PVFS2 distributions design notes

PVFES Development Team

February 2002

1 Introduction

This document is intended to serve as a reference for the design of the PVFS2 file distributions. This should
(eventually) include a description of the mechanism and a guide on developing new distribution methods.

Distributions in PVFS are a mapping from a logical sequence of bytes to a physical sequence of bytes on
each of several I/O servers. To be of use to PVFES system code this mapping is expressed as a set of methods.

Files in PVFS appear as a linear sequence of bytes. A specific byte in a file is identified by its offset from
the start of this sequence. This is refered to here as a logical offset. A contiguous sequence of bytes can be
specified with a logical offset and an extent.

Requests for access to file data can be to PVFS servers using various request formats. Regardless of the
format, the same data request is sent to all PVES servers that store part of the requested data. These formats
must be decoded to produce a series of contiguous sequences of bytes each with a logical offest and extent.

PVFS servers store some part of the logical byte sequence of each file in a a linear sequence of bytes or byte
stream within a data space associated with the file. Bytes within this byte stream are identified by their offset
from the start of the byte stream referred to here as a physical offset. On the server the PVFES distribution
methods are used to determine which portion of the requested data is stored on the server, and where in the
associated byte stream the data is stored.

The PVES servers utilize the distribution methods to convert a logical offset and extent into one or more
physical offsets and extents relative to the data space on the file server. We next describe the methods used
by the PVES server and provide pseudo code for their use in decoding a request.

2 Methods

PVFS_offset logical_to_physical_offset (PVEFS_Dist_parm *dparm,
uint32_t server_nr, uint32_t server_ct,
PVFS_offset logical_offset);

Given a logical offset, return the physical offset that corresponds to that logical offset. Returns a physical
offset. The return value rounds down to the largest physical offset held by the I/O server if the logical offset
does not map to a physical offset on that server.

PVFS_offset physical_to_logical_offset (PVEFS_Dist_parm *dparm,
uint32_t server_nr, uint32_t server_ct,
PVFS_offset physical_offset);

Given a physical offset, return the logical offset that corresponds to that physical offset. Returns a logical
offset. The input value is assumed to be on the current PVFS server.

PVFS_offset next_mapped_offset (PVEFS_Dist_parm *dparm,
uint32_t server_nr, uint32_t server_ct,
PVFS_offset logical_offset);

Given a logical offset, find the logical offset greater than or equal to the logical offset that maps to a physical
offset on the current PVES server. Returns a logical offset.

PVFS_size contiguous_length (PVFS_Dist_parm *dparm,
uint32_t server_nr, uint32_t server_ct,
PVFS_offset physical_offset);

Beginning in a given physical location, return the number of contiguous bytes in the physical bytes stream on
the current PVFES server that map to contiguous bytes in the logical byte sequence. Returns a length in bytes.

PVES distribution processing pseudo code:

// INPUTS

PVFS_offset offset; // logical offset of requested data

PVFS_size size; // size of requested data

int reqg_type; // type of read A_READ or A_WRITE

PVFS_Dist_parm *d_p; // point to file distribution parameter structure
uint32_t server_nr; // number of iods data distributed on

uint32_t server_ct; // ordinal number this iod
PVFS_distribution *dist; // distribution methods

// LOCALS
PVFS_offset loff;
PVFS_offset diff;
PVFS_offset poff;
PVFS_size sz;
PVFS_ _size fraglen;

loff = (*dist->next_mapped_offset) (d_p, server_nr, server_ct, offset);
while ((diff = loff - offset) < size)
{
poff = (*dist->logical_to_physical_offset) (d_p, server_nr,server_ct,loff);
sz = size - diff;
if (poff+sz > m_p->fsize && req_type==A_READ) // check for append
{
/* update the file size info */
if (update_fsize() < 0) return(-1);
if (poff+sz > m_p->fsize) sz = m_p->fsize - poff; // stop @ EOF
if (sz <= 0)
{
// hit end of file
return(l);

}

fraglen = (*dist->contiguous_length) (d_p, server_nr, server_ct, poff);
if (sz <= fraglen || m_p->pcount == 1) // all in 1 block
{
create_segment (poff, sz);
return(0);
}
else // frag extends beyond this stripe
{
create_segment (poff, fraglen);
}
/* prepare for next iteration */
loff += fraglen;

size —-= loff - offset;
offset = loff;
loff = (*dist->next_mapped_offset) (d_p, server_nr, server_ct, offset);

3 Client Processing

PVES clients run the same code as a PVFES server, but the way segments are built is different as they represent
the distribution of data from the various servers, not the distribution of data on the server.

4 Distribution Registration

Distributions are registerd with PVFES byt either compiling a distribution method entry into the distribution
table of the PVFS code or by dynamically adding a method entry to the table. Distribution method entries
are registration functions are defined as follows:

struct PVFS_Distribution {
char *dist_name;
int param_size;
PVFS_offset (*logical_to_physical_offset) (PVFS_Dist_parm *dparm,
uint32_t server_nr, uint32_t server_ct,
PVFS_offset logical_offset);
PVFS_offset (*physical_to_logical_offset) (PVFS_Dist_parm *dparm,
uint32_t server_nr, uint32_t server_ct,
PVFS_offset physical_offset);
PVFS_offset (*next_mapped_offset) (PVEFS_Dist_parm *dparm,
uint32_t server_nr, uint32_t server_ct,
PVFS_offset logical_offset);
PVFS_size (*contiguous_length) (PVEFS_Dist_parm *dparm,
uint32_t server_nr, uint32_t server_ct,
PVFS_offset physical_offset);

}i
void PVFS_register_distribution(struct PVFS_distribution *d_p);

void PVFS_unregister_distribution (char *dist_name);
Dynamically loaded modules are expected to provide initialization and cleanup functions as follows:

voilid init_module () ;

void cleanup_module() ;

The init_module function would generally register the distribution and the cleanup_module function would
generally unregister the distribution.

5 Distribution Parameters

Distributions may define a structure containing parameters for the distribution which are assigned on a per-
file basis, stored with the file metadata, and provided to each method when it is called. Default parameters
are provided with the methods and are used if a NULL pointer to distribution parameters is passed into the

4

method. The definition of the parameter structures should be provided to user programs via an include file,
where the parameters can be initialized and passed in to the system through an interface routine.

