
Providing Parallel I/O on Linux Clusters

Rob Ross

Argonne National Laboratory

Mathematics and Computer Science Division

http://www.mcs.anl.gov/



Overview of Presentation

� A little background on parallel I/O

� Providing parallel I/O on Linux clusters

� Components:

{ ROMIO

{ Parallel Virtual File System (PVFS)

{ PVFS client-side VFS support

� Opportunities for improvement

� Final notes



Parallel I/O

� Use of multiple distributed

I/O resources by a parallel

application

� Goal is to increase aggre-

gate I/O performance

...

0

1

2

nCN

CN

CN

CN

t
w
o
r

e
N

k
...

ION

ION

ION

ION

0

1

n

2

...

� Accomplished by reducing bottlenecks in I/O path

{ no single I/O device

{ no single I/O bus

{ no single network path

� Target is medium to large clusters (64 or more nodes)



Providing Parallel I/O under Linux

� Three software requirements:

{ Usable application interface

{ Underlying high performance data storage mechanism

{ Tools for every day �le manipulation (e.g. cp, rm, ls)

� ROMIO provides the interface, MPI-IO

� Parallel Virtual File System (PVFS) provides data storage

� PVFS client-side VFS support allows existing tools to ma-

nipulate PVFS �les



ROMIO MPI-IO Implementation

� Implementation of MPI-2 I/O standard

� Developed at Argonne National Lab

� Includes bindings for Fortran and C

� Allows for multiple underlying �le systems via ADIO layer

� Supports PVFS, NFS, PIOFS, PFS, HFS, XFS, and others

� Provides optimizations for noncontiguous accesses and col-

lective I/O



ROMIO Noncontiguous Accesses

� MPI-IO allows users to de�ne \derived datatypes"

� These datatypes can have unaccessed regions, or \holes"

� To avoid multiple accesses for such a region, ROMIO uses

data sieving

� Writes performed with read/modify/write

Region desired by application Region accessed with data seiving

Holes



ROMIO Collective I/O

� ROMIO provides two-phase optimized collective I/O

� I/O performed in two steps:

I/O Phase: Read data from disk in large contiguous chunks

Comm. Phase: Shu�e among clients to obtain desired dis-

tribution

� Example: reading 2D array from disk (stored row-major)

with block distribution

0CN 1CN

2CN 3CN

1CN

2CN

3CN

Comm.
Phase

0CN

I/O Phase



Parallel Virtual File System

� File System { allows users to store and retrieve data using

common �le access methods (open, close, read, write)

� Parallel { stores data on multiple independent machines with

separate network connections

� Virtual { exists as a set of user-space daemons storing data

on local �le systems



PVFS Components

Two server types:

� mgr { �le manager, han-

dles metadata for �les

� iods { I/O servers, store

and retrieve �le data

Client-side library:

� libpvfs { links clients to

PVFS servers

...

...

...

mgr

iod

iod

iod

libpvfs

libpvfs

libpvfs

libpvfs

� libpvfs hides details of PVFS access from application tasks

� Multiple interfaces utilize libpvfs, including ROMIO



PVFS Server Design

� Single-threaded, select driven

� Use non-blocking reads and writes for socket I/O

� Store �le data on a local �le systems

� Read-only mmap used for reading �le data

� For writes, data is read from socket into bu�er and then

written



Linux VFS Support

� PVFS kernel module registers PVFS �le system type

� PVFS �le systems can then be mounted

� Coda implementation used as example:

{ PVFS code converts VFS operations to PVFS operations

{ Client-side daemon handles network I/O

{ Requests passed through device �le



Accessing PVFS Files Through VFS

� I/O operations pass

through VFS

� PVFS code in kernel

passes operation through

device

VFS

app

/dev/pvfsd

pvfsd user space

kernel space

to PVFS servers

� pvfsd reads requests from /dev/pvfsd

� Requests converted to PVFS operations, sent to servers

� data passed back through device

� Optionally use map user kiobuf to map user's bu�er into ker-

nel space and avoid one copy



PVFS Current State

� Linux 2.2 kernel support

� TCP data transfer only

� 2N Gbyte �le size limit (N = # of I/O servers)

� Use UNIX interface to store data on local �le systems (e.g.

ext2fs, reiserfs)



Opportunities for Development

� High performance networking technologies

� Multi-threading to better overlap disk and network I/O

� Improved ordering of request service

� More direct data access (i.e. avoiding bu�er cache)



Improving PVFS Data Storage

� Almost anything would be better :)

� More direct access to disk

� Control over cache

� Suggestions of approaches would be appreciated



Chiba City { The Argonne Scalability Testbed

� 256 nodes total

� We had 60 nodes to play

with

Hardware

� 500 MHz Pentium III

� 512 Mbytes RAM

� Myrinet (Rev. 3)

� 9 Gbyte SCSI disk

� NCR 53c875 based SCSI

(40 Mbytes/sec)

Software

� Linux 2.2.15pre4

� PVFS 1.4.3

� MPICH-GM 1.1.2

� GM Driver 1.2pre2



Native Write Performance

0

100

200

300

400

500

600

700

0 5 10 15 20 25 30 35 40 45

A
gg

re
ga

te
 B

an
dw

id
th

 (
M

B
yt

es
/s

ec
)

Number of Compute Nodes

4 ION
8 ION

16 ION
24 ION
32 ION

� 10/10/2000 - 112 CNs, 48 IONs, 21 Gbytes @ 1.05 Gbytes/sec



ROMIO Performance

� Using 32 I/O nodes, data sizes identical to concurrent tests

� At worst 8% overhead for using ROMIO

0

100

200

300

400

500

600

700

0 5 10 15 20 25 30

A
gg

re
ga

te
 B

an
dw

id
th

 (
M

B
yt

es
/s

ec
)

Number of Compute Nodes

native read
ROMIO read

native write
ROMIO write



PVFS Write Performance through Kernel

40

60

80

100

120

140

160

180

0 5 10 15 20 25 30 35

A
gg

re
ga

te
 B

an
dw

id
th

 (
M

B
yt

es
/s

ec
)

Number of Compute Nodes

pvfslib
kernel

� As much as 50% loss in bandwidth, stabilizes at 16% loss



Summary

� There is a parallel I/O solution for Linux clusters

� There are many potential development directions

� Some of these aren't likely to be pursued by commercial

entities in the near term

� Obligatory web pages:

{ http://www.mcs.anl.gov/romio

{ http://www.parl.clemson.edu/pvfs


