pvfs2-client Design Document (DRAFT)

PVFS Development Team

April 2003

1 Introduction

The primary role of the pvfs2-client daemon is to efficiemtigrshaloperation requests and data from the ker-
nel's VFS {irtual File Systemor Virtual Filesystem SwitgHayer to the pvfs2-server, and return responses
from the pvfs2-server(s) back to the VFS layer. This involves waitimdili® system and I/O requests, per-
forming operations against the pvfs2-server application(s), andhgassponses back to the Linux kernel's
VFS layer. The data medium for the communication between the VFS requestiepvis2-client appli-
cation is the /dev/pvfs2 device node. An interface that will allow incoming peeted requests from the
/dev/pvfs2 device node is required, and using the existing BMI interfamesferred.

Figure 1 illustrates the architecture of several components of PVFS2ddbisnent will focus specifically
on the pvfs2-client application.

2 Motivation for thepvf s2-cl i ent Application

Currently, our entire code base exists as user space code. This malloiour networking support (through
the BMI andFlow Interface$, and our non-blocking request handling architecture througfidhdnterface

To pvfs2 servers

!

{ \ { \
User Application .
(e.g. /bin/touch) pvfs2-client
. S \ S
A User Space A
A 4 Kernel Space v
{ N\ { N\
Device Node
VFS
D EEEE— (e.g. /dev/pvfs2)
\ S \ S

Figure 1: High Level PVFS2 Architecture

The pvfs2-server already uses these interfaces to manage multiple simultarperations in flight at once.
Similarly, it is highly desirable to have a pvfs2-client application that can iasdemanage multiple simulta-
neous operations at once when communicating with the pvfs2-servaefdle, at least in the short term, it
would be most appropriate to leverage as much of our existing code ablpogsuser-space application is
required to make use of this code, and thus the need for the pvfs2-@iditaion to bridge the gap between
the Linux kernel's VFS layer and tH&ystem Interface

3 pvfs2-client Application Architecture

The pvfs2-client application consists of a set of state machines roughlysponding to all file system and
I/O operations that can be requested from the VFS. At a high level, tle2mlient application appears to
share a common architecture with the pvfs2-server application. The miadil@dalistinction between the
pvfs2-client architecture and the pvfs2-server architecture is thesai the unexpected requests. On the
pvfs2-server, unexpected requests come from over the netwonkgtntbe BMI Interface. The pvfs2-client
receives unexpected messages from the /dev/pvfs2 device nodmiltt e ideal if the BMI Interface could
be used to monitor the /dev/pvfs2 device node.

One responsibility of the pvfs2-client application is to wait for jobs in pregre complete. Waiting on
pending jobs is implemented as a non-blocking operation against the existimgtgotace using the call
job_testcontext. This call returns a list of unexpected or completed jobs thatsubmitted previously by
states of the various state machine operation implementations.

For each job returned from jotestcontext, the pvfs2-client application checks if the job is an unexpected
request. If the jolis an unexpected request, it initializes an appropriate state machine for thRiggardless

of whether or not the job was unexpected, the state of each job is advemtlee next until a blocking
operation is encountered.

Unexpected requests are delivered to the pvfs2-client application mmtythe /dev/pvfs2 device node that
the pvfs2-client application monitors through the job interface. Theseestgare generated and passed up
from the Linux kernel's VFS layer by the PVFS2 kernel module that implenteetYFS operations.

The pvfs2-client has a similar processing loop as the pvfs2-server:

while (pvfs2-client application is running)

{

wait on pending jobs in progress and expected requests
foreach job returned
if job is an unexpected request
initialize appropriate operation state machi ne
end if

whil e conpl etions occur i medi ately

2

advance to next state in state nmachine
end whil e
end foreach

4 Limitations of the Existing System Interface

Currently, all client interaction to a pvfs2-server is done throughSpstem Interfac&PI. This interface
provides a set of file system and I/O operations to be performed agagntftR-server(s), but suffers from
several major limitations in its current state. These limitations can be descrile@gl bs:

e Semantic Limitationsthe current implementation provides a blocking interface to all operatioes. W
already know that a non-blocking interface is required for efficieneas through other existing non-
blocking iterfaces such as ROMIO.

e Reusability Limitationsthe current implementation performs many blocking operations. This cannot
be usedas isin the proposed non-blocking state-machine oriented architecture of tb2-ghent.

A proposed redesign of the System Interface implemented in terms of tessatie machines can solve these
limitations, as discussed below.

5 pvfs2-client Request Servicing

Operation request servicing in the pvfs2-client application will be implemenyestate machines. That is,
for each type of request that can be handed up from the PVFS2l keauile, a matching state machine
will exist to service it. The types of operation requests required will rqugbrrespond to all of the possi-
ble operations available through the System Interface API. For the gedgovfs2-client architecture, it is
clear that a non-blocking implementation of the System Interface is desiatileef state machine architec-
ture. Further, to encourage code re-use, each operation Bys$tem Interfacean be expressed as a state
machine. Implementing the core functionality of the System Interface methodsns tdrstate machines
allows an opportunity for blockingnd non-blocking interface implementations, heavier code re-use, and
design simplicity.

We can think of all pvfs2-client operations as having a similar structurdepited in Figure 2. What we
see here is a generic state machine implementing an operation. For all opetiaticnwill be ause specific
initialization, execution of some core routines (i.e. functionality provided bycthieent System Interface),
and a use-specific notification of status and completion. If the core fuatitypof each System Interface
routine were implemented in terms of a state machine, the execution of a core rontid be embedded as
a nested state machine within the operation specific state machine.

Figure 2 shows a complete operation state machine, along with the embeddtstl)rstate machine that
implements core functionality of a System Interface call. The first state daltegpresents the use specific

3

State Machine

[init]4_ —

bmi-send-request

get-response

setup-flow

do-flow-operation

v

report-complete]— —

[check-op-result

Figure 2: Operation Servicing State Machine (w/nested core state machine)

initialization state. Each operation may have a different initialization phaset It very least, the source
and target endpoints for the Flow (to be performed inside the nested stateejeare selected. Following
initialization, the nested state machine is executed, performing the core operjisested. After this, the
operation state machine checks the status of the performed operation &lprogndle error reporting.
Finally, the state is advanced to the initial state of the state machine, which is thdtaeftion when the
operation has completed.

In order to represent the core functionality of a System Interface metb@dre-useable state machine, we
must take advantage of the source and target endpoint specificatiomsdlhy the existind-low Interface
Assuming it is possible to know the source and target endpoints of the Flomtprexecuting the System
Interface core functionality, it can be re-used by embedding it as achs&tee machine in the pvfs2-client
architecture,and shared between the blocking and non-blocking System Interface impleinastaThe
requirement for this is that the source and target endpoints of the Flostaiglished before using the core
functionality state machine. In Figure 2, for example, the pvfs2-client agtic may specify that the Flow's
target endpoint should be the /dev/pvfs2 device node.

6 Non-blocking and Blocking System Interface | mplementations

Non-blocking and blocking System Interface methods (as shown in F)u@n use the same core function-
ality once implemented as a state machine. The blocking version will manually Gtz state machine
internal to the call and not return until the operation has completed. Thélocking implementation will
start the state machine and offer a mechanism for testing operation completiotine non-blocking inter-
face, some method of asynchronous progress must be provided.afhiealone either with a background
thread, or completing work during a test for completion.

