
The Parallel Virtual File System:

Overview and Usage

Phil Carns

parns�parl.lemson.edu

Parallel Arhiteture Researh Laboratory (PARL)

Clemson University

http://www.parl.lemson.edu/



Outline of Presentation

� Overview of PVFS

� PVFS Arhiteture

� Appliation Aess Options

� Real world use and examples (both good and bad)

� Current Researh Topis

� Brief Analysis of Performane on Baby Blue



Why PVFS?

� Motivation:

{ As large sale sienti� omputational software grows, it

is diÆult for disk performane to keep up

{ Espeially true for odes that spend a large fration of

time in I/O (a good example is satellite data proessing)

� Obvious alternatives:

{ loal disks on ompute nodes: inonvenient for most apps

{ NFS: poor salability and lak of parallel appliation fea-

tures

{ Storage Area Networks: Requires ustom hardware, may

or may not sale



PVFS Approah

� Utilize N seperate I/O servers rather than one entral server

{ Avoid single disk or disk array bottlenek

{ Attempt to distribute I/O load as evenly as possible

� Leverage ommodity disks

� Commodity networking

� Provide onvenient API's for parallel odes

� We are emphasizing aggregate I/O performane



System Arhiteture

� Allow many lients to a-

ess shared storage

� Eah server maintains �le

data on its own loal disk

� Clients ommuniate di-

retly with I/O servers for

data requests; no indire-

tion through a entralized

server

...

0

1

2

nCN

CN

CN

CN

t
w
o
r

e
N

k
...

ION

ION

ION

ION

0

1

n

2

...

High level model

� Maintain metadata onsisteny with entral manager for per-

missions, timestamps, et.



Client Aess

� Here is my appliation - where is the �le system?

� Several possible interfaes:

{ Native PVFS library aess

{ Kernel mode lient aess

{ MPI-IO library

� When is eah appropriate?



Native PVFS library

� Part of the semi-portable \ore �le system ode"

� Spei� to PVFS; provides pvfs open(), pvfs read(), et.

� Allows lient tuning of �le system parameters, suh as stripe

size and number of servers to use

� Very low overhead

� Inludes a few advaned parallel �le system features...

� No free ride - requires an appliation ustom written for

PVFS



PVFS kernel module

� Allows users to mount PVFS �le systems and use standard

Unix I/O alls

� Reommended for �le system maintenane and legay appli-

ations

� Only available for Linux

x86

� Serious performane

penalty (ranging from

10% to 50%)

Application

VFS Interface

PVFS Lowlevel
Interface

Pvfsd

PVFS Device

PVFS

File System

Library
PVFS

User Level

Network

Kernel Level



MPI-IO

� Portion of MPI 2.0 spei�ation providing advaned I/O in-

terfae, inluding:

{ Derived datatypes (nonontiguous aess for �le and memory)

{ Colletive I/O (oordinated aggregate operations)

{ Appliation hints (appliation level tuning parameters)

{ Consisteny semantis

� PVFS is fully supported in ROMIO MPI-IO implementation

from Argonne National Laboratory



MPI-IO bene�ts

� Inluded by default with MPICH, but may be used with other

MPI implementations

� Portable aross di�erent �le systems and arhitetures

� Uses native PVFS library for performane

� Provides many optimizations



What PVFS does not provide

� Data redundany and fault tolerane

{ I/O server rashes -> �le system does not reover

{ Raid may be used on eah �le server to protet against

disk failure, but not against overall mahine failure

� Cahing and prefething

{ Cahing only done at individual server level

{ No lient side ahing



What PVFS does not provide

� Loking

{ No ok(), fntl(), or POSIX style loking

{ No MPI-IO atomi mode

� Symboli links

� Small operation lateny



Good examples of PVFS use

� Parallel appliations that an utilize parallel bandwidth

� Run time storage for omputation data: \srath spae"

� Staging appliation data to nodes (even if jobs are not par-

allel)



Bad examples of PVFS use

� Long term arhival

{ Remember redundany?

� User home diretories

{ No optimizations for this workload

{ Poor metadata lateny in kernel module

� Non parallel appliations with frequent small requests

{ Suh as typial web server load (unless you intend to

stream multimedia)



Where are we going?

� PVFS 2 design and implementation is underway

� More exibility and use of modern tehnology

� Long term projet

� Full �le system rewrite



PVFS 2 highlights

� Modular use of alternative network protools

� Modular use of alternative storage mehanisms

� Advaned data distributions (beyond striping)

� Better sheduling hooks

� Multiple metadata servers

� More expressive interfae for better MPI-IO support

� Extended metadata attributes



Performane

0

20

40

60

80

100

120

140

160

0 2 4 6 8 10 12 14 16

B
an

d
w

id
th

 (
M

B
/s

ec
)

Number of Clients

Peak Aggregate Read Bandwidth (Baby Blue, fast ethernet)

1 I/O server
2 I/O servers
4 I/O servers
8 I/O servers

16 I/O servers



Performane

0

20

40

60

80

100

120

140

160

0 2 4 6 8 10 12 14 16

B
an

d
w

id
th

 (
M

B
/s

ec
)

Number of Clients

Peak Aggregate Write Bandwidth (Baby Blue, fast ethernet)

1 I/O servers
2 I/O servers
4 I/O servers
8 I/O servers

16 I/O servers



Performane

0

20

40

60

80

100

120

140

0 2 4 6 8 10 12 14 16

B
an

d
w

id
th

 (
M

B
/s

ec
)

Number of Clients

Peak Aggregate Write Bandwidth (Baby Blue, fast ethernet, sync to disk)

1 I/O servers
2 I/O servers
4 I/O servers
8 I/O servers

16 I/O servers


