
Out of Core Sorting on Beowulf Class Computers

Matthew M. Cettei Walter B. Ligon III Robert B. Ross

Luent Tehnologies Parallel Arhiteture Researh Lab

Suite 105 Clemson University

8000 Regeny Parkway 102 Riggs Hall

Cary, NC 27511 Clemson, SC 29634-0915

919-388-2656 864-656-7223

mettei�luent.om walt�eng.lemson.edu rbross�parl.lemson.edu

Otober 12, 1998

Abstrat

Beowulf lass parallel omputers have shown

impressive performane for spei� applia-

tions and have beome a popular hoie for

groups who need high performane omput-

ing resoures on a tight budget. At the same

time, it is still unlear how many fundamen-

tal appliations map to this platform. One

suh appliation is that of sorting. More ex-

pensive lusters of high-performane worksta-

tions using proprietary networks have shown

exellent sorting apabilities. However, this

appliation has yet to be explored on Beowulf

workstations, espeially in the ontext of data

sets larger than ore memory. In this paper

we study two algorithms for sorting, fousing

on their performane on a Beowulf worksta-

tion as problem size approahes and exeeds

ore memory size.

1 Introdution

Sorting is one of the most fundamental appliations

of omputers, as it is required for the many database

and storage systems operating today. One observable

trend ertain to ontinue is the exponential growth of

data set sizes. To keep pae with this trend, the use of

parallel mahines has also inreased. Often sorting re-

quires rearranging large reords of data, and even par-

allel mahines an quikly run out of available memory.

This paper looks at sorting tehniques whih an run

on data sets larger than the total memory size and

their performane on Beowulf-lass omputers.

As the popularity of parallel proessing has in-

reased, so has the need for low ost parallel omput-

ing resoures. Clusters of workstations were one of the

�rst attempts at providing parallel omputing failities

at a lower ost than massively parallel omputers [1℄.

These lusters are often built using existing worksta-

tions whih are used as interative systems during the

day, an be heterogeneous in omposition, and rely on

extra software to balane the load aross the mahines

in the presene of interative jobs. The Pile-of-PCs

arhiteture is an extension of the luster of worksta-

tion onept that emphasizes dediated resoures and

a private system area network for ommuniation [2℄.

The Beowulf workstation onept builds on the Pile-of-

PCs onept by utilizing a freely available base of soft-

ware inluding operating systems (e.g. Linux), message

passing libraries (e.g. MPI and PVM), and ompilers

(e.g. g). Experiments have shown Beowulf worksta-

tions apable of providing high performane for appli-

ations in a number of problem domains.

Typial sienti� appliations that are well suited for

exeution on parallel mahines require large amounts

1

of data. Unfortunately, rapid improvements in proes-

sor exeution rates have far outstripped the progress of

I/O systems, most notably disk aess rates. In order

to bridge the gap between these rates of progress, new

methods of I/O have been developed to take full ad-

vantage of the network bandwidth and multiple I/O re-

soures in parallel systems. Parallel disk systems, suh

as RAIDs, provide inreased I/O bandwidth and data

protetion through redundany [3℄. However, RAIDs

still rely on a single point of aess to the I/O sys-

tem. Parallel �le systems remove this bottlenek by

splitting I/O requests between multiple nodes whih

handle I/O. These nodes, known as I/O nodes, aess

their disks in parallel and take advantage of the net-

work bandwidth, providing parallel points of aess to

the I/O system. Parallel �le systems thus provide a

neessary apability for many appliation domains, in-

luding out of ore methods.

Many parallel algorithms rely on the data set �tting

in the available memory on the parallel mahine. As

data sets grow beyond memory apabilities, algorithms

must be utilized that work on data sets beyond the ore

memory size. While virtual memory systems allow for

memory to spill over onto disk spae, VM often im-

poses a high performane penalty. As an alternative,

expliit out of ore algorithms reognize that paral-

lel proesses rarely require all of their data in mem-

ory at one time and an read setions of suh data

from disk at the neessary time. Traditional sequential

OOC algorithms do not port well to parallel mahines

beause many ommerial parallel mahines have poor

I/O harateristis, whih have adverse e�ets on OOC

appliations. In ontrast to these mahines, Beowulf

workstations have better relative I/O harateristis

beause eah node ontains a disk. Thus OOC al-

gorithms might map more e�etively to this type of

system.

One appliation that an take advantage of paral-

lel I/O systems and out of ore algorithms is sorting.

Sorting requires large amounts of I/O and has proven

well-suited to networks of workstations [4℄, whih ex-

hibit many of the harateristis of Piles-of-PCs. This

paper presents two out of ore sorting algorithms and

their performane on a Beowulf mahine running a par-

allel �le system. The fous of this study will be on

the behavior of these algorithms with problem sizes

that approah and exeed the ore memory size. The

next setion will delve into the work already performed

in this area and how it relates to the work presented

herein. Setion 3 will desribe the algorithms tested

and the experimental methods, and Setion 4 will

present the results.

2 Bakground

In order to eÆiently perform sorting operations on

Beowulf workstations, it is important to math the al-

gorithm to the system software and arhiteture har-

ateristis. Here we disuss the partiulars of the

Beowulf workstation, the parallel �le system, paral-

lel sorting, and the role that OOC omputation will

play.

2.1 Beowulf Mahines

The Beowulf workstation is a fairly new onept in the

realm of parallel omputing [5℄. A Beowulf worksta-

tion is a dediated set of PCs built from ommodity

parts onneted by an inexpensive dediated system

area network, ombined with a set of freely available

software to provide an operating system, ompilers,

and message passing system. The ideal software for

this type of distributed mahine would allow the user

to view the system as a single mahine by oordinat-

ing proesses among the nodes. This set of software

is ontinuously enhaned by the growing ommunity

of Beowulf users, who generally make their additions

freely available. The use of ommodity o�-the-shelf

parts allows the most reent tehnology to be inluded

in a mahine being built. Massively parallel mahine

development has been hindered in the past by the

tehnology urve in that by the time the mahine is

built, some of the hardware, espeially the proessors,

is obsolete. Beowulf nodes an be assembled and up-

graded like workstation PCs, and no ustom hardware

is needed to assemble a system.

The goal of a programmer on a Beowulf worksta-

tion is to develop algorithms that take advantage of a

2

Beowulf's strengths, suh as fast proessors and a dis-

tributed I/O system, while ompensating for its weak-

nesses, namely ommodity networking hardware not

designed for parallel omputing. Presently, Beowulf

workstations have been used to proess N-body algo-

rithms [6℄, eletromagneti odes, and systems of equa-

tions with Gauss-Seidel methods [7℄.

2.2 Parallel Virtual File System

In parallel appliations, I/O generally ours at three

points: initially reading the data set, writing out the

solution data, and, in the ase of out of ore appli-

ations, reading and writing intermediate data. The

limiting fator of a parallel disk-to-disk sorting appli-

ation is often the I/O system, espeially with out of

ore sorts.

Certain basi priniples of parallel I/O persist

through most attempts to reate a useful parallel �le

system. Delustering involves spreading a �le aross

a set of disks, in order to inrease the total band-

width when aessing a hunk of the �le. Striping is a

delustering sheme where �le lusters are interleaved

round-robin aross a set of disks [8℄. A large aess

to a striped �le may ause several disks to respond,

thereby taking advantage of the greater network and

disk bandwidth. Also, if plaed orretly, a striped �le

should improve data loality, as eah node ould have

part of its data set on a loal disk.

The Parallel Virtual File System (PVFS), developed

at Clemson University, takes a streams-based approah

to parallel I/O. It is one of the few parallel �le systems

designed spei�ally for a luster of workstations en-

vironment. The system is user-level and onsists of

a manager daemon proess, whih runs on any sin-

gle node, and a set I/O daemons (IOD), whih run

on any node used for I/O. The set of I/O nodes an

overlap the set of ompute nodes. TCP is used to om-

muniate with ompute proesses via a set of library

alls. The manager daemon oordinates �le opens and

loses, heks permissions and performs most of the

operations not requiring a read or write.

The IODs ommuniate diretly with ompute pro-

esses when performing a read or write. PVFS uses

UNIX soket ommands for ommuniation and, there-

fore, is portable to most UNIX systems. It has been

tested on a number of Linux systems and a DEC Al-

pha luster. The IOD takes a set of request parame-

ters and performs the set of sequential disk aesses,

oordinating the transfer from disk to network. To im-

prove network performane, data is paked into large

pakets before being sent over the network. The re-

quest parameters for PVFS are not dependent on the

disk distribution, so multi-strided requests an be �lled

without data sieving. PVFS is an e�etive parallel �le

system providing onsisteny and speed for parallel ap-

pliations with large amounts of I/O.

One of the open issues in parallel I/O is the proper

alloation of nodes as I/O nodes and ompute nodes.

Most parallel mahines partition their nodes into om-

pute (or work) nodes and auxiliary nodes. With ded-

iated lusters, it may be more eÆient to use nodes

for both ompute and I/O work, beause eah node

has a loal disk. Kotz has examined using ompute

nodes to do I/O work on a massively parallel mahine

using his disk-direted I/O paradigm [9℄. Those results

show that the proessors an ontinue to run between

50% and 85% eÆieny while serviing I/O requests,

depending on the types of requests. These tests were

run on a parallel mahine simulation with a set of I/O

aess traes. The use of nodes for both omputation

and I/O was also explored by Cettei et al. [7℄, where

it was found that for an OOC Gauss-Seidel iterative

solver performane was highest when I/O and ompute

nodes were overlapped. This issue will be examined in

this paper as well in the ontext of sorting appliations.

2.3 Parallel Sorting

Researh related to parallel sorting is widespread but

mostly relates to the traditional fast network paral-

lel mahines, while very little work has foused on

a lustered omputing environment. Still, many of

the algorithm studies an transfer loosely to a lus-

ter of workstations, although eÆient network use is

more important on a Pile-of-PCs arhiteture than on

a massively parallel mahine. Most of the sequential

sorting algorithm omplexities were �rst reported by

3

Knuth[10℄, and most work sine has foused on per-

forming sorts on various arhitetures. The hyperube

algorithm put forth by Abali et al. [11℄ performs a

quiksort on eah node, then performs a Fast Parti-

tion algorithm to balane the load on eah proessor

before passing data to other proessors. This algo-

rithm is similar to the buket sort on a luster of ma-

hines examined in this paper. Wen has shown an eÆ-

ient parallel algorithm for merging multiple lists on a

onurrent-read exlusive-write parallel random aess

mahine (CREW PRAM) [12℄, whih has similarities

with the mergesort presented here.

The Network of Workstations (NOW) projet at

UC-Berkeley has provided the best non-ommerial

disk-to-disk sorting performane to date [4℄. Using

a network of 95 Sun workstations and Myrinet net-

work, the NOW Sort group won the Indy MinuteSort

award for largest sort in one minute. The NOW Sort

uses a simple buket sort algorithm and assumes a uni-

form distribution. Given P workstations, the problem

is partitioned into P bukets, based on the distribu-

tion. Eah workstation sorts its initial partition and

distributes the resulting bukets to the other proes-

sors. The initial sort used is a buket/partial radix

sort, whih was found to be superior to a quiksort and

a quiksort over bukets for their implementation. To

perform read aesses, the NOW Sort uses the mmap()

ommand with madvise() in order to maximize per-

formane. The key values are split into bukets and

sent to other nodes, where the loal data is sorted

and written to disk. In terms of overlapping ommu-

niation with I/O, the best results were found with

a multi-threaded version using a reader thread and a

send thread.

The one-pass NOW Sort was found to be nearly per-

fetly salable up to 32 proessors on their hardware.

The NOW Sort group developed a two-pass sort in

order to operate on a data set that was OOC. The

two-pass onsists of several buket sort runs followed

by a mergesort. This sort sales fairly well, although

the parallel version performs well below their one-pass

sort. The work by the NOW Sort group most losely

mathes the work presented here.

2.4 Out of Core Computation

Out of ore algorithms are de�ned as algorithms whih

an run on data sets larger than the main memory size.

The Beowulf arhiteture is partiularly well-suited for

OOC programs beause often this shifting of data to

and from disk an happen loally. There are two ap-

proahes to dealing with OOC problems: the use of

virtual memory and expliit out of ore solutions.

Virtual memory is an operating system feature that

allows a larger \virtual" memory spae than the size

of physial memory. This is aomplished by the use

of loal disk as a bu�er area for regions of memory

not urrently in use. Nothing need be done by the

user to enable virtual memory; the kernel simply moves

setions of memory onto disk when it needs more spae

in physial memory. This makes the oding of OOC

problems trivial; however, often performane su�ers

the moment the swapping of memory onto disk begins.

The primary harateristi of expliit out of ore

programming is that the user manages memory use. To

this end, the programmer partitions the problem into

setions that an �t into memory and handles shifting

setions in and out of memory during the omputation.

This an be troublesome to ode if library support is

not available, but performane is often superior to vir-

tual memory solutions.

This paper builds on previous work studying the

performane of OOC implementations by fousing on

OOC sorting. Previous work by the Parallel Arhite-

ture Researh Lab (PARL) group at Clemson om-

pared an expliit OOC implementation of a Gauss-

Seidel Iterative Solver with another version that was

not designed to run OOC. The non-OOC solver ran

well for small matrix sizes that �t in memory, but

when virtual memory was needed, the expliit OOC

algorithm exeuted muh more quikly [7℄. Kotz stud-

ied the use of disk-direted I/O with an OOC LU

deomposition problem, �nding that DDIO did im-

prove performane of the appliation over using tra-

ditional ahing [13℄. Salmon and Warren studied par-

allel OOC methods for N-body simulation using tree

odes, and found the OOC tree odes essentially re-

dued to OOC sorting [6℄.

4

0...N/P 3N/P...N2N/P...3N/P-1N/P...2N/P-1

Read Local
Data

Exchange

Write to Disk

Figure 1: Diagram of data ow for parallel buket sort.

3 Out of Core Sorting

Previous sorting work has shown that near-optimal al-

gorithms an be developed for parallel sorting. As sort

data size requirements grow, methods of performing

sorts out of ore beome neessary. The fous of this

paper is the dediated luster omputer, spei�ally

the Beowulf lass omputer. In this setion the om-

plexity of OOC sorting on dediated lusters will be

disussed, as well as the experimental setup.

3.1 Buket Sort

The buket sort tested here was deliberately oded to

be nearly idential to the NOW Sort disussed in the

previous hapter. The steps of the buket sort are:

� Read

N

P

reords from disk with PVFS

� Partition data into P bukets and exhange with

other proessors

� Quiksort buket and write bak to disk

A diagram of the data ow in this algorithm is given

in Figure 1. The obvious advantage is that there is

only one read step and one write step, so the I/O is

minimized, but the memory requirements are tied to

the problem size. Eah ompute node must send a

one-to-one message to eah proessor, at an average of

N�K

P

2

bytes per message, where K is the reord size in

bytes. Eah proessor sends P-1 messages, so the total

network traÆ is approximately N �K bytes.

The buket sort utilizes two bu�ers on eah node to

hold data before and after sorting. It has been shown

by Nyberg et al. [14℄ that sorting via pointers is on-

siderably faster than sorting large reords; therefore,

our implementation uses an additional bu�er of point-

ers on whih the sort is performed. With a uniform

distribution eah proessor's buket is assured to be

N�K

P

size. This leads to a total memory requirement

of:

N

P

� (2 �K + sizeof(ptr))

For a non-uniform distribution the memory require-

ments would vary depending on how muh the data is

skewed, as some bukets would be muh larger than

others. The NOW group has implemented a ran-

dom sampling into their buket sort to approximate

the data range and minimize the buket size variane;

this was not inluded in our implementation, and non-

uniform distributions are not overed in this work.

5

3.2 Mergesort Algorithms

The seond algorithm tested is based on a mergesort

sheme. It has no reliane on data distribution and an

also operate on any sized data set. The sort data be-

gins and ends distributed via PVFS striped �les. This

is not an optimal algorithm by any means, but it has

the interesting harateristi that it relies on a bu�er

whose size is independent of problem size. Given P

proessors, N reords of size K, and a bu�er of B bytes,

the steps of this mergesort are:

� Quiksort

N

P

reords in B -sized setions and write

bak to disk

� Mergesort the

N�K

P�B

B -sized setions and write

bak to disk. Eah proessor should have

N

P

sorted

reords on disk.

� Arrange proessors into a tree struture and per-

form a mergesort. Eah proessor merges two

streams and sends them to the next tree level.

See Figure 2.

� Write bak to disk at the �nal two proessors.

The mergesort requires roughly 3 �B bytes of mem-

ory on eah mahine in the luster, and empirial test-

ing found that a bu�er size of 1MB was adequate. As-

suming that the number of proessors is a power of

two, the tree struture above leaves two proessors at

the top level. Beause the transfer to disk is the bottle-

nek in the proess, the �nal proessor merge is dupli-

ated, and eah proessor writes half of the �nal data

(in interleaved aesses) bak to the disk. The bu�er

value is used to determine how muh data is merged

at one time. Eah of the �rst-level proessors read two

B -sized setions from disk, mergesorts the sets, and

sends them onto the next level. The �rst-level proes-

sors will therefore mergesort a total of

2N

P

reords. The

�nal merge is the limiting fator of the algorithm, as

it always involves just two proessors, and thus limits

the salability of the algorithm. However, it serves as

a reasonable algorithm for our purposes.

The mergesort algorithm presented above operates

out of ore, so it requires more I/O than an in-ore al-

gorithm. During the �rst phase, when eah node sorts

Disks

Compute
Nodes

.

Top Level

Bottom

Output File

Level

Figure 2: Diagram of data ow for mergesort algorithm

its own partition, the partition must be read and writ-

ten ompletely log d

N�K

B�P

e times. The seond phase,

where the merge tree is built, requires a read of N �K

bytes by

P

2

proessors and a write of the same amount

by 2 proessors. The entire sort data set must be sent

in a node-to-node ommuniation logP times, with

message sizes of B bytes. Muh of this ommuniation

will be overlapped with other ommuniations and the

disk reads, so that while the �rst row of proessors

ontinues to merge B -sized bu�ers from disk, it will

be piping 2B -sized bu�ers to the next level in the tree.

For sizable data sets, all proessors in the tree will be

busy for some period of time.

During our tests we also use this algorithm with

bu�er sizes set to hold the entire data set in ore. This

allows us to explore the behavior of the algorithm when

using VM by inreasing the problem size.

3.3 The Grendel Mahine

The Beowulf mahine on whih this work was per-

formed is a 17-node luster onneted by a Bay Net-

works fast ethernet swith. Eah node has the follow-

6

ing spei�ations:

� Pentium 150MHz CPU

� 64 MB EDO DRAM

� 64 MB loal swap spae

� 2.1 GB IDE disk

� Tulip-based 100Mbit fast ethernet ard

One node runs the PVFS manager daemon and han-

dles interative onnetions while the other nodes an

be used as ompute nodes, I/O nodes, or both. Eah

node runs Linux v2.0.27 with a Tulip driver by Don-

ald Beker. The PVFS �le system was used to make

all I/O aesses, and the Parallel Virtual Mahine

(PVM) [15℄ provided message-passing between om-

pute proesses. The IDE disks provide approximately

4.5MBps with sustained writes and 4.2MBps with sus-

tained reads, as reported by Bonnie, a popular UNIX

�le system performane benhmark. When idle, ap-

proximately 6MB of memory are used on eah node

by the kernel and various system proesses, inluding

PVFS and the PVM daemon.

4 Results

This setion will disuss the experimental results of

tests performed on the two algorithms presented in

the previous hapter. Eah individual test was run

�ve times, with an average of these results presented

here. Unless otherwise noted, the sort keys were four

bytes in eah test, reord sizes were kept at 128 bytes,

all I/O was performed on the nodes used for omputa-

tion, and bu�er sizes of 1MB were used in the expliit

OOC algorithm. The results �t in the following major

ategories:

� expliit OOC and virtual memory performane for

the mergesort

� performane of algorithms with a uniform key dis-

tribution

� e�ets of ompute node and I/O node overlap

The standard performane metri is the total exeu-

tion time for the disk-to-disk sort and the omparative

speedup, where appliable.

4.1 Expliit OOC and Virtual Memory

Mergesort

The purpose of these experiments was to determine

how well the expliit OOC mergesort saled (for the

available number of nodes) and how it ompared to

the same algorithm using an in-ore data set (and vir-

tual memory when neessary). The virtual memory

version, beause of limits on swap spae, would only

run up to a problem size of 256K reords of 128 bytes

on four nodes. Figure 3 demonstrates the speedup of

the OOC parallel mergesort over the virtual memory

parallel mergesort on the same number of nodes as the

data set is made larger. The performane is nearly

equivalent up to 128K elements, after whih the VM

version is muh slower.

The OOC mergesort ompeted well with the virtual

memory version on smaller data sets, and far outper-

formed it on larger sets. The OOC mergesort per-

formed well on data sets sizes up to 1GB on 16 nodes,

while the virtual memory version took hours or days

for tests requiring more than 64MB of memory per

node.

Figure 4 shows the speedup of the OOC parallel

mergesort over the OOC sequential version of the sort

for various array sizes. The mergesort does not provide

linear speedup beause the �nal writing, performed

by two proessors in this on�guration, is a bottle-

nek and beause for a fration of the time spent in

the tree phase not all proessors are busy. However,

as the data set size is inreased, the overall eÆieny

improves. This is due to two fators: there is more

overlap of ommuniation and omputation in the tree

phase, and data transfer in this environment is more

eÆient with larger bloks.

4.2 OOC Mergesort vs. Buket Sort

This setion ompares the OOC mergesort with the

one-pass buket sort presented by Arpai-Dusseau et

7

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

32 64 128 256 512

Sp
ee

du
p

ov
er

 V
M

Array Size (K elements)

16 CPs, 16 IOPs
16 CPs, 8 IOPs
16 CPs, 4 IOPs
8 CPs, 8 IOPs
8 CPs, 4 IOPs
4 CPs, 4 IOPs

Figure 3: Speedup of the OOC mergesort over the virtual memory version.

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12 14 16 18 20

Sp
ee

du
p

ov
er

 S
in

gl
e

Pr
oc

es
so

r

Number of Processors

1MB records
512k records
256k records
128k records
64k records

Figure 4: Speedup of the OOC mergesort over the sequential single proessor.

8

0

100

200

300

400

500

600

700

800

900

32 64 128 256 512 1024 2048

E
xe

cu
tio

n
T

im
e

(s
)

Array Size (K elements)

4 CP, 4 IOPs, bucket
4 CP, 4 IOPs, merge
8 CP, 8 IOPs, bucket
8 CP, 8 IOPs, merge

16 CP, 16 IOPs, bucket
16 CP, 16 IOPs, merge

Figure 5: Merge and buket sort performane on a uniform distribution.

al. [4℄ on both a uniform distribution and a skewed

distribution. Figure 5 shows the omparative perfor-

mane with a uniform distribution. The buket sort

does perform better on the smaller data sets, but the

merge performs better as the data set size inreases.

In partiular, the performane of the buket sort be-

gins to drop when eah node is responsible for 128K of

128 byte reords. This orresponds to a memory usage

of 36MB by the buket sort for holding loal reords.

With I/O being performed on these same nodes, on-

tention begins to our for pages of memory as dirty

bu�ers aumulate.

4.3 Sharing Compute and I/O Nodes

These experiments were designed to examine the use of

overlapping I/O and ompute nodes. Figure 6 summa-

rizes these results. In general, adding additional nodes

to serve as separate I/O nodes did improve the per-

formane of the algorithm. However, in eah ase, for

a �xed number of resoures the algorithm performed

signi�antly better when nodes were used for both I/O

and omputation. When we onsider the amount of ex-

pliit disk I/O ourring in these sorts, this seems obvi-

ous. For the mergesort operating on 256K of 128 byte

reords, the data set size is 32MB. This orresponds

to 96MB of writes and 96MB of reads throughout the

exeution time of the appliation. For 16 nodes, this is

only 12MB of I/O per node, whih we would expet to

take only 3 seonds of the approximately 50 seond ex-

eution time based on the harateristis of our disks.

Thus the nodes are free to ompute roughly 94% of the

time.

5 Conlusions

This paper has shown that an out of ore sorting algo-

rithm is superior to approahes that rely on virtual

memory for problem sizes that approah or exeed

ore memory size and has omparable performane for

smaller sizes. The most interesting point here is that

even a small amount of neessary I/O, suh as the

9

0

200

400

600

800

1000

32 64 128 256 512 1024 2048

E
xe

cu
tio

n
T

im
e(

s)

Array Size (K elements)

4 nodes, overlapped
8 nodes, 4 CP and 4 IOP

8 nodes, overlapped
16 nodes, 8 CP and 8 IOP

16 nodes, overlapped

Figure 6: Using I/O nodes as ompute nodes.

192MB of I/O over 50 seonds in the 256K reord ase,

an result in a tremendous performane hit when in-

stead of expliitly performing the I/O, the VM system

is left to its own devies. It is also interesting to note

that our OOC mergesort algorithm was operating with

3MB of memory for reord storage during most of the

tests and was able to sort data sets of 1GB, indiating

that it is not neessary to hold large portions of the

data set in ore. File system size onstraints limited

our ability to test beyond this size.

However, the exeution of parallel sorting algorithms

out of ore still presents several open issues. First, the

salability of this mergesort algorithm is questionable,

and new approahes to sorting that retain an indepen-

dent bu�er size should be studied in this environment.

Seond, further testing should be performed to push

the limits of the I/O subsystems to better determine

when it is appropriate to overlap I/O and ompute

nodes and when it is not. Finally, it is still muh

more onvenient to use VM rather than perform ex-

pliit I/O; more progress needs to be made in order to

simplify the proess of writing expliit OOC applia-

tions so that the performane bene�ts are more easily

obtained.

Referenes

[1℄ K. Castagnera, D. Cheng, R. Fatoohi, E. Hook,

B. Kramer, C. Manning, J. Mush, C. Niggley,

W. Saphir, D. Sheppard, M. Smith, I. Stok-

dale, S. Welh, R. Williams, and D. Yip, \Clus-

tered workstations and their potential role as high

speed ompute proessors," Teh. Rep. RNS-94-

003, NAS Systems Division, NASA Ames Re-

searh Center, April 1994.

[2℄ D. Ridge, D. Beker, P. Merkey, and T. Sterling,

\Beowulf: Harnessing the power of parallelism in

a pile-of-ps," in Proeedings of the 1997 IEEE

Aerospae Conferene, 1997.

[3℄ D. Patterson, G. Gibson, and R. Katz, \A ase for

redundant arrays of inexpensive disks (RAID)," in

10

Proeedings of the ACM SIGMOD International

Conferene on Management of Data, (Chiago,

IL), pp. 109{116, ACM Press, June 1988.

[4℄ A. C. Arpai-Dusseau, R. H. Arpai-Dusseau,

D. E. Culler, J. M. Hellerstein, and D. P. Patter-

son, \High-Performane Sorting on Networks of

Workstations," in Proeedings of the 1997 ACM

SIGMOD Conferene, pp. 243{254, 1997.

[5℄ T. Sterling, D. J. Beker, D. Savarese, J. E. Dor-

band, U. A. Ranawake, and C. V. Paker, \Be-

owulf: A parallel workstation for sienti� ompu-

tation," in Proeedings of the 1995 International

Conferene on Parallel Proessing, 1995.

[6℄ J. Salmon and M. Warren, \Parallel out-of-ore

methods for N-body simulation," in Proeedings

of the Eighth SIAM Conferene on Parallel Pro-

essing for Sienti� Computing, 1997.

[7℄ M. Cettei, W. B. L. III, and R. Ross, \Support

for parallel out of ore appliations on beowulf

workstations," in Proeedings of the 1998 IEEE

Aerospae Conferene, 1998.

[8℄ P. Dibble, M. Sott, and C. Ellis, \Bridge: A high-

performane �le system for parallel proessors,"

in Proeedings of the Eighth International Confer-

ene on Distributed Computer Systems, pp. 154{

161, June 1988.

[9℄ D. Kotz and T. Cai, \Exploring the use of I/O

nodes for omputation in a MIMD multiproes-

sor," in Proeedings of the IPPS '95 Workshop on

Input/Output in Parallel and Distributed Systems,

pp. 78{89, April 1995.

[10℄ D. E. Knuth, The Art of Computer Programming:

Sorting and Searhing (Volume 3). Addison-

Wesley, 1973.

[11℄ B. Abali, F. Ozguner, and A. Bataineh, \Bal-

aned parallel sort on hyperube multiproes-

sors," IEEE Transations on Parallel and Dis-

tributed Systems, vol. 4, pp. 572{581, May 1993.

[12℄ Z. Wen, \Multiway merging in parallel," IEEE

Transations on Parallel and Distributed Systems,

vol. 7, pp. 11{17, January 1996.

[13℄ D. Kotz, \Disk-direted I/O for an out-of-ore

omputation," in Proeedings of the Fourth IEEE

International Symposium on High Performane

Distributed Computing, pp. 159{166, August

1995.

[14℄ C. Nyberg, T. Barlay, Z. Cvetanovi, J. Gray,

and D. Lomet, \AlphaSort: A RISC Mahine

Sort," in Proeedings of 1994 ACM SIGMOD

Conferene, May 1994.

[15℄ V. Sunderam, \Pvm: A framework for paral-

lel distributed omputing," Conurrey: Pratie

and Experiene, pp. 315{339, Deember 1990.

11

