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Abstract

The use of recon�gurable hardware to perform high

precision operations such as IEEE 
oating point oper-

ations has been limited in the past by FPGA resources.

We discuss the implementation of IEEE single preci-

sion 
oating-point multiplication and addition. Then,

we assess the practical implications of using these op-

erations in the Xilinx 4000 series FPGAs consider-

ing densities available now and scheduled for the near

future. For each operation, we present space require-

ments and performance information. This is followed

by a discussion of an algorithm, matrix multiplica-

tion, based on these operations, which achieves per-

formance comparable to conventional microprocessors.

Algorithm implementation options and their perfor-

mance implications are discussed and corresponding

measured results are given.

1 Introduction

Implementation of 
oating-point operations is of-

ten avoided on recon�gurable computing platforms be-

cause these operations typically require too much area

to be practical on current devices. Unfortunately, this
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does not mesh well with the way most scienti�c al-

gorithms are written. Many algorithms require some

form of fractional representation. The only option

available in most programming languages is to declare

a 
oating-point number. Often, these are based on one

of the IEEE 
oating-point formats. Recon�gurable

logic has the potential to yield signi�cant speedup for

many of these algorithms, though traditionally it has

been unable to handle IEEE 
oating-point formats.

There have been several studies to investigate meth-

ods of dealing with this incompatibility. One alterna-

tive is the use of �xed-point representations, which is

acceptable in situations where the dynamic range of

the numbers is limited; however, not all scienti�c ap-

plications have a su�ciently limited dynamic range.

We take another look at the 
oating-point prob-

lem on FPGAs in the context of drastically increas-

ing densities. Our goal is to determine if, and when,

FPGAs may become practical for use in algorithms re-

quiring 
oating-point computations. Our implementa-

tions focus on using the IEEE 
oating-point standard

for higher precision and deeper pipelining to achieve

higher clock rates and greater performance. As device

densities increase, this type of implementation will be-

come more practical for use in various algorithms.

We have implemented an IEEE single precision


oating-point adder and multiplier for Xilinx FPGAs.

Each operation was implemented as a deep pipeline

in order to reduce cycle time at the expense of la-

tency. Thus, pipelined iterative algorithms are consid-

ered for the multiplier rather than an array structure,
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Figure 1: The IEEE single-precision 
oating-point for-

mat

and the adder performs normalization as a series of

stages rather than a single stage barrel shifter. The

multiplier is fully pipelined and runs at 33 MHz with

a 15 cycle latency. The adder runs at 40 MHz and is

fully pipelined with a 15 cycle latency. These func-

tional units were combined into a single multiply- ac-

cumulate operation, which can be used to implement

matrix multiplication.

This paper discusses the implementation and per-

formance of IEEE single-precision 
oating-point addi-

tion and multiplication functional units and the im-

plication of this performance in the context of a ma-

trix multiplication algorithm. It begins with an in-

troduction to previous work and a discussion of the

IEEE 
oating-point format. The next section dis-

cusses the implementation of the 
oating-point units

as well as the performance and device utilization of

these units. Matrix multiplication on recon�gurable

computing platforms is then discussed giving perfor-

mance information. Finally, a conclusion with future

directions is presented.

2 Background

For the same reason that conventional microproces-

sors have placed increasing emphasis on 
oating-point

performance, there has been signi�cant interest in pro-

cessing 
oating-point numbers in recon�gurable com-

puting systems. Many of the computationally intense

algorithms that need the acceleration capabilities of

recon�gurable computing require 
oating-point repre-

sentations. Unfortunately, FPGAs are just reaching

the point where they are dense enough to support a

single 
oating-point unit. Results from [1] indicate

that a 
oating-point adder requires 47% of an Al-

tera FLEX 81188 while only yielding a performance

of 7 MFLOPs. The multiplier requires 49% of an Al-

tera FLEX 81188 and only yields 2.3 MFLOPs. An

even more drastic resource requirement is seen in [2]

where 4 Actel A1280 FPGAs were used to implement

a 
oating-point multiplier and adder with relatively

low performance. Since these studies have been done,

however, FPGA density has increased dramatically.

Groups using �xed logic to perform the multiplication

and addition operations [3] have obtained better re-

sults. By using FPGAs to perform data manipulation

and control operations and an external 
oating-point

multiplier to implement a vector dot product, cumula-

tive computation rates of 20 MFLOPs were achieved

for a single board system with the option for extend-

ing a system to several boards. Another option that

has been investigated is the use of reduced precision


oating-point formats to conserve chip area. These al-

ternative formats retain the bene�t of a large dynamic

range, but sacri�ce precision. For a broad range of ap-

plications, the precision available from these reduced

precision formats is adequate. The performance and

space requirements of this type of implementation can

be found in [4]. The IEEE single-precision 
oating-

point format is described by ANSI/IEEE Standard

754-1985 and is shown in �gure 1. This is the same

standard used in most modern microprocessors. The

most signi�cant bit is a sign bit, S. The next 8 bits

are the exponent in excess-127 representation where

127 is added to the real exponent. The special cases

of 0 and 255 are reserved. This means that the ex-

ponent has a range of �126 to +127. The remaining

23 bits are used to represent the mantissa. The 24th

(most signi�cant) bit of the mantissa is an implied one.

This gives 24 bits of signi�cance and the value of the

number represented is (�1)S � 1:m� 2(exp� 127).

2.1 Integer Multiplication

A key component of 
oating-point multiplication is

the multiplication of the mantissas, which is a 24 bit

unsigned integer multiplication. Unfortunately, the

multiplication of two 24 bit numbers in an FPGA is a

signi�cant problem, because there is insu�cient area

in many FPGAs to support the parallel array multi-

pliers typically used in ASIC designs; however, there

are alternative multiplier constructions. We were in-

terested in both the smallest and the fastest imple-

mentations. For the smallest implementation, we con-

sidered bit serial multiplication and a booth recoding

approach. For the fastest implementation, we used a

digit serial approach which was a direct extension of

the bit serial approach. In addition, we experimented

with various degrees of pipelining of the bit serial and

booth recoding approaches to explore the space-speed

trade-o�s.

The bit serial algorithm is the simplest to imple-

ment, so it was our �rst implementation. Unfortu-

nately, it only resolves a single bit per cycle, and there-

fore requires several cycles to complete. The basic al-

gorithm to multiply A �B is to start with a running

sum equal to zero. On each cycle, take the next high-



est order bit of A and set:

sum = sum� 2 +A

n

�B (1)

Multiplication of two 24-bit numbers produces a 48-bit

result. Since the format only stores 24 bits of signi�-

cance, only the upper 24 bits of the result are required.

By modifying the algorithm slightly, we can start with

the lowest order bit of A and set:

sum = sum=2 +A

n

�B (2)

The division is simply a right shift, but there is no

need to retain the bits shifted o� the right end, as

they will no longer contribute to the result.

In addition to the bit serial approach, we decided to

try two digit serial approaches. Digit serial approaches

were also considered in [1]. Digit serial algorithms are

used to resolve n bits of multiplication per cycle, where

n is the digit size. In [1], they chose a four bit digit

size. We chose a two bit digit to reduce the delay in a

stage and increase the clock rate.

The booth recoding multiplication algorithm is de-

signed to resolve two bits per clock cycle using a single

adder. To do this, the algorithm considers three bits:

the two bits currently being resolved, and one history

bit. Assuming the multiplication is A � B, the algo-

rithm proceeds as follows. The history bit is initialized

to 0. On each cycle, the history bit is set to the highest

order bit of A resolved. A running sum is maintained

that will be the result at the completion of the algo-

rithm. This sum is initialized to 0. On each cycle,

the new sum is computed by adding m � B where

m 2 f�2;�1; 0; 1; 2g is selected based on the three

bits being examined. This method requires half the

number of cycles required by a bit serial algorithm.

Our third approach is a direct extension of the bit

serial approach. The bit serial algorithm requires an

adder and a multiplexor to resolve one bit of the mul-

tiplication. Multiple bits can be resolved in a single

cycle by simply connecting several bit serial stages in

series and passing data through them in one cycle.

Since the combination of the adder and multiplexor

forms a four input function, the two parts can be com-

bined into one column of 4-LUTs. Unfortunately, our

synthesis tool (Synopsys 1997.01) did not generate this

structure, so building a digit serial part of this nature

through direct synthesis was not possible. We chose to

implement the add-mux construct as a macro and use

it to build a digit serial multiplier. We chose a digit

size of two since our primary goal was higher clock

rates.
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Figure 2: A block diagram of the 
oating-point mul-

tiplier implementation

3 Floating Point Unit Implementation

Two 
oating-point operations were implemented,

multiplication and addition. As background, we de-

scribe the basic algorithm for each operation and the

special cases of rounding and exceptions. We follow

with the details of our implementation, the resources

it requires, and the performance of the stand-alone

units.

3.1 Floating Point Multiplier

IEEE single precision 
oating-point multiplication

is essentially a 24 bit unsigned integer multiplication

enhanced with logic to generate the appropriate sign,

generate the exponent, and handle exception condi-

tions. The biggest portions of space and time are con-

sumed by the multiplication operation.

3.1.1 Algorithm

The basic algorithm for 
oating-point multiplication

can best be explained with the formula:
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The three components of the 
oating-point result

(sign, exponent, and mantissa) can be computed inde-

pendently. Some notes on the above equations are in

order. First, m

3

would be a 48-bit number. It must be

reduced to a 24-bit number to be stored in the IEEE

format. Fortunately, this is a relatively simple task,

because m

1

and m

2

are 24 bit numbers de�ned to be

in the range [1,2). This implies that the result will

be a 48 bit number in the range [1,4), which must be

converted to a number in the range [1,2). This can

be accomplished by retaining the 25 most signi�cant

bits of the result, and then based on the uppermost

bit, shifting the result left one position or incrementing

the exponent by one. The uppermost 24 bits of the re-

sult are retained. The �rst case handles results in the

range [1,2) by aligning the result into the uppermost

24 bits. The second case handles results in the range

[2,4) by reducing their signi�cance and applying it to

the exponent. The task is complicated only slightly

more by the addition of proper IEEE rounding. A

second note is about the generation of the exponent.

The subtraction of 127 is necessary since the exponent

for each input is in excess-127 notation. An increment

by one will also be necessary in cases where the result

mantissa is in the range [2,4).

3.1.2 Rounding and Exceptions

There are a few di�erent modes of IEEE rounding

speci�ed in [5]. The one we chose to support, round to

the nearest, is de�ned as the default. This rounding

mode requires that the result returned be \the repre-

sentable value nearest to the in�nitely precise result"

In the case of a tie, the result with a zero in the lowest

order bit is returned. We accomplish this by retaining

26 bits of the result of the mantissa multiplication as

well as a dirty bit that indicates whether any of the

additional bits not retained were a one. We round

before normalization, so we must be aware of the po-

tential e�ects of normalization. If the highest order

result bit is one, we will retain the uppermost 24 bits

in the normalization stage, so we round the 24

th

bit.

We use a combination of the 25

th

, 26

th

, and dirty bits

to determine whether to round up or down. If the

highest order result bit is zero, we will retain bits 2

through 25, so we use the 26th bit and the dirty bit

to perform rounding.

Other features speci�ed by the IEEE speci�cation

are exception conditions and exception handling. We

currently handle over
ow and under
ow conditions by

setting the result to zero. The implementation will be

enhanced in the future to correctly handle these ex-

ceptions. The only other relevant exception condition

is invalid operation, which is caused by performing

arithmetic on the reserved representations of 1 and

NaN. We have chosen not to deal with this exception

to reduce resource requirements. This is reasonable

since the host could test the data before sending it to

the board if NaN or 1 was likely to be in the data.

3.1.3 Implementation

A block diagram of the 
oating-point multiplier is

shown in �gure 2. The mantissas are multiplied, us-

ing one of the methods discussed earlier, and 26 bits of

result are retained. The appropriate choice of multi-

plier is based on space and performance requirements.

In addition, a single dirty bit indicating if any bits

not retained were a one is also produced. Rounding is

then performed with awareness of the possible need to

normalize the result; thus, the uppermost bit of the re-

sult determines the bit position adjusted by rounding.

Note that if rounding were performed after normaliza-

tion, certain cases would lead to a result that needed

to be normalized again. The normalization step then

chooses to shift or not shift the result. Based on this,

the normalization unit optionally sets Cin for the ex-

ponent adjustment. The exponent is calculated by

�rst adding the exponents of the two inputs and then

subtracting 127. The sign bit is simply computed as

the XOR of the two input sign bits.

3.1.4 Resource Requirements

Table 1 shows the resource requirements of several

di�erent implementations and compares them to the

space available in the two Xilinx devices we use as well

as a much larger Xilinx device scheduled for release in

the �rst half of 1998. The space requirements are given

in terms of four input lookup tables (4-LUTs) and 
ip-


ops, which are the basic building blocks of the Xil-

inx devices. It should be noted that these numbers

only allow for a very simple data interface. Assuming

the two multiplication algorithms can be implemented

with the same clock cycle, the booth recoding based

multipliers require about half as many cycles to pro-

duce a result (17) as the bit serial algorithm (28). Of

the two iterative approaches, this would seem to make

booth recoding the obvious choice, but the resource re-

quirements shown indicate that the choice is not clear.

For example, a 2 stage pipelined booth recoding multi-

plier has a 9 cycle pipeline stage latency while a 3 stage

pipelined bit serial multiplier has a 10 cycle stage la-

tency. The bit serial multiplier requires slightly fewer

(4-LUTs), but signi�cantly more 
ip-
ops; however,

the use of additional 
ip-
ops is not signi�cant since



Multiply Type 4-LUTs/ Xilinx Xilinx Xilinx

Flip-Flops 4020E 4062XL 40250XV

Booth Based 283 / 155 18% / 10% 6% / 3% 1.6% / 1%

Bit Serial 249 / 149 16% / 10% 5% / 3% 1.4% / 1%

2 Stage pipe Bit Serial 328 / 233 21% / 15% 7% / 5% 2% / 1%

2 Stage pipe Booth 410 / 231 26% / 15% 9% / 5% 2% / 1%

3 Stage pipe Bit Serial 390 / 304 25% / 19% 8% / 7% 2% / 2%

3 Stage (6 cycle) Booth 530 / 301 34% / 19% 12% / 7% 3% / 2%

5 Stage (6 cycle) Bit Serial 514 / 446 33% / 28% 11% / 10% 3% / 3%

Fully Pipelined Digit Serial 759 / 1017 48% / 65% 16% / 22% 4.5% / 6%

Table 1: Resource utilization of various 
oating-point multiplier implementations on various Xilinx devices

many of the 
ip-
ops in the booth recoding design

would go unused. A similar scenario can be seen in

the comparison of a 3-stage (6-cycle) booth recoding

multiplier and a 5-stage (6-cycle) bit serial multiplier.

It is not yet clear if there is a signi�cant advantage to

either of the multiplier implementations.

The fully pipelined multiplier is far more area e�-

cient than the other two implementations since it takes

advantage of the 4-LUTs by combining the adder an

mux in one stage. Unfortunately, this design is too big

to �t in a single 4020E after interface logic to support

the host interface on the implementation platform are

added.

3.1.5 Performance

All of the multiplier implementations have been tested

at 33 MHz; thus, the fully pipelined multiplier has

a peak performance of 33 MFLOPs in a 4020E, if a

small enough interface to the chip is used. Moving

to larger devices allows several multipliers in a single

chip. The 4062XL should support three fully pipelined

multipliers. The 40250XV could be expected to hold

nearly four times as many. Assuming that a 40250XV

would hold 12 such multipliers interconnected in some

fashion, and faster speed grades could be used to push

the clock rate to 40 MHz, this would yield a single chip

performance of 480 MFLOPs.

3.2 Floating Point Adder

3.2.1 Algorithm

The 
oating-point addition algorithm is more compli-

cated than the multiplication algorithm. The �rst step

is to choose the number with the greater magnitude,

place it in A, and place the smaller in B. The dif-

ference in the exponents, N , is then computed. This

di�erence is then used as the shift input to a barrel

+

Shift

Compare:  Place larger magnitude in A

BB A BA

Input 1 Input 2

S Exponent Mantissa

Adjust Norm.

Round

+/-

-

Operation
bit
dirty

sAs ee m m

Figure 3: The 
oating point addition algorithm



shifter. The mantissa of B is shifted right N posi-

tions to properly align it with A. The sign bits are

compared in parallel with the exponent subtraction

to determine if an addition or subtraction operation is

required. The �nal sign bit will be the same as the sign

of the larger input. A dirty bit is produced by examin-

ing B as it is shifted. The operation is then performed

on the mantissas of A and B (A+B or A�B). The

result must be rounded and then normalized to place

the most signi�cant one in the highest order bit. The

result is composed of the sign of the largest input, the

exponent of the largest input adjusted by the number

of shifts in the normalization step, and the normalized

result of the operation performed on the mantissas of

A and B. Data 
ow for this algorithm is shown in

�gure 3.

3.2.2 Rounding and Exceptions

Rounding is handled in a similar fashion to that of

the multiplier. The same rounding mode is used, and

again we produce a dirty bit. In this instance, how-

ever, we only retain 25 bits of result. The 25

th

bit and

dirty bit are used to round the 24

th

bit according to

the round to nearest standard.

Exception conditions are currently handled for the

adder in the same way as they are handled for the

multiplier. Under
ow and over
ow are handled by

setting the result to zeros. Invalid operation is not

handled.

3.2.3 Pipeline Stage Division

Deciding how to divide the implementation into

pipeline stages is not trivial. The most important re-

quirement is to produce a �nal design that runs at

33 MHz; therefore, the compare operation, the initial

alignment shift, and the normalization shift has to be

sub-divided into iterative or pipelined parts. The com-

parator requires two stages, with a third stage swap-

ping the data values if necessary, since a 31-bit com-

parison can not be done in a single 33 MHz cycle. The

smaller value is then fed into a shifter, which is broken

into three non-identical pipeline stages. The opera-

tion, a 24 bit add or subtract, and round elements each

require a separate stage. The �nal normalization re-

quires �ve stages, four for shifting the �nal result and

a �fth for dealing with exception conditions that can

occur during normalization. Three of the four shifting

stages from the normalization element are identical.

This is the only part of the adder that can reuse logic.

This explains the insigni�cant di�erence in the size

of the pipelined and iterative adders shown in table 2.

A third implementation could be constructed in which

the normalization element reuses a shifter 3 times, but

the minimal logic savings do not justify the loss of per-

formance. The result is an adder with a fairly high

overall latency (15 cycles), but a fairly high clock rate

(40 MHz).

3.2.4 Normalization

The �nal normalization is one of the most di�cult

parts of the design to implement e�ciently. It requires

that the result be shifted by 0 to 24 bits, based on the

data value. The exponent must be adjusted accord-

ingly. In a case where all 24 bits are zero, a special zero

value must be loaded into the result. We handle this

normalization by passing the data through a series of

shifters. Each shifter is accompanied by logic for de-

termining how many bits the data is to be shifted.

Each bit of each shifter along the path is designed to

�t in a single CLB. The �rst three stages each shift the

result by 0, 1, 4, or 8 bits. The �nal step performs a

shift of 0, 1, 2, or 3 bits. Since each of these shifts can

be handled in a single stage of CLBs, they will easily

run at 33 MHz, or even higher. The goal is to build

four stages of four input muxes with control based on

three inputs.

3.2.5 Resource Requirements

Notice from table 2 that the resource requirements for

the fully pipelined design are not signi�cantly greater

than that of the iterative design in terms of 4-LUTs

consumed; however, it consumes signi�cantly more


ip-
ops. This is because the adder has many di�er-

ent operations that must be performed on the data,

whereas an iterative multiplier can repeatedly reuse

a single adder. The logic for each of these opera-

tions must be present whether the device is purely

iterative or fully pipelined. The only reusable logic in

the case of the iterative implementation is in the �nal

normalization in which there are three identical shifts.

Thanks to the 
ip-
op rich environment of the FPGA,

the penalty in terms of total device area consumed is

fairly insigni�cant. Again, the interface included in

these resource utilization �gures is based on data full

and empty signals.

3.2.6 Performance

The fully pipelined adder has been tested at 40 MHz in

{3 speed grade parts; thus, it is capable of performing

40 MFLOPS. The next step is to consider the num-

ber of adders that can be implemented. Based on the



Degree of Pipelining 4-LUTs/ Xilinx Xilinx Xilinx

Flip-Flops 4020E 4062XL 40250XV

Iterative 563 / 332 36% / 22% 12% / 8% 3% / 2%

1 Cycle (Fully Pipelined) 629 / 671 40% / 43% 14% / 15% 4% / 4%

Table 2: Resource utilization of an IEEE single-precision 
oating-point adder

numbers in table 2, and assuming that only 70-80% of

an FPGA can be e�ectively utilized, we can see that a

Xilinx 4020 device can only support one fully pipelined

adder. However, the higher end devices can conceiv-

ably support several such adders. A Xilinx 40250XV

for example, could possibly support 16 or more inter-

connected adders. Now, supposing some application

which could use sixteen adders interconnected in some

fashion, this would yield a throughput of 640 MFLOPs

from a single FPGA. Using faster speed grades and in-

creasing the clock to 50 MHz could push this number

to 800 MFLOPs.

4 Application Performance

We used the 
oating-point adder and multiplier to

construct multiply-accumulate units (MACs). The

multiply-accumulate units were then used to build

a matrix multiplication application on a GigaOper-

ations platform and an Annapolis MicroSystems plat-

form.

4.1 Implementation Platform

We use two di�erent platforms to evaluate our de-

sign implementations. The �rst is a GigaOperations

G900 board with two XMODs. Each XMOD holds

two Xilinx 4020E-3 parts for a total of 4 FPGAs. The

two chips have 32 bits of interconnection available and

128 K of SRAM each. The SRAM uses a 16 bit wide

data path which can be accessed at 30 MHz allowing a

RAM bandwidth of 60 MB/s for each chip. We exper-

imented with con�gurations involving one multiply-

accumulate per chip and one multiply-accumulate per

XMOD. The host to chip interface was customized to

support broadcast operations.

The second system we evaluate is an Annapolis

MicroSystems Wildforce board. It contains 4 Xilinx

4062XL-3 parts. Each chip is connected to 1 MB of

SRAM. We expect this to give us a RAM bandwidth

of approximately 132 MB/s for each chip.

4.2 Matrix Multiplication

Implementation of matrix multiplication in recon-

�gurable hardware attempts to exploit the massive

amount of parallelism available in such a matrix algo-

rithm. For matrix multiplication, the key performance

factor is the rate at which multiply-accumulate (MAC)

operations can be performed. This is impacted by the

number of MAC units available, the number of cycles

to perform a MAC, the cycle time of a MAC, and the

rate at which data elements can be delivered to the

MAC unit. The general matrix multiply algorithm is

una�ected by the type of data element involved.

Consider the case of A � B = C, where A, B, and

C are matrices of dimension N . The general algo-

rithm we use is to send a di�erent column B to each

of K di�erent multiply accumulate units, where K is

assumed to be an even multiple of either the num-

ber of modules, or the number of chips available. The

columns of B are stored temporarily in local SRAMs.

The columns of A are then broadcast to allK multiply

accumulate units, which results in K rows of C being

generated. This process is repeated N=K times for a

total computation time of

�

(N=K)� T

C

+N

2

� T

M

�

,

where T

C

is the time required to place K columns of

B on the board and T

M

is the total time to consume

an element. It should be noted that T

M

is actually

max(T

P

; T

B

) where T

P

is the time required to com-

plete one pipeline stage and T

B

is the time required to

broadcast a new data element to all of the functional

units. The max relationship is achieved by overlapping

processing with communication such that one element

is always bu�ered at the input to the functional unit.

Assuming a �xed T

C

and T

B

, there are two alter-

natives to improve algorithm performance: reduce T

P

or increase K. Unfortunately, the amount of speedup

that can be achieved by decreasing T

P

is limited by the

data broadcast time T

B

, and is ultimately limited by

the cycle time of the functional unit. Decreasing T

P

and increasing K both require increasing the amount

of hardware resources consumed. Since many current

hardware platforms have a high cost associated with

broadcasting a single 32 bit data element, it is often

easier to reap the bene�ts of increasing K. Unfortu-
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Figure 4: Projected execution times vs. number of

multiply accumulate (MAC) units for several di�erent

pipelining options at 33 MHz

nately, increasing K has the drawbacks of complicat-

ing control logic, replicating control logic associated

with a component, and complicating placement and

routing. It is easier to place and route one heavily

pipelined functional unit in a device than it is to place

and route four functional units, especially when those

four units would be required to use the same input

and output data paths.

An alternative approach would be to modify the al-

gorithm to lower the dependence on T

B

. One such en-

hancement is to simultaneously compute multiple el-

ements of the result matrix C on one functional unit.

This can be achieved by storing L columns at each

functional unit. When an element of A is broadcast,

it is multiplied by the corresponding element of each

column of B stored at the functional unit; thus, L {

MACs would occur for each element broadcast. T

P

could then be reduced to the cycle time of the device,

as long as L � J where T

B

= J � T

P

. The drawback

here is the need to store L intermediate values for the

accumulate operation. Fortunately, a FIFO can be

used. The FIFO would be initialized by the insertion

of L zeros. Then, for N � L cycles, the adder would

take one input from the multiplier and the other from

the FIFO. The output of the adder would go to the

FIFO. The results would then be read from the device

and the FIFO re-initialized. Figure 4 plots the time

in seconds for a matrix multiply versus the number of

MACs for various values of T

P

. For this �gure, N was

taken to be 1024, L was assumed to be greater than

or equal to J , and T

C

was considered to be negligible.

The values of T

P

used were computed by assuming a

30 ns clock cycle and multiplying by the number of
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Figure 5: I/O requirements as a function of L for dif-

ferent pipelining options

clock cycles required for a pipeline stage. In addition,

it plots timing data for three di�erent multi-processor

implementations using PVM. The �rst was done on a

16 node 150 MHz Pentium based machine intercon-

nected with a 100 Mb/s Fast Ethernet switch. The

other two were done on an 4 node 500 MHz Alpha

21164 based machine interconnected by a 100 Mb/s

Ethernet hub. The �rst of these two was written as

a tripply nested loop and compiled with the DEC C

compiler and all relevent compiler optimizations. The

second was blocked and unrolled by hand and achieved

a speedup of over 20 (listed as optimized). Both num-

bers are given as performance comparisons since there

are many who trust the compiler to perform all of the

necessary optimizations for peak performance.

One further complication is that the functional

units cannot process data faster than it can be de-

livered. For this reason, it is necessary to consider the

I/O and RAM bandwidth requirements for each imple-

mentation. The I/O dependency is already accounted

for by the dependency on T

B

. T

B

is actually based

on the average time required to deliver an element

from host memory to the functional unit. The I/O

requirement is computed based on the rate at which

data must be delivered from the host to the functional

units in order to fully utilize the functional unit. The

RAM bandwidth required is di�erent from the I/O

requirements in some cases because some con�gura-

tions involve a greater than one to one ratio between

the number of elements broadcast and the number of

MACs performed. Assuming the data broadcast to

the functional units is a 32 quantity, the I/O rate re-

quired in MB/s can be computed as: 4 � (1=T

P

)=L,

where L is the number of columns simultaneously
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Number of Predicted Measured

MAC Units Performance Performance

4 354 s 385 s

8 177 s 190 s

16 87 s 95 s

Table 3: Predicted and measured performance for an

integer matrix multiply

processed at a MAC. The required RAM bandwidth

per processing element assuming 32 bit operands is:

4 � (1=T

P

) � (K=PE) where PE is the number of

FPGAs and K=PE is the number of MAC units per

FPGA. Figures 5 and 6 show the theoretical I/O re-

quirements and corresponding RAM bandwidth re-

quirements of a variety of potential implementations.

4.3 Signed Integer Matrix Multiply

In order to validate some of the performance esti-

mates, the matrix multiply was initially implemented

with signed integers. This provided a good initial test

since a 32 bit signed integer multiply has similar space

and time requirements to the 
oating-point multiply,

but was easier to implement. Initial testing was done

at 15 MHz. The cases that have been tested were

based on an iterative booth recoding multiplier that

required 20 cycles to produce a result. Tests were

done with varying numbers of MAC units. The re-

sults are shown in table 3. These test points o�er a

preliminary indication that the equations predict per-

formance fairly well (within 10%). The accuracy is
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Figure 7: Measured execution time vs. number of

multiply accumulate (MAC) units for a fully pipelined

implementation at 33 MHz

expected to improve as the number of columns simul-

taneously processed per MAC unit, L, is increased,

since, most of the di�erence is attributed to card I/O

issues.

4.4 Floating-Point Matrix Multiply

The 
oating-point matrix multiply requires slightly

more space than the integer matrix multiply since the


oating-point adder is signi�cantly bigger than the in-

teger adder. For example, a single iterative 
oating-

point multiply accumulate when combined with inter-

face logic requires enough chip area to make it di�-

cult to place and route on a 4020E, while two itera-

tive integer multiply accumulates would �t on a single

FPGA. Our only 
oating-point test on the G900 sys-

tem split one multiply-accumulate across two chips on

one XMOD at 15 MHz. This gave us 2 MAC units

with 
oating-point multipliers pipelined to 6 cycles

with L set to 16. It required 264 seconds to complete

a 1024x1024 matrix multiply.

Figure 7 shows the performance results measured

on the Annapolis MicroSystems board. This imple-

mentation used four 4062XL-3 parts with one fully

pipelined multiply accumulate running at 33MHz on

each chip and L set to 16. The best time for a

1024x1024 matrix multiply was 11 seconds giving a

performance of 195 MFLOPs, compared to a theo-

retical peak of 264 MFLOPs. Again, the di�erence

in peak and actual performance is attributed to I/O

issues. Figure 7 also includes the three workstation

based implementations for comparision. Note that the

four PE (one system) recon�gurable implementation



is comparable to the optimized Alpha implementation,

and outperforms the other Alpha implementation as

well as the one, two, and four processor Pentium im-

plementations.

5 Conclusions and Future Work

This paper has o�ered evidence that 
oating-point

implementations in FPGAs should be considered as

a possible alternative for high precision applications.

We have shown an adder implementation �tting in a

Xilinx 4020E that can achieve a performance of 40

MFLOPs. We have also shown a multiplier implemen-

tation �tting in a Xilinx 4020E that is capable of per-

forming at 33 MFLOPs. Although these performance

numbers are not comparable to those achieved by

modern microprocessors, the use of several of these de-

vices in a recon�gurable computing system can achieve

speedup for some algorithms, particularly matrix mul-

tiplication. A system with four 4062XL parts can be

con�gured to perform a peak of 264 MFLOPs with a

realized application performance of 195MFLOPs. Xil-

inx projects the availability of 40250XV parts, which

are nearly four times as dense, in the �rst half of 1998.

By increasing the number of MAC units in each part,

we could expect to achieve six times the performance,

if adequate I/O and RAM bandwidth were available.

Further performance gains could be achieved by mov-

ing to better speed grades. We are currently using -3

parts, but -09 parts are becoming available. In addi-

tion, even higher density devices are projected by the

end of 1998.

The point of this investigation was to explore when,

or if, the use of FPGA technology would o�er a perfor-

mance boost for 
oating-point applications. Although

we do not get a signi�cant performance improvement

over some of the fastest available processors, we do

see comparable performance. In fact, we get a slight

speedup with a single FPGA based solution over a

multi-processor implementation on a recent architec-

ture (the Pentium). If we can achieve comparable per-

formance from a pure 
oating-point application, it is

a good indication that applications which require a

few 
oating-point operations intermixed with �xed-

point computations can now be considered as imple-

mentation targets for recon�gurable computing. Fur-

thermore, these results indicate that if device density

and speed continue to increase, recon�gurable com-

puting platforms may soon be able to o�er a signi�-

cant speedup to pure 
oating-point applications.

We intend to continue to investigate applications

which require some 
oating-point computation and

can bene�t from the recon�gurability of FPGAs, fo-

cusing �rst on matrix algorithms. Our next target

applications are Gaussian Elimination and a Gauss-

Seidel iterative solver.
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