
An Evaluation of Message Passing Implementations on

Beowulf Workstations

P. H. Carns W. B. Ligon III S. P. McMillan R. B. Ross

Parallel Architecture Research Lab

Clemson University

102 Riggs Hall

Clemson, SC 29634-0915

864-656-7223

pcarns@eng.clemson.edu walt@eng.clemson.edu spmcmil@eng.clemson.edu rbross@eng.clemson.edu

Abstract— Beowulf workstations have become a popular

choice for high-end computing in a number of application do-

mains. One of the key building blocks of parallel applications

on Beowulf workstations is a message passing library. While

there are message passing library implementations available

for use on Beowulf workstations, as of yet none have been

specifically tailored to this new, unique architecture. Thus

it is important to evaluate the existing packages in order to

determine how they perform in this environment. This pa-

per examines a set of four message passing libraries available

for Beowulf workstations, focusing on their features, imple-

mentation, reliability, and performance. From this evaluation

we identify the strengths and weaknesses of the packages and

point out how implementations might be optimized to better

suit the Beowulf environment.

TABLE OF CONTENTS

1 INTRODUCTION

2 IMPLEMENTATION OF PACKAGES

3 PERFORMANCE

4 CONCLUSION

1 INTRODUCTION

As parallel processing has matured, two programming

paradigms have been developed, shared memory and mes-

sage passing. Particularly for distributed memory machines,

message passing has become the most popular technique

for implementing parallel applications. As this popularity

increased, message passing interfaces and libraries devel-

oped and matured to match demand. Now it is common

for commercial machines to include a machine-specific mes-

sage passing implementation such as the NX library for the

Paragon and the MPL and MPI libraries for the IBM SP-2.

As clusters of workstations were recognized as a viable plat-

form, message passing libraries grew to support this new ar-

chitecture as well. This led to libraries such as PVM [4],

which was specifically designed for use in situations where

the “virtual machine” often varied each time the software was

started. As the number of message passing libraries grew,

standard API’s for message passing, such as MPI [13], were

introduced to provide a common interface for programmers

developing for multiple architectures, while allowing the ar-

chitecture vendors the flexibility to implement the interface

efficiently. This has helped to eliminate situations where pro-

grammers are forced to recode applications to move them to

a new platform.

A new class of parallel machines, termed Beowulf worksta-

tions, has become a popular approach to providing high end

computing resources. These machines consist of a Pile of PCs

(PoPCs) built from off-the-shelf hardware components, a pri-

vate high speed network such as switched fast ethernet, and

freely available software tools and operating system. While

message passing libraries exist that will operate on this plat-

form, the characteristics of these machines differ significantly

from previous clusters of workstations, providing thus far un-

explored opportunities for software optimization specific to

this environment.

While evaluations of message passing libraries and perfor-

mance have already been performed on a variety of message

passing implementations, most of them concentrate on how

these libraries perform on MPP’s such as the Intel Paragon,

the IBM SP-2, and the Thinking Machines CM-5 [1, 8, 3]. In

order to better understand how message passing software per-

forms on the Beowulf architecture, the many different inter-

faces and implementations should be qualitatively and quan-

titatively compared. In this paper we examine a number of

message passing packages which can operate on Beowulf

workstations, focusing on the features, implementation, re-

liability, and performance of these packages. Specifically,

we evaluate two versions of the Message Passing Interface

(MPI), LAM/MPI and MPICH [6], and the Parallel Virtual

Machine (PVM). In addition, we will compare these to a new

message passing implementation, which we will introduce,

called Beowulf Network Messaging (BNM). By looking at

the characteristics of these packages we hope to discover ar-

eas where improvement could me made with respect to oper-

ation in the Beowulf environment.

In the following introduction sections, we will provide back-



ground on the Beowulf workstation concept and how soft-

ware available for this environment is maturing in addition to

introducing the message passing packages. In Section 2 we

qualitatively examine the software packages, discussing is-

sues such as features and implementation details. In Section 3

we examine the performance of the packages both for spawn-

ing tasks and for some sample communication patterns. Con-

clusions are drawn in Section 4, recommendations are made

on potential areas of improvement, and future areas of study

are discussed.

1.1 Beowulf

The Beowulf-class parallel machine has evolved from early

work in low cost computing. The first work in this area cen-

tered around clusters of workstations [2]. These clusters are

often built using existing workstations which are used as in-

teractive systems during the day, can be heterogeneous in

composition, and rely on extra software to balance the load

across the machines in the presence of interactive jobs. As

it became obvious that workstations could be used for par-

allel processing, groups began to build dedicated machines

from inexpensive, non-proprietary hardware. These “Pile-of-

PCs” consist of a cluster of machines dedicated as nodes in

a parallel processor, built entirely from commodity off the

shelf parts, and employing a private system area network for

communication [11]. The use of off-the-shelf parts results

in systems that are tailored to meet the needs of the users,

built using the most up-to-date technology at the time of pur-

chase, and cost substantially less than previous parallel pro-

cessing systems. The Beowulf workstation concept builds on

the Pile-of-PCs concept by utilizing a freely available base

of software. The free availability of most system software

source encourages customization and performance improve-

ments. Experiments have shown Beowulf workstations capa-

ble of providing high performance for applications in a num-

ber of problem domains.

One of the greatest strengths of commercial systems in gen-

eral has always been the support, both in software and trou-

bleshooting, that is made available to owners. Along this

same vein the Beowulf community has banded together to

build a software infrastructure and to assist one another with

problems. Most of this software already existed, including

the operating system, compiler, network file system, and most

common utilities. However, it has become apparent that while

this software is robust and fulfills users’ needs, there is room

for improvement. Parallel file systems such as PVFS [9] pro-

vide better I/O performance and consistency for parallel ap-

plications using distributed data sets, processor-specific com-

piler enhancements and libraries can boost application perfor-

mance, and kernel modifications can provide services such as

global process ID’s, global signalling, and Distributed Shared

Memory (DSM) which help build a more complete environ-

ment.

Along these same lines, the existing message passing li-

braries were built before the Beowulf environment had ma-

tured. Thus this software too could potentially be altered or

rewritten to more effectively operate in the Beowulf environ-

ment. In the past the message passing libraries available for

Beowulf have been used primarily by individuals on clusters

of workstations. These individuals would most often config-

ure and install the software personally, then start the neces-

sary daemons on the appropriate machines when they wished

to execute a parallel program. The set of machines used often

varied between executions based on availability and load. In

the Beowulf environment, on the other hand, message pass-

ing support should be considered system software. Ideally

this software would be installed and configured by the admin-

istrator and any necessary daemons would be started along

with other services when the machine is booted. Additionally

many of these packages are written to support heterogeneous

collections of machines. This again is not an issue in most

Beowulf machines. Luckily most of these packages have op-

tions to disable encoding that would take place if heteroge-

neous collections were used.

1.2 Message Passing Packages

In this evaluation we will focus on implementations of three

different interfaces, the Parallel Virtual Machine, Message

Passing Interface, and Beowulf Network Messaging. Here

we give an overview of these packages; details of the specific

implementations will be discussed in section 2.

1.2.1 PVM— The Parallel Virtual Machine (PVM) [4]

was originally developed at Oak Ridge National Laboratory

(ORNL) specifically to handle message passing on heteroge-

neous distributed computers. In addition to providing a mes-

sage passing interface, PVM implements resource manage-

ment, signal handling, and fault tolerance features that help

build a user environment for parallel processing. As a result

of the additional generic capabilities needed to pass data re-

liably in a heterogeneous environment, PVM is generally a

less efficient message passing interface on Massively Parallel

Processors (MPP’s) [5]. While PVM is the defacto standard

for clusters of workstations, the need to implement additional

features beyond the message passing interface hinders it from

becoming ubiquitous on MPP’s.

PVM’s implementation and interface development occur

mainly at ORNL. There are, however, commercial implemen-

tations of PVM available that are designed for efficient mes-

sage passing on MPP architectures. One example is PVMe

for the IBM SP-2 MPP [12]. These MPP implementations,

along with competing implementations for PVM on clusters

of workstations, are not common.

1.2.2 MPI— The Message Passing Interface (MPI) Forum

has been meeting since 1992 and is comprised of high perfor-

mance computing professionals from over 40 organizations



[13]. Their goal is to develop a message passing interface

that meets the needs of the majority of users in order to foster

the use of a common interface on the ever-growing number of

parallel machines. By separating the interface from the im-

plementation, MPI provides a framework for MPP vendors to

utilize in designing efficient commercial implementations.

A number of vendors have jumped on the MPI bandwagon,

and vendor-supplied implementations are now available from

IBM, Cray Research, SGI, Hewlett Packard, and others. In

addition, a number of competing implementations have been

created for clusters of workstations. Two popular choices on

clusters, MPICH and LAM/MPI, will be evaluated in this

study. These two implementations have been the subject of

a previous study conducted on a cluster of DEC 3000/300

machines connected with FDDI [10].

The MPI Chameleon (MPICH) effort began in 1993 as an at-

tempt to provide an immediate implementation of MPI that

would track the standard as it matured [6]. It was developed

at Argonne National Laboratory as a research project to pro-

vide features that make implementing MPI simple on many

types of hardware. To do this, MPICH implements MPI over

an architecture independent Abstract Device Interface (ADI).

The ADI has a smaller interface than MPI, making it easier

for vendors to implement, resulting in quicker development

time without loss in efficiency. MPICH takes this one step

further by implementing the ADI on top of what they call a

“channel interface”, providing an even smaller interface for

a vendor to implement. While the “channel interface” im-

plementations will be extremely inefficient, it provides for a

quick and dirty implementation that can be streamlined later

by implementing the ADI piecemeal.

Local Area Multicomputer (LAM) originated at the Ohio Su-

per computing Facility and is now maintained by the Lab-

oratory of Scientific Computing at Notre Dame. LAM is a

package that provides task scheduling, signal handling, and

message delivery in a distributed environment, and is layered

to allow implementation with any message passing interface.

For example, PVM has been implemented over LAM, how-

ever only LAM’s MPI version will be evaluated in this study.

1.2.3 BNM— Beowulf Network Messaging (BNM) is cur-

rently under development at the Parallel Architecture Re-

search Laboratory at Clemson University as a low level so-

lution for task spawning and communication in the Beowulf

environment. BNM provides only a minimal set of facili-

ties, including remote task spawning, task ID management,

and byte oriented message passing. The goal of the project is

to provide a simple and efficient communications library for

Beowulf that could be used as a building block for implemen-

tations of higher level interfaces such as MPI. At the moment

BNM is in its infancy stage and the results of this study will

have a direct impact on its development.

2 IMPLEMENTATION OF PACKAGES

While all of these packages provide a common core function-

ality, there are significant differences in the implementations

that have an impact on both the ease of use and particularly

the performance of applications using them. Three areas of

particular interest are the software architecture and related

tools, the approach used for spawning tasks, and the method

of communication between tasks. Each of these will be dis-

cussed in turn here.

The versions of the packages we are using are as follows:

� PVM version 3.3.11

� LAM version 6.1

� MPICH version 1.1.1 (ch p4 interface)

� BNM version 1.0

2.1 Architecture

There are significant differences between the packages in

terms of the architecture of the software and the tools pro-

vided. All packages provide a library of message passing

primitives to which applications link. PVM and LAM/MPI

provide an additional daemon that is started by the user be-

fore parallel applications are executed. BNM uses a similar

daemon, but a single daemon on each node handles requests

for all users and is started when the machine boots. MPICH,

by default, attempts to use a system level daemon, but can

be configured for either user level daemons or the standard

remote shell service.

In terms of debugging and monitoring tools, PVM and

LAM/MPI are strongest. PVM includes a console allowing

the user to check the status of PVM tasks and send signals to

them. LAM provides a set of executable tools which provide

similar functionality. MPICH provides very few runtime util-

ities, but it does, along with PVM and LAM, provide for log

file generation and trace utilities. BNM, on the other hand,

provides little or no support for monitoring or debugging.

There are two common techniques for starting parallel tasks

using these implementations: the use of a command line ex-

ecutable that starts the parallel tasks and the use of library

calls to spawn tasks on remote nodes. PVM, LAM/MPI,

and BNM provide both mechanisms. PVM allows execu-

tion to be started from the console and allows parallel tasks

to be started from within an application using pvm spawn().

LAM/MPI provides mpirun to start tasks and additionally im-

plements the MPI 2.0 MPI Spawn() call which allows tasks

to be started from within the application. BNM implements

both bnmrun executable and a bnm spawn() library call. Fi-

nally, MPICH provides an mpirun executable for starting the

parallel tasks, but does not support the MPI Spawn() call.



Table 1: Message Passing Summary

Option LAM MPICH PVM BNM

spawn method user daemon rsh user daemon system daemon

Startup command mpirun mpirun pvm bnmrun

Spawn command MPI Spawn() N/A pvm spawn() bnm spawn()

UDP communication default No default No

UDP packet size approximately 8K N/A �4K (settable w/

pvm setopt)

N/A

TCP communication -c2c (mpirun option) default PvmDirectRoute

(pvm setopt)

default

TCP packet size maximum maximum approximately 4K maximum

Homogeneous mode -O (mpirun option) automatic PvmDataRaw

(pvm initsend)

default

2.2 Task Spawning

There are three major factors that determine the time neces-

sary for spawning tasks: the method used to start the process,

the location of the executable and libraries, and the functions

performed on startup. In all of our tests executables were

stored on an NFS mounted file system, so this factor was held

constant.

Starting tasks is accomplished via one of three techniques in

these packages:

� direct use of remote shell to start each task

� use of remote shell to start a daemon which subsequently

starts tasks

� use of a full-time daemon for starting tasks

Before a user begins running parallel applications under

PVM, he or she first starts up PVM and defines the virtual

machine. This process starts a user level PVM daemon on

each of the nodes in the machine by using the remote shell

facility. These daemons provide the user runtime spawning

services for PVM tasks. One unique feature of the PVM dae-

mon is its ability to start multiple tasks on the same node with

only one communication from the parent; as we will see this

leads to better performance from PVM when starting multiple

tasks on the same node.

LAM/MPI uses a technique similar to PVM for spawning

tasks. The user first starts up user level daemons on each

node in the Local Area Multicomputer. These daemons then

spawn MPI tasks for the user at runtime. BNM, like PVM and

LAM, uses a daemon to start processes; however, this daemon

provides a system service, so it is started when the machine

boots, and only one such daemon is needed to serve multiple

users. BNM, LAM, and MPICH, unlike PVM, require multi-

ple communications for multiple tasks spawned on the same

node.

MPICH attempts to start remote processes by connecting to

a default system level daemon, and if that daemon is unavail-

able, uses the remote shell facility. This default daemon can

also be configured at the user level, but we were unable to

get this daemon to startup remote processes properly during

the testing. Therefore, the remote shell was used, which is

extremely slow, particularly when the inetd server is used.

Hence, MPICH is at a severe disadvantage when it comes to

the speed of starting new tasks.

The last factor in startup time is the amount of additional ini-

tialization and setup performed. For PVM (including PvmDi-

rectRoute version) this is minimal; network connections are

set up but not established. LAM and MPICH require ad-

ditional synchronization of the MPI COMM WORLD com-

municator from each task. MPICH, in order to synchronize,

establishes connections to the appropriate tasks and subse-

quently close those connections before the initialization is

complete. BNM does not need to perform synchronization

as with MPI, but it does require that the network connections

be published for each process in sequential order. This ad-

ditional overhead significantly effects the spawn time, as we

will see in Section 3.

Other spawn environment options, not tested, are available on

both the MPI and PVM versions. MPI allows the executable

to be passed to the target node, not requiring the program to

exist on that node. MPI and PVM have options to provide

a current working directory and a search path to find the ex-

ecutable. They do so by setting the paths up in a script file

during initialization of the virtual machine or local area multi-

computer daemons. BNM provides this capability by passing

the environment every time a new message passing program

executes. During testing, we used full pathnames for the ex-

ecutables, hence environments were not used, so we could

eliminate this variable from our testing.



2.3 Message Passing

All of these packages use standard IP protocols for message

passing between nodes. PVM by default passes messages in

three steps. First the message is passed from the application

to the local PVM daemon via a TCP stream socket (some im-

plementations use UNIX stream sockets). The daemon then

divides the message up into “packets” of 4K bytes, which

it passes to the PVM daemon on the remote machine using

UDP. Each “packet” is acknowledged by the receiver individ-

ually, and lost packets are resent. PVM uses a simple round

trip time estimator [4], does not seem to use Karn’s algorithm

[14], and implements no delayed acknowledgment strategy.

When using the PvmDirectRoute option for PVM, TCP is

used to communicate directly between application tasks.

These connections are established when they are needed, and

they are left open, once connected, until application comple-

tion. When using TCP, PVM still breaks the messages into

packets of approximately 4K, but acknowledgements are not

used (because they are not needed with a reliable protocol

such as TCP).

LAM/MPI also uses UDP by default. Applications pass mes-

sages through UNIX stream sockets to the LAM daemon,

which uses UDP to pass the message to the LAM daemon

on the remote machine, which then passes the message to

the application through a UNIX stream socket. LAM breaks

messages into packets of approximately 8K when transferring

across the network, and each packet is acknowledged individ-

ually.

When the “-c2c” option is selected, LAM/MPI switches to

TCP connections for data transfer. As mentioned earlier, all

these TCP connections are established when the tasks are

spawned. These connections are made directly between the

tasks, and messages are sent as a whole without being broken

up into packets by the application. LAM’s TCP version uses

an eager send strategy with message sizes less than 16K and a

rendezvous strategy when message sizes are greater than 16K

instead of completely relying on TCP to handle buffering and

flow control.

Both BNM and MPICH use TCP exclusively, directly connect

between application tasks, and send messages without break-

ing up the packets at the application layer. They open con-

nections when they are needed and hold them open until task

completion. MPICH has been documented to change send

strategies over TCP at around 15K or less and this change

can be seen with the performance graphs [10]. In addition

MPICH reduces the receive buffer size in half for all message

sizes.

In the next section we will see how these implementation de-

tails affect the overall performance of the message passing

libraries both in spawning tasks and in passing messages.

3 PERFORMANCE

Our evaluation of the performance of these packages focuses

on two key areas, start-up time for parallel tasks and mes-

sage passing time for some common patterns. Spawn time

for tasks on a Beowulf machine may or may not be important

to the user, depending on the average run-time of the appli-

cations in use. For users running many iterations of short

run-time applications, this time can be critical. In any case,

as more and more core functions are distributed across the

parallel machine, the time to start a remote task will become

more important.

The time to pass messages between tasks obviously has direct

impact on the performance of applications, especially when

the applications are more fine-grain. In our tests we attempt

to cover some common logical configurations of processes

that might be seen in applications.

3.1 Test Setup

The Beowulf system used in these tests consists of the fol-

lowing:

� 17 single-processor 150 MHz Intel Pentium nodes

� 64 MB RAM per node

� 2 SMC Tulip-based ethernet cards per node using tulip.c

v0.88

� 2 fast ethernet networks, one bus and one full-duplex

switch

� Linux 2.0.34

One of the 17 nodes is used for interaction with the system,

while the others are used solely for computation. The interac-

tive, or “head”, node communicates with the other nodes over

the bus network. All compute nodes communicate with each

other over the full-duplex switch. On all tests, the “head”

node is used to spawn off one process on each of the com-

putation nodes and to time all tests using the gettimeofday()

call.

All software was configured for a homogeneous clus-

ter of workstations. PVM provides this with the

pvm initsend(PvmDataRaw) function, while LAM uses the

“-O” option on the mpirun command line. MPICH detects

this automatically and BNM provides no other functionality.

We also patched the 2.0.34 Linux kernel to prevent TCP from

resetting the congestion window to slow start after not com-

municating for a “long time” [7]. Without this patch, the tests

we performed slow down considerably which inhibits us from

seeing TCP in action (see Figure 1). This slow down occurs

when a connection performs slow start each time the sender



transfers large data messages. For example, when passing

messages around in a ring, the combination of the delayed ac-

knowledgement and slow start prevents a node from retrans-

mitting again for a “long time”. Since we want to see TCP

operating at full capacity, we removed this artifact.

3.2 Starting Remote Tasks

In this test we used the head node to spawn off the processes

onto the computation nodes with no computations performed.

We started timing before spawning began and ended it after

the spawning operations completed. For PVM, LAM, and

BNM, we had the spawning task use the respective spawn

library calls to perform this function and time the operation.

With MPICH there is no spawn library call, so we timed the

mpirun command.

We did not include MPICH in the results since the remote

shell service (see Section 2.2) spawn times would drastically

decrease the resolution of Figure 2. After MPICH, BNM

takes the longest amount of time to spawn tasks because the

current implementation requires that the controlling process

setup communication port information with each spawned

process in a sequential manner. Moreover, BNM uses a sys-

tem level daemon that performs additional processing, such

as security checks, that increases spawn times.

PVM and LAM communicate with a user level daemon with

UDP to spawn tasks. The PVM daemons perform very well

since its only task during this stage is to spawn an executable

on a remote machine. LAM’s increase in spawn time com-

pared to PVM can be attributed to MPI’s synchronization

overhead as described in Section 2.2.

3.3 Message Passing Performance

The message passing tests consist of one master program ex-

ecuting on the head spawning off one process on each of the

computational nodes. The master’s job consists of spawning

off the processes, doing the timing, and waiting for a one byte

message from each of the processing nodes to signal comple-

tion of the test. We designed the tests such that the first com-

putational node in the Beowulf system always gets assigned

task 1, the second node gets task 2, and so on.

In performing these tests, we used nonblocking sends and

blocking receives. Unless otherwise specified, message sizes

are in bytes and we use simple data types in all communica-

tions. For instance, the MPI BYTE datatype for MPI and the

pvm pkbyte() command for PVM are used for simple byte

sends. BNM provides only byte oriented service and has no

functionality to construct complex data types.

3.3.1 Ring Tests— In all the ring tests, 100 loops were per-

formed and the message size was varied. The ring loop started

with a send from task 1 to task 2 and so on. The ring loop ends

with a send from task 16 to task 1 (see Figure 3).

Figure 4 shows the results of the ring tests. The UDP versions

of LAM/MPI and PVM perform the worst mainly because

of the additional overhead of passing every message through

the user level daemon. However, when comparing the two

UDP versions, the reliable layer used in LAM does perform

better than PVM. The larger packet sizes and LAM’s reliable

protocol lead to this boost in performance.

The TCP version of LAM along with MPICH and BNM

perform similarly. For smaller message sizes, MPICH does

perform worse because of the smaller receive buffer, but

starts to match the other TCP versions when its send strat-

egy changes around 15K. PVM, however, performs a little

worse at smaller message sizes and a little better as the mes-

sage size gets larger. The reason for this discrepancy is fairly

complicated, but we will attempt to address it.

The TCP version of PVM breaks up messages sent on the

network wire into approximately 4K chunks. Since the max-

imum segment size (MSS) on an ethernet link is 1460 bytes,

PVM’s message sizes result in two full sized segments and

one non-full segment. This inefficient use of ethernet pack-

ets results in PVMs poor performance at the smaller message

sizes.

As the message sizes get larger, the way PVM fills in ethernet

packets has two effects. First, since Linux TCP implementa-

tions acknowledge every two full sized segments, most of the

time the sender receives one acknowledgment for every two

packets sent. However, with PVM, every three segments will

be acknowledged since one of the segments is NOT full, ef-

fectively reducing the number of returned acknowledgments

by a third. This reduction in acknowledgments reduces the

amount of interrupt processing done on the sender when re-

ceiving acknowledgments.

Second, since PVM sends messages to the TCP layer in ap-

proximately 4K chunks, PVM must wait until that 4K is sent

onto the network wire prior to sending more data to the TCP

layer. If PVM did not wait, the TCP layers would combine

subsequent sends together which would cause all of the eth-

ernet packets to be full. Since PVM waits for the data to get

to the wire, the frequency of the data packets sent on the wire

will decrease which results in slowing down packet reception

on the receiver. While this method of sending data seems ex-

tremely inefficient and slow, as message sizes get larger, PVM

performs better than its full sized segment counterparts.

The Linux 2.0.34 TCP implementation acknowledges every

two full sized segments by setting a delayed acknowledgment

timer to zero seconds. This method of acknowledging packets

results in continuous inefficient timer interrupts and context

switches when receiving bulk data transfers. The faster data

is received, the more overhead this method of acknowledging

segments will create. Since PVM both reduces the number of

acknowledgments and the frequency of the sends, less over-



0.1

1

10

100

1000

0 5000 10000 15000 20000

T
im

e 
(s

ec
o
n
d
s)

Message Size (bytes)

BNM, before patch
PVM, before patch

BNM, after patch
PVM, after patch

Figure 1: Patched versus Standard Kernel

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

T
im

e 
(s

ec
o
n
d
s)

Number of Tasks

BNM
LAM(UDP)
LAM(TCP)

PVM

Figure 2: Spawning Tests



2

6

9 10 11 12

13 14 1615

5 7 8

431

Figure 3: Ring Test Description

0

5

10

15

20

25

30

35

40

45

0 10000 20000 30000 40000 50000 60000 70000

T
im

e 
(s

ec
o
n

d
s)

Message Size (bytes)

RingLoops on Switch - Loops = 100

BNM
LAM_UDP
LAM_TCP
PVM_UDP
PVM_TCP

MPICH

Figure 4: Ring Tests



head results and better performance is seen at larger message

sizes. If the TCP implementation performed the acknowledg-

ment in the same context as the reception of the data, PVM

would perform worse than it’s counterparts at any message

size.

3.3.2 Process Bottleneck Tests— In this test, a central bot-

tleneck task, task 1, sends data to tasks 2 through 16. After

receiving the data, tasks 2 through 16 send data back to task

1 (see Figure 5). We performed this test for 100 iterations of

the sends and receives while we varied the message size.

Figures 6, 7, and 8 show very similar behavior as the ring tests

concerning the UDP versions of LAM/MPI and PVM. The

discussion on UDP can be read in Section 3.3.1. However,

the various TCP versions behave differently as the messages

sizes increase during this test.

Figures 6 and 7 show that layering over TCP sockets can be

detrimental at small message sizes. This can be clearly seen

as BNM and LAM/MPI perform very well at message sizes

where the eager send strategy is used. As messages sizes

increase over 16K, LAM changes its send strategy and the

performance degrades. Figure 7 also shows the change in

MPICH’s send strategy at around 15K.

As message sizes get very large, Figure 8 shows that

MPICH’s send strategy performs the best with PVM a close

second. PVM’s performance improvements can be attributed

to the same reasoning discussed in Section 3.3.1. We are not

clear on where MPICH gains at these large message sizes, but

we can hypothesize that the reduction in the receive window

effectively slows down the sends while keeping all of the TCP

packets full.

LAM’s TCP version uses strategies that are very poor on both

large and medium sized messages using the Linux 2.0.34 ker-

nel. However, newer versions of the kernel that use better

acknowledgment methodology may obtain the benefits these

strategies were intended to produce. BNM, on the other hand,

will always follow raw TCP performance.

3.4 Reliability

LAM and MPICH proved to have the most problems locking

up or slowing down unpredictably during testing. For exam-

ple, when spawning tasks using the MPI Spawn command,

LAM leaves UNIX accept sockets open to the daemon after

the LAM tasks complete. This artifact will eventually cause a

program crash when the Linux file descriptor limit is reached.

It seems as if this problem only occurs when spawning with

the MPI Spawn() command and not when using the mpirun

command.

We did perform additional tests, not shown in this paper, on

large sets of processes. For example, we would start up 255

tasks on our 16 node system and then try to perform com-

munications. While the UDP versions handled this fine (for

small message sizes), the TCP versions all crashed consis-

tently as a result of the 255 file descriptor limit of Linux.

This should rarely be a problem on our system, but may be

on larger node systems that want to communicate to a central

process.

4 CONCLUSIONS

From our study of message passing implementations we

learned that cluster applications should always try to use the

TCP versions for optimal performance. The additional over-

head of passing data through user level daemons significantly

degrades message passing latency. Testing also showed that

providing additional layers above TCP can improve perfor-

mance in some cases.

The benefits we did see with layered strategies over TCP were

a direct result of the Linux TCP implementation. Since dif-

ferent kernels will implement TCP in a variety of fashions,

optimal strategies will differ depending on the kernel a clus-

ter uses. For example, changing the kernel from Linux 2.0.34

to Linux 2.2.x will significantly alter the effects seen in this

paper by changing the performance of the message passing

libraries.

We also discovered that modifications of the kernel TCP im-

plementation can improve communication performance on

our network. This has led to future work in modifying TCP’s

transmission algorithms to boost performance on the Be-

owulf. We plan to design a kernel patch that allows TCP

parameters to be modified from the /proc file system and test

performance while varying these algorithms. These tests, af-

ter obtaining an optimal TCP parameter configuration, should

show increased performance using all of the message passing

libraries.

References

[1] Henri Casanova, Jack Dongarra, and Weicheng Jiang.

The performance of PVM on MPP systems. Techni-

cal Report CS-95-301, University of Tennessee, August

1995.

[2] Karen Castagnera, Doreen Cheng, Rod Fatoohi, Ed-

ward Hook, Bill Kramer, Craig Manning, John Musch,

Charles Niggley, William Saphir, Douglas Sheppard,

Merritt Smith, Ian Stockdale, Shaun Welch, Rita

Williams, and David Yip. Clustered workstations and

their potential role as high speed compute processors.

Technical Report RNS-94-003, NAS Systems Division,

NASA Ames Research Center, April 1994.

[3] Jack J. Dongarra and Tom Dunigan. Message-passing

performance of various computers. Technical report,

University of Tennessee, January 1997.



9

10

12

14

16 2

8

7

6

5

4

3

13

15

11

1

Figure 5: Bottleneck Test Description

0

2

4

6

8

10

12

0 2000 4000 6000 8000 10000

T
im

e 
(s

ec
o
n
d
s)

Message Size (bytes)

BNM
LAM UDP
LAM TCP
PVM TCP

MPICH

Figure 6: Scatter/Gather - Small Messages



0

5

10

15

20

25

30

35

40

45

50

5000 10000 15000 20000 25000 30000

T
im

e 
(s

ec
o
n
d
s)

Message Size (bytes)

BNM
LAM UDP
LAM TCP
PVM UDP
PVM TCP

MPICH

Figure 7: Scatter/Gather - Medium Messages

0

100

200

300

400

500

600

700

100000 200000 300000 400000 500000

T
im

e 
(s

ec
o
n
d
s)

Message Size (bytes)

BNM
LAM UDP
LAM TCP
PVM UDP
PVM TCP

MPICH

Figure 8: Scatter/Gather - Large Messages



[4] A. Geist, A. Beguelin, J. Dongarra, R. Manchek,

W. Jiang, and V. Sunderam. PVM: A Users’ Guide and

Tutorial for Networked Parallel Computing. MIT Press,

1994.

[5] G.A Geist, J.A. Kohl, and P.M. Papadopoulos. PVM and

MPI: a comparison of features. Technical Report DE-

AC0596OR22464, Lockheed Martin Energy Research

Corporation, May 1996.

[6] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-

performance, portable implementation of the MPI mes-

sage passing interface standard. Parallel Computing,

22(6):789–828, September 1996.

[7] V. Jacobsen and M. Karels. Congestion control and

avoidance. In Proceedings of ACM SIGCOMM ’88,

1988.

[8] Vijay Karamcheti and Andrew A. Chien. A compari-

son of architectural support for messaging in the TMC

CM-5 and the cray T3D. In Proceedings of the 1995 In-

ternational Symposium on Computer Architecture, June

1995.

[9] W. B. Ligon and R. B. Ross. Implementation and

performance of a parallel file system for high perfor-

mance distributed applications. In Proceedings of the

Fifth IEEE International Symposium on High Perfor-

mance Distributed Computing, pages 471–480. IEEE

Computer Society Press, August 1996.

[10] Nick Nevin. The performance of LAM 6.0 and MPICH

1.0.12 on a workstation cluster. Technical Report OSC-

TR-1996-4, Ohio Supercomputer Center, March 1996.

[11] Daniel Ridge, Donald Becker, Phillip Merkey, and

Thomas Sterling. Beowulf: Harnessing the power of

parallelism in a pile-of-pcs. In Proceedings of the 1997

IEEE Aerospace Conference, 1997.

[12] Bill Saphir and Sam Fineberg. Performance compar-

isons of MPL, MPI, PVMe. Technical report, NAS Par-

allel Systems, September 1998.

[13] Marc Snir, Steve Otto, Steven Huss-Lederman, David

Walker, and Jack Dongarra. MPI: The Complete Refer-

ence. MIT Press, 1995.

[14] W. Richard Stevens. TCP/IP Illustrated, Volume 1.

Addison-Wesley, 1994.

Phil Carns is a student at Clem-

son University working towards his

B.S. in Computer Engineering. He

is currently doing research as an

honors project for the Calhoun

Honors program. His interests

are in message passing implemen-

tations and socket level interfaces.

Walter Ligon received his Ph. D. in

Computer Science from the Geor-

gia Institute of Technology in 1992.

Since then he has been at Clem-

son University where he is an Assis-

tant Professor in the Department of

Electrical and Computer Engineer-

ing. His current research interests

are in parallel and distributed sys-

tems, I/O for parallel systems, re-

configurable computing, and problem solving environments.

Scott McMillan received his Bach-

elors of Electrical Engineering

from the Georgia Institute of Tech-

nology in 1992. Currently, he is

working towards his M.S. in Com-

puter Engineering at Clemson Uni-

versity. His interests include mes-

sage passing implementations, par-

allel I/O, and systems level soft-

ware.

Robert Ross received his B.S. in

Computer Engineering from Clem-

son University in 1994. Currently

he is working towards his Ph. D.

in Computer Engineering at Clem-

son University. His interests in-

clude parallel file systems, schedul-

ing algorithms, and visualization.


