PVFS 2 Concepts: The new guy’s guide to PVFS

PVES Development Team

February 15, 2006

$1d: concepts.tex,v 1.1 2003/01/24 23:29:18 pcarns Exp $

1 Introduction

PVFS2 represents a complete redesign and reimplementdtibe parallel file system concepts in PVFS1. PVFS2
has new entities acting in new ways on new objects. This deatimill serve as an introduction to the terminology
and concepts used in the other pvfs2 documents.

2 Words

system interfacelow-level interface to PVFS. sits on top of the servers. jmes underlying foundation to higher-
level interfaces like the PVFS library (libpvfs2) and thePS/VFES interface.

distributions (also “file distributions”, “physical distribution”) seff onethods describing a mapping from a logical
sequence of bytes to a physical layout of bytes on PVFS serv@¥FS1 had one type of distribution —
regularly striding data. PVFS2 will understand many disttions, including but not limited to strided, block
and cyclic.

job a PVFS operation requires several steps, called “jobs”

job interface keeps track of progress as an operation makes its way thtbegtvfs2 layers
job structure
BMI (Buffered Message Interface)abstracts network communication. currently BMI suppattsand GM, but

could also support protocols like VIA and Infiniband. (XXXnee this is @PVFS2document, more details
about BMI internals are best left to the BMI document, no?)

flows a flow describes the movement of file data from client initiaion to putting bits on disk. It encompasses
both transporting data over the network as well as intargatith storage devices. (XXX: scheduler?). Users
tell flow whatthey want done, and flow figures dubwto accomplish the request. Flows are not involved in
metadata operations.
flow interface the API for setting up flows
flow protocol Implements whatever underlying protocol is needed for tnadp®ints to communicate

flow endpoint the source or destination of a flow

flow descriptor data structure representing a flow
trove stores both keyword-value pairs and data (?)
storage interface (obsoletepw calledtrove
system level objectdata files, metadata files, directories, symlinks

metadatadata about data. in the UNIX sense, such things as ownerpgpaumissions, timestamps, sizes.
in the PVFS sense, also distribution information.

data actual contents of file

metafile contains the metadata for a single PVFS file

datafile contains some portion of the data for a single PVFS file

dataspacelogical collections of data

bytestreamarbitrary binary data. Data is accessed with sizes fronetsfs
keyval a keyword/value pair. Data is accessed by resolving a key.

collections
server request protocol

vtags provides a version number for any region of a byte stream wpiiradividual key/value pair. By comparing
the vtag before and after an operation, one can ensure taEmsis

handle a 64-bit tag to uniquely identify PVFS objects. Re-usingdias brings up some “interesting” cases. (aside:
what if we made the handles 128 bits)

instance tagin some cases, a handle might refer to two distinct files withdame name. Thenst ance t ag
serves as an extra identifier to help ensure consistency

pinode A mechanism for associating information with a handle. lakimux inode, @i node contains information
used by PVFS2 internally.

gossip A logging library. Internal to clemson? freshmeat doesaitdhan entry for it, and searching for “gossip
logging library” in google turns up a ton of irrelevant sdaes.

3 Theview from 10,000 feet

Refer to figure 1 for an idea of how the words above fit together.

All end-user access to PVFS will still be provided by one ofesal front ends (VFS kernel interface, ROMIO,
libpvfs) (what's the right term here? API, FE, interface™he new pvfs library has not been written yet, but there
is a good chance it will be largely similar to the current pilfsary. The ROMIO and VFS interfaces should remain
largely unchanged to the end user, aside from extensiora&écadvantage of new PVFS2 features.

The end-user interfaces converge at the system interfi@euder request requires talking to several servers, the
system interface submits a job request for each server tlh@manager (presume, if the job mgr can’t split up
requests that the submission of multiple jobs happens isytiént. or will the client find out who he has to talk to
after opening the filg? Requests for large or noncontiguous data chunks only aeegob as explained below.

The job manager is a fairly thin layer between the systenfaaxte and BMI, trove, and flow. It should be noted that
nearly every request requires multiple steps (communimatethe network, read bytes from storage ...), and each

User Application PVFS v2 Server

Kernel |ROMIO | PVFS

Driver |Device |Library Request Handler
System Interface Op State Machine
Job manager Job Manager
Flows Flows

Figure 1: PVFS2 components

step becomes a job. The job manager provides a common haadie §erminology?) and thread management to
keep everything progressing.

If the user performs a data operation, the system interféltewbbmit a flow job. The system interface knows what
hasto happen — some bytes from here have to go over there. Thedlofigures ouhowto accomplish the request.
The flow can compute how much data comes from which serveesdbas the I/O request and the distribution
parameters. The flow then is responsible for making the Bgli calls to keep the i/o request progressing.

Metadata requests go directly to BMI jobs. cli€nt requests will never go directly to trove, right?

Wind back up the protocol stack to the servers for a momentll Wame back to BMI in a bit. From the client
side, all jobs are “expected”: the client asks for somethingappen and can test for completion of that job. PVFS2
servers can additionally receive “unexpected” jobs, gahefalways?) when a client initiates a request from a
server. (vhere can i find more information about the “request handlarid the “op state machine” in figure 1)

The job manager works the same way for the server as it doésdalient, keeping track of BMI, trove, and flow
jobs.

Figure 2 shows a setmeta operation. The client starts a BMtgasend a request to the meta server. The server
then receives a job indicating that an unexpected BMI meshag arrived. The server then issues a Trove job to
store the metadata, and issues a BMI Job to send an ack. Enédties a BMI job to receive the ack. A setmeta
requires 2 jobs on the client side (send request, receive aiol 3 jobs on the server side (receive request, do meta
operation, send ackfhrm? so “unexpected” isn’'t completely true? the serverantp a request enough to post a
receive)

Data operations are largely similar to metadata operatithesclient posts jobs to send the request and receive the
response, the server posts jobs to receive the requestgdipération, and send an ack. The difference is that a
flow does the work of moving data. (XXX: i have a figure for thisthis type of figure useful?)

Jobs and flows use BMI abstractions anytime they have to coriwaite over the network. The BMI level resolves
these abstract "connections” into real network activitiIBvill either open a TCP socket, do some GM magic, or
do whatever the underlying system network needs done to inges.

Similarly, jobs and flows use trove abstractions and leterd®al with the actual storage of bytestream and keyval
objects

API JOB INTERFACE BMI OP STATE MACH. PVFS2 SERVER
USER SYS INTERFACE FLOWS TROVE REQ HANDLER
send req
rev ack
request
unexpected BMI message
do_meta operation
trove request
ack request

Figure 2: PVFS2 setmeta operation

