
An Overview of the Parallel Virtual File System

Walter B. Ligon III Robert B. Ross

Parallel Arhiteture Researh Lab Parallel Arhiteture Researh Lab

Clemson University Clemson University

102 Riggs Hall, Box 340915 102 Riggs Hall, Box 340915

Clemson, SC 29634-0915 Clemson, SC 29634-0915

walt�es.lemson.edu rbross�parl.lemson.edu

Abstrat

As the PC luster has grown in popularity as a

parallel omputing platform, the demand for system

software for this platform has grown as well. One

ommon piee of system software available for many

ommerial parallel mahines is the parallel �le sys-

tem. Parallel �le systems o�er higher I/O perfor-

mane than single disk or RAID systems, provide

users with a onvenient and onsistent name spae

aross the parallel mahine, support physial distri-

bution of data aross multiple disks and network en-

tities (I/O nodes), and typially inlude additional

I/O interfaes to support larger �les and ontrol of

�le parameters.

The Parallel Virtual File System (PVFS) Projet

is an e�ort to provide a parallel �le system for PC

lusters. As a parallel �le system, PVFS provides a

global name spae, striping of data aross multiple

I/O nodes, and multiple user interfaes. The system

is implemented at the user level, so no kernel mod-

i�ations are neessary to install or run the system.

All ommuniation is performed using TCP/IP, so

no additional message passing libraries are needed,

and support is inluded for using existing binaries on

PVFS �les. This paper desribes the key aspets of

the PVFS system and presents reent performane

results on a 64 node Beowulf workstation. Conlu-

sions are drawn and areas of future work are dis-

ussed.

1 Introdution

One ommon piee of system software available for

many ommerial parallel mahines is the parallel

�le system. Parallel �le systems typially provide

users with three servies:

� a onsistent name spae aross the mahine,

� physial distribution of data aross disks and

network entities, and

� additional I/O interfaes.

The onsistent name spae aids programmers in a-

essing �le data on multiple nodes. The physial

distribution of data eliminates bottleneks both at

the disk interfae and the network, providing more

e�etive bandwidth to the I/O resoures. Addition-

al I/O interfaes allow the user to ontrol how data

is distributed, enable new aess modes, and in some

ases allow for larger �les to be stored than possible

on many, more traditional, �le systems. PFS for the

Intel Paragon, PIOFS for the IBM SP, HFS for the

HP Exemplar, and XFS for the SGI Origin2000 are

all examples of ommerial support for parallel I/O.

As the use of PC lusters has grown, it has be-

ome obvious that system software support is nees-

sary for parallel omputing to ontinue to grow on

this popular platform. In partiular, the �le systems

that have been ommonly used on this type of ma-

hine (AFS, NFS) do not provide the servies needed

by parallel appliations, espeially as mahine sizes

grow beyond only a few nodes. Thus new solution-

s are neessary to �ll the need for true parallel �le

systems in PC lusters.

The Parallel Virtual File System (PVFS) projet

began in the early 1990's as an experiment in user-

level parallel �le systems for lusters of workstations

but has sine grown into a very usable, freely avail-

able, high performane parallel �le system for PC

lusters. This work will provide an overview of the

design and features of PVFS, present some of our

latest measurements of performane on a Beowulf

workstation [3℄, and point to future work in the de-

velopment of PVFS.



2 PVFS Design

As a parallel �le system, the primary goal of the

PVFS system is to provide high-speed aess to �le

data for parallel appliations. PVFS is a user-level

implementation with the following features:

� provides luster-wide onsistent name spae,

� enables user-ontrolled striping of data aross

nodes, and

� allows existing binaries to operate on PVFS

�les.

Beause PVFS is a user-level implementation, no k-

ernel modi�ations are neessary to install or oper-

ate the �le system. The system uses TCP/IP to pass

�le data, so there are no dependenies on message

passing libraries.

The PVFS system onsists of three omponents:

the manager daemon, whih runs on a single node,

the I/O daemons, one of whih runs on eah I/O

nodes, and the appliation library, through whih

appliations ommuniate with the PVFS daemons.

The manager daemon handles permission heking

for �le reation, open, lose, and remove operations.

The I/O daemons handle all �le I/O without the

intervention of the manager.

In the following setions we will desribe how

PVFS stores �le data, how it stores �le metadata,

one method by whih appliations an interfae to

the system, how data is transferred between applia-

tions and I/O nodes, and how existing binaries an

operate on PVFS �les.

2.1 Storing File Data

File data is stored on loal �le systems on I/O nodes.

For eah �le striped aross N I/O nodes, there will

be N �les, one per I/O node, holding that �le's data.

A unique identi�er, supplied by another part of the

�le system, ensures that the names of these �les will

not onit on the I/O nodes.

As a result of this, the UNIX mmap(), read(), and

write() alls an be used diretly by the I/O daemon-

s to perform �le I/O. The operating system will also

ahe �le data for PVFS, so this is not performed in

the PVFS ode proper. A disadvantage of this ap-

proah is that we give up ontrol of blok alloation

and annot diretly ontrol what data is ahed.

2.2 Storing Metadata

In the ontext of a parallel �le system, metadata is

information desribing the harateristis of a �le.

This inludes permissions, the owner, and most im-

portantly a desription of the physial distribution

of the �le data.

With PVFS, an NFS-mounted �le system is used

to store the metadata. We found that this sheme

was more onvenient than our previous attempts in

that it gives us our unique name spae, provides a

diretory struture for appliations to see, and light-

ens the load on the manager.

2.3 Appliation Interfaes

The �rst interfae to PVFS was heavily inuened

by two researh projets in progress at the time, the

Charisma Projet [2℄ and the Vesta Projet [1℄. The

Charisma Projet foused on haraterizing the I/O

of workloads on parallel mahines. One of their ob-

servations was that a large fration of I/O aesses

ourred in what they alled \simple strided" pat-

terns. These patterns are haraterized by �xed-size

aesses whih are spread apart by a �xed distane

in the �le.

The Vesta parallel �le system was originally de-

signed for the Vulan parallel omputer. Its interfae

was interesting in that it allowed proesses to \par-

tition" a �le in suh a way that the proess would

only see a subset of the �le data.

We ombined these two onepts into a \Parti-

tioned File Interfae", whih forms the basi inter-

fae to PVFS. With this interfae appliations an

speify partitions on �les whih allow them to aess

simple strided regions of the �le with single read()

and write() alls, reduing the number of I/O alls

for many ommon appliations.

2.4 Transferring File Data

PVFS relies on TCP to transfer data. During the

early phases of the design, TCP performane tests

indiated that we ould utilize most available band-

width using TCP. This has ontinued to be the ase,

although there are some situations where harater-

istis of TCP suh as slow start and delayed aknowl-

edgement result in poor performane.

Appliation tasks ommuniate diretly with I/O

nodes when �le data is transferred, and onnetions

are kept open between appliations and I/O nodes

throughout the lifetime of the appliation in order

to avoid the time penalty of opening TCP onne-

tions multiple times. A predetermined ordering is

imposed on all data transfers to minimize ontrol

messages, and simple-strided requests are supported

by the I/O nodes diretly to allow for larger request

sizes.



�� �� �� �� ���� ����
Logical partitioning by application

���� ���� ���� ������
Physical stripe on some I/O Daemon

�
�
�
�

�
�
�
�
��
��
��
��

����
����
����
����������

������
������

������
������
������

���
���
���

���
���
���

�����
�����
�����

�����
�����
�����

Resulting I/O stream

Intersection of stripe and partition

Figure 1: Example of an I/O Stream

Figure 1 shows an example of the I/O stream be-

tween an appliation and an I/O node resulting from

a strided request. Eah side alulates the interse-

tion of physial stripe and the strided request. The

data is always passed in asending byte order and

is paked into TCP pakets by the underlying net-

working software.

2.5 Using Existing Binaries

We take advantage of the LD PRELOAD variable to

allow existing binaries to operate on PVFS �les. A

olletion of system all wrappers are preloaded al-

lowing us to ath I/O alls before they pass into the

operating system. The state of open �les is kept in

user spae, and aesses using �le desriptors refer-

ring to PVFS �les are handled by the PVFS library.

All other alls are passed through to the appropriate

system all.

3 PVFS Performane

In this setion we examine the performane of PVF-

S on a Beowulf workstation while running a simple

parallel test appliation. The purpose of these tests

was twofold; we want to show the potential of PVFS,

but we also want to point out areas where improve-

ment is still warranted.

3.1 Test Environment

The Beowulf workstation used in these tests resides

at the NASA Goddard Spae Flight Center. It is a

64 node system, eah housing:

� dual-proessor Pentium Pro 200MHz, 128MB

RAM

� 6 GB Seagate IDE drive

� 100Mbit Intel EtherExpress Pro in full duplex

mode

A Foundry Network FastIron II swith onnets the

nodes. A separate front-end node is onneted to

the swith via a 1Gbit full duplex onnetion. The

nodes were running Linux 2.2.5, MPICH 1.1.2, and

PVFS 1.3.1.

Two di�erent models of Seagate disks were used

in the system, with advertised sustained transfer

rates of 5.0 and 7.9MB/se. Testing using the Bon-

nie disk benhmark showed 8.81MB/se writing with

27.1% CPU utilization and 7.51MB/se reading with

17.3% CPU utilization. Using ttp version 1.1 TCP

throughput was measured at 11.0MBps.

The 64 nodes in the system were divided into 16

I/O and 48 ompute nodes for the purposes of these

tests. The number of I/O and ompute nodes used

was varied throughout the tests. The test applia-

tion, run under MPICH, performed the following op-

erations:

� Create new PVFS �le

� Simultaneously write data bloks to disjoint re-

gions

� Close and reopen the �le

� Simultaneously read same data bloks bak

from the �le

� Close the �le

The �le was removed and the disks synhronized be-

tween eah test iteration.

3.2 Saling and I/O Nodes

The �rst set of test runs were designed to test the

performane of PVFS as the number of I/O nodes

was saled. The amount of data written on eah I/O

node is held onstant for eah number of appliation

tasks.

Here we see that we reah a maximum of around

30MB/se for 4 I/O nodes, 60MB/se for 8 I/O n-

odes, and 120MB/se for 16 I/O nodes. These values

losely math the maximum performane we would

expet to get out of the disks on eah node, although

it is likely that at the points where these peaks are

ourring we are mostly working from ahe. In all

ases we �nd that network performane is a bottle-

nek for small numbers of appliation tasks, but it



0

20

40

60

80

100

120

140

0 5 10 15 20 25 30 35 40 45 50

A
gg

re
ga

te
 B

an
dw

id
th

 (
M

B
ps

)

Number of Compute Nodes

4 ION, 8MB writes
4 ION, 8MB reads

8 ION, 16MB writes
8 ION, 16MB reads

16 ION, 32MB writes
16 ION, 32MB reads

Figure 2: E�ets of Inreasing Number of I/O Nodes

0

20

40

60

80

100

120

140

0 5 10 15 20 25 30 35 40 45 50

A
gg

re
ga

te
 B

an
dw

id
th

 (
M

B
ps

)

Number of Compute Nodes

4MB writes
8MB writes

16MB writes
32MB writes

Figure 3: Write Performane for 16 I/O Nodes

appears that disk is the bottlenek for larger num-

bers of appliation tasks (and thus larger amounts

of data).

3.3 PVFS Write Performane

Figure 3 fouses on PVFS write performane using

16 I/O nodes. We see a signi�ant drop-o� in perfor-

mane for 16-20 appliation tasks, but performane

limbs again after this point. The subsequent rise in

performane indiates that we have not hit the limit

in performane of disk or network, but rather that

we are inappropriately using one or both of these

resoures.

3.4 PVFS Read Performane

In Figure 4 we examine read performane for PVF-

S using 4 I/O nodes. Here we an see two e�ets.

First, for 4MB aesses performane is errati. Se-

ond, for the larger aesses, when total aess size

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35 40 45 50

A
gg

re
ga

te
 B

an
dw

id
th

 (
M

B
ps

)

Number of Compute Nodes

4MB reads
8MB reads

16MB reads
32MB reads

Figure 4: Read Performane for 4 I/O Nodes

exeeds 60MB we see a signi�ant drop-o� in perfor-

mane. Here it is possible that we are limited by disk

performane; however, this has not been established

and further testing will be required to determine if

this is in fat the ase. It is also possible that our

tehnique for �le reads is not optimal and an be

improved to lessen or eliminate this drop-o�.

4 Conlusions and Future

Work

PVFS is a work in progress. The fous of urrent

development is on salability, reliability, and sup-

port of additional interfaes. We hope to extend the

apabilities of PVFS so that it an support system-

s of many hundreds of nodes, and we are atively

working with the authors of the ROMIO MPI-IO

implementation [4℄ in order to provide a high per-

formane MPI-IO option for Beowulf workstation-

s. We are also atively investigating the varianes

in performane that are obvious from the tests pre-

sented here in an e�ort to provide more preditable

performane.

At the same time, PVFS is stable enough for

regular use and provides ompatibility with ex-

isting binaries, whih makes parallel I/O a re-

al option for Beowulf workstations and Piles-of-

PCs. For more information on obtaining and in-

stalling PVFS, see the PVFS Projet pages at

http://ee.lemson.edu/parl/pvfs/.

Referenes

[1℄ Peter F. Corbett, Dror G. Feitelson, Jean-Pierre

Prost, and Sandra Johnson Baylor. Parallel a-



ess to �les in the Vesta �le system. In Proeed-

ings of Superomputing '93, pages 472{481, Port-

land, OR, 1993. IEEE Computer Soiety Press.

[2℄ Nils Nieuwejaar, David Kotz, Apratim Pu-

rakayastha, Carla Shlatter Ellis, and Mihael

Best. File-aess harateristis of parallel sien-

ti� workloads. IEEE Transations on Parallel

and Distributed Systems, 7(10):1075{1089, Oto-

ber 1996.

[3℄ Daniel Ridge, Donald Beker, Phillip Merkey,

and Thomas Sterling. Beowulf: Harnessing the

power of parallelism in a pile-of-ps. In Pro-

eedings of the 1997 IEEE Aerospae Conferene,

1997.

[4℄ Rajeev Thakur, William Gropp, and Ewing

Lusk. On implementing MPI-IO portably and

with high performane. In Proeedings of the

Sixth Workshop on Input/Output in Parallel and

Distributed Systems, pages 23{32, May 1999.


