pvfs2-client Design Document (DRAFT)

PVES Development Team

April 2003

1 Introduction

The primary role of the pvfs2-client daemon is to efficiemtigrshaloperation requests and data from the ker-
nel’'s VFS WVirtual File Systemor Virtual Filesystem SwitgHayer to the pvfs2-server, and return responses
from the pvfs2-server(s) back to the VFS layer. This involves waitimdil® system and I/O requests, per-
forming operations against the pvfs2-server application(s), anihgagsponses back to the Linux kernel's
VES layer. The data medium for the communication between the VFS requestepvfs2-client appli-
cation is the /dev/pvfs2 device node. An interface that will allow incoming peeted requests from the
/dev/pvfs2 device node is required, and using the existing BMI interfaoesferred.

Figure 1 illustrates the architecture of several components of PVFS2ddbisnent will focus specifically
on the pvfs2-client application.

2 Moaotivation for thepvf s2-cl i ent Application

Currently, our entire code base exists as user space code. This malbofeour networking support (through
theBMI andFlow Interface$, and our non-blocking request handling architecture througidhénterface

To pvfs2 servers

!

pvfs2-client

User Application
(e.g. /bin/touch)

| J | J

A User Space
A\ 4 Kernel Space

{ 3\ { 3\

Device Node
» (e.g. /dev/pvfs2)

| J | J

VFS

A

Figure 1: High Level PVFS2 Architecture

The pvfs2-server already uses these interfaces to manage multiple simaultaperations in flight at once.
Similarly, it is highly desirable to have a pvfs2-client application that can iaadenanage multiple simulta-
neous operations at once when communicating with the pvfs2-servenefdle, at least in the short term, it
would be most appropriate to leverage as much of our existing code dablpogsuser-space application is
required to make use of this code, and thus the need for the pvfs2-g@igitation to bridge the gap between
the Linux kernel's VFS layer and tHgystem Interface

3 pvfs2-client Application Architecture

The pvfs2-client application consists of a set of state machines rougirgsponding to all file system and
I/O operations that can be requested from the VFS. At a high level, ts2mlient application appears to
share a common architecture with the pvfs2-server application. The miadtl@distinction between the
pvfs2-client architecture and the pvfs2-server architecture is thresad the unexpected requests. On the
pvfs2-server, unexpected requests come from over the networkgtntbe BMI Interface. The pvfs2-client
receives unexpected messages from the /dev/pvis2 device nodwmultt be ideal if the BMI Interface could
be used to monitor the /dev/pvfs2 device node.

One responsibility of the pvfs2-client application is to wait for jobs in pregre® complete. Waiting on
pending jobs is implemented as a non-blocking operation against the existigt¢oface using the call
job_testcontext. This call returns a list of unexpected or completed jobs thatsubmitted previously by
states of the various state machine operation implementations.

For each job returned from jotestcontext, the pvfs2-client application checks if the job is an unexpected
request. If the jolis an unexpected request, it initializes an appropriate state machine for thRgjgardless

of whether or not the job was unexpected, the state of each job is advemtee next until a blocking
operation is encountered.

Unexpected requests are delivered to the pvfs2-client application mmtythe /dev/pvfs2 device node that
the pvfs2-client application monitors through the job interface. Theseestgjare generated and passed up
from the Linux kernel's VFS layer by the PVFS2 kernel module that implenteet¥FS operations.

The pvfs2-client has a similar processing loop as the pvfs2-server:

while (pvfs2-client application is running)

{

wait on pending jobs in progress and expected requests
foreach job returned
if job is an unexpected request
initialize appropriate operation state machi ne
end if

whi | e conpl eti ons occur inmediately

2

advance to next state in state nmchine
end while
end foreach

4 Limitations of the Existing System Interface

Currently, all client interaction to a pvfs2-server is done throughSistem Interfac@Pl. This interface
provides a set of file system and 1/O operations to be performed agadnstitR-server(s), but suffers from
several major limitations in its current state. These limitations can be descrileéyg bs:

e Semantic Limitationisthe current implementation provides a blocking interface to all operatiomes. W
already know that a non-blocking interface is required for efficieneas through other existing non-
blocking iterfaces such as ROMIO.

¢ Reusability Limitationsthe current implementation performs many blocking operations. This cannot
be useds isin the proposed non-blocking state-machine oriented architecture of t&2- ghent.

A proposed redesign of the System Interface implemented in terms of tegsate machines can solve these
limitations, as discussed below.

5 pvfs2-client Request Servicing

Operation request servicing in the pvfs2-client application will be implemenyestate machines. That is,
for each type of request that can be handed up from the PVFS2l kaaukile, a matching state machine
will exist to service it. The types of operation requests required will rbugbrrespond to all of the possi-
ble operations available through the System Interface API. For the gedpovfs2-client architecture, it is
clear that a non-blocking implementation of the System Interface is desiafileef state machine architec-
ture. Further, to encourage code re-use, each operation Bytem Interfacean be expressed as a state
machine. Implementing the core functionality of the System Interface methodsrie té state machines
allows an opportunity for blockingnd non-blocking interface implementations, heavier code re-use, and
design simplicity.

We can think of all pvfs2-client operations as having a similar structurdepited in Figure 2. What we
see here is a generic state machine implementing an operation. For all opetatiensill be ause specific
initialization, execution of some core routines (i.e. functionality provided bycthieent System Interface),
and a use-specific notification of status and completion. If the core fuatitypif each System Interface
routine were implemented in terms of a state machine, the execution of a coreroutid be embedded as
a nested state machine within the operation specific state machine.

Figure 2 shows a complete operation state machine, along with the embeddtsti)rstate machine that
implements core functionality of a System Interface call. The first state daltegpresents the use specific

3

State Machine
[init]4— —

bmi-send-request

get-response

setup-flow

do-flow-operation

check-op-result

[J
v
[report-complete]— —

Figure 2: Operation Servicing State Machine (w/nested core state machine)

initialization state. Each operation may have a different initialization phasetibaé very least, the source
and target endpoints for the Flow (to be performed inside the nested statenajazre selected. Following
initialization, the nested state machine is executed, performing the core opeegigested. After this, the
operation state machine checks the status of the performed operation &lyiogndle error reporting.
Finally, the state is advanced to the initial state of the state machine, which is thétageftion when the
operation has completed.

In order to represent the core functionality of a System Interface meth@dre-useable state machine, we
must take advantage of the source and target endpoint specificatiomedibhy the existindg-low Interface
Assuming it is possible to know the source and target endpoints of the Flomtprexecuting the System
Interface core functionality, it can be re-used by embedding it as achsttee machine in the pvfs2-client
architecture,and shared between the blocking and non-blocking System Interface impletioasta The
requirement for this is that the source and target endpoints of the Floatdglished before using the core
functionality state machine. In Figure 2, for example, the pvfs2-client egaic may specify that the Flow’s
target endpoint should be the /dev/pvfs2 device node.

6 Non-blocking and Blocking System Interface | mplementations

Non-blocking and blocking System Interface methods (as shown in F&)wan use the same core function-
ality once implemented as a state machine. The blocking version will manually @ttas state machine
internal to the call and not return until the operation has completed. Thélocking implementation will
start the state machine and offer a mechanism for testing operation completiotihe non-blocking inter-
face, some method of asynchronous progress must be provided.arhieaone either with a background
thread, or completing work during a test for completion.

