
Parallelization Tehniques for Spatial-Temporal

Oupany Maps from Multiple Video Streams

Nathan DeBardeleben, Adam Hoover, William Jones and Walter Ligon

Parallel Arhiteture Researh Laboratory

Clemson University

fndebard, ahoover, wjones, waltg�parl.lemson.edu

1 Introdution

We desribe and analyze several tehniques to parallelize a novel algorithm that

fuses intensity data from multiple video ameras to reate a spatial-temporal o-

upany map. Instead of traking objets, the algorithm operates by reognizing

freespae. The brevity of operations in the algorithm allows a dense spatial ou-

pany map to be temporally omputed at real-time video rates. Sine eah input

image pixel is proessed independently, we demonstrate parallel implementations

that ahieve nearly ideal speedup on a four proessor shared memory arhite-

ture. Potential appliations inlude surveillane, robotis, virtual reality, and

manufaturing environments.

2 Distributed Sensing

For this work, a network of video ameras resembling a seurity video network

is assumed. The ameras are all onneted to a single omputer that proesses

the video feeds to produe a spatial-temporal oupany map [1℄. The ou-

pany map is a two-dimensional raster image, uniformly distributed in the oor-

plane. Eah map pixel ontains a binary value, signifying whether the desig-

nated oorspae is empty or oupied. Figure 1 shows an example oupany

map where grey ells indiate the spae is oupied and white ells indiate

the spae is empty. A spatial frame of the oupany map is omputed from a

set of intensity images, one per amera, aptured simultaneously. Temporally,

a new map frame an be omputed on eah new video frame syn signal. Thus

in e�et, the map is itself a video signal, where the pixel values denote spatial-

temporal oupany. A previous implementation of suh a network has shown

that a frame rate of 5 Hz is feasible [1℄. Our goal is to improve the temporal

resolution by providing a frame rate approahing 30 Hz through the use of a

parallelized implementation of the algorithm.

3 Algorithms

All the alulations neessary to reate the mapping from the amera spae to

the oupany map spae are independent of image ontent. Therefore it an be

Fig. 1. A spatial oupany map.

omputed o�-line and stored as a look-up table. The mapping provides a two-

way relation, so that it may be applied in two di�erent manners. The look-up

table L

1

[n; ; r℄ relates eah image pixel for eah amera to a unique oupany

map ell. The look-up table L

2

[x; y℄ relates eah oupany map ell to a set of

image pixels, where eah set may inlude any number of pixels (inluding zero)

from eah amera. The use of L

1

[n; ; r℄ and L

2

[x; y℄ lead to di�erent algorithms,

whih we will refer to as image-based and map-based.

Both the image-based and map-based algorithms show great potential for

parallelism on a multiproessor arhiteture. We desribe three di�erent divi-

sions of the proessing workload, and the orresponding parallel algorithms. We

measure the performane of all the algorithms in Setion 4, in terms of speed of

exeution.

In the following desriptions we maintain the following notation: O[x; y℄ is the

oupany map, I [n; ; r℄ is a set of live images from N ameras, and B[n; ; r℄ is

a set of bakground images aquired during system initialization. The indies x

and y refer to map oordinates, and r refer to image oordinates, and n refers

to amera number. L

1

[n; ; r℄ and L

2

[x; y℄ refer to look-up tables storing the

mappings desribed by F (Equation 1). The threshold T ontrols the sensitivity

of the algorithm, i.e. as the threshold dereases, the system beomes more sensi-

tive to denoting spae as oupied. This is demonstrated and disussed further

in Setion 4.

F : I [n; ; r℄$ O[x; y℄ (1)

The arrays O[x; y℄, I [n; ; r℄, B[n; ; r℄, L

1

[n; ; r℄ and L

2

[x; y℄ are multi-

dimensional, yet they an be aessed in one-dimensional order beause they

have disrete boundaries. For the sake of larity, in the following algorithm de-

sriptions we maintain the multi-dimensional notation. However, loops on (x; y),

on (; r), and on (n; ; r), an be written using a single-index loop. This redution

in loop overhead yields faster exeutions.

3.1 Image-based

The image-based algorithm uses the look-up table L

1

[n; ; r℄, and is desribed

by the following pseudo-ode:

loop ... time ...

loop x = 0 ... map olumns

loop y = 0 ... map rows

O[x,y℄ = 1

end loop

end loop

loop n = 0 ... number of ameras

loop = 0 ... image olumns

loop r = 0 ... image rows

if (|I[n,,r℄-B[n,,r℄| < T)

O[L1[n,,r℄℄ = 0

end if

end loop

end loop

end loop

end loop

The arrays I [n; ; r℄, B[n; ; r℄, and L

1

[n; ; r℄ are aessed in sequential order,

whih an be exploited by a ahe memory. The array O[x; y℄ is aessed in

non-sequential order.

Entries in L

1

[n; ; r℄ that are unused (entries for image pixels whih do not

map to ground plane points) are given a sentinel value that points to a harmless

memory loation outside the oupany map. For instane, the oupany map

array is alloated as X � Y + 1 ells, and the address of the extra ell beomes

the sentinel. An alternative is to add a seond onditional statement testing a

mask. For eah amera, a mask is initially generated that distinguishes available

oorspae from non-oorspae. In the ode given above, the inner-most loop is

modi�ed as follows to test for oupation only if the mask states that this spae

is oor.

if (M[n,,r℄ == 0)

if (|I[n,,r℄-B[n,,r℄| < T)

O[L1[n,,r℄℄ = 0

end if

end if

In this ase an extra onditional statement is exeuted for every pixel, whereas

in the original ode non-useful assignment statements may be exeuted for some

pixels. The relative performane of these variations is desribed in Setion 4.

3.2 Map-based

The map-based algorithm uses the look-up table L

2

[x; y℄. Entries in L

2

[x; y℄

are sets of image pixel identities. The size of eah set varies depending on how

many image pixels view the oupany map ell. This detail an be simpli�ed

by plaing a maximum on set size, so that L

2

[x; y℄ may be implemented as a

three-dimensional array. The onstant set size S is seleted so that at least 95%

of the mappings in Equation 1 may be found in L

2

[x; y; s℄. One the pixel has

been identi�ed as unoupied, the algorithm need not further traverse L

2

[x; y; s℄

in the s dimension. This is a form of short-iruit evaluation. The map-based

algorithm is desribed by the following pseudo-ode:

loop ... time ...

loop x = 0 ... map olumns

loop y = 0 ... map rows

O[x,y℄ = 1

loop s = 0 ... S

if (|I[L2[x,y,s℄℄-B[L2[x,y,s℄℄| < T)

O[x,y℄ = 0

exit loop s

end if

end loop

end loop

end loop

end loop

In the map-based algorithm, the arrays L

2

[x; y; s℄ and O[x; y℄ are aessed in

sequential order, while the arrays I [n; ; r℄ and B[n; ; r℄ are aessed in non-

sequential order.

As with the image-based algorithm, unused entries in L

2

[x; y; s℄ may be han-

dled using sentinel addressing or masking. The sentinel version of the ode is

shown above. In this ase entries in L

2

[x; y; s℄ whih do not map to image pixels

are given a sentinel value that points to memory loations outside the image and

bakground image spaes that ause the onditional statement to fail.

3.3 Image-level parallelism

The image-based algorithm an be split into equal numbers of iterations on the

amera loop. In this ase, given P proessors and N ameras, eah proessor

works on the images provided by

N

P

ameras. Figure 2 illustrates the workload.

In the pseudo-ode for the image-based algorithm given above, the amera loop

is modi�ed as follows:

loop n = (N/P)p ... (N/P)(p+1)

where 0 � p < P identi�es a partiular proessor. This algorithm provides on-

tiguous bloks of memory for the live and bakground images to eah proessor,

but requires

N

P

to be an integral number in order to maintain a balaned work-

load. This algorithm also produes write hazards, beause multiple proessors

may write to the same oupany map ell at the same time.

P2P1 P3 PN

Frame 1 Frame 2 Frame 3 Frame N

Fig. 2. The proessor workload using image-level parallelism.

3.4 Pixel-level parallelism

The image-based algorithm an be split into equal numbers of iterations on the

image pixels. In this ase, given P proessors and N ameras produing R � C

size images, eah proessor works on

RC

P

pixels of eah image. Figure 3 illustrates

the workload. In the pseudo-ode for the image-based algorithm given above, the

Frame 1 Frame 2 Frame 3 Frame N

P1
P2
P3

PN

P1
P2
P3

PN PN

P3
P2
P1

PN

P3
P2
P1

Fig. 3. The proessor workload using pixel-level parallelism.

image rows loop is modi�ed as follows:

loop r = (R/P)p ... (R/P)(p+1)

where 0 � p < P identi�es a partiular proessor. This algorithm does not

provide ontiguous bloks of memory for the live and bakground images to

eah proessor, but maintains a more balaned workload in the ase

N

P

is not an

integral number. This algorithm also produes write hazards, beause multiple

proessors may write to the same oupany map ell at the same time.

3.5 Map-level parallelism

The map-based algorithm an be split into equal numbers of iterations on the

map ells. In this ase, given P proessors and an X � Y size oupany map,

eah proessor works on all the image data for

XY

P

ells. Figure 4 illustrates the

workload. In the pseudo-ode for the map-based algorithm given above, the map

rows loop is modi�ed as follows:

loop y = (Y/P)p ... (Y/P)(p+1)

where 0 � p < P identi�es a partiular proessor. This algorithm has no write

hazards, beause only one proessor may write to eah map ell. However, the

workload balane is diretly related to the uniformity of distribution of map-

pings in L2[x; y; s℄. If some areas of the map are sarely overed by image data

while other areas are densely overed, then the workload will be orrespondingly

unbalaned.

X

Y

....

P1

. . .

P2

PN

Z

Fig. 4. The proessor workload using map-level parallelism.

4 Results

The frame rate of our system depends on the number of ameras, the size of the

amera images, the size of the oupany map, and the algorithm and omputer

arhiteture. The frame rate is also upper-bounded by the frame rate of the

ameras. In our ase, we are using NTSC ameras (video signals), whih �xes

the amera image size to 640�480 and upper-bounds the frame rate at 30 Hz. We

are using an NTSC signal to output the map, �xing the map size to 640� 480.

The remaining variables are the number of ameras, and the algorithm and

omputer arhiteture.

Fixing the number of ameras at four, we examined the performane of the

sequential and parallel algorithms on a multi-proessor arhiteture. Simulations

were onduted on a Sun HPC 450 with four UltraSpar II proessors operating

at 300 MHz. A set of real look-up tables used in the sequential prototype were re-

used for these experiments. Live images were simulated using a set of randomly

valued arrays. The images were replaed on eah iteration of the time-loop, to

simulate real system operation, so that the 1 MB ahe on eah proessor would

have to re-load. Figure 5 plots the frame rates of eah algorithm as a funtion

of the threshold T , whih is varied aross the reasonable range of operation.

0

5

10

15

20

25

30

35

40

45

5 10 15 20 25 30 35 40 45

Fr
am

es
 /

Se
co

nd

Threshold

Pixel-Level Parallelism
Image-Level Parallelism

Pixel-Level Parallelism (Mask)
Map-Level Parallelism

Image-Based (Sequential)

Fig. 5. System throughput of algorithms on multiproessor arhiteture.

Based on Figure 5, we observe six results:

1. Both the map-based and image-based parallel algorithms ahieved almost

linear speedup in the number of proessors ompared to the sequential algo-

rithms. For instane, between thresholds of 5 and 35, the pixel-level parallel

algorithm showed the best average speedup of 3.3 over the image-based se-

quential algorithm (the theoretial maximum is 4.0, the number of proes-

sors).

2. As in our prototype system, the simulations showed a greater performane

for the image-based algorithms ompared to the map-based algorithms (we

show only the fastest map-based algorithm in Figure 5). We suppose this is

due to the fat that three out of the four arrays are aessed in sequential

order in the image-based algorithms (see Setion 3.1), while only two out of

four arrays are aessed in sequential order in the map-based algorithms (see

Setion 3.2). The bene�t provided by the inreased hit rate in the ahe mem-

ory (in the image-based parallel algorithms) outweighs the bene�t provided

by the avoidane of write hazards (in the map-based parallel algorithm).

3. Both the image-based parallel algorithms (pixel-level and image-level) per-

formed equally. This suggests that the small penalty inurred by having a

few (in our ase four) non ontiguous bloks of memory for eah proessor is

relatively insigni�ant (see Setion 3.4). Therefore the pixel-level algorithm

is to be preferred, spei�ally in ases where the number of ameras is not

an integral multiple of the number of proessors.

4. Using an image mask dereased performane, as ompared to sentinel (out-

of-map or out-of-images) addressing for unused lookup table entries. The

exeution of an extra onditional statement for every pixel, along with the

ost of loading an additional large array into memory, was more ostly than

exeuting the relatively small number of superuous assignment statements.

5. The performane of eah of the algorithms appears to degrade as the thresh-

old inreases, with the exeption of the map-level algorithm. The map-level

algorithm provides a short-iruit mehanism in the inner-most loop as dis-

ussed in Setion 3.2 while the image-based algorithms do not.

6. It should be noted that, while using simulated I/O, frame rates exeeding the

NTSC upper-bound of 30 Hz are indiative of being able to proess inoming

data at a rate faster than it beomes available. In a physial implementation,

this would translate into one or more of the proessors being idle waiting for

the next frame to arrive from the video apture devie.

The sequential prototype desribed above was onstruted in 1997. The mul-

tiproessor hardware desribed above was onstruted in 1998. In 1999, we are

onstruting a seond prototype using a Dell workstation with two Intel pro-

essors operating at 450 MHz. Based on the above experiments, we expet this

system to operate at approximately 20 Hz. Based on projetions of omputer

arhiteture performane [2℄, we expet that an average omputer will be able

to operate our system at 30 Hz for twenty ameras in the year 2004.

5 Conlusion

We desribe and analyze several tehniques to parallelize a novel algorithm that

fuses intensity data from multiple video ameras to reate a spatial-temporal

oupany map. This work provides a foundation to explore distributed sensing

on a muh larger sale. Future work will inlude inreasing both the number of

input data streams as well as the size of the output oupany map to provide

enhaned spatial resolution and overage.

Referenes

1. A. Hoover and B. Olsen, \A Real-Time Oupany Map from Multiple Video

Streams", in IEEE ICRA, 1999, pp. 2261-2266.

2. D. Patterson and J. Hennessy, Computer Arhiteture: A Quantitative Approah,

seond edition, Morgan Kaufmann, 1996.

