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Abstract| Beowulf workstations are a new approach to

parallel computing that combine the characteristics of

the Pile-Of-PC architecture with freely available soft-

ware and provide high performance at a low cost for

many applications. In order to provide this performance

in the face of increasing problem sizes, e�cient out of

core (OOC) methods must be investigated. In light of

shortcomings in operating system virtual memory per-

formance, we have implemented a parallel �le system and

a new interface tailored to OOC algorithms to provide ef-

�cient and convenient access to disk resources in Beowulf

workstations. This paper focuses on how these compo-

nents extend the range of problem sizes which can be

e�ciently solved on Beowulf workstations in the context

of a sample application, a Gauss-Seidel iterative solver.

Execution times of the solver when using traditional vir-

tual memory and the parallel �le system are compared

to characterize performance for various problem sizes,

and it is concluded that the combination of parallel �le

system and new interface signi�cantly increases the size

of problems that can be e�ciently solved.
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1. Introduction

As the popularity of parallel processing has increased, so

has the need for low cost parallel computing resources.

Clusters of workstations were one of the �rst attempts

at providing parallel computing facilities at a lower cost

than traditional massively parallel computers [1]. These

clusters are often built using existing workstations which

are used as interactive systems during the day. Ma-

chines are typically connected with Ethernet or a similar

low-performance networking technology, can be hetero-

geneous in composition, and rely on extra software to

balance the load across the machines in the presence of

interactive jobs. The Pile-of-PCs architecture is an ex-

tension of the cluster of workstation concept emphasiz-

ing the dedication of the machines to the task of parallel

processing and the use of inexpensive, non-proprietary

hardware. A typical Pile-of-PCs consists of a cluster of

machines dedicated as parallel processors, built entirely

from commodity o� the shelf parts, and employing a

private system area network for communication [2]. The

use of o�-the-shelf parts results in systems that are tai-

lored to meet the needs of the users, built using the most

up-to-date technology at the time of purchase, and cost

substantially less than previous parallel processing sys-

tems. The dedication of the machines to the task of

parallel processing simpli�es administration tasks and

reduces the need for load balancing software.

The Beowulf workstation concept builds on the Pile-of-

PCs concept by utilizing a freely available base of soft-

ware including operating systems (e.g. Linux), message

passing libraries (e.g. MPI and PVM), and compilers

(e.g. gcc). The free availability of most system software

source encourages customization and performance im-

provements. These improvements, along with new soft-

ware developed by Beowulf users, are also typically made

freely available and thus returned to the community [2].

Experiments have shown that Beowulf workstations can

indeed provide high performance for real applications at

a low cost, including applications such as N-body simu-

lations [3], computational electromagnetics, and compu-

tational uid dynamics.

Increases in processor performance have been dramatic

over the last few years, especially in PC systems, greatly

out pacing disk and memory performance. This pro-

cessor improvement has decreased the time required for

existing applications to run and at the same time has

prompted new and larger applications to be developed.

Many of these new applications operate on data sets

much larger than those that could be held in-core, plac-

ing new I/O requirements on machines running these

applications. Kernel virtual memory support provides

a starting point for handling larger data sets in single



process applications, but it falls short when multiple

processes running on di�erent machines with distributed

memory all need access to the same data set.

In Beowulf workstations one of the most interesting and

often underutilized resources in the system are the disks.

Unlike most massively parallel machines, each node in

a Beowulf workstation typically has its own disk and

controller. However, often only a couple of these disks

are used by taking advantage of a network �le system

such as NFS, because most Beowulf workstations do not

provide an e�cient and convenient means for combin-

ing these resources into a global pool. Thus application

programmers must either rely on the operating system's

demand paging on each local machine or hand code the

I/O accesses and data transfer in order to use all the

disk subsystems.

Parallel �le systems are one approach to providing this

global access to I/O resources in some systems. Paral-

lel �le systems are system software designed to distribute

data among a number of I/O resources in a parallel com-

puter system and to coordinate parallel access to that

data by application tasks. However, availability and per-

formance are only half of the picture; the user interface

to this storage system must also make it convenient for

application programmers to take best advantage of its

potential. One solution is to provide multiple interfaces

so that application programmers can choose which inter-

face best �ts their needs.

Although there is research taking place in parallel I/O

and interfaces for I/O systems, much of the research has

focused on massively parallel machines and distributed

systems consisting of high end workstations. Little work

thus far has examined these topics on Pile-of-PC systems

or Beowulf workstations. These machines have their own

unique characteristics which make it unclear how new

parallel I/O techniques and interfaces will impact ap-

plication development and performance in this environ-

ment, including large network packet sizes, large network

latencies, o� the shelf (OTS) operating systems, stan-

dard networking protocols, and evenly distributed I/O

resources.

We are attempting to �ll this niche by developing a sys-

tem to provide convenient and e�cient access to the

I/O subsystem of a Beowulf workstation for use by pro-

grammers implementing out of core (OOC) applications.

OOC applications are designed to explicitly handle data

movement in and out of core memory avoiding the use

of virtual memory. To do this we have constructed a

parallel �le system and interface libraries for use on Be-

owulf workstations, building both on previous parallel

I/O research and our experiences with these systems.

The libraries being developed include a UNIX interface

with a partitioning extension, a scheduled I/O inter-

face that implements a form of collective I/O, and a

multi-dimensional block interface that is especially useful

in implementing OOC applications. We are evaluating

both the �le system and these libraries using implemen-

tations of real parallel out of core applications on top of

an operational Beowulf workstation, a machine consist-

ing of seventeen Pentiums with a switched fast ethernet

network that cost under $50K in 1996.

This paper describes our method for extending the range

of e�ciently solvable problems on a Beowulf workstation

in the context of a sample application, a Gauss-Seidel it-

erative solver. This solution revolves around the use of

two new software components, the Parallel Virtual File

System (PVFS) and the Multi-Dimensional Block Inter-

face (MDBI). PVFS is a parallel �le system designed

for use in Pile-of-PC and Beowulf workstation environ-

ments and provides the I/O accessibility needed for par-

allel OOC applications on the Beowulf workstation. The

MDBI interface is a user interface designed for treat-

ing data �les as multi-dimensional arrays of records. It

allows the user to quickly specify accesses to blocks of

records in a �le and provides transparent user selectable

bu�ering as well. These two components together pro-

vide the e�cient and convenient access to data needed

by the iterative solver for moving data elements in and

out of core on compute nodes.

In Section 2 we will discuss the Parallel Virtual File Sys-

tem, including the basic components of the system, data

layout on disks, and request structure and processing.

Section 3 will cover the Multi-Dimensional Block Inter-

face and discuss the bene�ts of using such an interface.

The algorithm and implementation of the Gauss-Seidel

iterative solver will be discussed in Section 4, and the

results of our performance study are described in Sec-

tion 5. Finally Section 6 will present our conclusions

and directions of future work.

2. Parallel Virtual File System

Parallel �le systems serve two primary functions: they

allow data stored in a single logical �le to be physically

distributed among I/O resources in a machine and pro-

vide a mechanism for tasks in a parallel application to

access the data concurrently and possibly independently.

In theory, if the data is physically balanced among the

I/O devices, the data requirements of the application are

balanced between tasks, and the network bandwidth is

su�cient, the system should provide e�ectively scalable

I/O performance. In practice, however, there are a num-

ber of factors that can prevent many applications from

achieving good scalability with parallel �le systems. One

source of problems is �le system and application interac-

tion, including mismatch between the physical layout of

data and the distribution to the tasks [4], lack of coordi-

nation between application tasks resulting in poor disk

utilization [5], and poor access patterns which result in
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Figure 1: Striping Examples

large control message overhead. File system and oper-

ating system interaction, such as bu�er space utilization

and caching policy, is another potential problem area.

Our goal with PVFS is to provide a parallel �le system

tailored to the characteristics of a Pile-of-PCs with inter-

faces designed to mesh well with applications typical to

our workload. The current system is the result of a num-

ber of experiments in both techniques for data transfer

between application and �le system and interfaces for in-

teraction with the �le system. One of the requirements of

the PVFS project was for the system to remain a virtual

�le system; we wanted to build PVFS without modifying

the existing system software on the platform using the

native �le system support to store data to disk. For this

reason we chose to implement PVFS as a set of user-

level daemons and an interface library that applications

could use to interact with the system. The TCP proto-

col is used for all communication, and standard UNIX

system calls and memory mapping of �les are used to

store data on disks. As a result, PVFS is able to oper-

ate in a variety of hardware and software environments,

including common Beowulf workstation con�gurations.

There are two types of daemons used in the system, the

management daemon and the I/O daemon. The manage-

ment daemon is responsible for keeping track of meta-

data for the �le system. Metadata is data that describes

the characteristics of a �le, including the owner, permis-

sions, and striping of the �le across the disks in the clus-

ter. When a process attempts to create or open a PVFS

�le, the manager veri�es that the process has permission

to do so and passes this metadata to both the request-

ing process and the I/O daemons. The metadata is then

available throughout the time the �le is accessed with-

out further communication with the manager, avoiding

a potential bottleneck.

The I/O daemons run on each machine whose I/O sub-

system is to take part in the parallel �le system. Each

I/O daemon is responsible for performing the disk ac-

cesses local to its machine. A simple request mechanism

is available for specifying accesses for the IOD to per-

form, and applications directly contact these I/O dae-

mons when reading and writing to avoid the bottleneck

and latency problems of passing the requests through the

manager.

Files stored on PVFS consist of an ordered set of stripes

which are in turn made up of stripe fragments stored in

�les on disks in the cluster. Stripe fragments are dis-

tributed across I/O nodes using a round robin scheme.

The starting node sn, the number of nodes used nn,

and the stripe fragment size sf are all selectable by the

user at the time the �le is created. Figure 1 shows how

a �le, shown as a linear array of bytes, might be split

into stripe fragments and distributed among the disks in

a parallel �le system for two (sn; nn; sf) combinations.

In the �rst example, where (sn = 0; nn = 4; sf = 4096),

the �le is divided into stripe fragments of 4096 bytes and

spread across all of the four disks, starting with disk 0. In

the second example, where (sn = 1; nn = 2; sf = 8000),

stripe fragments of 8000 bytes each are spread across two

of the four disks in the �le system starting with disk 1.

Because of the typically high network latencies in Pile-of-

PC machines when using standard networking hardware

and protocols, one of our primary concerns in designing

a parallel �le system for this environment was minimiz-

ing both control message overhead and the number of

small messages. This has been addressed in PVFS by

the use of the strided request mechanism. This mecha-

nism allows for describing non-contiguous but regularly

spaced regions in a �le with a single set of parameters.

Figure 2 shows an example strided region. Since studies

have shown that as many as 80% of parallel �le accesses

use a strided pattern [6], providing this capability to

access non-contiguous regions with a single request can

signi�cantly reduce the number of control messages and

has the potential to increase message lengths by allow-
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Figure 2: Accessing a Portion of a Strided Region

ing what would have been multiple small messages to

be combined into a single, larger request. Other parallel

�le systems and interfaces supporting accesses to non-

contiguous regions with single requests include Vesta [7],

Panda [8], MPI-IO [9], and PASSION [10].

Our I/O daemon accepts strided requests in order to take

advantage of this typical access pattern. Each read or

write request consists of a set of six parameters:

� request location (rl) - location of start of request

� �rst size (fs) - size of starting partial block

� group size (gs) - size of each full block

� group count (gc) - number of full blocks

� stride (sd) - distance from start of one block to start

of next

� last size (ls) - size of ending partial block

These parameters de�ne a portion of a simple strided

region of the PVFS �le that is to be accessed. Figure

2 gives an example of how these parameters map into

the PVFS �le. In the example, a portion of a simple

strided region of a �le is accessed using the parameters

(rl = 400; fs = 300; gs = 500; gc = 2; sd = 800; ls =

400). This capability makes it easy to build interfaces to

extract records from a �le or portions of multiple records

(assuming a uniform size) in a cyclic fashion, often with

a single request.

This simple request scheme is the building block of all

our interfaces. For example this request scheme can be

used to access a block of a two dimensional data set with

a single request, as seen in Figure 3. Here the stride and

group size are set so that only the data from a row that

is in a selected block is accessed. The data set stored as

a linear stream of 54; 000 bytes and is viewed as a matrix

of nine rows of 6000 bytes each. A block consisting of

1000 bytes from each of three rows is selected for access.

= accessed region500 bytes

(rl = 20000, fs = 0, gs = 1000,
gc = 3, sd = 6000, ls = 0)

Figure 3: Accessing a Block of a 2-D Data Set

The rl value sets the start of the request to the location

of the correct row element in the fourth row, and setting

sd equal to the width of a row results in the same starting

point for each access within the following rows. The gs

value determines the amount of data accessed per row,

and the gc value determines the number of rows from

which data is accessed. In this case both fs and ls are

set to zero because no \partial" strides are needed.

Application programmers can use this strided request

mechanism via the partitioning extension of our UNIX-

style interface, as described in [11]. Additionally, two

scheduled I/O interfaces and the MDBI interface have

been developed. The scheduled I/O interfaces imple-

ment a new approach to collective I/O and are still in

an experimental phase. This paper will concentrate on

the multi-dimensional block interface and how it can be

used when implementing OOC applications.

3. Multi-Dimensional Block Interface

The issue of providing usable interfaces to parallel �le

systems is still an open topic. The most widely sup-

ported user interface to I/O systems is the UNIX inter-

face. With this interface a �le is viewed simply as a linear

array of bytes of data, and operations are provided for

seeking to positions in the �le and reading and writing

contiguous regions. However, it is di�cult to use this

interface as a parallel application interface for a number

of reasons:

� Multiple operations are often needed to access

multi-dimensional data

� Explicit seeks are needed to access partitioned data

� External synchronization is often required to man-

age access to shared data



These all result in more coding e�ort for the application

programmer and also lead to two types of ine�ciencies.

First, additional overhead is caused by the number of

system calls needed to perform the necessary seeks and

accesses for partitioned or multi-dimensional datasets.

Second, caching and prefetching by o�-the-shelf �le sys-

tems are often impaired by the access patterns of these

applications, which often do not match the patterns of

sequential applications.

Even the earliest parallel �le system designers realized

that this simple interface was inadequate for use in to-

day's parallel applications. The interface options to some

of the earliest parallel �le systems such as Intel's CFS

used various \modes" which determined how the accesses

of various tasks in a parallel application mapped into

the �le [12]. This included global and independent �le

pointers and in some cases support for collective I/O or

synchronization. This did give the programmer more op-

tions for describing and coordinating I/O; however, these

\modes" provided no means for explicitly partitioning

�les between processes or describing the �le in terms

other than a linear sequence of bytes. Only recently

have researchers realized the potential bene�ts of parti-

tioning, strided requests, and the capability to more fully

describe how and when data is to be accessed. This has

led to many new approaches to parallel I/O interfaces,

one of which is the idea that more application-speci�c in-

terfaces should be developed. One common way to view

data �les is as a multi-dimensional matrix of some sort,

so support for accessing �les in this manner is an obvious

approach. Examples of variants on this type of interface

are the Panda interface for the iPSC/860 [8] and Vesta

on the Vulcan multicomputer [7].

The MDBI interface is a library of calls designed to

help in the development of OOC algorithms operating

on multi-dimensional datasets by making it easier to

manage the movement of data in and out of core. It

allows the programmer to describe an open �le as an N -

dimensional matrix of elements of a speci�ed size, parti-

tion this matrix into a set of blocks, then read or write

blocks by specifying their indices in the correct number

of dimensions. In addition, it supports bu�ering and

read-ahead of blocks via the de�nition of \superblocks".

The programmer speci�es superblocks by giving their di-

mension in terms of the previously de�ned blocks of the

�le. Any time a block is accessed all other blocks in the

superblock are read and held in a transparent user-space

bu�er on the compute node.

A set of parameters is �rst passed to the library to de-

scribe the logical layout and superblocks of the �le:

� the number of dimensions, D,

� the size of a record, rs,

� D (block size, block count) pairs, giving the number

1(D = 2, rs = 500, ne   = 2, nb   = 6,1
2122ne   = 3, nb   = 3, bf   = 2, bf   = 1)

= 1 block

= 1 record = 1 superblock

D
im

en
si

on
 2

(0,0)

Dimension 1

(3,0)(2,0)

(5,2)

ne2

ne1

Figure 4: Specifying the Blocking of a 2-D Matrix

of elements ne

i

in a block and the number of blocks

nb

i

in the �le 8i : 1 � i � D, and

� D blocking factors bf

1::D

, de�ning the size of su-

perblocks in each dimension.

For example, Figure 4 shows the same �le as in Figure

3 described to the library as a two dimensional matrix

containing a 12 � 9 array of 500 byte records stored in

row major order. This matrix is grouped into a 6 � 3

array of blocks, each of which is a 2� 3 array of records.

Once the �le has been described to the library, accesses

to blocks can be speci�ed simply by giving the coordi-

nates. Blocks that are read are placed into a multidi-

mensional array of records on the compute node of size

ne

1

�ne

2

� � � ��ne

D

. In addition blocks residing in the

same superblock are also placed into a user-space bu�er.

For example, if block (2,0) were accessed in the matrix

in Figure 4, block (3,0) would be read into the user-space

bu�er for the process as well, as it resides in the same

superblock as de�ned by the blocking parameters.

The application library uses the coordinates of the re-

quest, the blocking values, the bu�er factors, and the

partitioning mechanism supported by PVFS to minimize

the number of requests to the �le system. In the two di-

mension case, accesses are converted into a strided access

just as in Figure 3. This allows the entire block or su-

perblock to be read with a single request. When the data

is de�ned to be of more dimensions, multiple requests,

a batch request, or a nested-strided request mechanism

must be used.



DO {

READ PARTITION DATA FOR NODE INTO MEMORY

INVERT AND STORE DIAGONAL BLOCKS

FOREACH ITERATION {

FOREACH ROW OF BLOCKS IN PARTITION {

CALCULATE NEW X VALUES FOR ROW

EXCHANGE NEW X VALUES WITH OTHER TASKS

}

}

}

Figure 5: Pseudo-code for Virtual Memory Implementa-

tion

4. Gauss-Seidel Iterative Solver

Iterative solvers are used in a number of areas in order

to �nd approximate solutions for systems of linear equa-

tions by solving the matrix equation A~x =

~

b. Our itera-

tive solver uses a block-oriented Gauss-Seidel approach.

The A matrix is decomposed into square blocks, and

all operations are matrix-vector and vector-vector opera-

tions. In general, given an initial estimate of block-vector

~x, a new approximation for subvector ~x

new

i

is computed

as:

~x

new

i

= A

�1

ii

0

@

~

b

i

�

0

@

i�1

X

j=0

A

ij

~x

old

j

+

m

X

j=i+1

A

ij

~x

old

j

1

A

1

A

where ~x

i

and

~

b

i

are subvectors of vectors ~x and

~

b respec-

tively, and A

ij

is a submatrix of matrix A. When the

RMS di�erence of A~x and

~

b falls below a desired level

the computation is terminated. Convergence tests are

not included in the application, but instead can be run

periodically in parallel with the iterations. In order to

compare the speed of di�erent versions of the solver it

was run for a �xed number of iterations instead of run-

ning until convergence, so the RMS di�erence was not

calculated. The number of iterations was selected so that

the iterative phase dominates the one-time parts of the

program.

Our parallel algorithm uses a row-block partitioning with

the A matrix broken into m�m blocks of n� n double

precision complex elements. Figure 7 shows the parti-

tioning of data for four compute nodes and data access

during the update of a block of ~x by a single compute

node. For each element ~x

i

, ~x

new

i

is calculated using the

in-core ~x, in-core

~

b

i

, A

�1

ii

, and the blocks of one row of

A. After n elements of ~x

new

i

are calculated by each com-

pute node they all exchange the new values via PVM

messages to update their in-core ~x vector, and once all

of ~x has been updated an iteration is complete.

Figure 5 gives the pseudo-code for the virtual memory

(VM) implementation. In this implementation all parti-

tion data for a given task is read into memory before any

DO {

SET BLOCKING AND BUFFER FACTORS

INVERT AND STORE DIAGONAL BLOCKS

FOREACH ITERATION {

FOREACH ROW OF BLOCKS IN PARTITION {

FOREACH BLOCK IN ROW {

READ CURRENT BLOCK USING MDBI

CALCULATE PARTIAL X VALUES

}

EXCHANGE NEW X VALUES WITH OTHER TASKS

}

}

}

Figure 6: Pseudo-code for MDBI Implementation

calculations are made. This forces the operating system

to manage the movement of data in and out of core when

all physical memory is used. First each task calculates

the inverses of its diagonal blocks of A and stores them

in memory as well, then it proceeds to calculate new val-

ues for ~x elements, using matrix-vector and vector-vector

operations on the rows of blocks. In this implementation

the amount of data held on a machine is dominated by

the rows of the A matrix which the processor will need,

as the size of ~x,

~

b, and the A

�1

diagonal blocks is in-

signi�cant in comparison. The size of the in-core data is

approximately:

IC

vm

�

M

2

�E

sz

N

for an M �M matrix of E

sz

byte elements on N pro-

cessors. In all our tests, E

sz

= 16 bytes, the size of a

double precision complex value.

In the MDBI implementation of the algorithm, outlined

in Figure 6, the diagonal blocks of A

�1

ii

are calculated

by the tasks and written back to a temporary �le on the

parallel �le system before the iterations are started. The

entire ~x vector and each compute node's portion of the

~

b

vector are kept in-core for the duration of the algorithm,

while A

�1

ii

and the blocks of A are read from disk when

needed. However, the use of blocking factors can result

in more than one block of A or A

�1

ii

being held in-core on

a compute node, so in this implementation the amount

of data held on a machine is dependent on the blocking

factors and bu�er factors chosen for the A matrix �le

and the A

�1

�le. Since we are dividing A into square

submatrices of n� n elements, the size of these in bytes

is approximately:

IC

mdbi

= n

2

E

sz

(bf

A

1

bf

A

2

+ bf

A

�1

1

bf

A

�1

2

)

which is equivalent to:

IC

mdbi
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M

2

nb

2

A

E

sz

(bf

A

1

bf

A

2

+ bf

A

�1

1

bf

A

�1

2

)

where nb

A

= nb

A

1

= nb

A

2

.
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Figure 7: Data Distribution and Access for Iterative Solver

5. Results

This section describes our test environment, the testing

performed, and the observations that we have made of

the application during the study. The Beowulf machine

used for testing consists of 17 workstations with the fol-

lowing:

� Pentium 150 MHz CPU

� 64 MB EDO DRAM

� 128 MB swap space

� 2.1 GB IDE disk

� Tulip-based 100 Mbit fast ethernet card

A Bay Networks fast ethernet switch in full-duplex mode

is used to connect the machines. The machines all run

Linux v2.0.27 with the replacement Tulip driver written

by Donald Becker. The network is isolated from outside

tra�c.

Seven iterations were made for each test point in each

graph. Of these the high and low execution times were

thrown out, and the remaining �ve were averaged to give

the values shown in the graphs. Files were stored on a

varying number of disks, but the stripe size in each case

was �xed at the size of one row of elements for matrices

up to 4K � 4K and half of a row for larger matrices,

so each I/O request was distributed evenly among all

I/O nodes. In all MDBI runs a block count (nb

A

) of 64

is used, which means that the A matrix was split into

a 64 � 64 array of submatrices. The bu�er factor for

A (bf

A

) was set to (64,1), so in all cases an entire row

of blocks was bu�ered. The bu�er factor for the A

�1

ii

diagonal �le (bf

A

�1
) was also set to (64,1) so that the

entire �le would reside in core on each compute node.

This simpli�es the calculation of IC

mdbi

for our tests to:

IC

mdbi

=

M

2

2

Our �rst three sets of tests were run to examine the range

of problem sizes that could be e�ciently solved using

the two implementations of our iterative solver on four,

eight, and sixteen compute nodes. Problem sizes were

varied from 1K � 1K to 8K � 8K elements. Three con-

�gurations of the application were tested: one using vir-

tual memory (VM), another using PVFS and the MDBI

interface with data stored on compute nodes (MDBI),

and the last using PVFS and the MDBI interface with

data on separate I/O nodes (MDBI-S). Table 1 summa-

rizes the results of these tests.

Figure 8 shows the execution times for the algorithm on

four compute nodes. The results of the VM tests show

that for problems of size 1K � 1K and 2K � 2K swap-

ping is unneeded and the virtual memory version out-

performs the MDBI version. With a 3K � 3K problem,

approximately 36 MB of data are required for storage of

the A matrix on each node. This appears to �t mostly

in-core, although the fact that the MDBI version out-

performs the VM version would indicate that perhaps

some swapping is taking place. At 4K � 4K, IC

vm

= 64

MB, the use of demand paging increases dramatically,

and performance degrades signi�cantly.

The MDBI implementation shows more consistent be-

havior, scaling well for the entire tested range. For the
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Figure 8: Execution Time vs. Problem Size for 4 Nodes

6K � 6K problem IC

mdbi

= 18 MB, indicating that

larger problems could be solved using the same blocking

and bu�er factors. It is important to note that IC

mdbi

is

independent of the number of nodes used in the compu-

tation; each task is caching a single row of blocks from A

and the diagonals of A

�1

regardless of how many tasks

are participating in the computation.

Figure 9 shows this same series of tests on eight compute

nodes. For problem sizes up to 5K � 5K the VM version

soundly outperforms the MDBI version, in many cases

running twice as fast. The reduction in memory utiliza-

tion for disk bu�ers due to using all eight nodes to store

�le data increases the point at which demand paging be-

comes necessary so that with IC

vm

= 50 MB for eight

nodes with the 5K � 5K matrix size the VM algorithm

still performs well. However, the 6K � 6K problem, with

IC

vm

= 72 MB, causes signi�cant paging and results in

an execution time of more than ten times that of the 5K

� 5K problem. Again, the MDBI version of the code

scales well as the problem size grows. Similar behavior

is seen in the application using 16 compute nodes, with

the execution time of the VM version jumping once the

problem size grows larger than core memory.

The MDBI-S data points were gathered to investigate

the validity of using compute nodes as I/O nodes. Often

systems use separate nodes for I/O nodes, and we wanted

to determine if this was a preferable con�guration given

a �xed set of resources. One can see that for small prob-

lem sizes using compute nodes as I/O nodes actually

outperforms using separate I/O nodes, most likely be-

cause the locality of data combined with the abundance

of free memory on the machines allows most �le data to

reside in cache. For larger problem sizes separate I/O

nodes do result in better performance as the available

core memory is doubled, increasing the amount of �le

data that can be cached. By comparing the four node

MDBI-S data to the eight node MDBI data, however, we

can see that using all nodes to perform computation is

the right choice for this application.

Our goal in our second series of tests was to explore the

performance implications of varying the number of I/O

and compute nodes used. Figure 10 shows execution

times for combinations of I/O and compute nodes on a

6K � 6K problem using the MDBI algorithm. Overlap-

ping sets of nodes were used in all cases. There are two

important characteristics of this system that are high-

lighted by this graph. First, the use of large numbers

of I/O nodes when few compute nodes are used is ex-

tremely ine�cient. There is overhead associated with

establishing connections and passing control messages

to and from each I/O node, and when the number of

compute nodes is small this overhead can outweigh the

bene�ts of the increased disk bandwidth. Second, for a

given number of available nodes using all nodes for both

computation and I/O is the best choice in all cases. This

veri�es the observations made in the previous set of tests.

A more thorough study should be undertaken in order to

better characterize the range of applications and prob-

lem sizes for which this con�guration is optimal.
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Table 1: Execution Times for Iterative Solver

Size of A 4 Compute Nodes 8 Compute Nodes 16 Compute Nodes

MDBI MDBI-S VM MDBI MDBI-S VM MDBI VM

1K � 1K 24.8 37.5 14.9 22.0 32.2 8.3 20.5 15.0

2K � 2K 62.1 80.1 53.6 49.4 57.5 17.4 37.1 18.6

3K � 3K 115.4 125.2 124.8 79.2 91.1 32.7 49.2 27.0

4K � 4K 267.2 252.8 1812.3 118.6 125.6 55.1 65.5 32.1

5K � 5K 425.3 375.1 3140.2 215.5 164.2 90.5 87.2 44.4

6K � 6K 501.5 479.7 4698.7 296.7 294.3 1928.3 139.3 57.4

8K � 8K | | | | | | 263.5 1518.8

6. Conclusions

When problem sizes grow to exceed core memory size,

the e�ectiveness of solutions depends on timely access to

the portions of data needed by application tasks. While

the virtual memory support of many operating systems

can enable applications to run out of core, we have shown

that in some cases the operating system cannot provide

the performance needed for these applications to run ef-

�ciently. Our tests show that for a sample application,

the combination of a parallel �le system and an easy to

use interface can give the programmer the power to move

data in and out of core in parallel applications in a timely

fashion, extending the problem size that can be solved

on a given set of resources. While this is only one ap-

plication, the pattern of data access is common to many

applications including telemetry processing, other itera-

tive solving methods, and factorization methods. Thus

this technique should be valid for a number of appli-

cation domains. In addition the penalty for using the

OOC method for small problem sizes is not tremendous,

indicating that prototyping PVFS OOC applications us-

ing small data sets is feasible. However, it is clear that

in-core solutions still have an advantage when they are

applicable.

What has not been made clear by this study is the extent

to which this range has been increased. For the choices of

blocking and bu�er factors used in our tests, problems of

size up to 10K � 10K (1.6GB) could in theory be solved,

giving a IC

mdbi

= 50 MB. After this point new blocking

and bu�er factors would need to be chosen in order to

avoid unwanted demand paging on our machines with 64

MB of memory. Machines with larger core memory sizes

could tackle much larger problems.

Furthermore, there is much more work to be done in the

area of interfaces. Collective I/O in particular has been

shown to be of great bene�t in many compute platforms.

Our work in this area has shown performance improve-

ments in some applications but has uncovered new prob-

lems with regards to operating system policies as well.

Additional study is needed to fully characterize the im-

plications of interacting with today's operating systems

in the most e�cient manner.
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