PVFS2: System Interface
Test Suite

Frank Shorter
Michael Speth

May 16, 2003

1 Introduction

The Parallel Virtual File System version 2 (PVFS2) is in depenent. This document attempts to out-

line the process of validating the System Interface of thentl The testing process is divided into two

parts: positive tests and negative tests. Positive tesisi@e functions operating on normal procedures.
Negative tests examine the functions behavior on abnornaglepures designed to make the functions
fail.

2 Setup

Describe the system (hardware and OS) that the tests arg tgiron and the version of pvfs2.

3 Positive Tests

The positive tests will verify basic functionality, and ens that the system interface behaves as expected
for a given set of reasonable inputs. We expect that all (faloalls should succeed. It is the goal of this
section to provide coverage for all areas of the systemfatterthat will recieve the most usage.

3.1 Startup and Shutdown

The most trivial test of the system interface, we initialéel finalize the system interface.

1



3.2

1.

Metadata tests

File creation: We will test the creation of files with valid attributes idsiof directories where we
have permission to do so. The number of data files will be dafiem 1 to 2N (where N is the
number of 1/0O servers). Creation will be verified with a lookageration.

. File removal: We will test the removal of files that have the appropriateypssions for our user.

Removal will be verified by a failed lookup operation. Afteetfile is removed, we will re-create
a new file with the same name. Lookup of the new file must retuemew handle. as well as the
attributes of the new file(including datafile handles).

. Setting/retrieving attributes on a file: Setting/retrieving attributes will be tested by settitiglze

attributes on a file to some known values, then calling getatensure that they have been set.
Important things to pay attention to here are the filesizeyelsas permissions.

Lookup of a file: Lookup will be tested by creating a file, and then looking battfile and com-
paring the handles. Create and Lookup should return the sant#ds and file system id numbers.

Renaming files We will create a file, lookup the file, then call rename. Wel wdrify rename
by calling lookup on the old filename, ensuring that it fadsd then calling lookup on the new
filename and ensuring that it returns the handle we were givereate time. Renaming will need
to be tested within the same directory, as well as renamssg(eially moving) files into different
directories.

. Directory creation: We will test the creation of directories with valid attriles inside of directories

where we have permission to do so. We're only looking to ereanoderate number of directories
with this test case. Please refer to the stress testingoseitti info on the directory tests where
a very large number of directories are added. directorytioreavill be verified both by having it
appear when readdir is called, as well as being able to lagk with the lookup function.

. Directory removal: We will create a directory, verify that it exists with readdnd lookup, then

call rmdir. To ensure that it has been deleted, we will attetngookup and call readdir on the

directory name that was just removed. Both of these calls maigeturn any trace of the directory.

Additionally, we will create a directory of the same nameaj aompare its attributes to the previous
directory.

. Lookup of a directory: Lookup will be tested by creating a directory, and then lagkup that

directory and comparing the handles. Create and Lookup gheturn the same handles and file
system id numbers.

. Setting/retrieving attributes on a directory: Setting/retrieving attributes will be tested by setting

all the attributes on a directory to some known values, ttaing getattr to ensure that they have
been set.



3.3 1/Otests

3.3.1 Reading

The read tests will be performed on files where we have readipgion, and data exists within the file.
The request will be committed prior to the 10 call. We will et test every combination of requests
(from pvfs-request.h):

1. Contiguous count should be varied to ensure that we’re hitting mudtipérvers as well as only
getting data from each server at time.

2. Vector: with "stride” lengths that span multiple servers.
3. Hvector: see vector.

4. Indexed: indexed will be tested with varying block lengths and disgiments. displacements that
cause multiple servers to be spanned as well as large blogthle will also be used.

5. Hindexed: see indexed.

6. Manual ub/Ib/extents. Calling read with varying the displacements on ub, Ib, anéms will be
performed.

3.3.2 Writing

The write tests will be performed on files where we have wragenpssion. Data may or may not exist
within file prior to calling write. The request will be comrtet! prior to the 10 call. We will need to test
every combination of requests (from pvfs-request.h):

1. Contiguous count should be varied to ensure that we're hitting mudtipérvers as well as only
getting data from each server at time.

2. Vector: with "stride” lengths that span multiple servers.
3. Hvector: see vector.

4. Indexed: indexed will be tested with varying block lengths and diggiments. displacements that
cause multiple servers to be spanned as well as large blogthle will also be used.

5. Hindexed: see indexed.

6. Manual ub/lbextent: Calling write with varying the displacements on ub, Ib, anteats will be
performed.



3.3.3 Truncate

The truncate tests will be performed on files where we haveevaermission. This test will need to be
performed on files of size 0, as well as files with data on everglination of servers.

4 Negative Tests

The negative tests are broken up into two sections: invalidmeters and functional ordering. The invalid
parameters tests examines the functions’ behaviors whafidrparameters are supplied. The tests for
functional ordering examines functions’ behaviors whendrdering of functions are incorrect.

4.1 Invalid Parameters

Tests functions’ behavior when invalid parameters are lgeghp

4.1.1 Null parameters

All parameters of each function are null. Note, before antheffunctions can be called, initialize must
be called with valid parameters expect for tests regardinglize.

Call initialize and set its parameters to null. Record therrevalue and error code returned.
Call finalize and set its parameters to null. Record themetalue and error code returned.
Call lookup and set its parameters to null. Record the refaiue and error code returned.
Call getattr and set its parameters to null. Record thenretalue and error code returned.
Call setattr and set its parameters to null. Record therrealue and error code returned.
Call mkdir and set its parameters to null. Record the retatlmevand error code returned.
Call readdir and set its parameters to null. Record thenefiue and error code returned.

Call create and set its parameters to null. Record the retlue and error code returned.

© © N o 00 B~ W N P

Call remove and set its parameters to null. Record the rgalue and error code returned.

=
o

. Call rename and set its parameters to null. Record thenreue and error code returned.



11. Call symlink and set its parameters to null. Record themetalue and error code returned.
12. Call readlink and set its parameters to null. Record themetalue and error code returned.
13. Call read and set its parameters to null. Record the retdueand error code returned.

14. Call write and set its parameters to null. Record the retalure and error code returned.

4.1.2 Varied Null Parameters

Some of the parameters of each function are null. Note, befioy of the functions can be called, initialize
must be called with valid parameters expect for tests regauditialize.

1. Iterate through the list found in section 4.1.1 with thetfparameter set to null. The remaining
parameters (if there are any) are set to a valid value. Rebeneturn value and error code returned.

2. Iterate through the list found in section 4.1.1 with thess& parameter (if there is one) set to null.
The remaining parameters (if there are any) are set to a valice. Record the return value and
error code returned.

3. Iterate through the list found in section 4.1.1 with thiedlparameter (if there is one) set to null.
The remaining parameters (if there are any) are set to a valice. Record the return value and
error code returned.

4. Iterate through the list found in section 4.1.1 with thstfamd second parameter (if there is one) set
to null. The remaining parameters (if there are any) areosaetvalid value. Record the return value
and error code returned.

4.1.3 Invalid File

All test cases use an invalid file

1. Call lookup and set the pinodefernce.handle to -1. Record the return value and error oede
turned.

2. Call getattr and set its parameters to null. Record therretiue and error code returned.
3. Call setattr and set its parameters to null. Record therrelue and error code returned.
4. Call mkdir and set its parameters to null. Record the retalmevand error code returned.

5. Call readdir and set its parameters to null. Record therretiue and error code returned.



© © N ©

10.
11.
12.

4.2

Call create and set its parameters to null. Record the relue and error code returned.
Call remove and set its parameters to null. Record the rgadue and error code returned.
Call rename and set its parameters to null. Record the readue and error code returned.
Call symlink and set its parameters to null. Record the metalue and error code returned.
Call readlink and set its parameters to null. Record thenmetalue and error code returned.
Call read and set its parameters to null. Record the retlueand error code returned.

Call write and set its parameters to null. Record the retalue and error code returned.

Functional Ordering

All test cases use the pre-built file found in section 2.

4.2.1 Client uninitialized

Test the behavior of all functions when the initialize fuonthas not been called.

© © N o 00 B~ W0 NP

I =
N P O

Call lookup and record the return value and error codes.
Call getattr and record the return value and error codes.
Call setattr and record the return value and error codes.
Call mkdir and record the return value and error codes.
Call readdir and record the return value and error codes.
Call create and record the return value and error codes.
Call remove and record the return value and error codes.
Call rename and record the return value and error codes.
Call symlink and record the return value and error codes.

Call readlink and record the return value and error codes.

. Call read and record the return value and error codes.

. Call write and record the return value and error codes.



4.2.2 Client unfinalized

Test the behavior of the system when the system is initidlze the program exits without calling finalize.
Another program is run after the previous program exitedahfilinctions are tested including initialize
and finalize.

10.

11.

12.

13.

Call initialize and exit the program

Call initialize and exit the program
codes.

Call initialize and exit the program
codes.

Call initialize and exit the program
codes.

Call initialize and exit the program
codes.

Call initialize and exit the program
codes.

. Call initialize and exit the program

codes.

Call initialize and exit the program.

codes.

. Call initialize anadtoed the return value and error codes.

. Call initialize thesokup and record the return value and error

. Call initialize theatgttr and record the return value and error

. Call initialize thestattr and record the return value and error

. Call initialize therkdir and record the return value and error

. Call initialize thezaddir and record the return value and error

. Call initialize thereate and record the return value and error

Call initialize theammove and record the return value and error

Call initialize and exit the program. Call initialize theaname and record the return value and error

codes.

Call initialize and exit the program. Call initialize thepmlink and record the return value and

error codes.

Call initialize and exit the program. Call initialize theeadlink and record the return value and

error codes.

Call initialize and exit the program. Call initialize thesad and record the return value and error

codes.

Call initialize and exit the program. Call initialize themite and record the return value and error

codes.



4.2.3 Clientfinalized

The initialize function is called and immediately after ttalize function is called. Test behavior of
system functions under this scenario.

10.

11.

12.

Call initialize then finalize
codes.

Call initialize then finalize
codes.

Call initialize then finalize
codes.

Call initialize then finalize
codes.

Call initialize then finalize
codes.

Call initialize then finalize
codes.

. Call initialize then finalize

codes.

Call initialize then finalize
codes.

. Immediately after finaliz=ll lookup and record the return and error

. Immediately after finalizell getattr and record the return and error

. Immediately after finalizeall setattr and record the return and error

. Immediately after finalizeall mkdir and record the return and error

. Immediately after finalizegll readdir and record the return and error

. Immediately after finalizegll create and record the return and error

. Immediately after finalizegll remove and record the return and error

. Immediately after finalizegll rename and record the return and error

Call initialize then finalize. Immediately after finalizegll symlink and record the return and error

codes.

Call initialize then finalize
codes.

. Immediately after finaljzmll readlink and record the return and error

Call initialize then finalize. Immediately after finaljzeall read and record the return and error

codes.

Call initialize then finalize. Immediately after finaljzeall write and record the return and error

codes.

4.2.4 Operations on non-existent Files

Tests for functions that operate on existing files on a fil¢ tlag not been created.



1. Call initialize then lookup on a file that has not been crateecord the return value and error
codes.

2. Call initialize then getattr on a file that has not been eatRecord the return value and error
codes.

3. Call initialize then setattr on a file that has not been eatRecord the return value and error
codes.

4. Call initialize then readdir on a file that has not been e@atRecord the return value and error
codes.

5. Call initialize then remove on a file that has not been ctkaRecord the return value and error
codes.

6. Call initialize then rename on a file that has not been cdeaRecord the return value and error
codes.

7. Call initialize then symlink on a file that has not been adatRecord the return value and error
codes.

8. Call initialize then readlink on a file that has not been m&aRecord the return value and error
codes.

9. Callinitialize then read on a file that has not been cre®Redord the return value and error codes.
10. Callinitialize then write on a file that has not been créakecord the return value and error codes.

4.2.5 Repeated Operations: meta data

Continually call functions that change the meta data of a file.

1. Call initialize and then call setattr on the same test file tihes. Record return values and error
codes.

2. Callinitialize and then call rename 100 times. Record revatues and error codes.
3. Callinitialize and then call symlink 100 times. Record ratualues and error codes.

4.2.6 Repeated Operations: create

Continually call functions on one file that create new filedsas mkdir and create.



. Call initialize and then call mkdir on the same test file 1i@@es. Record return values and error
codes.

. Call initialize and then call create on the same test filetiifd@s. Record return values and error
codes.

. Call initialize and then call mkdir on differnt test files@€@mes. Record return values and error
codes.

. Call initialize and then call create on differnt test fileOlfimes. Record return values and error
codes.

Results

10



