PVFS2 Distribution Design Notes

PVFES Development Team

May 2004

1 Introduction

This document is intended to serve as a reference for the design of #@&2Hile distributions. This should
(eventually) include a description of the mechanism and a guide on devglopmdistribution methods.

Distributions in PVFS are a mapping from a logical sequence of bytes to sigalhygequence of bytes on
each of several I/O servers. To be of use to PVFS system code thisngappxpressed as a set of methods.

Files in PVFS appear as a linear sequence of bytes. A specific byte in aifllniffied by its offset from
the start of this sequence. This is refered to herelagieal offset. A contiguous sequence of bytes can be
specified with a logical offset and an extent.

Requests for access to file data can be to PVFS servers using vampuestréormats. Regardless of the
format, the same data request is sent to all PVFS servers that storé th@rtequested data. These formats
must be decoded to produce a series of contiguous sequences cédgiesith a logical offest and extent.

PVFS servers store some part of the logical byte sequence of eachdilengar sequence of bytes or byte
stream within a data space associated with the file. Bytes within this byte streadeatified by their offset
from the start of the byte stream referred to here ghyaical offset. On the server the PVFS distribution
methods are used to determine which portion of the requested data is stdtedsamver, and where in the
associated byte stream the data is stored.

2 System Interface Distributions

PVFS2 users should be able to utilize distributions effectively through #termsyinterface. API's are exposed
that allow users to create files with the user-specified distribution. In tleetikasno distribution is specified
(i.e. the NULL distribution is specified), the default distribution, simple stripesesdu The system interface
must be initialized before distributions may be accessed.

The external distribution API is exposed to users via the following data peésunctions:

struct PVFS sys di st;

The system interface distribution structure. It contains the distribution idamiie. the name) and a pointer
to an instance of the distribution parameters for this type distribution. In getiee user should not modify
the data within this struct.

int PVFS sys create(charx entry_nane,
PVFS obj ect _ref ref,
PVFS sys_ attr,
PVFS credential s credenti al s,
PVFS sys dist* dist,
PVFS_sysresp_create* resp);

Creates a file using the specified distribution. If no distribution is specifiedd#éfault distributiorsim-
ple_stripe is used during creation. The distribution used during file creation is stoitedtve file and may
not be changed later. Altering the distribution used to store the file contenlt$result in data corruption.

PVFS sys_dist* PVFS sys _dist_| ookup(const char* nane);

Allocates a new distribution instance by copying the internal distribution regter the supplied name.
Note that the internal distribution has additional data not exposed thru stensynterface, but that should
be fully configurable thru the distribution parameters.

int PVFS sys dist free(PVFS sys dist* dist);

Deallocate all system interface resources allocated during distributionpook

int PVFS sys_dist_setparam PVFS sys_dist* dist,
const charx param
voi d*» val ue);

Set the distribution parameter specified by the stgaigam to value. The strings used to specify parameters
are distribution defined but should generally correspond to the field natine dtistributions parameter struct.
All parameters must be set before the distribution is used in file creatione &fite is created, there is no
safe way to modify the distribution parameters for that file.

3 Distribution Initialization

All distributions are registered during PVFS2 initialization. Although thereldess some discussion about
having distributions function as loadable modules, there is currently n@sifppthat feature within PVFS2.

2

All available distributions are loaded into a registration table during initializatiahragistered with the
distribution name as the key. When a user then wishes to create a distributipa latkup can be performed
with the distribution name, and a copy of the registered distribution is retuifteglregistered distribution
itself is never actually modified after registration. The only opportunity to modéydgistered distribution

is during the registration itself. Each distribution implements a callback method neayie@r _init that is
called during registration. The function signature is described completilywbier now we merely want to
note that this function is called exactly once (at registration time), and it isrgignased by distributions
to setup the distribution parameter strings (for use in P¥i&dist setparam), and to set default parameter
values.

Distribution initialization is performed by the function PINdist.initialize() in pint-dist-utils.h. In order to
add a new distribution to the table of registered distributions, it will be necgésanodify this function.

4 Internal Distribution Representation

PVFS2 distributions are internally represented with the struct RINT. This structure contains a pointer to
the distribution name, methods, parameters and various sizes. The infstrialiions are used on both the
clients and the metadata server, as well as being stored physically with the thidatae

When a user creates a file, the system distribution supplied, or the deiffttilbudion is exchanged for a
corresponding PINIist structure. It is this structure that will be used for any further ajmra performed
on the file and stored in the metadata for the file.

The client and server both use the distribution methods to fulfill the requestthe client to the server to

locate a specific byte range in a specific file. All this processing is perfibmitdin the PINT request for the

file and byte range. The main difference in the client and server pliagasshe way segments are built is
different as they represent the distribution of data from the variowesemot the distribution of data on the
server (What in the world does this sentence mean?!?)

Distribution parameters are defined in the exported header for the distritfetipn for the simple stripe

distribution, the header file is pvfs2-dist-simple-stripe.h). The distribution edstlare usually defined in a
corresponding implementation file in the io/description subsystem (e.g. the sitrip&eisiplementation is

in io/description/dist-simple-stripe.c).

The methods defined for each distribution allow it to completely specify how l#hddia is mapped to the
PVFS2 disk abstraction, the data file object. The one possible exception te thé distributions cannot
currently assert their preference in how data file objects are mappedbtisetaers. This is planned in the
near future, however their is no current consensus on how to imppme the current round robin mapping
approach (see PINBucketget nextio).

5 Distribution Parameters

The parameters for each distribution are defined in a struct definedisgigcfor the distribution, and an
individual instance of the parameters is stored in the metadata of every file.

Both the PVFSsysdist and PINTdist data structures maintain a pointer to the same distribution parameters.
The parameters are passed into every call to distribution code so thatulistriban modify its behavior

as neccesary. The distribution provider can also provide a method tforgsthe distribution parameters
explicitly as described in the distribution methods below.

6 Distribution Methods

The distribution methods are the individual code used by each distributicerfiorm mappings between the
logical file data and the data file objects. The methods also provide a mecHanisntoding/decoding the
distribution parameters, determining the number of data file objects to creatéligmodifying distribution
parameters, and distribution registration tasks. For some of the methodsi#t theplementation is available
that may be acceptable for most distributions.

PVFS offset |ogical to physical offset(void+ parans,
uint32_t dfile_nr,
uint32_t dfile_ct,
PVFS of fset |ogical _offset);

Given a logical offset, return the physical offset that correspaodbat logical offset. Returns a physical
offset. The return value rounds down to the largest physical oftddtlsy the I/O server if the logical offset
does not map to a physical offset on that server.

PVFS of fset physical _to |ogical offset(void+* parans,
uint32_t dfile_nr,
uint32_t dfile_ct,
PVFS of fset physical _offset)

Given a physical offset, return the logical offset that correspaadbat physical offset. Returns a logical
offset. The input value is assumed to be on the current PVFS server.

PVFS of fset next napped_offset(void+x parans,
uint32_t dfile_nr,
uint32_t dfile_ct,
PVFS of fset |ogical offset)

Given a logical offset, find the logical offset greater than or equaldddbical offset that maps to a physical
offset on the current PVFS server. Returns a logical offset.

PVFS_si ze conti guous_I| engt h(voi d* parans,
uint32_t dfile_nr,
uint32_t dfile_ct,
PVFS of fset physical _offset)

Beginning in a given physical location, return the number of contiguoteshy the physical bytes stream on
the current PVFS server that map to contiguous bytes in the logical byterseg; Returns a length in bytes.

int get_numdfiles(void* parans,
uint32_t num servers_requested,
uint32_t numdfiles requested)

Returns the number of data file objects to use for the requested file. Theenoimkervers requested and
number of data files requested are hints from the user that the distributiograae if neccesary. A default
implementation of this function is provided in pint-dist-utils.h that returns the numibservers requested
(which is usually the number of data servers in the system).

int set_param const char* dist_nanme, void+ parans
const char* param nanme, voidx val ue)

Set the distribution parameter describeddgayam_name to value. A default implementation is provided in
pint-dist-utils.h that can handle parameters that have been previoushgredis

voi d encode_| ebf (charx* pptr, void+* parans)

Write params into the data stream pptr in little endian byte format.

voi d decode_| ebf (charx* pptr, void+* parans)

Readparams from the data stream pptr in little endian byte format.

void registration_init(void+ parans)

Called when the distribution is registered (i.e. once). Used to set defamibdimn values, register param-
eters, or any other initialization activity needed by the distribution.

