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Abstrat

Beowulf workstations have beome a popular hoie for

high-end omputing in a number of appliation domains.

One of the key building bloks of parallel appliations on

Beowulf workstations are message passing libraries whih

utilize the Transmission Control Protool (TCP) for luster

ommuniations. As luster network fabris ahieve higher

bandwidths and shorter latenies, the TCP/IP software

and protools beome the ommon ase \bottlenek" for

low lateny ommuniations. This bottlenek limits the

appliability of Beowulf Workstations to very oarse grain

appliations.

Our researh in this bottlenek area fouses on a \on-

�gurable" TCP protool, whih will allow the user to de-

termine the optimal TCP transmission and retransmission

parameters needed for spei� appliations. In this paper

we disuss a system for on�guring TCP to behave more

appropriately in the Beowulf environment and present re-

sults indiating expeted performane improvements when

using this system.

1 Introdution

In reent years, lusters of workstations have beome an

inexpensive alternative to superomputers in spei� appli-

ations. Traditionally, slow network hardware has limited

the appliability of lusters to oarse grain or embarrass-

ingly parallel appliations. Today, advanements in net-

work hardware have provided lusters with very high band-

width and low lateny onnetions. Now, the software and

protools driving the network hardware have surfaed as

the new ommon ase bottlenek.

In lusters, the primary protool used in ommuniation

has been the traditional Transmission Control Protool /

Internet Protool (TCP/IP). The implementation of the

TCP software and transmission protools indue two kinds

of latenies limiting the range of appliations that an ben-

e�t from lusters: software and protool. Generally, ker-

nels implement TCP/IP in layers, leading to software in-

dued latenies aused by passing data through multiple

layers prior to reahing the network wire. The transmis-

sion protools used in TCP lead to protool indued la-

tenies reated by the inherent generality of the TCP/IP

algorithms. This thesis attempts to takle this seond kind

of lateny by introduing a on�gurable transmission pro-

tool onept that allows transmission algorithms to be

tuned for spei� appliations and/or hardware.

In Setion 2 we will over the relevant bakground mate-

rial for this work, inluding important TCP algorithms, Be-

owulf omputing, and some preliminary work in this area.

The on�gurable TCP options and an overview of the im-

plementation are desribed in Setion 3. Setion 4 details

the test system and the tests performed in evaluating the

on�guration options. Conlusions are drawn in Setion 5

and possible future work is outlined.

2 Bakground

In order to e�etively tune the TCP protool in this envi-

ronment, it is important to �rst understand TCP and its

key algorithms. These algorithms must then be appropri-

ately mathed to the peuliarities of the Beowulf environ-

ment.

2.1 TCP/IP

The Internet Protools have been established to standard-

ize ommuniation over the Internet. These standards and

reommendations ome in the form of douments published

by the Internet Engineering Task Fore (IETF) alled Re-

quest for Comments (RFCs). Of all the Internet Proto-

ols, TCP in partiular has enouraged Internet growth by

providing a reliable protool that adjusts dynamially to

network traÆ onditions.

A number of RFCs over the details of TCP [16, 7, 15,

3, 5, 2, 1, 10, 9, 4, 8℄. This setion will summarize the

TCP harateristis to be manipulated in our experiments

but will assume that the reader has some knowledge of

TCP operation. The algorithms will be disussed in the

ontext of the sample TCP sessions seen in Figures 9 and

10. The algorithms disussed are aknowledgement meh-

anisms, the ongestion window algorithms, retransmission

timeout (RTO) strategy, and round trip time (RTT) esti-
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mation. Eah setion will present an algorithm's equations

and explain in a step by step fashion their omplex inter-

dependenies.

2.1.1 Aknowledgments

There are three di�erent onditions whih result in a-

knowledgements being sent, and the resulting aknowledge-

ment is typially denoted as one of three types depending

on whih ondition resulted in the aknowledgement being

sent.

Delayed aknowledgments give the reeiver the oppor-

tunity to merge multiple aknowledgments and/or data

with the returned segment. Equation 1 shows the esti-

mator used to alulate this delay time, alled the a-

knowledgment timeout (ATO). Figure 9 displays this es-

timator in ation on the right rung of the two ladder dia-

grams. For example, after reeiving segment D2, the esti-

mator uses the time between reeption of D1 and D2 as

the time between data reeptions (40 ms) variable whih

hanges the ATO from 1 (10 ms) to 4 (40 ms). The ATO

estimator is designed to orrelate the frequeny of the a-

knowledgments to the frequeny of the inoming data.

ATO = ATO=2 + (time between data reeptions) (1)

Segment A2 represents the only atual delayed aknowl-

edgment shown in Figure 9. The reeiver an return two

other types of aknowledgments: quik (A1) or fored

(A11, A13). Quik aknowledgments only our on the

�rst data paket of a onnetion and they are designed

to help the sender quikly get to equilibrium where it an

send a full window of segments. Fored aknowledgments

our after the reeiver sees two full segments as reom-

mended in RFC-1122. This devie is designed to provide

the sender with more frequent measured RTT samples to

keep the RTT estimators from aliasing.

When the reeiver does return a delayed aknowledg-

ment, as in segment A2, the measured round trip time

enapsulates both the ATO and the atual network round

trip time. This artifat, in ombination with the use of

�xed ATOs in some TCP implementations, limits the the

lower range for the retransmission timeout. If the sender

does allows the RTO to fall below this �xed ATO value,

unneessary retransmissions will our beause the sender

RTO will expire before the reeiver ATO.

2.1.2 Congestion Window Algorithms

The ongestion window algorithms, inluding slow start

and ongestion avoidane, provide sender side ow ontrol

whih work in onjuntion with the reeive window to limit

the amount of data the sender has in transit over a onne-

tion [11℄. With all of the omplex interation between the

di�erent ongestion window algorithms, the explanation of

the ongestion window variable (wnd) an be greatly sim-

pli�ed by fousing on the slow start and ongestion avoid-

ane algorithms.

The slow start threshold variable (ssthresh) determines

whether the wnd is updated aording to the slow start or

the ongestion avoidane algorithm (see Equations 2 and

3). If the wnd is below the ssthresh the slow start al-

gorithm takes preedene, otherwise ongestion avoidane

takes over. The variable ssthresh initializes to a very large

value and is set when an equilibrium point is reahed, de-

termined by loss of pakets. This puts a onnetion into

slow start initially, but turns ontrol over to ongestion

avoidane after reahing equilibrium.

wnd = wnd+ 1 (slow start) (2)

wnd = wnd+ 1=wnd (ongestion avoidane) (3)

Figure 9 details how the Linux kernel atually performs

the alulation updates shown in Equations 2 and 3 with-

out using divides. This graphi shows the di�erenes be-

tween inreasing the wnd quikly, as in the slow start re-

gion, and slowly, as in the ongestion avoidane region. A

typial onnetion should spend a short period of time in

slow start and the majority of time at equilibrium perform-

ing ongestion avoidane. This allows the sender to quikly

�nd an appropriate send window for the onnetion and

stabilize there.

The right ladder in Figure 10 gives an example of how

the ongestion window provides ow ontrol. The sender

an have only wnd number of pakets outstanding on a

onnetion, otherwise it an no longer transmit and must

stall waiting for an aknowledgment. After reeiving the

aknowledgment, the sender updates the wnd and an

transmit additional pakets.

2.1.3 Round Trip Time

The RTT algorithm is designed to provide the sender with

an estimation of the time between a paket transmission

and the returned aknowledgment. The retransmission

timeout alulator then utilizes the RTT estimations for

smoothed round trip time (SRTT) and mean deviation

(mdev) to aurately determine when a segment an be

onsidered lost. Linux implements the RFC-1122 required

RTT algorithm using Jaobsen's reommended gains for

the SRTT and mdev [3℄.

Equations 4 and 5 represent the RTT estimators al-

though the atual implementation uses shifts rather than

multipliations and divides to speed up proessing. The

sender alulates the measured round trip time (MRTT) as



the time between sending the �rst unaknowledged paket

and reeiving a new aknowledgment. For example, in Fig-

ure 9, the MRTT measurement for the returned aknowl-

edgment A11 begins from D10 and not D11, although A11

overs the aknowledgment for both D10 and D11. The

e�ets of the new measured round trip time on the SRTT

and mdev an be seen on the left rung of the ladders in the

graphi.

SRTT = SRTT � 7=8 +MRTT � 1=8 (4)

mdev = mdev � 3=4+ j SRTT �MRTT j �1=4 (5)

2.1.4 Retransmission Timeout Strategy

The RTO algorithm is designed to give the sender an a-

urate determination of when a segment has been lost and

should be resent. If a transmitted segment is not aknowl-

edged before the RTO timer expires, that segment will be

retransmitted. The left ladder in Figure 10 presents an ex-

ample of this devie in ation. Sine the aknowledgment

segment D1 is lost, the sender never reeives the aknowl-

edgment. Although, the reeiver did atually reeive the

segment, the sender has no way of knowing this in this

example, so it retransmits D1 after the RTO timer expires.

The RTO algorithms use the senders estimated SRTT

and mdev variables to determine how long to wait for an

aknowledgment before deiding that a paket has been

lost. For simpliity, the Jaobsen reommended RTO al-

ulation [11℄ is presented in Equation 6, though the Linux

kernel does make minor adjustments to this algorithm.

RTO = SRTT + 4 �mdev (6)

The example session also shows Karn's exponential bak-

o� strategy [12℄ in ation. The bako� variable is used to

double the RTO value every time a paket is retransmitted

and the bako� will not be reset until a nonretransmitted

paket has been aknowledged. This algorithm is designed

to provide the RTT algorithms with an aurate measured

round trip time on a paket that does not ontain Karn's

retransmission ambiguity.

It is important to note that the default RTO algorithm

plaes both an upper limit (2 minutes) and lower limit (200

ms) on the timeout value. The lower limit aounts for the

behavior of some TCP staks.

2.2 Beowulf

The Beowulf-lass parallel mahine has evolved from early

work in low ost omputing. The �rst work in this area

entered around lusters of workstations [6℄. These lusters

are often omposed of existing workstations whih are used

as interative systems during the day, an be heterogeneous

in omposition, and rely on extra software to balane the

load aross the mahines in the presene of interative jobs.

As it beame obvious that workstations ould be used for

parallel proessing, groups began to build dediated ma-

hines from inexpensive, non-proprietary hardware. These

\Pile-of-PCs" onsist of a luster of mahines dediated as

nodes in a parallel proessor, built entirely from ommod-

ity o� the shelf parts, and employing a private system area

network for ommuniation [17℄. The use of o�-the-shelf

parts results in systems that are tailored to meet the needs

of the users, built using the most up-to-date tehnology at

the time of purhase, and ost substantially less than pre-

vious parallel proessing systems. The Beowulf worksta-

tion onept builds on the Pile-of-PCs model by utilizing

a freely available base of software. The free availability of

most system software soure enourages ustomization and

performane improvements. Experiments have shown Be-

owulf workstations apable of providing high performane

for appliations in a number of problem domains.

One of the greatest strengths of ommerial systems in

general has always been the support, both in software and

troubleshooting, that is made available to owners. Along

this same vein the Beowulf ommunity has banded together

to build a software infrastruture and to assist one another

with problems. Most of this software already existed, in-

luding the operating system, ompiler, network �le sys-

tem, and most ommon utilities. However, it has beome

apparent that while this software is robust and ful�lls users'

needs, there is room for improvement. Parallel �le sys-

tems suh as PVFS [13℄ provide better I/O performane

and onsisteny for parallel appliations using distributed

data sets, proessor-spei� ompiler enhanements and

libraries an boost appliation performane, and kernel

modi�ations an provide servies suh as global proess

ID's, global signalling, and Distributed Shared Memory

(DSM) whih help build a more omplete environment.

Along these same lines, the existing kernel ommuni-

ation protools were built for general purpose networks.

Thus, these protools too ould potentially be altered or

rewritten to more e�etively operate in the Beowulf en-

vironment. Thus, the impetus for our modi�ations and

experiments.

2.3 Previous Study

Josip Lonari et al. at the Institute for Computer Ap-

pliations in Siene and Engineering (NASA Langley)

have performed testing on TCP onnetions using uni-

diretional small messages [14℄. They have seen what they

all \stalls" in TCP when passing short messages with the

TCP NODELAY option set (Nagle algorithm turned o�).

These stalls are aused by a ombination of the TCP algo-

rithms for ongestion avoidane [1℄ and delayed aknowl-



edgment [3℄.

Basially, when passing short messages in one diretion,

even with the Nagle algorithm o�, no more than onges-

tion window number of pakets an be on the link una-

knowledged. In addition, the remote end has a delayed a-

knowledgment strategy that prevents the aknowledgment

from ourring before the ATO expires. The point of these

strategies is to allow for paket onservation whih makes

perfet sense in a lot of appliations, but will only hurt in

these spei� benhmarks.

To �x this problem, Lonari et al. installed a kernel

path that removed the delayed aknowledgment strategy

from the Linux 2.0.34 kernel when disabling Nagle's al-

gorithm, instead immediately aknowledging all inoming

pakets for the onnetion. Lonari notes on his web page

that using this path led to a fator of 20 improvement

when sending 100,000 single byte messages. However, we

will see that this type of simple modi�ation on its own

an have detrimental e�ets to other traÆ patterns.

3 Protool Modi�ations

TCP provides a good general purpose transmission algo-

rithm that performs well under a wide variety of network

onditions and speeds, however, in some network environ-

ments these algorithms may not perform optimally. For

example, the Beowulf onept establishes networks as pri-

vate and loal, whih may bene�t from transmission algo-

rithms geared towards this type of network. In addition,

sine the optimal transmission algorithms may not onform

to standards set forth in the RFCs, Beowulf's losed net-

work provides an exellent test platform by isolating these

nonstandard algorithms from outside networks.

Appliations running in the Beowulf environment may

exhibit di�erent ommuniation patterns and may require

di�erent transmission algorithms for optimal network per-

formane. A on�gurable model of transmission algorithms

an aommodate this disrepany by allowing eah appli-

ation to on�gure the transmission algorithms appropriate

to their ommuniation needs. However, the model pre-

sented here provides a system level on�guration of TCP.

This model is suÆient for a number of situations and led

to a simpler implementation.

The following TCP algorithms an be on�gured in our

model:

� Congestion window algorithms

� Aknowledgment algorithms

� Round trip time and mean deviation estimator

� Retransmission timeout alulation

� Experimental options (timestamp, window saling,

and seletive aknowledgments)

In this setion we provide a desription of the on�gu-

ration options available using our module and an overview

of its implementation.

3.0.1 Aknowledgments

Three new options are available for aknowledgements:

Maximum Segments Before Fored ACK { Sets the

maximum number of full segments to reeive before

an ACK is sent.

Fixed Delayed ACK Estimator { Causes the delayed

ACK estimator funtion to always return a �xed value

instead of alulating how long to wait.

Quik Delayed ACK Estimator { Causes the estima-

tor funtion to always indiate that an ACK should

be sent.

These new algorithms should provide experimental evi-

dene on the e�ets of di�erent aknowledgment timeout

algorithms, testing how small versus large ATO values ef-

fet di�erent ommuniation patterns. In addition, the

e�ets of hanging the number of reeived segments before

foring an aknowledgment will be asertained.

Using �xed ATO values prevents the reeiver from ad-

justing dynamially to the frequeny of data reeptions as

the default estimator does that is desribed in Setion 2.1.1.

Fixed estimators are normally designed to simplify the es-

timation funtion, but the purpose here is to see if speedup

an be ahieved on appliations using Beowulf lusters.

RFC-1122 reommends that the the default value for

the number of full segments reeived before foring an a-

knowledgment be set to two[3℄. This strategy provides the

sender with frequent MRTT samples in order to obtain an

aurate RTT estimation. However, this algorithm will be

hanged to see if larger values an redue sender interrupt

proessing time by dereasing the number of returned a-

knowledgments.

3.0.2 Congestion Window

We provide two mehanisms for manipulating the onges-

tion window algorithms:

Fixed Congestion Window { Sets the ongestion win-

dow to a user de�ned �xed value.

Initial Window Value { Modi�es initial window value

to be set to a user spei�ed value when the window is

�rst initialized and whenever slow start is reset.



Foring the wnd to a onstant value prevents it from

adapting to hanges in network onditions as the default

algorithm would. However, sine this algorithm will be

used in a Beowulf luster, the wnd may not need to be

adaptable. This strategy an put a onnetion diretly

into an equilibrium state if the appropriate value is hosen.

Setting the initial ongestion window allows onnetions

to reah the equilibrium point more quikly, reduing the

e�ets of slow start.

3.0.3 Round Trip Time

Two alternate RTT funtions are made available:

Fixed Round Trip Time { Sets the RTT estimator

funtion to return a user de�ned value at all times.

Current Round Trip Time { Sets the RTT estimator

to use a simple estimation funtion whih simply uses

the urrent RTT shifted left by a user spei�ed number

of bits.

These algorithms allow us to examine how large and

small SRTT values e�et ommuniation performane. In

addition new algorithms will provide a fast ating SRTT es-

timator (Round Trip Time Current) for omparison against

the ompliated default smoothing estimator.

A onstant value for the smoothed round trip time pre-

vents the sender from adjusting dynamially to ongestion

points as it would with the default algorithm desribed in

Setion 2.1.3. Setting this value in a Beowulf luster with a

known network round trip time may atually boost perfor-

mane in some situations. In ontrast to the �xed value al-

gorithm, using the urrent value as the basis for the SRTT

value provides an estimator that will adjust very quikly

to hanges in network loads.

3.0.4 Retransmission Timeout

Three replaement RTO funtions were implemented:

Fixed Retransmission Timeout { Sets the retransmis-

sion timeout funtion to return a onstant, user spe-

i�ed value at all times.

Retransmission Timeout Upper Limit { Plaes a

user de�ned upper limit on the value returned by the

RTO funtion.

Limitless Retransmission Timeout { Removes any

upper and lower limits on the values returned by the

RTO funtion.

These algorithms provide the means for testing how large

versus small values of the RTO perform on di�erent pat-

terns in a luster.

A onstant value for the retransmission timeout e�e-

tively wipes out all the estimating funtions (SRTT, mdev,

bako�, and RTO) used by default and desribed in Se-

tion 2.1.4. However, as with the RTT onstants, Beowulf

lusters have generally onsistent network round trip times,

whih ould make this algorithm bene�ial in some situa-

tions. To appropriately ontrol the RTO value, the bound-

ing funtions must be modi�ed beause it limits the RTO

on the lower side, to handle �xed ATO implementations,

and on the upper side, to keep the RTO from getting out

of ontrol. Sine Beowulf lusters only ommuniate with

Linux mahines, the lower limit an be safely removed;

however, are must be taken when hanging the upper

limit.

3.1 Implementation Overview

In order to failitate testing of these new algorithms, two

features of the Linux operating system were used: modules

and the /pro �le system. Linux modules provide the a-

pability of attahing these new algorithms to the funtion

hooks at runtime, while the /pro �le system allows user

level ontrol of the modules. To reiterate, the modules on-

tain all of the new algorithms and the user spei�es whih

algorithm to attah by ontrolling the module through the

/pro �le system.

Two Linux modules, beo on�g.o and beo slow.o, on-

tain all of the algorithms tested in this thesis. The former

provides algorithms for ATO, RTO, and RTT estimators

and alulators and the latter onsists of the new algo-

rithms for ontrolling the ongestion window. After insert-

ing the modules into the kernel using the \insmod" om-

mand, the following diretories and �les will be added to

the /pro �le system:

� /pro/beowulf (diretory added by beo on�g.o)

� /pro/beowulf/beo on�g (�le added by beo on�g.o)

� /pro/beowulf/beo slow (�le added by beo slow.o)

One the modules are in plae, users an use the /pro

�le system for ontrol and status. Table 2 shows how to

use the /pro �le system for this funtionality. More details

are available in [?℄.

4 Testing and Results

This setion will present testing methods and results aimed

at analyzing the bene�ts of tuning TCP for various traÆ

patterns. In Setion 4.1, the hardware setup and the test

methodology will be doumented. Setion 4.2 will exam-

ine test benhmarks on individual modi�ations made to

eah transmission algorithm. Setion 4.3 will speify, test,



and ompare an all enompassing transmission algorithm

designed using the previous experiments to boost TCP per-

formane on Beowulf lusters.

4.1 Test Setup

The following information desribes the hardware setup for

these tests:

� 17 nodes: P5-150, 64MB RAM, 2 Tulip NICs

� Linux v2.2.5, tulip. v0.88

� Intel Express 510T 100mb swith onneting 16 slaves

� Head node onneted to slaves via Asante 100mb hub

The head node spawns o� all tasks and all message pass-

ing ommuniation takes plae on the swith. The test ap-

pliations used either Beowulf Network Messaging (BNM)

or native sokets as the ommuniations transport layer.

These message passing mehanisms provide diret evidene

on the e�ets of the modi�ations made to TCP without

interferene from additional layers provided by PVM and

MPI.

BNM is urrently under development at the PARL Lab-

oratory at Clemson University as a low level solution for

task spawning and ommuniation in the Beowulf envi-

ronment. BNM has been implemented diretly over the

BSD sokets interfae, providing a diret piture of how

the TCP modi�ations a�et ommuniation latenies and

bandwidths.

4.2 Preliminary Testing

The tests that were designed for this setion isolate eah

of the modi�able algorithms presented in Setion 3, allow-

ing the individual e�ets on the various ommuniation

patterns to be examined. All the tests desribed in this

setion were implemented using the BNM message passing

library. Setion 4.2.1 tests one way message passing om-

muniations. Setion 4.2.2 attempts to provide evidene on

the e�ets of transmission algorithms on interative om-

muniation.

4.2.1 Uni-diretional Messages Tests

The uni-diretional tests were designed to determine the

e�ets of the individual algorithms on passing data from

task to task in one diretion. In these tests, two proesses

are spawned on two di�erent proessors with one task hav-

ing rank 0 and the other rank 1. In all experiments, task

0 and task 1 reside on the same respetive nodes and task

0 always passes data to task 1.
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The number of iterations and the size of the TCP data

payload to send were varied. The loop value was varied be-

tween 10000 and 90000 bytes with 1000 byte inrements,

and reported values are the average of �ve runs. Two dis-

tint data payload (segment) sizes were tested: single-byte

payloads and maximum size (full) payloads. The Nagle al-

gorithm [15℄ was disabled for the single-byte payload tests.

Experimental options were turned o� in all ases exept

when otherwise noted.

The �rst pair of test runs (Figures 1 and 2) onentrated

on the e�ets of varying aknowledgement algorithms. In

these tests, seven di�erent on�gurations are tested:

� normal kernel operation with experimental options on

� normal kernel operation with experimental options o�

� quik aknowledgement of all pakets

� �xed ATO values of both 10 and 20 ms



� fored ACK at both 4 and 10 full segments

Figure 1 displays results from the uni-diretional small

message experiments on the aknowledgment algorithms.

This graph indiates that the \Max Ak" modi�ations did

nothing to bene�t or hinder the default algorithm. With

small payloads suh as these, the fored aknowledgement

algorithm rarely has any e�et on ACK transmission.

The �gure does show that hanges in the aknowledg-

ment delay has a onsiderable impat on performane.

Sine fored aknowledgments never our in this situation,

the sender must rely on the ATO timer to expire before re-

eiving an aknowledgment. If the sender has wnd pakets

in transit, waiting for the aknowledgment stalls ommu-

niation and degrades performane. The graph proves this

by displaying attenuated performane as the �xed ATO

value inreases.

Exeuting quik aknowledgments on every paket guar-

antees timely aknowledgments that will prevent the sender

from stalling. However, aknowledging every single seg-

ment does not onserve network resoures and ooding the

sender with aknowledgments fores ontinuous system in-

terrupts that redue performane. Figure 1 learly displays

this degradation and points to the lowest possible �xed

ATO value as the best of both worlds. The 10 milliseond

ATO provides timely responses and merges multiple a-

knowledgments, thereby onserving network resoures and

reduing the number of sender interrupts.

Figure 2 shows that the delayed aknowledgment algo-

rithms have very little e�et on full sized segments. Sine

by default the reeiver aknowledges every two full sized

segments anyway, the sender is rarely limited by the wnd,

preventing stalls. The graph does show slight bene�t

from removing the experimental options of TCP. This im-

provement an be attributed to the lower header overhead

and the removal of the omplex seletive aknowledgement

(SACK) implementation.

The full segment graph does show positive impat from

hanges in the fored aknowledgment algorithm. This im-

provement is aused by the redution in the number of

aknowledgments interrupting the sender. This learly in-

diates the signi�ane of sender interrupt proessing over-

head; however, too large of a value for fored aknowl-

edgments an reate onditions that will stall the sender

waiting for an aknowledgment. In this ase foring an a-

knowledgement at 10 full-sized segments is most e�etive.

Foring aknowledgement at 4 full-sized segments was al-

most as e�etive, indiating that reduing the number of

aknowledgements beyond this point is of little bene�t.

The next pair of tests (Figures 3 and 4 onentrated

on e�ets of varying the ongestion window algorithms for

these same single-byte and full segment traÆ patterns.

In the �rst test, using single-byte payloads, seven distint
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on�gurations were tested:

� normal kernel operation with experimental options on

� �xed ongestion window of 30, 70, and 150 pakets

� initial window size of 10, 30, and 50 pakets

Figure 3 presents test results for these runs. This graph

indiates that the ongestion window size has a slight e�et

on performane. Again, this e�et is a result of the stalls

seen by the sender when waiting for an aknowledgment.

The large ongestion windows allow the sender to ontinue

to transmit where a small window would stall.

In the seond test, using full-sized payloads, the �xed

ongestion window sizes tested were 10, 30, and 50 pak-

ets. Figure 4 shows that the slight bene�ts seen with small

messages do not arry over to full sized segments. This fat

omes diretly from the TCP reeive window limitations.

The TCP paket format on�nes the window size to 64K

and the silly window syndrome (SWS) avoidane algorithm

bounds this 64K value by advertising a maximum 32K re-

eive window. Sine the sender an send no more than

the minimum of the ongestion window and reeive win-

dow, ongestion windows greater than 22 (approx. 32K)

are useless when transmitting full segments.

Testing varying the RTO and RTT strategies showed

little impat on this type of ommuniation. Sine little

ongestion ours data losses are not ommon, whih pre-

ludes the need for retransmissions.

4.2.2 Bi-diretional Messages Tests

The bi-diretional tests were designed to examine the ef-

fets of the transmission algorithms on two-way ommu-

niation. In these tests, two tasks are spawned on two

di�erent proessors with one task having rank 0 and the
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Figure 6: Bi-diretional (Full): Congestion Window

other rank 1. In all experiments, task 0 and task 1 reside

on the same respetive nodes and task 0 passes data to

task 1 then task 1 passes bak to task 2 ending the loop.

Theses tests very the message size from 1 to 500,000 bytes.

Figure 5 presents the e�ets of the aknowledgment al-

gorithms on the bi-diretional messages with the following

on�gurations:

� normal kernel operation with experimental options on

� normal kernel operation with experimental options o�

� quik aknowledgement of all pakets

� �xed ATO values of 10, 30, and 40 ms

� fored ACK at 4 and 10 full segments

The graph shows an improvement using a moderate fored

aknowledgment value, but shows a degradation when

using a large value. The moderate fored aknowledg-

ment inreases performane by reduing the time senders

spend proessing returned aknowledgments, while the

large value dereases performane by ausing the sender

to stall waiting for an aknowledgment.

Figure 6 shows that the ongestion window algorithms

in the kernel are hard to beat in an individual test. Here

the following on�gurations were examined:

� normal kernel operation with experimental options on

� �xed ongestion window of 10 and 20 pakets

� initial window size of 10 and 20 pakets

The graph does show that too small a value for a �xed

ongestion window will degrade performane slightly. How-

ever, in the long term, all tested algorithms spend approx-

imately equal amounts of time in equilibrium.



The graphs for the RTT and RTO results have been ex-

luded beause again these tests reate no signi�ant on-

gestion leading to lost segments.

4.3 Beowulf Transmission Poliy

The tests desribed in this setion were designed to reveal

the e�ets of multiply spei�ed transmission algorithms on

ommuniation benhmarks and a sample luster applia-

tion. A logial ombination of algorithms will be dou-

mented in Setion 4.3 and tested in Setions 4.3.1 through

4.3.3. Setion 4.3.1 utilizes the traditional NetPIPE benh-

mark to test network performane. Setion 4.3.2 desribes

performane for a multi-node ommuniation patterns and

Setion 4.3.3 examines impliations on an atual luster

appliation using the Parallel Virtual File System (PVFS).

The Beowulf Transition Poliy (BTP) will assemble the

best ombination of the individual algorithms tested for

our test environment. The spei�ed algorithms need to

perform well individually as well in ombination with the

other algorithms. The algorithms that make up the BTP

are as follows:

� Fixed ATO = 10 ms

� Fored aknowledgments at 4 full sized segments

� Initial ongestion window = 20

� SRTT = 2*MRTT

� mdev = 0

� No bounds on the RTO

The aknowledgment strategy used in the BTP ombines

a small �xed ATO value of 10 ms with a moderate value

of 4 for the fored aknowledgment. The small �xed ATO

provides a timely aknowledgment for slow data transfers

while reduing the amount of transmitted segments by at-

tempting to merge multiple aknowledgments. The new

fored aknowledgment ombines with the ATO bene�ts

to further derease the frequeny of aknowledgment whih

redues the interrupt proessing time on the sender.

The hange in the fored aknowledgment value does re-

due the RTT sampling rate, whih would introdue alias-

ing in the default RTT algorithms. We aount for this

in BTP by utilizing a fast ating estimator based on the

urrent MRTT. This estimator sets the SRTT to twie the

urrent MRTT and is not e�eted by the dereased fre-

queny of RTT samples. The BTP uses the default kernel

RTO alulation, but removes the upper and lower limits

to allow a wider range of RTO values.

The initial ongestion window value of 20 was piked as

a point where a onnetion an immediately get to equilib-

rium when transferring full sized segments. This algorithm
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Figure 7: Netpipe Throughput

also allows the ongestion window to inrement during fre-

quent small paket transmissions. As an additional bene�t,

keeping the value of the ongestion window over 4 meshes

well with the fored aknowledgment value for the BTP by

preventing stalls aused by the sender waiting for delayed

aknowledgments.

4.3.1 NetPIPE Tests

The NetPIPE benhmark measures network performane

harateristis between two nodes. The NetPIPE benh-

marks presented here utilize TCP sokets diretly, and the

same two nodes were used on all NetPIPE tests. The graph

in Figure 7 represents the throughput on our swithed fast

ethernet network for the algorithms tested, whih were:

� normal kernel operation with experimental options on

� normal kernel operation with experimental options o�

� BTP with experimental options on

� BTP with experimental options o�

� BTP without new ongestion window poliy

Figure 7 examines network throughput on both large and

small message sizes. The BTP ahieves greater than 6%

improvement in bandwidth at large message sizes. These

bene�ts an be attributed mainly to the ombination of the

ongestion window and aknowledgment strategies. These

strategies ombine to bring a onnetion quikly to equi-

librium while onserving aknowledgment pakets. In ad-

dition, eliminating the experimental options when not ex-

periening heavy ongestion ontributes slight gains.
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Figure 8: All-to-All Pattern Tests

4.3.2 All-to-All Tests

The All-to-All tests were designed to asertain the e�ets

on appliations with large ongestion points using BNM.

These tests spawn 16 tasks on 16 nodes with the same

ranking tasks always on the same nodes for eah test. In

the All-to-All tests, eah task passes data to every other

task and vie versa to omplete an iteration. The message

size was varied and 100 iterations were performed for eah

test.

Figure 8 presents the results for the same algorithms

tested in the Netpipe tests. These graphs learly indi-

ate the usefulness of a user spei�ed algorithm in the Be-

owulf environment. The ombination of the aknowledg-

ment and round trip time poliies provides performane

improvements of over 50% for some highly ongested pat-

terns. However, the BTP ongestion window poliy used

atually degrades performane for these tests by inhibiting

the onnetion from slowing down during paket losses.

The new RTT estimator seems to ontribute the largest

portion of the performane improvement seen in these

tests. The use of this fast ating RTT algorithm in ombi-

nation with the elimination of the 200 ms lower bound on

the RTO allows the network protool to adjust very quikly

and aurately under dynami loads. This bene�t seems

to derease somewhat as the message size inreases.

The BTP aknowledgment poliies ontribute during

any bulk transfer as disussed in Setion 4.3.1 and also re-

due ongestion by dereasing the number of aknowledg-

ments. Figure 8 also shows that enabling the experimental

options improves performane, whih an be attributed to

the ability of the SACK protools to reover from multiple

paket losses. In this partiular ommuniation pattern,

the bene�ts ahieved by SACKs outweigh the omplexity

of the implementation.

Table 1: Jaobi Results

BTP 45 seonds

Normal 63 seonds

Normal (Exp O�) 63 seonds

4.3.3 Jaobi Tests

The Jaobi tests were designed to show how real world ap-

pliations might bene�t from BTP. This appliation per-

forms the traditional Jaobi iterative method using the

Parallel Virtual File System (PVFS) with an out of ore

strategy.

The Jaobi method was used to solve a 2K x 2K matrix.

The results shown in Table 1 indiate that for this size the

BTP improves performane by 29%. The results obtained

provide evidene of the bene�t of on�gurable transmis-

sion algorithms on real world appliations utilizing Beowulf

lusters.

5 Conlusions

Experimental results presented in this work have proven

the viability of on�gurable transmission protools on Be-

owulf workstations. Performane improvements using new

transmission strategies ranged from 6% to well over 50%

depending upon the ommuniation pattern. These ben-

e�ts were obtained using simple and easy to implement

algorithms geared to appliations on the Beowulf arhite-

ture.

Future researh and experimentation will fous on more

appliation studies. Further investigation of boosting per-

formane for appliations using standard message passing

libraries suh as MPI and PVM, whih use TCP for muh

of their ommuniation, should be of diret bene�t to the

Beowulf ommunity.

Future on�gurable transmission algorithms may further

enhane performane by adding modi�able algorithms suh

as fast retransmit, or by implementing more ompliated

transmission algorithms. For example, new algorithms an

be derived with detailed analysis of typial ommuniation

patterns on Beowulf lusters. Another approah might uti-

lize theoretial mathematial models to desribe the algo-

rithms and speedup limitations. Either of these methods

would have a good hane at boosting performane beyond

the simple Beowulf Transmission Poliy.

Even if researh produes an optimal system level trans-

mission poliy for a spei� arhiteture, appliations still

produe di�erent ommuniation patterns. These various

ommuniation patterns hange the e�ets of the trans-

mission protools, moreover, running multiple appliations



onurrently ompletely alters the ommuniation dynam-

is of the single proess. Possible solutions to these prob-

lems would inorporate a system level strategy that aepts

user level hints, giving the appliation some ontrol but

leaving the �nal deision to the underlying system poliy.
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Table 2: Module/Pro File System

/pro Files

/pro/beowulf/beo on�g Changes/Info on RTO, RTT, and

ATO

/pro/beowulf/beo slow Changes/Info on ongestion win-

dow

To Modify Algorithms

eho -o [0/1℄ > /pro/beowulf/beo on�g Turn experimental options

(SACK's, timestamp, and win-

dow saling) on/o�

eho -d [0/1/2℄ > /pro/beowulf/beo on�g Set ATO funtion (0 = o�, 1 =

quik, 2 = �xed)

eho -f <value> > /pro/beowulf/beo on�g Set �xed ATO value

eho -b [0/1/2℄ > /pro/beowulf/beo on�g Set RTO bound funtion (0 = o�,

1 = no bounds, 2 = upper bounds

eho -t <value> > /pro/beowulf/beo on�g Set RTO upper bound

eho -s [0/1℄ > /pro/beowulf/beo on�g Set RTO alulator (0 = o�, 1 =

onstant)

eho -k <value> > /pro/beowulf/beo on�g Set RTO onstant

eho -r [0/1℄ > /pro/beowulf/beo on�g Set RTT estimator (0 = o�, 1 =

onstant, 2 = urrent (shift)

eho - <value> > /pro/beowulf/beo on�g Set RTT onstant value

eho -h <value> > /pro/beowulf/beo on�g Set RTT shift value

eho -m <value> > /pro/beowulf/beo on�g Set beo max ak for fored a-

knowledgments

eho -i <value> > /pro/beowulf/beo on�g Reset to original values

eho - 1 -f 1 -r 1 -d 1 -n 1 > /pro/beowulf/beo slow Set ongestion window to on-

stant value

eho -v <value> > /pro/beowulf/beo slow Set ongestion window onstant

eho -t <value> > /pro/beowulf/beo slow Set beo init wnd for initial on-

gestion window

eho -i <value> > /pro/beowulf/beo slow Reset to original values

To View Current Setup

at /pro/beowulf/beo on�g Display RTO, RTT, and ATO

setup

at /pro/beowulf/beo slow Display ongestion window setup


