
A Quick Start Guide to PVFS2

PVFS2 Development Team

Last Updated: September 2003

Contents

1 How to use this document 2
1.1 Versions . 2

2 Downloading and compiling PVFS2 2
2.1 Dependencies . 2
2.2 Untarring the packages . 3
2.3 Building and installing the packages . 3

3 Configuring PVFS2 for a single host 3
3.1 Server configuration . 4
3.2 Starting the server . 5

3.2.1 Automatic server startup and shutdown . 5
3.3 Client configuration . 6
3.4 Testing your installation . 6

4 Installing PVFS2 on a cluster 8
4.1 Server configuration . 8
4.2 starting the servers . 10
4.3 Client configuration . 11
4.4 Testing your Installation . 11

5 Configuring the PVFS2 Linux VFS Interface 11

6 Testing the PVFS2 Linux VFS Interface 12

A APPENDIX: Notes on running PVFS2 without root access 14

B APPENDIX: Debugging your PVFS2 configuration 14

1

1 How to use this document

The quick start guide is intended to be a reference on how to quickly install and configure a PVFS2 file
system. It is broken down into three parts. The first describes how to download and compile the PVFS2
software. The next section walks through the steps of configuring PVFS2 to store and access files on a single
host, which may be useful for simple testing and evaluation. The final section of this document describes
how to install and configure PVFS2 in a true cluster environment with multiple servers and/or clients.

1.1 Versions

This document only applies to alpha snapshots of PVFS2 as of September 2003.

2 Downloading and compiling PVFS2

At this time, tarballs (and CVS access) are provided to trusted parties. If you’re reading this, you should have
a method of obtaining the PVFS2 source code. Once the source code is downloaded, compiling the PVFS2
source code is a matter of running ’./configure’, followed by ’make’ from the top level source directory.
More detailed instruction for building and installing are provided below.

2.1 Dependencies

The following software packages are currently required by PVFS2:

• Berkely DB (version 3 or 4)

• aio support (provided by glibc and librt)

• pthreads

• gcc 2.9.x or newer

• GNU Make

The following software packages are currently encouraged for use with PVFS2:

• GNU Libc (glibc) 2.3.2 [or later]

• Linux kernel version 2.6.0-test4 [or later]

The following system assumptions are also made:

• A Homogeneous GNU/Linux environment

ROMIO supports PVFS2. It is not provided with pvfs2, but can be found as part of the following MPI
implementations:

• MPICH2-0.94 or newer

2.2 Untarring the packages

All source code is contained in one tarball: pvfs2-XXX.tgz. The following example assumes that you will
be building in the /usr/src directory, although that is not required:

[root@testhost /root]# cp pvfs2-XXX.tgz /usr/src
[root@testhost /root]# cd /usr/src
[root@testhost /usr/src]# tar -xzf pvfs2-XXX.tgz
[root@testhost /usr/src]# ln -s pvfs2-XXX pvfs2
[root@testhost /usr/src]# ls -lF
total 476
lrwxrwxrwx 1 root root 15 Aug 14 17:42 pvfs2 -> pvfs2-XXX/
drwxr-xr-x 12 root root 512 Aug 14 10:11 pvfs2-XXX/
-rw-r--r-- 1 root root 371535 Aug 14 17:41 pvfs2-XXX.tgz

2.3 Building and installing the packages

The default steps for building and installing PVFS2 are as follows:

[root@testhost /usr/src]# cd pvfs2
[root@testhost /usr/src/pvfs2-XXX]# ./configure
[root@testhost /usr/src/pvfs2-XXX]# make
[root@testhost /usr/src/pvfs2-XXX]# make install

Here are some optional configure arguments which may be of interest:

• –prefix=<path>: installs all files in the specified directory (/usr/local/ is the default if –prefix is not
specified)

• –with-kernel=<path to kernel source>: this enables compilation of the PVFS2 Linux kernel driver [
Requires Linux Kernel 2.6.0-test4 or later]

• –with-mpi=<path to mpi installation>: this enables compilation of MPI based test programs

• –with-efence: automatically links in Electric Fence for debugging assistance

Also note that the pvfs2 kernel source supports out of tree builds if you prefer to use that technique.

3 Configuring PVFS2 for a single host

This section documents the steps required to configure PVFS2 on a system in which a single machine acts
as both the client and server for all PVFS2 operations. It assumes that you have completed the above
sections on building and installation already. The hostname of the example machine is “testhost” and will
be referenced as such in the following examples. IMPORTANT: if you intend to use the provided rc scripts
to handle startup and shutdown of the PVFS2 server, then you must specify a valid hostname as reported by
the hostname command line tool in the configuration. For this reason, we recommend that you not use
“localhost” as the hostname of your server, even if you intend to only test one machine. We will store all
PVFS2 data in /pvfs2-storage-space. /mnt/pvfs2 will serve as the mount point for the file system. For more
details about the purpose of these directories please see the PVFS2 users guide.

3.1 Server configuration

Since this is a single host configuration, we only have to configure one server daemon. In the original PVFS,
the metadata and I/O servers were separated into two separate programs (mgr and iod). PVFS2, however,
has only a single daemon called pvfs2-server which serves both roles.

The most important part of server configuration is simply generating the configuration files. These can
be created using the pvfs2-genconfig script. This is an interactive script which will ask several questions to
determine your desired configuration. Please pay particular attention to the listing of the metadata servers
and I/O servers. In this example we will use “testhost” for both.

The pvfs2-genconfig tool will generate two configuration files. One is a file system configuration file
that will be identical for all servers (if we had more than one). The second is a server specific configuration
file that will be different for each server. The server specific files have the hostname of the server that
they belong to appended to the file name. This script should be excuted as root, so that we can place the
configuration files in their default /etc/ locations.

In this simple configuration, we can accept the default options for every field. We will use the hostname
“testhost” rather than “localhost” however.

root@testhost:˜# /usr/bin/pvfs2-genconfig \
/etc/pvfs2-fs.conf /etc/pvfs2-server.conf
**
Welcome to the PVFS2 Configuration Generator:

This interactive script will generate configuration files suitable
for use with a new PVFS2 file system. Please see the PVFS2 quickstart
guide for details.

**

You must first select the network protocol that your file system will use.
The only currently supported options are "tcp", "gm", and "ib".

* Enter protocol type [Default is tcp]:

Choose a TCP/IP port for the servers to listen on. Note that this
script assumes that all servers will use the same port number.

* Enter port number [Default is 3334]:

Next you must list the hostnames of the machines that will act as
I/O servers. Acceptable syntax is "node1, node2, ..." or "node{#-#,#,#}".

* Enter hostnames [Default is localhost]: testhost

Now list the hostnames of the machines that will act as Metadata
servers. This list may or may not overlap with the I/O server list.

* Enter hostnames [Default is localhost]: testhost

Configured a total of 1 servers:
1 of them are I/O servers.
1 of them are Metadata servers.

* Would you like to verify server list (y/n) [Default is n]?

Choose a file for each server to write log messages to.

* Enter log file location [Default is /tmp/pvfs2-server.log]:

Choose a directory for each server to store data in.

* Enter directory name: [Default is /pvfs2-storage-space]:

Writing fs config file... Done.
Writing 1 server config file(s)... Done.

Configuration complete!

3.2 Starting the server

Before you run pvfs2-server for the first time, you must run it with a special argument that tells it to create
a new storage space if it does not already exist. In this example, we must run the server as root in order to
create a storage space in /pvfs2-storage-space as specified in the configuration files.

bash-2.05b# /usr/sbin/pvfs2-server /etc/pvfs2-fs.conf \
/etc/pvfs2-server.conf-testhost -f

Once the above step is done, you can start the server in normal mode as follows:

bash-2.05b# /usr/sbin/pvfs2-server /etc/pvfs2-fs.conf \
/etc/pvfs2-server.conf-testhost

All log messages will be directed to /tmp/pvfs2-server.log, unless you specified a different location while
running pvfs2-genconfig. If you would prefer to run pvfs2-server in the foreground and direct all messages
to stderr, then you may run the server as follows:

bash-2.05b# /usr/sbin/pvfs2-server /etc/pvfs2-fs.conf \
/etc/pvfs2-server.conf-testhost -d

3.2.1 Automatic server startup and shutdown

Like most other system services, PVFS2 may be started up automatically at boot up time through the use of
rc scripts. We have provided one such script that is suitable for use on RedHat (or similar) rc systems. The
following example demonstrates how to set this up:

bash-2.05b# cp /usr/src/pvfs2/examples/pvfs2-server.rc \
/etc/rc.d/init.d/pvfs2-server

bash-2.05b# chmod a+x /etc/rc.d/init.d/pvfs2-server

bash-2.05b# chkconfig pvfs2-server on
bash-2.05b# ls -al /etc/rc.d/rc3.d/S35pvfs2-server
lrwxrwxrwx 1 root root 22 Sep 21 13:11 /etc/rc.d/rc3.d/S35pvfs2-server \

-> ../init.d/pvfs2-server

This script will now automatically launch on startup and shutdown to ensure that the pvfs2-server is
started and stopped gracefully. To manually start the server, you can run the following command:

bash-2.05b# /etc/rc.d/init.d/pvfs2-server start
Starting PVFS2 server: [OK]

To manually stop the server:

bash-2.05b# /etc/rc.d/init.d/pvfs2-server stop
Stopping PVFS2 server: [OK]

3.3 Client configuration

There are two primary methods for accessing a PVFS2 file system. The first is the native PVFS2 interface
which is made available through libpvfs2. This also happens to be the same interface used by ROMIO if
you configure your system to use MPI-IO. The second method relies on a kernel module to provide standard
Linux file system compatibility. This interface allows the user to use existing binaries and system utilities
on PVFS2 without recompiling. We will cover how to configure both access methods here.

We must create a mount point for the file system as well as an /etc/pvfs2tab entry that will be used
by the PVFS2 libraries to locate the file system. The pvfs2tab file is analogous to the /etc/fstab file
that most linux systems use to keep up with file system mount points.

[root@testhost /root]# mkdir /mnt/pvfs2
[root@testhost /root]# touch /etc/pvfs2tab
[root@testhost /root]# chmod a+r /etc/pvfs2tab

Now edit this file so that it contains the following, except that you should substitute your host name in
place of “testhost”:

tcp://testhost:3334/pvfs2-fs /mnt/pvfs2 pvfs2 default 0 0

3.4 Testing your installation

PVFS2 currently includes (among others) the following tools for manipulating the file system using the
native PVFS2 library: pvfs2-ping, pvfs2-import, pvfs2-ls, and pvfs2-export. These tools check the health of
the file system, import local files, list the contents of directories, and export files, respectively. Their usage
can best be summarized with the following examples:

bash-2.05b# ./pvfs2-ping -m /mnt/pvfs2

(1) Searching for /mnt/pvfs2 in /etc/pvfs2tab...

Initial server: tcp://testhost:3334
Storage name: pvfs2-fs
Local mount point: /mnt/pvfs2

(2) Initializing system interface and retrieving configuration from server...

meta servers (duplicates are normal):
tcp://testhost:3334

data servers (duplicates are normal):
tcp://testhost:3334

(3) Verifying that all servers are responding...

meta servers (duplicates are normal):
tcp://testhost:3334 Ok

data servers (duplicates are normal):
tcp://testhost:3334 Ok

(4) Verifying that fsid 9 is acceptable to all servers...

Ok; all servers understand fs_id 9

(5) Verifying that root handle is owned by one server...

Root handle: 0x00100000
Ok; root handle is owned by exactly one server.

===

The PVFS2 filesystem at /mnt/pvfs2 appears to be correctly configured.

bash-2.05b# ./pvfs2-ls /mnt/pvfs2/

bash-2.05b# ./pvfs2-import /usr/lib/libc.a /mnt/pvfs2/testfile
PVFS2 Import Statistics:
**
Destination path (local): /mnt/pvfs2/testfile
Destination path (PVFS2 file system): /testfile
File system name: pvfs2-fs
Initial config server: tcp://localhost:3334
**
Bytes written: 2555802
Elapsed time: 0.416727 seconds
Bandwidth: 5.848920 MB/second
**

bash-2.05b# ./pvfs2-ls /mnt/pvfs2/
testfile

bash-2.05b# ./pvfs2-ls -alh /mnt/pvfs2/
drwxrwxrwx 1 pcarns users 0 2003-08-14 22:45 .
drwxrwxrwx 1 pcarns users 0 2003-08-14 22:45 .. (faked)
-rw------- 1 root root 2M 2003-08-14 22:47 testfile

bash-2.05b# ./pvfs2-export /mnt/pvfs2/testfile /tmp/testfile-out
PVFS2 Import Statistics:
**
Source path (local): /mnt/pvfs2/testfile
Source path (PVFS2 file system): /testfile
File system name: pvfs2-fs
Initial config server: tcp://localhost:3334
**
Bytes written: 2555802
Elapsed time: 0.443431 seconds
Bandwidth: 5.496690 MB/second
**

bash-2.05b# diff /tmp/testfile-out /usr/lib/libc.a

4 Installing PVFS2 on a cluster

It is important to have in mind the roles that machines (a.k.a. nodes) will play in the PVFS2 system. There
are three potential roles that a machine might play: metadata server, I/O server, or client.

A metadata server is a node that keeps up with metadata (such as permissions and time stamps) for the
file system. An I/O server is a node that actually stores a portion of the PVFS2 file data. A client is a node
that can read and write PVFS2 files. Your applications will typically be run on PVFS2 clients so that they
can access the file system.

A machine can fill one, two, or all of these roles simultaneously. Unlike PVFS-1, each role requires just
the pvfs2-server binary. It will consult the cluster-wide config file and the node-specific config file when it
starts up to know what role pvfs2-server should perform on this machine.

We currently support just one metadata server (this limit will be raised in the future). There can be many
I/O servers and clients. In this section we will discuss the components and configuration files needed to
fulfill each role.

We will configure our example system so that the node “cluster1” provides metadata information, eight
nodes (named “cluster1” through “cluster8”) provide I/O services, and all nodes act as clients.

4.1 Server configuration

We will assume that at this point you have either performed a make install on every node, or else have
provided the pvfs2 executables, headers, and libraries to each machine by some other means.

Installing PVFS2 on a cluster is quite similar to installing it on a single machine, so familiarize yourself
with Section 3. We are going to generate one master config file and 8 smaller node-specific config files.
Again, remember that it is critical to list correct hostnames for each machine, and to make sure that these
hostnames match the output of the hostname command on each machine that will act as a server.

root@cluster1:˜# /usr/local/pvfs2/bin/pvfs2-genconfig \
/etc/pvfs2-fs.conf /etc/pvfs2-server.conf

**
Welcome to the PVFS2 Configuration Generator:

This interactive script will generate configuration files suitable
for use with a new PVFS2 file system. Please see the PVFS2 quickstart
guide for details.

**

You must first select the network protocol that your file system will use.
The only currently supported options are "tcp" and "gm".

* Enter protocol type [Default is tcp]:

Choose a TCP/IP port for the servers to listen on. Note that this
script assumes that all servers will use the same port number.

* Enter port number [Default is 3334]:

Next you must list the hostnames of the machines that will act as
I/O servers. Acceptable syntax is "node1, node2, ..." or "node{#-#,#,#}".

* Enter hostnames [Default is localhost]: cluster{1-8}

Now list the hostnames of the machines that will act as Metadata
servers. This list may or may not overlap with the I/O server list.

* Enter hostnames [Default is localhost]: cluster1

Configured a total of 8 servers:
8 of them are I/O servers.
1 of them are Metadata servers.

* Would you like to verify server list (y/n) [Default is n]? y

****** I/O servers:
tcp://cluster1:3334
tcp://cluster2:3334
tcp://cluster3:3334
tcp://cluster4:3334
tcp://cluster5:3334
tcp://cluster6:3334
tcp://cluster7:3334
tcp://cluster8:3334

****** Metadata servers:
tcp://cluster1:3334

* Does this look ok (y/n) [Default is y]? y

Choose a file for each server to write log messages to.

* Enter log file location [Default is /tmp/pvfs2-server.log]:

Choose a directory for each server to store data in.

* Enter directory name: [Default is /pvfs2-storage-space]:

Writing fs config file... Done.
Writing 8 server config file(s)... Done.

Configuration complete!

We have now made all the config files for an 8-node storage cluster:

root@cluster1:˜# ls /etc/pvfs2/foo/
pvfs2-fs.conf pvfs2-server.conf-cluster5
pvfs2-server.conf-cluster1 pvfs2-server.conf-cluster6
pvfs2-server.conf-cluster2 pvfs2-server.conf-cluster7
pvfs2-server.conf-cluster3 pvfs2-server.conf-cluster8
pvfs2-server.conf-cluster4

Now the config files must be copied out to all of the server nodes. If you use the provided (Redhat style)
rc scripts, then you can simply copy all config files to every node; each server will pick the correct config
files based on its own hostname at startup time. The following example assumes that you will use scp to
copy files to cluster nodes. Other possibilities include rcp, bpcp, or simply storing the configuration files on
an NFS volume. Please note, however, that the rc script should be modified if you intend to store config files
in any location other than the default /etc/.

At this time, we also will copy out the example rc script an enable it on each machine.

root@cluster1:˜# for i in ‘seq 1 8‘; do
> scp /etc/pvfs2-server.conf-cluster${i} cluster${i}:/etc/
> scp /etc/pvfs2-fs.conf cluster${i}:/etc/
> scp /usr/src/pvfs2/examples/pvfs2-server.rc \

cluster${i}:/etc/rc.d/init.d/pvfs2-server
> ssh cluster${i} /sbin/chkconfig pvfs2-server on
> done

4.2 starting the servers

As with the single-machine case, you must run pvfs2-server with a special argument to create the storage
space on all the nodes if it does not already exist. Run the following command on every metadata or IO
node in the cluster:

root@cluster1# /usr/sbin/pvfs2-server /etc/pvfs2-fs.conf \
/etc/pvfs2-server.conf -f

Then once the storage space is created, start the server for real with a command like this on every
metadata or IO node in the cluster:

root@cluster1# /usr/sbin/pvfs2-server /etc/pvfs2-fs.conf \
/etc/pvfs2-server.conf

If you want to run the server in the foreground (e.g. for debugging), use the -d option.
If you wish to automate server startup and shutdown with rc scripts, refer to the corresponding section

3.2.1 from the single server example.

4.3 Client configuration

Setting up a client for multiple servers is the same as setting up a client for a single server. Refer to section
3.3.

4.4 Testing your Installation

Testing a multiple-server pvfs2 installation is the same as testing a single-server pvfs2 installation. Refer to
section 3.4

5 Configuring the PVFS2 Linux VFS Interface

Assuming you’ve mastered the download and installation steps of managing the PVFS2 source code, con-
figuring the PVFS2 Linux VFS Interface is relatively straight forward. We assume at this point that you
are familiar with running the server and that a PVFS2 storage space has already been created on the node
that you would like to configure for use with the VFS. We also assume that you are able to run a Linux
2.6.0-test4 kernel or later.

The basic steps are as follows:

• Make sure you are running Linux Kernel version 2.6.0-test4 or later

• Compile the PVFS2 Kernel Module against your running kernel

Check to make sure that you are running a Linux 2.6.0-test4 Kernel or later. You can do this in the
following manner:

gil:˜# cat /proc/version
Linux version 2.6.0-test4 (root@gil) (gcc version 3.3.1 20030722
(Debian prerelease)) #1 Thu Aug 14 14:32:57 CDT 2003

By issuing that command, we are able to inspect the output to ensure that we’re running an appropriate
kernel version. If your kernel is older than this version, please download the latest kernel available at:

http://www.kernel.org/pub/linux/kernel/v2.6/

(or your favorite mirror site)

Once you’re convinced the Linux kernel version is appropriate, it’s time to compile the PVFS2 kernel
module. This kernel module is built independently from the other parts of PVFS2. The first step in building
this module is generating the Makefile. To generate the Makefile, you need to make sure that you run
’./configure’ with the ’–with-kernel=path’ argument. An example is provided here for your convenience:

gil:/usr/src/pvfs2# ./configure --with-kernel=/usr/src/linux-2.6.0-test4

This example assumes that you’ve already downloaded, compiled, and are now running the kernel lo-
cated in the /usr/src/linux-2.6.0-test4 directory. After this command is issued, build the PVFS2 source tree
if it has not yet been built.

Building the kernel module should now be a trivial task. From the top level PVFS2 source directory,
you need to first change directory to the where the code is located, and then run make. You must perform
this step as root so that the build process can access dependency information in the kernel source tree. You
should see output similar to the following if your environment is properly configured:

gil:/usr/src/pvfs2# cd src/kernel/linux-2.6/
gil:/usr/src/pvfs2/src/kernel/linux-2.6# make
touch /usr/src/pvfs2/src/kernel/linux-2.6/pvfs2.mod.c
make -C /usr/src/linux SUBDIRS=/usr/src/pvfs2/src/kernel/linux-2.6
modules
make[1]: Entering directory ‘/usr/src/linux-2.6.0-test4’
make[2]: ‘arch/i386/kernel/asm-offsets.s’ is up to date.
*** Warning: Overriding SUBDIRS on the command line can cause
*** inconsistencies
CC [M] /usr/src/pvfs2/src/kernel/linux-2.6/pvfs2.mod.o
CC [M] /usr/src/pvfs2/src/kernel/linux-2.6/pvfs2-utils.o
CC [M] /usr/src/pvfs2/src/kernel/linux-2.6/waitqueue.o
CC [M] /usr/src/pvfs2/src/kernel/linux-2.6/devpvfs2-req.o
CC [M] /usr/src/pvfs2/src/kernel/linux-2.6/pvfs2-cache.o
CC [M] /usr/src/pvfs2/src/kernel/linux-2.6/dcache.o
CC [M] /usr/src/pvfs2/src/kernel/linux-2.6/file.o
CC [M] /usr/src/pvfs2/src/kernel/linux-2.6/inode.o
CC [M] /usr/src/pvfs2/src/kernel/linux-2.6/dir.o
CC [M] /usr/src/pvfs2/src/kernel/linux-2.6/namei.o
CC [M] /usr/src/pvfs2/src/kernel/linux-2.6/super.o
CC [M] /usr/src/pvfs2/src/kernel/linux-2.6/pvfs2-mod.o
CC [M] /usr/src/pvfs2/src/kernel/linux-2.6/pvfs2-bufmap.o
LD [M] /usr/src/pvfs2/src/kernel/linux-2.6/pvfs2.o
Building modules, stage 2.
MODPOST
CC /usr/src/pvfs2/src/kernel/linux-2.6/pvfs2.mod.o
LD [M] /usr/src/pvfs2/src/kernel/linux-2.6/pvfs2.ko

make[1]: Leaving directory ‘/usr/src/linux-2.6.0-test4’

At this point, we have a valid PVFS2 Kernel module. The module itself is contained in the output file
’pvfs2.ko’ located in the directory where the previous ’make’ command was issued. You may copy this
module to another location if it better suits your environment.

6 Testing the PVFS2 Linux VFS Interface

Now that you’ve built a valid PVFS2 kernel module, there are several steps to perform to properly use the
file system.

The basic steps are as follows:

• Create a mount point on the local filesystem

• Load the Kernel Module into the running kernel

• Mount your existing PVFS2 volume on the local filesystem

• Start the PVFS2 Server application

• Start the PVFS2 Client application

• Issue VFS commands

First, choose where you’d like to mount your existing PVFS2 volume. Create this directory on the local
file system if it does not already exist. Our mount point in this example is /mnt/pvfs2.

gil:˜# mkdir /mnt/pvfs2

Now load the kernel module into your running kernel. You can do this by using the ’insmod’ program.
You can then verify that the module was loaded properly using ’lsmod’ as follows:

gil:˜# insmod /usr/src/pvfs2/src/kernel/linux-2.6/pvfs2.ko
gil:˜# lsmod
Module Size Used by
pvfs2 52320 0

Note that the module size observed does NOT need to match that as shown above. Also, you can use
’rmmod’ to remove the PVFS2 module after it’s been loaded.

Now that the module is loaded, we can mount our PVFS2 file system (and verify that it’s properly
mounted) as follows:

gil:˜# mount -t pvfs2 pvfs2 /mnt/pvfs2
gil:˜# mount
/dev/hda3 on / type ext3 (rw,errors=remount-ro)
proc on /proc type proc (rw)
devpts on /dev/pts type devpts (rw,gid=5,mode=620)
/dev/hda1 on /boot type ext2 (rw)
pvfs2 on /mnt/pvfs2 type pvfs2 (rw)

NOTE: You can use ’umount’ to unmount the PVFS2 volume.
At this point, we need to start the PVFS2 server and the PVFS2 client applications before any VFS

operations will operate properly on the mounted PVFS2 volume. See previous sections on how to properly
start the PVFS2 server if you’re unsure. Starting the PVFS2 client is covered below.

The PVFS2 client application consists of two programs. pvfs2-client-core and pvfs2-client. Do not run
pvfs2-client-core by itself. pvfs2-client is the PVFS2 client application. This application cannot be started
unless the PVFS2 server is already running. Here is an example of how to start the PVFS2 client:

gil:/usr/src/pvfs2# cd test/kernel/linux-2.6/
gil:/usr/src/pvfs2/test/kernel/linux-2.6# ./pvfs2-client -f -p ./pvfs2-client-core
pvfs2-client starting
Spawning new child process
About to exec ./pvfs2-client-core
Waiting on child with pid 17731

The -f argument is not required. For reference, this keeps the PVFS2 client application running in the
foreground.

The -p argument is required unless the pvfs2-client-core is installed and can be found in your PATH.
Now that the PVFS2 server and PVFS2 client applications are running, normal VFS operation can be

issued on the command line. An example is provided below:

gil:/usr/src/pvfs2/src/kernel/linux-2.6# mkdir /mnt/pvfs2/newdir
gil:/usr/src/pvfs2/src/kernel/linux-2.6# ls -al /mnt/pvfs2/newdir
total 1
drwxr-xr-x 2 root root 0 Aug 15 13:29 .
drwxr-xr-x 3 root root 0 Aug 15 13:21 ..
gil:/usr/src/pvfs2/src/kernel/linux-2.6# cp pvfs2.ko
/mnt/pvfs2/newdir/foo
gil:/usr/src/pvfs2/src/kernel/linux-2.6# ls -al /mnt/pvfs2/newdir
total 2
drwxr-xr-x 2 root root 0 Aug 15 13:29 .
drwxr-xr-x 3 root root 0 Aug 15 13:21 ..
-rw-r--r-- 1 root root 330526 Aug 15 13:30 foo

A APPENDIX: Notes on running PVFS2 without root access

The preceding documentation assumes that you have root access on the machine(s) that you wish to install
the file system. However, this is not strictly required for any component except for the kernel VFS support.
The servers, client libraries (such as MPI-IO), and administrative tools can all be used by non-priviledged
users. This may be particularly useful for evaluation or testing purposes.

In order to do this, you must make the following adjustments to the installation and configuration pro-
cess:

• Use the –prefix option at configure time to choose an alternate directory (one that you have write
access to) for installation. An example would be /home/username/pvfs2-build.

• When generating the server config files, choose a data storage directory that you have write access to,
but preferably not NFS mounted. An example would be /tmp/pvfs2-test-space.

• Place the pvfs2tab file in an alternate location, such as /home/username/pvfs2-build/pvfs2tab, instead
of /etc/pvfs2tab. Then set the PVFS2TAB FILE environment variable to the full path to this file. A
tcsh example would be: “setenv PVFS2TAB FILE /home/username/pvfs2-build/pvfs2tab”.

B APPENDIX: Debugging your PVFS2 configuration

Bug reports and questions should be directed to the PVFS2 users mailing list for best results (see the PVFS2
web site for details: http://www.pvfs.org/pvfs2/lists.html). It is helpful to include a description of your
problem, the PVFS2 version number, and include relevant log information from /var/log/messages and
/tmp/pvfs2-server.log.

People who wish to find more verbose information about what the file system is doing can enable extra
logging messages from the server. This is done by adjusting the “EventLogging” field in the file system
configuration file. By default it is set to “none”. You can set it to a comma seperated list of log masks to
get more information. An example would be “EventLogging storage,network,server”, which will result in

verbose messages from the storage subsystem, the network subsystem, and server state machines. WARN-
ING: this may result in extremely large log files! The logging masks can also be set at runtime using the
pvfs2-set-debugmask command line tool. Usage information and a list of supported masks will be shown if
it is run with no arguments.

