
Parallelization Te
hniques for Spatial-Temporal

O

upan
y Maps from Multiple Video Streams

Nathan DeBardeleben, Adam Hoover, William Jones and Walter Ligon

Parallel Ar
hite
ture Resear
h Laboratory

Clemson University

fndebard, ahoover, wjones, waltg�parl.
lemson.edu

1 Introdu
tion

We des
ribe and analyze several te
hniques to parallelize a novel algorithm that

fuses intensity data from multiple video
ameras to
reate a spatial-temporal o
-

upan
y map. Instead of tra
king obje
ts, the algorithm operates by re
ognizing

freespa
e. The brevity of operations in the algorithm allows a dense spatial o

u-

pan
y map to be temporally
omputed at real-time video rates. Sin
e ea
h input

image pixel is pro
essed independently, we demonstrate parallel implementations

that a
hieve nearly ideal speedup on a four pro
essor shared memory ar
hite
-

ture. Potential appli
ations in
lude surveillan
e, roboti
s, virtual reality, and

manufa
turing environments.

2 Distributed Sensing

For this work, a network of video
ameras resembling a se
urity video network

is assumed. The
ameras are all
onne
ted to a single
omputer that pro
esses

the video feeds to produ
e a spatial-temporal o

upan
y map [1℄. The o

u-

pan
y map is a two-dimensional raster image, uniformly distributed in the
oor-

plane. Ea
h map pixel
ontains a binary value, signifying whether the desig-

nated
oorspa
e is empty or o

upied. Figure 1 shows an example o

upan
y

map where grey
ells indi
ate the spa
e is o

upied and white
ells indi
ate

the spa
e is empty. A spatial frame of the o

upan
y map is
omputed from a

set of intensity images, one per
amera,
aptured simultaneously. Temporally,

a new map frame
an be
omputed on ea
h new video frame syn
 signal. Thus

in e�e
t, the map is itself a video signal, where the pixel values denote spatial-

temporal o

upan
y. A previous implementation of su
h a network has shown

that a frame rate of 5 Hz is feasible [1℄. Our goal is to improve the temporal

resolution by providing a frame rate approa
hing 30 Hz through the use of a

parallelized implementation of the algorithm.

3 Algorithms

All the
al
ulations ne
essary to
reate the mapping from the
amera spa
e to

the o

upan
y map spa
e are independent of image
ontent. Therefore it
an be

Fig. 1. A spatial o

upan
y map.

omputed o�-line and stored as a look-up table. The mapping provides a two-

way relation, so that it may be applied in two di�erent manners. The look-up

table L

1

[n;
; r℄ relates ea
h image pixel for ea
h
amera to a unique o

upan
y

map
ell. The look-up table L

2

[x; y℄ relates ea
h o

upan
y map
ell to a set of

image pixels, where ea
h set may in
lude any number of pixels (in
luding zero)

from ea
h
amera. The use of L

1

[n;
; r℄ and L

2

[x; y℄ lead to di�erent algorithms,

whi
h we will refer to as image-based and map-based.

Both the image-based and map-based algorithms show great potential for

parallelism on a multipro
essor ar
hite
ture. We des
ribe three di�erent divi-

sions of the pro
essing workload, and the
orresponding parallel algorithms. We

measure the performan
e of all the algorithms in Se
tion 4, in terms of speed of

exe
ution.

In the following des
riptions we maintain the following notation: O[x; y℄ is the

o

upan
y map, I [n;
; r℄ is a set of live images from N
ameras, and B[n;
; r℄ is

a set of ba
kground images a
quired during system initialization. The indi
es x

and y refer to map
oordinates,
 and r refer to image
oordinates, and n refers

to
amera number. L

1

[n;
; r℄ and L

2

[x; y℄ refer to look-up tables storing the

mappings des
ribed by F (Equation 1). The threshold T
ontrols the sensitivity

of the algorithm, i.e. as the threshold de
reases, the system be
omes more sensi-

tive to denoting spa
e as o

upied. This is demonstrated and dis
ussed further

in Se
tion 4.

F : I [n;
; r℄$ O[x; y℄ (1)

The arrays O[x; y℄, I [n;
; r℄, B[n;
; r℄, L

1

[n;
; r℄ and L

2

[x; y℄ are multi-

dimensional, yet they
an be a

essed in one-dimensional order be
ause they

have dis
rete boundaries. For the sake of
larity, in the following algorithm de-

s
riptions we maintain the multi-dimensional notation. However, loops on (x; y),

on (
; r), and on (n;
; r),
an be written using a single-index loop. This redu
tion

in loop overhead yields faster exe
utions.

3.1 Image-based

The image-based algorithm uses the look-up table L

1

[n;
; r℄, and is des
ribed

by the following pseudo-
ode:

loop ... time ...

loop x = 0 ... map
olumns

loop y = 0 ... map rows

O[x,y℄ = 1

end loop

end loop

loop n = 0 ... number of
ameras

loop
 = 0 ... image
olumns

loop r = 0 ... image rows

if (|I[n,
,r℄-B[n,
,r℄| < T)

O[L1[n,
,r℄℄ = 0

end if

end loop

end loop

end loop

end loop

The arrays I [n;
; r℄, B[n;
; r℄, and L

1

[n;
; r℄ are a

essed in sequential order,

whi
h
an be exploited by a
a
he memory. The array O[x; y℄ is a

essed in

non-sequential order.

Entries in L

1

[n;
; r℄ that are unused (entries for image pixels whi
h do not

map to ground plane points) are given a sentinel value that points to a harmless

memory lo
ation outside the o

upan
y map. For instan
e, the o

upan
y map

array is allo
ated as X � Y + 1
ells, and the address of the extra
ell be
omes

the sentinel. An alternative is to add a se
ond
onditional statement testing a

mask. For ea
h
amera, a mask is initially generated that distinguishes available

oorspa
e from non-
oorspa
e. In the
ode given above, the inner-most loop is

modi�ed as follows to test for o

upation only if the mask states that this spa
e

is
oor.

if (M[n,
,r℄ == 0)

if (|I[n,
,r℄-B[n,
,r℄| < T)

O[L1[n,
,r℄℄ = 0

end if

end if

In this
ase an extra
onditional statement is exe
uted for every pixel, whereas

in the original
ode non-useful assignment statements may be exe
uted for some

pixels. The relative performan
e of these variations is des
ribed in Se
tion 4.

3.2 Map-based

The map-based algorithm uses the look-up table L

2

[x; y℄. Entries in L

2

[x; y℄

are sets of image pixel identities. The size of ea
h set varies depending on how

many image pixels view the o

upan
y map
ell. This detail
an be simpli�ed

by pla
ing a maximum on set size, so that L

2

[x; y℄ may be implemented as a

three-dimensional array. The
onstant set size S is sele
ted so that at least 95%

of the mappings in Equation 1 may be found in L

2

[x; y; s℄. On
e the pixel has

been identi�ed as uno

upied, the algorithm need not further traverse L

2

[x; y; s℄

in the s dimension. This is a form of short-
ir
uit evaluation. The map-based

algorithm is des
ribed by the following pseudo-
ode:

loop ... time ...

loop x = 0 ... map
olumns

loop y = 0 ... map rows

O[x,y℄ = 1

loop s = 0 ... S

if (|I[L2[x,y,s℄℄-B[L2[x,y,s℄℄| < T)

O[x,y℄ = 0

exit loop s

end if

end loop

end loop

end loop

end loop

In the map-based algorithm, the arrays L

2

[x; y; s℄ and O[x; y℄ are a

essed in

sequential order, while the arrays I [n;
; r℄ and B[n;
; r℄ are a

essed in non-

sequential order.

As with the image-based algorithm, unused entries in L

2

[x; y; s℄ may be han-

dled using sentinel addressing or masking. The sentinel version of the
ode is

shown above. In this
ase entries in L

2

[x; y; s℄ whi
h do not map to image pixels

are given a sentinel value that points to memory lo
ations outside the image and

ba
kground image spa
es that
ause the
onditional statement to fail.

3.3 Image-level parallelism

The image-based algorithm
an be split into equal numbers of iterations on the

amera loop. In this
ase, given P pro
essors and N
ameras, ea
h pro
essor

works on the images provided by

N

P

ameras. Figure 2 illustrates the workload.

In the pseudo-
ode for the image-based algorithm given above, the
amera loop

is modi�ed as follows:

loop n = (N/P)p ... (N/P)(p+1)

where 0 � p < P identi�es a parti
ular pro
essor. This algorithm provides
on-

tiguous blo
ks of memory for the live and ba
kground images to ea
h pro
essor,

but requires

N

P

to be an integral number in order to maintain a balan
ed work-

load. This algorithm also produ
es write hazards, be
ause multiple pro
essors

may write to the same o

upan
y map
ell at the same time.

P2P1 P3 PN

Frame 1 Frame 2 Frame 3 Frame N

Fig. 2. The pro
essor workload using image-level parallelism.

3.4 Pixel-level parallelism

The image-based algorithm
an be split into equal numbers of iterations on the

image pixels. In this
ase, given P pro
essors and N
ameras produ
ing R � C

size images, ea
h pro
essor works on

RC

P

pixels of ea
h image. Figure 3 illustrates

the workload. In the pseudo-
ode for the image-based algorithm given above, the

Frame 1 Frame 2 Frame 3 Frame N

P1
P2
P3

PN

P1
P2
P3

PN PN

P3
P2
P1

PN

P3
P2
P1

Fig. 3. The pro
essor workload using pixel-level parallelism.

image rows loop is modi�ed as follows:

loop r = (R/P)p ... (R/P)(p+1)

where 0 � p < P identi�es a parti
ular pro
essor. This algorithm does not

provide
ontiguous blo
ks of memory for the live and ba
kground images to

ea
h pro
essor, but maintains a more balan
ed workload in the
ase

N

P

is not an

integral number. This algorithm also produ
es write hazards, be
ause multiple

pro
essors may write to the same o

upan
y map
ell at the same time.

3.5 Map-level parallelism

The map-based algorithm
an be split into equal numbers of iterations on the

map
ells. In this
ase, given P pro
essors and an X � Y size o

upan
y map,

ea
h pro
essor works on all the image data for

XY

P

ells. Figure 4 illustrates the

workload. In the pseudo-
ode for the map-based algorithm given above, the map

rows loop is modi�ed as follows:

loop y = (Y/P)p ... (Y/P)(p+1)

where 0 � p < P identi�es a parti
ular pro
essor. This algorithm has no write

hazards, be
ause only one pro
essor may write to ea
h map
ell. However, the

workload balan
e is dire
tly related to the uniformity of distribution of map-

pings in L2[x; y; s℄. If some areas of the map are s
ar
ely
overed by image data

while other areas are densely
overed, then the workload will be
orrespondingly

unbalan
ed.

X

Y

....

P1

. . .

P2

PN

Z

Fig. 4. The pro
essor workload using map-level parallelism.

4 Results

The frame rate of our system depends on the number of
ameras, the size of the

amera images, the size of the o

upan
y map, and the algorithm and
omputer

ar
hite
ture. The frame rate is also upper-bounded by the frame rate of the

ameras. In our
ase, we are using NTSC
ameras (video signals), whi
h �xes

the
amera image size to 640�480 and upper-bounds the frame rate at 30 Hz. We

are using an NTSC signal to output the map, �xing the map size to 640� 480.

The remaining variables are the number of
ameras, and the algorithm and

omputer ar
hite
ture.

Fixing the number of
ameras at four, we examined the performan
e of the

sequential and parallel algorithms on a multi-pro
essor ar
hite
ture. Simulations

were
ondu
ted on a Sun HPC 450 with four UltraSpar
 II pro
essors operating

at 300 MHz. A set of real look-up tables used in the sequential prototype were re-

used for these experiments. Live images were simulated using a set of randomly

valued arrays. The images were repla
ed on ea
h iteration of the time-loop, to

simulate real system operation, so that the 1 MB
a
he on ea
h pro
essor would

have to re-load. Figure 5 plots the frame rates of ea
h algorithm as a fun
tion

of the threshold T , whi
h is varied a
ross the reasonable range of operation.

0

5

10

15

20

25

30

35

40

45

5 10 15 20 25 30 35 40 45

Fr
am

es
 /

Se
co

nd

Threshold

Pixel-Level Parallelism
Image-Level Parallelism

Pixel-Level Parallelism (Mask)
Map-Level Parallelism

Image-Based (Sequential)

Fig. 5. System throughput of algorithms on multipro
essor ar
hite
ture.

Based on Figure 5, we observe six results:

1. Both the map-based and image-based parallel algorithms a
hieved almost

linear speedup in the number of pro
essors
ompared to the sequential algo-

rithms. For instan
e, between thresholds of 5 and 35, the pixel-level parallel

algorithm showed the best average speedup of 3.3 over the image-based se-

quential algorithm (the theoreti
al maximum is 4.0, the number of pro
es-

sors).

2. As in our prototype system, the simulations showed a greater performan
e

for the image-based algorithms
ompared to the map-based algorithms (we

show only the fastest map-based algorithm in Figure 5). We suppose this is

due to the fa
t that three out of the four arrays are a

essed in sequential

order in the image-based algorithms (see Se
tion 3.1), while only two out of

four arrays are a

essed in sequential order in the map-based algorithms (see

Se
tion 3.2). The bene�t provided by the in
reased hit rate in the
a
he mem-

ory (in the image-based parallel algorithms) outweighs the bene�t provided

by the avoidan
e of write hazards (in the map-based parallel algorithm).

3. Both the image-based parallel algorithms (pixel-level and image-level) per-

formed equally. This suggests that the small penalty in
urred by having a

few (in our
ase four) non
ontiguous blo
ks of memory for ea
h pro
essor is

relatively insigni�
ant (see Se
tion 3.4). Therefore the pixel-level algorithm

is to be preferred, spe
i�
ally in
ases where the number of
ameras is not

an integral multiple of the number of pro
essors.

4. Using an image mask de
reased performan
e, as
ompared to sentinel (out-

of-map or out-of-images) addressing for unused lookup table entries. The

exe
ution of an extra
onditional statement for every pixel, along with the

ost of loading an additional large array into memory, was more
ostly than

exe
uting the relatively small number of super
uous assignment statements.

5. The performan
e of ea
h of the algorithms appears to degrade as the thresh-

old in
reases, with the ex
eption of the map-level algorithm. The map-level

algorithm provides a short-
ir
uit me
hanism in the inner-most loop as dis-

ussed in Se
tion 3.2 while the image-based algorithms do not.

6. It should be noted that, while using simulated I/O, frame rates ex
eeding the

NTSC upper-bound of 30 Hz are indi
ative of being able to pro
ess in
oming

data at a rate faster than it be
omes available. In a physi
al implementation,

this would translate into one or more of the pro
essors being idle waiting for

the next frame to arrive from the video
apture devi
e.

The sequential prototype des
ribed above was
onstru
ted in 1997. The mul-

tipro
essor hardware des
ribed above was
onstru
ted in 1998. In 1999, we are

onstru
ting a se
ond prototype using a Dell workstation with two Intel pro-

essors operating at 450 MHz. Based on the above experiments, we expe
t this

system to operate at approximately 20 Hz. Based on proje
tions of
omputer

ar
hite
ture performan
e [2℄, we expe
t that an average
omputer will be able

to operate our system at 30 Hz for twenty
ameras in the year 2004.

5 Con
lusion

We des
ribe and analyze several te
hniques to parallelize a novel algorithm that

fuses intensity data from multiple video
ameras to
reate a spatial-temporal

o

upan
y map. This work provides a foundation to explore distributed sensing

on a mu
h larger s
ale. Future work will in
lude in
reasing both the number of

input data streams as well as the size of the output o

upan
y map to provide

enhan
ed spatial resolution and
overage.

Referen
es

1. A. Hoover and B. Olsen, \A Real-Time O

upan
y Map from Multiple Video

Streams", in IEEE ICRA, 1999, pp. 2261-2266.

2. D. Patterson and J. Hennessy, Computer Ar
hite
ture: A Quantitative Approa
h,

se
ond edition, Morgan Kaufmann, 1996.

