Parallelization Techniques for Spatial-Temporal
Occupancy Maps from Multiple Video Streams

Nathan DeBardeleben, Adam Hoover, William Jones and Walter Ligon

Parallel Architecture Research Laboratory
Clemson University
{ndebard, ahoover, wjones, walt}@parl .clemson.edu

1 Introduction

We describe and analyze several techniques to parallelize a novel algorithm that
fuses intensity data from multiple video cameras to create a spatial-temporal oc-
cupancy map. Instead of tracking objects, the algorithm operates by recognizing
freespace. The brevity of operations in the algorithm allows a dense spatial occu-
pancy map to be temporally computed at real-time video rates. Since each input
image pixel is processed independently, we demonstrate parallel implementations
that achieve nearly ideal speedup on a four processor shared memory architec-
ture. Potential applications include surveillance, robotics, virtual reality, and
manufacturing environments.

2 Distributed Sensing

For this work, a network of video cameras resembling a security video network
is assumed. The cameras are all connected to a single computer that processes
the video feeds to produce a spatial-temporal occupancy map [1]. The occu-
pancy map is a two-dimensional raster image, uniformly distributed in the floor-
plane. Each map pixel contains a binary value, signifying whether the desig-
nated floorspace is empty or occupied. Figure 1 shows an example occupancy
map where grey cells indicate the space is occupied and white cells indicate
the space is empty. A spatial frame of the occupancy map is computed from a
set of intensity images, one per camera, captured simultaneously. Temporally,
a new map frame can be computed on each new video frame sync signal. Thus
in effect, the map is itself a video signal, where the pixel values denote spatial-
temporal occupancy. A previous implementation of such a network has shown
that a frame rate of 5 Hz is feasible [1]. Our goal is to improve the temporal
resolution by providing a frame rate approaching 30 Hz through the use of a
parallelized implementation of the algorithm.

3 Algorithms

All the calculations necessary to create the mapping from the camera space to
the occupancy map space are independent of image content. Therefore it can be

cameras,”

Fig. 1. A spatial occupancy map.

computed off-line and stored as a look-up table. The mapping provides a two-
way relation, so that it may be applied in two different manners. The look-up
table Ly[n, ¢, r] relates each image pixel for each camera to a unique occupancy
map cell. The look-up table Ly[z,y] relates each occupancy map cell to a set of
image pixels, where each set may include any number of pixels (including zero)
from each camera. The use of L;[n, ¢, r] and Ly[z, y] lead to different algorithms,
which we will refer to as image-based and map-based.

Both the image-based and map-based algorithms show great potential for
parallelism on a multiprocessor architecture. We describe three different divi-
sions of the processing workload, and the corresponding parallel algorithms. We
measure the performance of all the algorithms in Section 4, in terms of speed of
execution.

In the following descriptions we maintain the following notation: Oz, y] is the
occupancy map, I[n,c,r]is a set of live images from N cameras, and B[n, ¢, 7] is
a set of background images acquired during system initialization. The indices x
and y refer to map coordinates, ¢ and r refer to image coordinates, and n refers
to camera number. Li[n,c,r] and Lq[z,y] refer to look-up tables storing the
mappings described by F (Equation 1). The threshold 7' controls the sensitivity
of the algorithm, i.e. as the threshold decreases, the system becomes more sensi-
tive to denoting space as occupied. This is demonstrated and discussed further
in Section 4.

F :In,c,r] ¢ Olz,y] (1)

The arrays Olz,y], I[n,c,r], Bn,c,r], Li[n,c,r] and Lo[z,y] are multi-
dimensional, yet they can be accessed in one-dimensional order because they
have discrete boundaries. For the sake of clarity, in the following algorithm de-
scriptions we maintain the multi-dimensional notation. However, loops on (z,y),
on (¢,r), and on (n,c,r), can be written using a single-index loop. This reduction
in loop overhead yields faster executions.

3.1 Image-based

The image-based algorithm uses the look-up table Li[n,c,r], and is described
by the following pseudo-code:

loop ... time ...
loop x = 0 ... map columns
loop y = 0 ... map rows
Olx,y]l =1
end loop
end loop
loop n = 0 ... number of cameras
loop ¢ = 0 ... image columns
loop r = 0 ... image rows

if (|I[n,c,r]1-Bln,c,r]l| < T)
0[L1[n,c,r]] =0
end if
end loop
end loop
end loop
end loop

The arrays I[n,c,r], B[n,c,r], and Lq[n,c,r] are accessed in sequential order,
which can be exploited by a cache memory. The array O[z,y] is accessed in
non-sequential order.

Entries in Lj[n,c,r] that are unused (entries for image pixels which do not
map to ground plane points) are given a sentinel value that points to a harmless
memory location outside the occupancy map. For instance, the occupancy map
array is allocated as X X Y + 1 cells, and the address of the extra cell becomes
the sentinel. An alternative is to add a second conditional statement testing a
mask. For each camera, a mask is initially generated that distinguishes available
floorspace from non-floorspace. In the code given above, the inner-most loop is
modified as follows to test for occupation only if the mask states that this space
is floor.

if (M[n,c,r] == 0)
if (II[n,c,r]-Bln,c,r]ll < T)
0O[Li[n,c,r]]l =0
end if
end if

In this case an extra conditional statement is executed for every pixel, whereas
in the original code non-useful assignment statements may be executed for some
pixels. The relative performance of these variations is described in Section 4.

3.2 Map-based

The map-based algorithm uses the look-up table Loz, y]. Entries in L[z, y]
are sets of image pixel identities. The size of each set varies depending on how

many image pixels view the occupancy map cell. This detail can be simplified
by placing a maximum on set size, so that L[z, y] may be implemented as a
three-dimensional array. The constant set size S is selected so that at least 95%
of the mappings in Equation 1 may be found in Ls[z,y, s]. Once the pixel has
been identified as unoccupied, the algorithm need not further traverse Ls[x,y, s]
in the s dimension. This is a form of short-circuit evaluation. The map-based
algorithm is described by the following pseudo-code:

loop ... time ...
loop x = 0 ... map columns
loopy = 0 ... map rows
Olx,y]l =1
loops =0 ... 38
if (|I[L2[x,y,s]]1-B[L2[x,y,s]1]1| < T)
Olx,yl =0
exit loop s
end if
end loop
end loop
end loop
end loop

In the map-based algorithm, the arrays La[z,y, s] and O[z,y] are accessed in
sequential order, while the arrays I[n,c,r] and Bn,c,r] are accessed in non-
sequential order.

As with the image-based algorithm, unused entries in Lo[z, y, s] may be han-
dled using sentinel addressing or masking. The sentinel version of the code is
shown above. In this case entries in Lo[z,y, s] which do not map to image pixels
are given a sentinel value that points to memory locations outside the image and
background image spaces that cause the conditional statement to fail.

3.3 Image-level parallelism

The image-based algorithm can be split into equal numbers of iterations on the
camera loop. In this case, given P processors and N cameras, each processor
works on the images provided by % cameras. Figure 2 illustrates the workload.
In the pseudo-code for the image-based algorithm given above, the camera loop
is modified as follows:

loop n = (N/P)p ... (N/P)(p+1)

where 0 < p < P identifies a particular processor. This algorithm provides con-
tiguous blocks of memory for the live and background images to each processor,
but requires % to be an integral number in order to maintain a balanced work-
load. This algorithm also produces write hazards, because multiple processors
may write to the same occupancy map cell at the same time.

P1 P2 P3 PN

Frame 1 Frame 2 Frame 3 o o o Frame N

Fig. 2. The processor workload using image-level parallelism.

3.4 Pixel-level parallelism

The image-based algorithm can be split into equal numbers of iterations on the
image pixels. In this case, given P processors and N cameras producing R x C'
size images, each processor works on % pixels of each image. Figure 3 illustrates
the workload. In the pseudo-code for the image-based algorithm given above, the

Frame 1l Frame 2 Frame 3 Frame N
P1 P1 P1 P1
P2 P2 P2 P2
P3 P3 P3 000 P3

(] (] (]]

(] (] O (]

O O O O
PN PN PN PN

Fig. 3. The processor workload using pixel-level parallelism.

image rows loop is modified as follows:
loop r = (R/P)p ... (R/P)(p+l)

where 0 < p < P identifies a particular processor. This algorithm does not
provide contiguous blocks of memory for the live and background images to
each processor, but maintains a more balanced workload in the case % is not an
integral number. This algorithm also produces write hazards, because multiple
processors may write to the same occupancy map cell at the same time.

3.5 Map-level parallelism

The map-based algorithm can be split into equal numbers of iterations on the
map cells. In this case, given P processors and an X x Y size occupancy map,
each processor works on all the image data for X—PY cells. Figure 4 illustrates the
workload. In the pseudo-code for the map-based algorithm given above, the map
rows loop is modified as follows:

loop y = (Y/P)p ... (Y/P)(p+1)

where 0 < p < P identifies a particular processor. This algorithm has no write
hazards, because only one processor may write to each map cell. However, the
workload balance is directly related to the uniformity of distribution of map-
pings in L2[z,y, s|. If some areas of the map are scarcely covered by image data
while other areas are densely covered, then the workload will be correspondingly
unbalanced.

Fig. 4. The processor workload using map-level parallelism.

4 Results

The frame rate of our system depends on the number of cameras, the size of the
camera images, the size of the occupancy map, and the algorithm and computer
architecture. The frame rate is also upper-bounded by the frame rate of the
cameras. In our case, we are using NTSC cameras (video signals), which fixes
the camera image size to 640 x 480 and upper-bounds the frame rate at 30 Hz. We
are using an NTSC signal to output the map, fixing the map size to 640 x 480.
The remaining variables are the number of cameras, and the algorithm and
computer architecture.

Fixing the number of cameras at four, we examined the performance of the
sequential and parallel algorithms on a multi-processor architecture. Simulations
were conducted on a Sun HPC 450 with four UltraSparc II processors operating

at 300 MHz. A set of real look-up tables used in the sequential prototype were re-
used for these experiments. Live images were simulated using a set of randomly
valued arrays. The images were replaced on each iteration of the time-loop, to
simulate real system operation, so that the 1 MB cache on each processor would
have to re-load. Figure 5 plots the frame rates of each algorithm as a function
of the threshold 7', which is varied across the reasonable range of operation.

T T
Pixel-Level Parallelism —+—
X Image-Level Pardlelism -->--
X, Pixel-Level Parallelism (Mask) -~ --
Map-Level Paralelism &~ -
Image-Based (Sequential) — -

35

30

2 K- K-
; 25 KK KK KK i
5 20 q
13 &-g-a-8
B
EDE‘B'DBDBDBB
g-g-@-8EE
g-m-BB
15 - g-B-8-8-0 i
g8
FE!"QE~I—}I~.1
s S R
ol L e Lo T T B R ——
Al 4
. ‘ ‘)) : I I
5 10 15 20 25 30 35 40 45
Threshold

Fig. 5. System throughput of algorithms on multiprocessor architecture.

Based on Figure 5, we observe six results:

1. Both the map-based and image-based parallel algorithms achieved almost
linear speedup in the number of processors compared to the sequential algo-
rithms. For instance, between thresholds of 5 and 35, the pixel-level parallel
algorithm showed the best average speedup of 3.3 over the image-based se-
quential algorithm (the theoretical maximum is 4.0, the number of proces-
sors).

2. As in our prototype system, the simulations showed a greater performance
for the image-based algorithms compared to the map-based algorithms (we
show only the fastest map-based algorithm in Figure 5). We suppose this is
due to the fact that three out of the four arrays are accessed in sequential
order in the image-based algorithms (see Section 3.1), while only two out of
four arrays are accessed in sequential order in the map-based algorithms (see
Section 3.2). The benefit provided by the increased hit rate in the cache mem-
ory (in the image-based parallel algorithms) outweighs the benefit provided
by the avoidance of write hazards (in the map-based parallel algorithm).

3. Both the image-based parallel algorithms (pixel-level and image-level) per-
formed equally. This suggests that the small penalty incurred by having a
few (in our case four) non contiguous blocks of memory for each processor is
relatively insignificant (see Section 3.4). Therefore the pixel-level algorithm
is to be preferred, specifically in cases where the number of cameras is not
an integral multiple of the number of processors.

4. Using an image mask decreased performance, as compared to sentinel (out-
of-map or out-of-images) addressing for unused lookup table entries. The
execution of an extra conditional statement for every pixel, along with the
cost of loading an additional large array into memory, was more costly than
executing the relatively small number of superfluous assignment statements.

5. The performance of each of the algorithms appears to degrade as the thresh-
old increases, with the exception of the map-level algorithm. The map-level
algorithm provides a short-circuit mechanism in the inner-most loop as dis-
cussed in Section 3.2 while the image-based algorithms do not.

6. It should be noted that, while using simulated I/ O, frame rates exceeding the
NTSC upper-bound of 30 Hz are indicative of being able to process incoming
data at a rate faster than it becomes available. In a physical implementation,
this would translate into one or more of the processors being idle waiting for
the next frame to arrive from the video capture device.

The sequential prototype described above was constructed in 1997. The mul-
tiprocessor hardware described above was constructed in 1998. In 1999, we are
constructing a second prototype using a Dell workstation with two Intel pro-
cessors operating at 450 MHz. Based on the above experiments, we expect this
system to operate at approximately 20 Hz. Based on projections of computer
architecture performance [2], we expect that an average computer will be able
to operate our system at 30 Hz for twenty cameras in the year 2004.

5 Conclusion

We describe and analyze several techniques to parallelize a novel algorithm that
fuses intensity data from multiple video cameras to create a spatial-temporal
occupancy map. This work provides a foundation to explore distributed sensing
on a much larger scale. Future work will include increasing both the number of
input data streams as well as the size of the output occupancy map to provide
enhanced spatial resolution and coverage.

References

1. A. Hoover and B. Olsen, “A Real-Time Occupancy Map from Multiple Video
Streams”, in IEEE ICRA, 1999, pp. 2261-2266.

2. D. Patterson and J. Hennessy, Computer Architecture: A Quantitative Approach,
second edition, Morgan Kaufmann, 1996.

