
An Overview of the Parallel Virtual File System

Walter B. Ligon III Robert B. Ross

Parallel Ar
hite
ture Resear
h Lab Parallel Ar
hite
ture Resear
h Lab

Clemson University Clemson University

102 Riggs Hall, Box 340915 102 Riggs Hall, Box 340915

Clemson, SC 29634-0915 Clemson, SC 29634-0915

walt�
es.
lemson.edu rbross�parl.
lemson.edu

Abstra
t

As the PC 
luster has grown in popularity as a

parallel 
omputing platform, the demand for system

software for this platform has grown as well. One


ommon pie
e of system software available for many


ommer
ial parallel ma
hines is the parallel �le sys-

tem. Parallel �le systems o�er higher I/O perfor-

man
e than single disk or RAID systems, provide

users with a 
onvenient and 
onsistent name spa
e

a
ross the parallel ma
hine, support physi
al distri-

bution of data a
ross multiple disks and network en-

tities (I/O nodes), and typi
ally in
lude additional

I/O interfa
es to support larger �les and 
ontrol of

�le parameters.

The Parallel Virtual File System (PVFS) Proje
t

is an e�ort to provide a parallel �le system for PC


lusters. As a parallel �le system, PVFS provides a

global name spa
e, striping of data a
ross multiple

I/O nodes, and multiple user interfa
es. The system

is implemented at the user level, so no kernel mod-

i�
ations are ne
essary to install or run the system.

All 
ommuni
ation is performed using TCP/IP, so

no additional message passing libraries are needed,

and support is in
luded for using existing binaries on

PVFS �les. This paper des
ribes the key aspe
ts of

the PVFS system and presents re
ent performan
e

results on a 64 node Beowulf workstation. Con
lu-

sions are drawn and areas of future work are dis-


ussed.

1 Introdu
tion

One 
ommon pie
e of system software available for

many 
ommer
ial parallel ma
hines is the parallel

�le system. Parallel �le systems typi
ally provide

users with three servi
es:

� a 
onsistent name spa
e a
ross the ma
hine,

� physi
al distribution of data a
ross disks and

network entities, and

� additional I/O interfa
es.

The 
onsistent name spa
e aids programmers in a
-


essing �le data on multiple nodes. The physi
al

distribution of data eliminates bottlene
ks both at

the disk interfa
e and the network, providing more

e�e
tive bandwidth to the I/O resour
es. Addition-

al I/O interfa
es allow the user to 
ontrol how data

is distributed, enable new a

ess modes, and in some


ases allow for larger �les to be stored than possible

on many, more traditional, �le systems. PFS for the

Intel Paragon, PIOFS for the IBM SP, HFS for the

HP Exemplar, and XFS for the SGI Origin2000 are

all examples of 
ommer
ial support for parallel I/O.

As the use of PC 
lusters has grown, it has be-


ome obvious that system software support is ne
es-

sary for parallel 
omputing to 
ontinue to grow on

this popular platform. In parti
ular, the �le systems

that have been 
ommonly used on this type of ma-


hine (AFS, NFS) do not provide the servi
es needed

by parallel appli
ations, espe
ially as ma
hine sizes

grow beyond only a few nodes. Thus new solution-

s are ne
essary to �ll the need for true parallel �le

systems in PC 
lusters.

The Parallel Virtual File System (PVFS) proje
t

began in the early 1990's as an experiment in user-

level parallel �le systems for 
lusters of workstations

but has sin
e grown into a very usable, freely avail-

able, high performan
e parallel �le system for PC


lusters. This work will provide an overview of the

design and features of PVFS, present some of our

latest measurements of performan
e on a Beowulf

workstation [3℄, and point to future work in the de-

velopment of PVFS.



2 PVFS Design

As a parallel �le system, the primary goal of the

PVFS system is to provide high-speed a

ess to �le

data for parallel appli
ations. PVFS is a user-level

implementation with the following features:

� provides 
luster-wide 
onsistent name spa
e,

� enables user-
ontrolled striping of data a
ross

nodes, and

� allows existing binaries to operate on PVFS

�les.

Be
ause PVFS is a user-level implementation, no k-

ernel modi�
ations are ne
essary to install or oper-

ate the �le system. The system uses TCP/IP to pass

�le data, so there are no dependen
ies on message

passing libraries.

The PVFS system 
onsists of three 
omponents:

the manager daemon, whi
h runs on a single node,

the I/O daemons, one of whi
h runs on ea
h I/O

nodes, and the appli
ation library, through whi
h

appli
ations 
ommuni
ate with the PVFS daemons.

The manager daemon handles permission 
he
king

for �le 
reation, open, 
lose, and remove operations.

The I/O daemons handle all �le I/O without the

intervention of the manager.

In the following se
tions we will des
ribe how

PVFS stores �le data, how it stores �le metadata,

one method by whi
h appli
ations 
an interfa
e to

the system, how data is transferred between appli
a-

tions and I/O nodes, and how existing binaries 
an

operate on PVFS �les.

2.1 Storing File Data

File data is stored on lo
al �le systems on I/O nodes.

For ea
h �le striped a
ross N I/O nodes, there will

be N �les, one per I/O node, holding that �le's data.

A unique identi�er, supplied by another part of the

�le system, ensures that the names of these �les will

not 
on
i
t on the I/O nodes.

As a result of this, the UNIX mmap(), read(), and

write() 
alls 
an be used dire
tly by the I/O daemon-

s to perform �le I/O. The operating system will also


a
he �le data for PVFS, so this is not performed in

the PVFS 
ode proper. A disadvantage of this ap-

proa
h is that we give up 
ontrol of blo
k allo
ation

and 
annot dire
tly 
ontrol what data is 
a
hed.

2.2 Storing Metadata

In the 
ontext of a parallel �le system, metadata is

information des
ribing the 
hara
teristi
s of a �le.

This in
ludes permissions, the owner, and most im-

portantly a des
ription of the physi
al distribution

of the �le data.

With PVFS, an NFS-mounted �le system is used

to store the metadata. We found that this s
heme

was more 
onvenient than our previous attempts in

that it gives us our unique name spa
e, provides a

dire
tory stru
ture for appli
ations to see, and light-

ens the load on the manager.

2.3 Appli
ation Interfa
es

The �rst interfa
e to PVFS was heavily in
uen
ed

by two resear
h proje
ts in progress at the time, the

Charisma Proje
t [2℄ and the Vesta Proje
t [1℄. The

Charisma Proje
t fo
used on 
hara
terizing the I/O

of workloads on parallel ma
hines. One of their ob-

servations was that a large fra
tion of I/O a

esses

o

urred in what they 
alled \simple strided" pat-

terns. These patterns are 
hara
terized by �xed-size

a

esses whi
h are spread apart by a �xed distan
e

in the �le.

The Vesta parallel �le system was originally de-

signed for the Vul
an parallel 
omputer. Its interfa
e

was interesting in that it allowed pro
esses to \par-

tition" a �le in su
h a way that the pro
ess would

only see a subset of the �le data.

We 
ombined these two 
on
epts into a \Parti-

tioned File Interfa
e", whi
h forms the basi
 inter-

fa
e to PVFS. With this interfa
e appli
ations 
an

spe
ify partitions on �les whi
h allow them to a

ess

simple strided regions of the �le with single read()

and write() 
alls, redu
ing the number of I/O 
alls

for many 
ommon appli
ations.

2.4 Transferring File Data

PVFS relies on TCP to transfer data. During the

early phases of the design, TCP performan
e tests

indi
ated that we 
ould utilize most available band-

width using TCP. This has 
ontinued to be the 
ase,

although there are some situations where 
hara
ter-

isti
s of TCP su
h as slow start and delayed a
knowl-

edgement result in poor performan
e.

Appli
ation tasks 
ommuni
ate dire
tly with I/O

nodes when �le data is transferred, and 
onne
tions

are kept open between appli
ations and I/O nodes

throughout the lifetime of the appli
ation in order

to avoid the time penalty of opening TCP 
onne
-

tions multiple times. A predetermined ordering is

imposed on all data transfers to minimize 
ontrol

messages, and simple-strided requests are supported

by the I/O nodes dire
tly to allow for larger request

sizes.



�� �� �� �� ���� ����
Logical partitioning by application

���� ���� ���� ������
Physical stripe on some I/O Daemon

�
�
�
�

�
�
�
�
��
��
��
��

����
����
����
����������

������
������

������
������
������

���
���
���

���
���
���

�����
�����
�����

�����
�����
�����

Resulting I/O stream

Intersection of stripe and partition

Figure 1: Example of an I/O Stream

Figure 1 shows an example of the I/O stream be-

tween an appli
ation and an I/O node resulting from

a strided request. Ea
h side 
al
ulates the interse
-

tion of physi
al stripe and the strided request. The

data is always passed in as
ending byte order and

is pa
ked into TCP pa
kets by the underlying net-

working software.

2.5 Using Existing Binaries

We take advantage of the LD PRELOAD variable to

allow existing binaries to operate on PVFS �les. A


olle
tion of system 
all wrappers are preloaded al-

lowing us to 
at
h I/O 
alls before they pass into the

operating system. The state of open �les is kept in

user spa
e, and a

esses using �le des
riptors refer-

ring to PVFS �les are handled by the PVFS library.

All other 
alls are passed through to the appropriate

system 
all.

3 PVFS Performan
e

In this se
tion we examine the performan
e of PVF-

S on a Beowulf workstation while running a simple

parallel test appli
ation. The purpose of these tests

was twofold; we want to show the potential of PVFS,

but we also want to point out areas where improve-

ment is still warranted.

3.1 Test Environment

The Beowulf workstation used in these tests resides

at the NASA Goddard Spa
e Flight Center. It is a

64 node system, ea
h housing:

� dual-pro
essor Pentium Pro 200MHz, 128MB

RAM

� 6 GB Seagate IDE drive

� 100Mbit Intel EtherExpress Pro in full duplex

mode

A Foundry Network FastIron II swit
h 
onne
ts the

nodes. A separate front-end node is 
onne
ted to

the swit
h via a 1Gbit full duplex 
onne
tion. The

nodes were running Linux 2.2.5, MPICH 1.1.2, and

PVFS 1.3.1.

Two di�erent models of Seagate disks were used

in the system, with advertised sustained transfer

rates of 5.0 and 7.9MB/se
. Testing using the Bon-

nie disk ben
hmark showed 8.81MB/se
 writing with

27.1% CPU utilization and 7.51MB/se
 reading with

17.3% CPU utilization. Using tt
p version 1.1 TCP

throughput was measured at 11.0MBps.

The 64 nodes in the system were divided into 16

I/O and 48 
ompute nodes for the purposes of these

tests. The number of I/O and 
ompute nodes used

was varied throughout the tests. The test appli
a-

tion, run under MPICH, performed the following op-

erations:

� Create new PVFS �le

� Simultaneously write data blo
ks to disjoint re-

gions

� Close and reopen the �le

� Simultaneously read same data blo
ks ba
k

from the �le

� Close the �le

The �le was removed and the disks syn
hronized be-

tween ea
h test iteration.

3.2 S
aling and I/O Nodes

The �rst set of test runs were designed to test the

performan
e of PVFS as the number of I/O nodes

was s
aled. The amount of data written on ea
h I/O

node is held 
onstant for ea
h number of appli
ation

tasks.

Here we see that we rea
h a maximum of around

30MB/se
 for 4 I/O nodes, 60MB/se
 for 8 I/O n-

odes, and 120MB/se
 for 16 I/O nodes. These values


losely mat
h the maximum performan
e we would

expe
t to get out of the disks on ea
h node, although

it is likely that at the points where these peaks are

o

urring we are mostly working from 
a
he. In all


ases we �nd that network performan
e is a bottle-

ne
k for small numbers of appli
ation tasks, but it



0

20

40

60

80

100

120

140

0 5 10 15 20 25 30 35 40 45 50

A
gg

re
ga

te
 B

an
dw

id
th

 (
M

B
ps

)

Number of Compute Nodes

4 ION, 8MB writes
4 ION, 8MB reads

8 ION, 16MB writes
8 ION, 16MB reads

16 ION, 32MB writes
16 ION, 32MB reads

Figure 2: E�e
ts of In
reasing Number of I/O Nodes

0

20

40

60

80

100

120

140

0 5 10 15 20 25 30 35 40 45 50

A
gg

re
ga

te
 B

an
dw

id
th

 (
M

B
ps

)

Number of Compute Nodes

4MB writes
8MB writes

16MB writes
32MB writes

Figure 3: Write Performan
e for 16 I/O Nodes

appears that disk is the bottlene
k for larger num-

bers of appli
ation tasks (and thus larger amounts

of data).

3.3 PVFS Write Performan
e

Figure 3 fo
uses on PVFS write performan
e using

16 I/O nodes. We see a signi�
ant drop-o� in perfor-

man
e for 16-20 appli
ation tasks, but performan
e


limbs again after this point. The subsequent rise in

performan
e indi
ates that we have not hit the limit

in performan
e of disk or network, but rather that

we are inappropriately using one or both of these

resour
es.

3.4 PVFS Read Performan
e

In Figure 4 we examine read performan
e for PVF-

S using 4 I/O nodes. Here we 
an see two e�e
ts.

First, for 4MB a

esses performan
e is errati
. Se
-

ond, for the larger a

esses, when total a

ess size

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35 40 45 50

A
gg

re
ga

te
 B

an
dw

id
th

 (
M

B
ps

)

Number of Compute Nodes

4MB reads
8MB reads

16MB reads
32MB reads

Figure 4: Read Performan
e for 4 I/O Nodes

ex
eeds 60MB we see a signi�
ant drop-o� in perfor-

man
e. Here it is possible that we are limited by disk

performan
e; however, this has not been established

and further testing will be required to determine if

this is in fa
t the 
ase. It is also possible that our

te
hnique for �le reads is not optimal and 
an be

improved to lessen or eliminate this drop-o�.

4 Con
lusions and Future

Work

PVFS is a work in progress. The fo
us of 
urrent

development is on s
alability, reliability, and sup-

port of additional interfa
es. We hope to extend the


apabilities of PVFS so that it 
an support system-

s of many hundreds of nodes, and we are a
tively

working with the authors of the ROMIO MPI-IO

implementation [4℄ in order to provide a high per-

forman
e MPI-IO option for Beowulf workstation-

s. We are also a
tively investigating the varian
es

in performan
e that are obvious from the tests pre-

sented here in an e�ort to provide more predi
table

performan
e.

At the same time, PVFS is stable enough for

regular use and provides 
ompatibility with ex-

isting binaries, whi
h makes parallel I/O a re-

al option for Beowulf workstations and Piles-of-

PCs. For more information on obtaining and in-

stalling PVFS, see the PVFS Proje
t pages at

http://e
e.
lemson.edu/parl/pvfs/.

Referen
es

[1℄ Peter F. Corbett, Dror G. Feitelson, Jean-Pierre

Prost, and Sandra Johnson Baylor. Parallel a
-




ess to �les in the Vesta �le system. In Pro
eed-

ings of Super
omputing '93, pages 472{481, Port-

land, OR, 1993. IEEE Computer So
iety Press.

[2℄ Nils Nieuwejaar, David Kotz, Apratim Pu-

rakayastha, Carla S
hlatter Ellis, and Mi
hael

Best. File-a

ess 
hara
teristi
s of parallel s
ien-

ti�
 workloads. IEEE Transa
tions on Parallel

and Distributed Systems, 7(10):1075{1089, O
to-

ber 1996.

[3℄ Daniel Ridge, Donald Be
ker, Phillip Merkey,

and Thomas Sterling. Beowulf: Harnessing the

power of parallelism in a pile-of-p
s. In Pro-


eedings of the 1997 IEEE Aerospa
e Conferen
e,

1997.

[4℄ Rajeev Thakur, William Gropp, and Ewing

Lusk. On implementing MPI-IO portably and

with high performan
e. In Pro
eedings of the

Sixth Workshop on Input/Output in Parallel and

Distributed Systems, pages 23{32, May 1999.


