Trove DBPF Handle Allocator

PVFS Development Team

February 15, 2006

$ld: handl e-allocator.tex,v 1.1 2003/01/24 23:29:18 pcarns Exp $

1 Introduction

The Trove interface gives out handles — unique identifietsotge objects. In addition to being unique, handles will
not be reused within a configurable amount of time. These twstraints make for a handle allocator that ends up
being a bit more complicated than one might expect. Add tbttieafact that we want to serialize on disk all or part
of the handle allocator’s state, and here we are with a doontitoeexplain it all.

1.1 Data Structures
1.1.1 Extents

We have a large handle space we need to represent effici€hityapproach uses extents:

struct extent {
intéd t first;
intéd4 t |ast;
1

1.1.2 Extent List

We keep the extents (not nescessarily sorted) irettteent s array. For faster searchaspdex keeps an index
into ext ent s in an AVL tree. In addition to the extents themselves, sonakkeeping members are added. The
most important is thé i mest anp member, used to make sure no handle in its list gets reusedebiefshould.
_si ze is only used internally, keeping track of how l#gt ent s is.

struct extentlist {
inté4 t _ size;
int64_t num extents;

i nt64_t num_handl es;
struct tineval tinestanp;
struct extent * extents;

}s

1.1.3 Handle Ledger

We manage several lists. Theee_l i st contains all the valid handles. Thecent | y_freed_l i st contains
handles which have been freed, but possibly before someeetipie has passed. Thwer fl ow.l i st holds
freed handles while items on thecent | y_freed_| i st wait for the expire time to pass.

We save our state by writing out and reading from the tAfB&VE_handl e members, making use of the higher
level trove interface.

struct handl e_| edger {

struct extentlist free |ist;
struct extentlist recently freed |ist;
struct extentlist overflowlist;
FI LE *backi ng_store;
TROVE handl e free_Ilist_handl e;
TROVE handl e recently_freed_list_handl e;
TROVE_handl e overflow_ |ist_handl e;

}

2 Algorithm

2.1 Assigning handles
Start off with af r ee_l i st of one big extent encompassing the entire handle space.

e Get the last extent from ther ee_| i st (We hope getting the last extent improves the effiency of ers
representation)

e Savel ast for later return to the caller
e Decrement ast

o if first > last, mark the extent as empty.

2.2 returning handles

¢ when the first handle is returned, it gets added tortheent | y_f r eed list. Because this is the first item
on that list, we check the time.

e now we add more handles to the list. we check the time aftérandles are returned and update the times-
tamp.

e Once we have addeH handles, we decide theecent | y_f r eed list has enough handles. We then start
using theover f | ow.l i st to hold returned handles.

e as with ther ecent | y_f r eed list, we record the time that this handle was added, updatiegimestamp
after everyN additions. We also check how old thecent | y_f r eed list is.

e at some point in time, the wholeecent | y_f r eed list is ready to be returned to tHe ee_| i st. The
recentl| y_freedlistismergedintothéree_l i st,theoverfl ow.l i st becomestheecent|y_freed
listand theover f | ow. i st is empty.

2.3 1 don’'t know what to call this section

Let T;. be the minimum response time for an operation of any ggrbe the time a handle must sit before being
moved back to the free list, and,,; be the total number of handles available on a server.

The pathological case would be one where a caller

o fillsup ther ecent | y_freed list

e immediately starts consuming handles as quickly as p@assilhake for the largest possilecent | y _f r eed
list in the next pass

This results in the largest number of handles being unaaildue to sitting on thever f | ow.l i st. Call Npy,q
the number of handles waiting in “purgatory” (waiting fbf to pass)

Npurg = Tf/TT ()
Fpurg = Npurg/Ntot (2)
Fyurg =Ty /(Ty * Niot) ©))

We should try to collect statistics and see wihaandN,,., end up being for real and pathological workloads.

