An Overview of the Parallel Virtual File System

Walter B. Ligon III

Robert B. Ross

Parallel Architecture Research Lab Parallel Architecture Research Lab

Clemson University
102 Riggs Hall, Box 340915
Clemson, SC 29634-0915
walt@ces.clemson.edu

Abstract

As the PC cluster has grown in popularity as a
parallel computing platform, the demand for system
software for this platform has grown as well. One
common piece of system software available for many
commercial parallel machines is the parallel file sys-
tem. Parallel file systems offer higher I/O perfor-
mance than single disk or RAID systems, provide
users with a convenient and consistent name space
across the parallel machine, support physical distri-
bution of data across multiple disks and network en-
tities (I/O nodes), and typically include additional
I/0O interfaces to support larger files and control of
file parameters.

The Parallel Virtual File System (PVFS) Project
is an effort to provide a parallel file system for PC
clusters. As a parallel file system, PVFS provides a
global name space, striping of data across multiple
I/0 nodes, and multiple user interfaces. The system
is implemented at the user level, so no kernel mod-
ifications are necessary to install or run the system.
All communication is performed using TCP/IP, so
no additional message passing libraries are needed,
and support is included for using existing binaries on
PVES files. This paper describes the key aspects of
the PVFS system and presents recent performance
results on a 64 node Beowulf workstation. Conclu-
sions are drawn and areas of future work are dis-
cussed.

1 Introduction

One common piece of system software available for
many commercial parallel machines is the parallel
file system. Parallel file systems typically provide
users with three services:

e 3 consistent name space across the machine,

Clemson University
102 Riggs Hall, Box 340915
Clemson, SC 29634-0915
rbross@parl.clemson.edu

e physical distribution of data across disks and
network entities, and

e additional I/O interfaces.

The consistent name space aids programmers in ac-
cessing file data on multiple nodes. The physical
distribution of data eliminates bottlenecks both at
the disk interface and the network, providing more
effective bandwidth to the I/O resources. Addition-
al I/O interfaces allow the user to control how data
is distributed, enable new access modes, and in some
cases allow for larger files to be stored than possible
on many, more traditional, file systems. PFS for the
Intel Paragon, PIOFS for the IBM SP, HFS for the
HP Exemplar, and XFS for the SGI Origin2000 are
all examples of commercial support for parallel I/0.

As the use of PC clusters has grown, it has be-
come obvious that system software support is neces-
sary for parallel computing to continue to grow on
this popular platform. In particular, the file systems
that have been commonly used on this type of ma-
chine (AFS, NFS) do not provide the services needed
by parallel applications, especially as machine sizes
grow beyond only a few nodes. Thus new solution-
s are necessary to fill the need for true parallel file
systems in PC clusters.

The Parallel Virtual File System (PVFS) project
began in the early 1990’s as an experiment in user-
level parallel file systems for clusters of workstations
but has since grown into a very usable, freely avail-
able, high performance parallel file system for PC
clusters. This work will provide an overview of the
design and features of PVFS, present some of our
latest measurements of performance on a Beowulf
workstation [3], and point to future work in the de-
velopment of PVFS.



2 PVFS Design

As a parallel file system, the primary goal of the
PVFS system is to provide high-speed access to file
data for parallel applications. PVFS is a user-level
implementation with the following features:

e provides cluster-wide consistent name space,

e enables user-controlled striping of data across
nodes, and

e allows existing binaries to operate on PVFS
files.

Because PVEFS is a user-level implementation, no k-
ernel modifications are necessary to install or oper-
ate the file system. The system uses TCP/IP to pass
file data, so there are no dependencies on message
passing libraries.

The PVFS system consists of three components:
the manager daemon, which runs on a single node,
the I/O daemons, one of which runs on each I/O
nodes, and the application library, through which
applications communicate with the PVFS daemons.
The manager daemon handles permission checking
for file creation, open, close, and remove operations.
The I/O daemons handle all file I/O without the
intervention of the manager.

In the following sections we will describe how
PVFS stores file data, how it stores file metadata,
one method by which applications can interface to
the system, how data is transferred between applica-
tions and I/O nodes, and how existing binaries can
operate on PVFS files.

2.1 Storing File Data

File data is stored on local file systems on I/O nodes.
For each file striped across N I/O nodes, there will
be N files, one per I/O node, holding that file’s data.
A unique identifier, supplied by another part of the
file system, ensures that the names of these files will
not conflict on the I/O nodes.

As aresult of this, the UNIX mmap(), read(), and
write() calls can be used directly by the I/O daemon-
s to perform file I/O. The operating system will also
cache file data for PVFS, so this is not performed in
the PVFS code proper. A disadvantage of this ap-
proach is that we give up control of block allocation
and cannot directly control what data is cached.

2.2 Storing Metadata

In the context of a parallel file system, metadata is
information describing the characteristics of a file.

This includes permissions, the owner, and most im-
portantly a description of the physical distribution
of the file data.

With PVFS, an NFS-mounted file system is used
to store the metadata. We found that this scheme
was more convenient than our previous attempts in
that it gives us our unique name space, provides a
directory structure for applications to see, and light-
ens the load on the manager.

2.3 Application Interfaces

The first interface to PVFS was heavily influenced
by two research projects in progress at the time, the
Charisma Project [2] and the Vesta Project [1]. The
Charisma Project focused on characterizing the I/O
of workloads on parallel machines. One of their ob-
servations was that a large fraction of I/O accesses
occurred in what they called “simple strided” pat-
terns. These patterns are characterized by fixed-size
accesses which are spread apart by a fixed distance
in the file.

The Vesta parallel file system was originally de-
signed for the Vulcan parallel computer. Its interface
was interesting in that it allowed processes to “par-
tition” a file in such a way that the process would
only see a subset of the file data.

We combined these two concepts into a “Parti-
tioned File Interface”, which forms the basic inter-
face to PVFS. With this interface applications can
specify partitions on files which allow them to access
simple strided regions of the file with single read()
and write() calls, reducing the number of I/O calls
for many common applications.

2.4 Transferring File Data

PVES relies on TCP to transfer data. During the
early phases of the design, TCP performance tests
indicated that we could utilize most available band-
width using TCP. This has continued to be the case,
although there are some situations where character-
istics of TCP such as slow start and delayed acknowl-
edgement result in poor performance.

Application tasks communicate directly with I/O
nodes when file data is transferred, and connections
are kept open between applications and I/O nodes
throughout the lifetime of the application in order
to avoid the time penalty of opening TCP connec-
tions multiple times. A predetermined ordering is
imposed on all data transfers to minimize control
messages, and simple-strided requests are supported
by the I/O nodes directly to allow for larger request
sizes.



Physical stripe on some |/O Daemon

vz 77/

Logical partitioning by application

Resulting I/O stream

Figure 1: Example of an I/O Stream

Figure 1 shows an example of the I/O stream be-
tween an application and an I/O node resulting from
a strided request. Each side calculates the intersec-
tion of physical stripe and the strided request. The
data is always passed in ascending byte order and
is packed into TCP packets by the underlying net-
working software.

2.5 Using Existing Binaries

We take advantage of the LD_PRELOAD variable to
allow existing binaries to operate on PVFS files. A
collection of system call wrappers are preloaded al-
lowing us to catch I/O calls before they pass into the
operating system. The state of open files is kept in
user space, and accesses using file descriptors refer-
ring to PVFS files are handled by the PVFS library.
All other calls are passed through to the appropriate
system call.

3 PVFS Performance

In this section we examine the performance of PVF-
S on a Beowulf workstation while running a simple
parallel test application. The purpose of these tests
was twofold; we want to show the potential of PVFS,
but we also want to point out areas where improve-
ment is still warranted.

3.1 Test Environment

The Beowulf workstation used in these tests resides
at the NASA Goddard Space Flight Center. It is a
64 node system, each housing:

e dual-processor Pentium Pro 200MHz, 128MB
RAM

e 6 GB Seagate IDE drive

e 100Mbit Intel EtherExpress Pro in full duplex
mode

A Foundry Network FastIron II switch connects the
nodes. A separate front-end node is connected to
the switch via a 1Gbit full duplex connection. The
nodes were running Linux 2.2.5, MPICH 1.1.2, and
PVFS 1.3.1.

Two different models of Seagate disks were used
in the system, with advertised sustained transfer
rates of 5.0 and 7.9MB/sec. Testing using the Bon-
nie disk benchmark showed 8.81MB /sec writing with
27.1% CPU utilization and 7.51MB/sec reading with
17.3% CPU utilization. Using ttcp version 1.1 TCP
throughput was measured at 11.0MBps.

The 64 nodes in the system were divided into 16
I/0O and 48 compute nodes for the purposes of these
tests. The number of I/O and compute nodes used
was varied throughout the tests. The test applica-
tion, run under MPICH, performed the following op-
erations:

e Create new PVFS file

e Simultaneously write data blocks to disjoint re-
gions

Close and reopen the file

Simultaneously read same data blocks back
from the file

e Close the file

The file was removed and the disks synchronized be-
tween each test iteration.

3.2 Scaling and I/O Nodes

The first set of test runs were designed to test the
performance of PVFS as the number of I/O nodes
was scaled. The amount of data written on each I/O
node is held constant for each number of application
tasks.

Here we see that we reach a maximum of around
30MB/sec for 4 I/O nodes, 60MB/sec for 8 I/O n-
odes, and 120MB/sec for 16 I/O nodes. These values
closely match the maximum performance we would
expect to get out of the disks on each node, although
it is likely that at the points where these peaks are
occurring we are mostly working from cache. In all
cases we find that network performance is a bottle-
neck for small numbers of application tasks, but it



" 410N, 8VIB writes ]

140 -
410N, 8MB reads

120 - 8ION, 16MB writes --------- 1
S/ . 8ION, 16MB reads -

100 - ./ 1610N, 32MB writes ==~~~ -
A7y 1640N;32MB reads -

80 -

Aggregate Bandwidth (MBps)

0 5 10 15 20 25 30 35 40 45 &0

Number of Compute Nodes

Figure 2: Effects of Increasing Number of I/O Nodes

140 T T T T T T — .
@ 4MB writes
4 120 8MB writes -------- i
g 16MB writes ---------
S 100t 32MB writes
Y A
c% 60 ‘,/jf'” R
QL Y/ N - N
g af |
3 ,
< 20 "/ |

0 I I I I L | \ . )

0 5 10 15 20 25 30 35 40 45 50

Number of Compute Nodes

Figure 3: Write Performance for 16 I/O Nodes

appears that disk is the bottleneck for larger num-
bers of application tasks (and thus larger amounts
of data).

3.3 PVFS Write Performance

Figure 3 focuses on PVFS write performance using
16 I/O nodes. We see a significant drop-off in perfor-
mance for 16-20 application tasks, but performance
climbs again after this point. The subsequent rise in
performance indicates that we have not hit the limit
in performance of disk or network, but rather that
we are inappropriately using one or both of these
resources.

3.4 PVFS Read Performance

In Figure 4 we examine read performance for PVF-
S using 4 I/O nodes. Here we can see two effects.
First, for 4MB accesses performance is erratic. Sec-
ond, for the larger accesses, when total access size

Aggregate Bandwidth (MBps)

5 Il Il Il Il Il Il Il Il Il
15 20 25 30 35 40 45 50

Number of Compute Nodes

Figure 4: Read Performance for 4 I/O Nodes

exceeds 60MB we see a significant drop-off in perfor-
mance. Here it is possible that we are limited by disk
performance; however, this has not been established
and further testing will be required to determine if
this is in fact the case. It is also possible that our
technique for file reads is not optimal and can be
improved to lessen or eliminate this drop-off.

4 Conclusions and Future

Work

PVFS is a work in progress. The focus of current
development is on scalability, reliability, and sup-
port of additional interfaces. We hope to extend the
capabilities of PVFS so that it can support system-
s of many hundreds of nodes, and we are actively
working with the authors of the ROMIO MPI-10
implementation [4] in order to provide a high per-
formance MPI-IO option for Beowulf workstation-
s. We are also actively investigating the variances
in performance that are obvious from the tests pre-
sented here in an effort to provide more predictable
performance.

At the same time, PVFS is stable enough for
regular use and provides compatibility with ex-
isting binaries, which makes parallel I/O a re-
al option for Beowulf workstations and Piles-of-
PCs. For more information on obtaining and in-
stalling PVFS, see the PVFS Project pages at
http:/ /ece.clemson.edu/parl/pvfs/.

References

[1] Peter F. Corbett, Dror G. Feitelson, Jean-Pierre
Prost, and Sandra Johnson Baylor. Parallel ac-



[2]

[3]

[4]

cess to files in the Vesta file system. In Proceed-
ings of Supercomputing ’93, pages 472—481, Port-
land, OR, 1993. IEEE Computer Society Press.

Nils Nieuwejaar, David Kotz, Apratim Pu-
rakayastha, Carla Schlatter Ellis, and Michael
Best. File-access characteristics of parallel scien-
tific workloads. IEEE Transactions on Parallel
and Distributed Systems, 7(10):1075-1089, Octo-
ber 1996.

Daniel Ridge, Donald Becker, Phillip Merkey,
and Thomas Sterling. Beowulf: Harnessing the
power of parallelism in a pile-of-pcs. In Pro-
ceedings of the 1997 IEEE Aerospace Conference,
1997.

Rajeev Thakur, William Gropp, and Ewing
Lusk. On implementing MPI-IO portably and
with high performance. In Proceedings of the
Sixth Workshop on Input/Output in Parallel and
Distributed Systems, pages 23-32, May 1999.



