten
y test with the TCP NODELAY

option set for all so
kets 
ontrolled by the BMI method. MPI and BMI exhibit almost

identi
al behavior with this approa
h.
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Figure 5.16: small message TCP/IP bandwidth (send)
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Figure 5.17: larger message TCP/IP bandwidth (send)

8

8.5

9

9.5

10

10.5

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

B
an

dw
id

th
 (

M
by

te
s/

se
c)

Message Size

TCP/IP send bandwidth over ethernet

BMI
MPI

TTCP
BMI without Nagle’s algorithm



87

The raw bandwidth tests were also reevaluated to see if this approa
h impa
ted

BMI bandwidth results. Figures 5.16 and 5.17 show that this option has minimal

e�e
t on the overall TCP/IP bandwidth. The only measurable impa
t o

urred for

messages smaller than 700 bytes. In order to redu
e even this impa
t, it may be

possible to implement an adaptive delay poli
y. Su
h a poli
y 
ould ele
t to disable

or enable Nagle's algorithm on a per so
ket basis depending on the 
hara
teristi
s of

the messages that are queued up to be sent for that so
ket.

5.4.2 GM bandwidth for large messages

Initial bandwidth measurements for the GM method indi
ate that performan
e was

quite good if user bu�ers were allo
ated in advan
e using the BMI library. However,

if existing user bu�ers were utilized, then the performan
e was limited to around 27

Mbytes/se
 (see Figure 5.10). This is not a

eptable. The MPI performan
e �gures

indi
ate that a mu
h higher performan
e 
an be obtained without using preallo
ation.

As explained in se
tion 4.3.1, the GM library requires that all bu�ers to be trans-

mitted be lo
ated in regions of memory that have been prepared in advan
e for DMA

purposes. The initial BMI implementation met this requirement by allo
ating new

DMA-able bu�ers for ea
h message and 
opying the user bu�er into it. This 
opy

operation 
learly was 
onsuming a relatively large amount of time for large message

sizes.

The alternative is to a
tually register the existing user bu�ers using the gm register -

memory fun
tion 
all. Bu�ers registered in this manner must later be released using

the gm deregister memory fun
tion. One drawba
k to this approa
h is that low level

BMI header information 
an no longer be piggy-ba
ked onto the message data be-


ause there is no way to append 
ontiguous memory to the message. However, this

header information is not ne
essary for BMI messages that are transmitted using a
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Figure 5.18: Large message GM bandwidth (send)
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handshaking proto
ol, be
ause the 
ontrol messages 
ontain a 
omplete des
ription

for the message.

To explore this possibility, the BMI GM implementation was modi�ed to register

user bu�ers that had not been allo
ated using BMI. Ea
h bu�er was registered when

posted, and then deregistered on 
ompletion. This would avoid the extra memory


opy step. However, Figure 5.18 shows that the performan
e for this approa
h was

absolutely terrible (see the \BMI bandwidth registering user bu�ers" data points).

The MPICH-GM implementation was then inspe
ted to dis
over Myri
om's so-

lution to this problem. As it turns out, the MPICH devi
e uses a spe
ial memory

management system that registers user bu�ers as needed, but does not ne
essarily re-

lease them upon message 
ompletion. The bu�ers remained registered when returned

to the user. This optimization is intended to be helpful if bu�ers are reused qui
kly.
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The MPICH devi
e keeps up with whi
h memory regions have been registered, and

only deregisters regions if system memory resour
es run low.

The BMI bandwidth ben
hmark used for the pre
eding experiments only uses 10

Mbyte of system memory per host. Therefore, for experimentation purposes it is

possible to disable deregistration entirely to observe the impa
t. Figure 5.18 (\BMI

bandwidth registering without unregistering user bu�ers" data points) shows the

result. The performan
e was mu
h higher, and in fa
t ex
eeded MPI bandwidth for

most message sizes shown. Note that ea
h bu�er was used only on
e, so reuse of

bu�ers was not an issue.

This experiment revealed that the a
t of deregistering GM memory bu�ers is ex-

tremely high overhead, whi
h was an unexpe
ted result. In order for BMI bandwidth

with existing bu�ers to a
hieve the same level of MPICH, the BMI method must

implement a similar memory management library whi
h takes a lazy approa
h to

deregistering system memory.

Note that re
eive bu�ers in the BMI GM implementation are always 
opied. There

is no easy way to relax this 
onstraint, due the messaging system's inability to spe
ify

the role of ea
h re
eive bu�er posted. Ea
h time a message is re
eived, it must be

analyzed to determine whi
h user bu�er it mat
hes. The data is then 
opied to that

bu�er.

5.4.3 GM method laten
y

Earlier GM method measurements (parti
ularly for the round trip laten
y and server

load appli
ations) show that the laten
y of the implementation is not rea
hing its

expe
ted potential. The MPICH-GM implementation is as mu
h as four to �ve times

faster in terms of laten
y.
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Figure 5.19: GM round trip laten
y
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We therefore set out to investigate this dis
repan
y. A variety of optimizations

were attempted, ranging from alternative GM interfa
e fun
tions to optimized allo-


ation of internal stru
tures. A few interesting results were found.

Note that the GM method implementation (like the MPICH-GM implementation)

requires that a 
olle
tion of re
eive bu�ers be posted as soon as the method initializes.

This ensures that it will be able to a

ept 
ontrol messages from its peers. It was

dis
overed that tuning the number of bu�ers that were provided had a signi�
ant

impa
t on laten
y, as shown in Figure 5.19.

The extra line in this graph indi
ates performan
e if only 2 bu�ers were posted

in advan
e, rather than the typi
al 123. Note that the time required to a
tually post

these bu�ers is not in
luded in these measurements.

The di�eren
e in performan
e is nearly 100 mi
rose
onds. This margin is about

double the total round trip time of the MPICH-GM implementation. This is odd
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Figure 5.20: GM round trip laten
y
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be
ause the MPICH-GM implementation defaults to posting 123 bu�ers as well, and


learly it does not su�er from the same performan
e penalty that the BMI imple-

mentation does. This seems to indi
ate that there is a subtle di�eren
e in how

MPICH-GM and BMI methods approa
h 
ommuni
ation management that is still

to be dis
overed. This may be 
aused by an operation that s
ales poorly with the

number of posted bu�ers that should be avoided.

Note that a produ
tion quality method implementation must provide more than

two 
ontrol bu�ers at startup time. Otherwise the user risks the danger of overrunning

the amount of available bu�ers when too many 
ontrol messages 
ood the network.

The algorithm that determines how mu
h work should be done during a BMI test()

fun
tion 
all was also found to have a signi�
ant impa
t on laten
y. The original ap-

proa
h was to only perform one gm re
eive operation per 
y
le. The implementation

was modi�ed so that after ea
h 
all to gm re
eive(), gm re
eive pending() was also
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alled to determine if there was any more work that 
ould be immediately performed.

If so, gm re
eive() was 
alled repeatedly (up to a bounding limit) until the event

queue was emptied. This 
uts down on the overall number of fun
tion 
alls to the

BMI interfa
e per 
ommuni
ation. The results of this optimization are shown in

Figure 5.20. This trimmed around 20 mi
rose
onds from the total round trip time.

Despite these dis
overies, the BMI method still displays inferior results in the la-

ten
y sensitive appli
ations. The servload appli
ation is sensitive to this short
oming

and thus will not be re-evaluated until a solution is found to the laten
y problem.



Chapter 6

Con
lusion

We presented the Bu�ered Message Interfa
e in order to meet the need for a net-

work abstra
tion layer for implementing parallel �le systems on Linux 
lusters. This

interfa
e provides a simple appli
ation interfa
e for a

essing all the features of a


ommuni
ations network ne
essary for high performan
e I/O.

BMI demonstrates that a modular me
hanism 
an be built and used e�e
tively

for 
ommuni
ating over various dissimilar networks. None of the performan
e testing

appli
ations were re
ompiled to adapt to the proto
ols used. All that was ne
essary

was the presen
e of the proper BMI module and (in this 
ase) a 
on�guration �le

indi
ating whi
h module to use.

The BMI interfa
e was also 
apable of 
ommuni
ating with multiple dissimilar

proto
ols simultaneously. The performan
e testing of this feature is beyond the s
ope

of this do
ument, but the semanti
s are implemented 
orre
tly.

We also observed that the eÆ
ien
y of this implementation was on par with expe
-

tations in the majority of the tested s
enarios. We hope that the obvious de�
ien
ies

will be addressed in future work on the method modules.

BMI will be a key 
omponent of the forth
oming Parallel Virtual File System

version 2. PVFS2 is being designed with 
ollaboration between Clemson University,
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Argonne National Laboratory, and Goddard Spa
e Flight Center to provide the next

step in parallel I/O te
hnology to Linux 
lusters. BMI will insure that this implemen-

tation keeps pa
e with trends in networking te
hnology without the need for redesign

of the 
ore �le system. On
e this new PVFS implementation has arrived, we will be

able to evaluate the performan
e and usability of BMI within the 
ontext of an a
tual

�le system implementation.

6.1 Future work

There is still mu
h resear
h and development to be performed within the Bu�ered

Message Interfa
e. This work revolves around three 
riti
al areas: improvement of

existing proto
ol methods, expansion into new proto
ols, and bringing the 
urrent

implementation up to produ
tion level availability.

6.1.1 Improvement of existing methods

Both the TCP/IP and GM method implementations were quite su

essful. However,

both messaging systems have room for improvement. Se
tions 4.2.3 and 4.3.3 list

several possible optimizations, only a few of whi
h have been realized thus far. The

laten
y performan
e of the GM module is of parti
ular interest after the results shown

in se
tion 5.4.3.

6.1.2 Expansion of supported methods

TCP/IP and GM methods were implemented as a proof of 
on
ept for dissimilar

networks. There are several other method implementations that 
ould be explored,

however. Some possibilities in
lude shared memory, VIA, and UDP methods. Ea
h

of these should be feasible within the previously de�ned Bu�ered Message Interfa
e.

VIA in parti
ular should be relatively straightforward to implement be
ause it shares
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several overall 
on
epts with the GM interfa
e. A shared memory method would

perhaps be most interesting in terms of proving BMI's su

ess in abstra
tion be
ause it

does not fall into the broad 
ategory of message passing 
ommuni
ation. UDP would

interesting be
ause it would prove the feasibility of implementing reliable delivery

within a BMI method.

6.1.3 S
heduling

BMI was designed so that it will be possible to 
ouple it with a higher level 
omponent


apable of making s
heduling de
isions. This is of parti
ular interest in I/O server

design. A s
heduling me
hanism should be able to obtain load information from BMI

by using the get info() fun
tion. Poli
y hints may be provided using the set info()

fun
tion. This approa
h remains untested at this time, however.

6.1.4 Produ
tion level availability

The Bu�ered Message Interfa
e is relevant not only as a resear
h proje
t but also

as a produ
tion level 
omponent of a true parallel �le system. This pla
es added

emphasis on its ability to provide produ
tion level robustness. In parti
ular, it must

be very resilient (or at least very predi
table) in the fa
e of individual network errors.

A �le system 
annot tolerate deadlo
k or 
riti
al failure of the underlying network

subsystem.

Extensive stress testing will be ne
essary to bring BMI to produ
tion level quality.

All of the tests performed in this do
ument were done with an emphasis on measur-

ing performan
e. More rigorous testing should examine degenerate 
ases and for
ed

network failures to ensure that the interfa
e is robust.
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