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Abstract

This work presents the design of theCovenframework
for construction of Problem Solving Environments (PSEs)
for parallel computers. PSEs are an integral part of modern
high performance computing (HPC) and Coven attempts to
simplify PSE construction.

Coven targets Beowulf cluster parallel computers but in-
dependent of any particular domain for the PSE. Multi-
threaded parallel applications are created with Coven that
are capable of supporting most of the constructs in a typi-
cal parallel programming language. Coven uses an agent-
based front-end which allows multiple custom interfaces to
be constructed.

Examples of the use of Coven in the construction of pro-
totype PSEs are shown, and the effectiveness of these PSEs
is evaluated in terms of the performance of the applications
they generate.

1. Introduction

Problem Solving Environments (PSEs) are an integral
part of modern high performance computing (HPC). Due
to the increasing complexity of the types of simulations be-
ing run and the underlying problems being modeled, as well
as the increasing complexity of the computer systems em-
ployed, traditional means of writing simulation software no
longer remain practical.

PSEs help to manage the complexity of modern scien-
tific computing. A good PSE provides a user with a com-
fortable, familiar interface. It hides many of the details of
the computer system, the application, or both. A good PSE
is flexible enough to allow the user to solve the problem yet
powerful enough to provide reasonably high performance

though perhaps not as good as a hand-tuned application.
A few PSEs which meet this criteria have been developed

in certain domains for certain classes of computer systems.
Khoros [7] is a PSE developed initially by the University of
New Mexico and later by Khoral Research, Inc. In Khoros,
modules (orglyphs) are connected to form dataflow graphs.
Glyphs are separate, sequential programs which pass data
between other glyphs through the host file system. Each
glyph reads inputs from a file and writes outputs to be con-
sumed by other glyphs into a file. Cactus [8] is a PSE for
solving grid-based problems on parallel computers. With
Cactus, modules (or thorns) are placed into the driver (or
flesh) and run in parallel. CAMEL (Cellular Automata envi-
ronMent for systEms modeLing) is a cellular automata envi-
ronment developed by researchers in Italy [1], [9]. CAMEL
provides a language called Carpet in which scientists can
design cellular automata parallel programs with little under-
standing of parallel computing. J. Cuny et al. [3] developed
a parallel programming environment for studying seismic
tomography as well as several visualization tools. The Open
Source Software Image Map (OSSIM) [6] is a software tool
being developed for solving remote sensing applications on
a parallel computer through modular program development.

The problem of constructing these PSEs remains a daunt-
ing task. Although there are many good examples of PSEs,
little of what has been done to create existing PSEs can be
reused to create new ones, and a general model for building
PSEs has not yet emerged [10].

Two important characteristics of a good PSE framework
areflexibility and good use ofabstraction. Flexibility must
exist in the ability to support a wide range of computational
models that various domains may require, as well as the
flexibility to support a wide range of interfaces. Abstraction
must be used to carefully hide the details of both the un-
derlying computer system and the problem domain where
appropriate.



In this work, we present the design of theCovenframe-
work for construction of PSEs. Coven attempts to address
the issues above, and simplify PSE construction. Coven

• has a multi-threaded parallel runtime system that

– targets Beowulf cluster parallel computers,

– uses a runtime generated data structure known
as a Tagged Partition Handle to manage parti-
tioning data sets among the cluster nodes,

– executes applications capable of supporting
most of the constructs in a typical parallel pro-
gramming language,

• has an agent-based front-end which

– allows multiple custom interfaces to be con-
structed,

– stores information about the specification, im-
plementation, and performance of the applica-
tion in an attributed graph format on the front-
end, and

– provides a way for agents to filter the attribute
information stored in the graph to provide suit-
able abstractions for a particular class of user,

• and has a module library with

– predefined system modules, and

– reusable application modules.

The rest of this paper is organized as follows. Section 2
gives an overview of the Coven architecture. Detailed de-
scription of the runtime support is provided in Section 3
and the graphical user interface is described in Section 4.
Section 5 compares Coven with several similar projects and
some examples of customization of Coven to particular tar-
get environments is given in Section 6. Section 7 shows
performance results for applications generated by two of the
prototype PSEs created with Coven.

2. Coven Overview

Coven is a framework for building problem solving en-
vironments for parallel computers. It is composed of three
main portions: a runtime driver running on a parallel com-
puter, a front-end running on a workstation, and a module
library residing on the workstation. Figure 1 depicts the re-
lationship between these components.

The front-end is used for modular program design where
modules are interconnected to form a dataflow graph. In
Coven, modules are subroutines in either C or FORTRAN
with special directives that identify inputs and outputs
placed at the beginning. Modules are compiled and stored
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in the module library. The code generator transforms the
dataflow graph into an internal representation which the
runtime driver uses. This representation and the referenced
modules are then transferred to the runtime driver (shown in
Figure 2) on a parallel computer for execution.

All data within Coven’s runtime driver is encapsulated
into a data structure called a Tagged Partition Handle (TPH).
As TPHs pass through modules, the modules read data from
and add new data to the TPHs. At any instance in time,
many TPHs are flowing through the system.

The Coven runtime driver runs on each processor and is
multi-threaded. The user can define how many threads are
used and which modules run under which thread. Coven’s
runtime driver internally maintains a TPH queue for each
thread. With this approach, a great deal of pipelining as well
as asynchronous computation, I/O, and communication can
be achieved.

The runtime driver and front-end can both be extended
for target PSEs. This extensibility makes it possible to cus-



tomize the Coven framework to an application domain by
changing the view of the computation presented in the in-
terface to be more familiar to the application domain user.

The Coven framework builds on prior work in PSE toolk-
its done in CECAAD [11]. CECAAD provides basic sup-
port to allow a group of independent tools to collaborate on
a shared design stored as an attributed graph. The CECAAD
project sought to provide a toolkit for building PSEs in gen-
eral, regardless of type of computer architecture employed
for the back-end. Coven builds on this model and targets
message passing programs for Beowulf clusters specifically
in its back-end. From CECAAD, Coven uses the attributed
graph format for the shared design (ADF - the algorithm
description format) and the GUI ADF editor. Coven also
employs the CECAAD agent model to provide an interface
to ADF, access to a design database and for synchronization
between agents.

Coven takes CECAAD one step further and provides a
back-end and runtime environment. Coven is then in turn
extended by custom front-ends and to provide a complete
PSE.

Coven has evolved from a PSE which had an image pro-
cessing, macro dataflow input/output relationship model.
Most problems within this model fit very easily and nicely.
Some computation, such as ones which are iterative or per-
form data rearranging, do not fit well within this simple flow
graph model. The modification of the Coven framework to
allow for modules to control flow of TPHs and communi-
cate with other modules (either on the current processor or
another parallel processor) broadens the range of possible
computations.

3. Coven Runtime Driver

Coven’s runtime driver (Figure 2) is composed of sev-
eral pieces. An internal data structure, the Tagged Parti-
tion Handle, is used by the system for transfer of data be-
tween modules and is described in Subsection 3.1. Different
classes of modules exist within Coven and are outlined in
Subsection 3.2. Finally, the many components which make
up Coven are outlined in Subsection 3.3.

3.1. The Tagged Partition Handle

The Tagged Partition Handle(TPH) is an internal data
structure within Coven. TPHs are structures which hold
buffers of data and provide means for creating, accessing,
modifying, and destroying these buffers. All inputs to and
outputs from modules are managed through TPHs. Helper
functions are provided so module programmers need not in-
teract directly with the data structure. Access to buffers is
through a tag which provides a way for a module to describe
the data it wants to process (or create). This is especially

important in a parallel system where the data passes from
machine to machine and likely will not reside within the
same address space.

Most sequential programs in a conventional program-
ming language have “the data space.” This exists as a piece
of memory where data can be created, accessed, destroyed,
etc. This is sometimes static (FORTRAN) or dynamic (Java,
or C). Mechanisms for accessing this data are provided by
the language.

Parallel programs, however, break the data space in two
different ways: spatially and temporally. An example of
spacial partitioning of data is where a matrix is divided into
submatrices which are processed by different tasks. An ex-
ample of temporal partitioning of data is when a piece of
data exists on one processor at some time and then exists
solely on another processor at another time.

Consider matrix multiplication algorithms like Cannon’s
algorithm or Fox’s algorithm. In these, each processor holds
a subarray of each of the two input matrices. Then each
processor exchanges submatrices of one matrix vertically,
and the other horizontally. Part of writing a parallel program
is knowing how to get the right data together in the same
place at the same time.

In a general model of parallel computation a task is a se-
quential set of computations performed on a piece of data.
Within Coven, a task is created by the combination of a
module (a piece of code which operates on some data) and
a TPH (a data structure containing related data). The ob-
jective is to schedule the execution of modules and TPHs
to perform tasks in parallel. The Coven runtime driver pro-
vides means for this which allows for overlapping of I/O,
computation, and communication.

3.2. Application and System Modules

There are two classes of modules within Coven:appli-
cation modulesandsystem modules. The two classes differ
only in the types of operations they perform. There is no
distinction to the runtime engine between the two classes.

Application modules are modules which are written by
an application designer. Examples of this type of module
would be those which:

• compute the resultant of multiplication of two vec-
tors,

• compute the partial force between two bodies,

• calculate the latitude and longitude of a buffer of grid-
points, or

• update a temperature matrix based on values of neigh-
boring cells.



System modules are modules which are probably written
by someone familiar with parallel computing, load balanc-
ing techniques, etc. Examples of this type of module would
be those which:

• perform parallel communication (such as with MPI),

• partition data,

• create TPHs, or

• consume TPHs.

Through system modules, the distribution of TPHs (and
therefore the scheduling of tasks) can be steered. This al-
lows users to write (or import) modules to customize these
tasks to individual problems. For example, when partition-
ing data modules decide where TPHs go and the runtime
driver actually transports the TPHs. As another example, re-
sults from parallel computation are stored in TPHs residing
in modules in the parallel tasks. These results often have to
be combined into a single result (placing submatrices into
a larger matrix, compositing image partitions into a larger
image, etc). This task can be performed by a module which
consumes TPHs - it accepts many TPHs as input and pro-
duces a single TPH upon completion.

Common system modules (such as parallel data distribu-
tion modules) would typically be available in the module
library for easy use in many applications. If an appropri-
ate module does not exist in the library, a new one can be
written.

3.3. Runtime Driver Components

Coven’s runtime driver executes on a parallel computer.
Specifically, the target machine is a Beowulf-class super-
computer. Beowulf clusters [12] are large computers com-
prised of commodity off-the-shelf (COTS) hardware com-
ponents such as inexpensive memory, EIDE disks, com-
modity networks, and conventional CPUs. The software
(including operating system, parallel programming libraries
and tools) are open source and are available for development
of user code.

Coven executes on a dataflow graph of interconnected
modules (subroutines). Modules are dynamically loaded
from a library of modules by theModule Loader. All data
is managed by and accessed through TPHs. Each module
is assigned a thread and any number of modules can exist
within the same thread. Data is passed sequentially between
modules in the same thread and is then enqueued on the next
thread (on the same process or possibly another process).

Each thread runs a component named theProgram Se-
quencerwhich handles the tasks of dequeuing TPHs, run-
ning modules, and enqueuing the TPHs on other threads.
Queues of TPHs are maintained before every thread. The

use of queues, as well as a user-tunable maximum number
of TPHs in any queue, allows Coven to get a large pipeline
of TPHs flowing through the system. Additionally, the run-
time driver can take full effect of asynchronous computa-
tion, I/O, and communication as the operating system will
handle scheduling threads as they have data ready to pro-
cess.

Coven supports profiling. TPHs are profiled as they enter
and leave queues, modules, threads, and processes. Profil-
ing is also performed of interprocess communication and
file I/O. Large profiling reports are generated during and
after a parallel job is run. Front-end agents can make use
of this profiling information to produce a graphical view of
program performance. A prototype agent that provides a
simple profile has been constructed. Tools that can take full
advantage of Coven’s advanced profiling are being devel-
oped. It is expected that these tools will allow visualization
of the life cycle of TPHs. Queuing analysis will be possible
as will visualization of which modules and threads spent the
most time executing.

4. Coven Front-End

Coven’s front-end runs on a workstation separate from
the runtime environment running on a Beowulf cluster. The
front-end is used to generate the Coven program which will
run under the runtime driver. This program can be hand-
coded or a tool such as the code generator (Figure 1) can
assist in this process.

A key part of the front-end is to assist programmers in
writing their application. This can be done through differ-
ent kinds of interfaces such as language-based or graphical.
CECAAD has agents for both language-based and graphical
specification.

The graphical front-end which was adapted from CE-
CAAD provides (through ADF) a framework for graphical
agents to act on the design (or dataflow graph). A graph
editor agent is used for building the dataflow graph. This
agent provides a drag-and-drop interface where modules are
placed into either sequential or parallel regions and then in-
terconnected. Each module is assigned a thread under which
it will execute in the runtime driver. Figure 3 depicts the
graphical editor agent with a sequential region for problem
decomposition, a parallel region with many interconnected
modules, and a sequential region following for combination
of parallel results.

All modules referenced in the dataflow graph reside
within the module library. Each modules contain special
directives which retrieve inputs from TPHs and create new
outputs. These directives contain the type of the data as well
as user-specified text descriptions. Whenever a user places
a module in the dataflow graph or modifies an existing one,
a parsing agent is run on the resulting C or FORTRAN code



Figure 3. Graphical Editor Agent

which extracts this information. Coven then has a form of
introspection, which is the ability to query a module and de-
termine what its interface is. This information is then stored
in the attributed graph.

Agents exist which take this information and can alter
the way in which the user visualizes the dataflow graph. For
instance, textual descriptions of each data line can be shown
which can assist in visualizing the process as well as inter-
connecting modules.

Another agent is the code generator. This agent trans-
forms the user-specified dataflow graph into a sequential
listing of modules to run. Those modules marked as paral-
lel are scheduled to run on each node of the Beowulf cluster.
Sequential modules are run only on the master node of the
cluster. The Code Generator also labels which threads each
module will run under and creates directives that the driver
uses at runtime.

5. Related Work Comparison

Coven provides an input / output relationship between in-
terconnect modules very similar to Khoros. Unlike Khoros,
in which each module is a separate sequential program,
modules in Coven are dynamically loaded and run within
a single parallel program. Data passes between modules us-
ing the TPH interface and is maintained completely within
main memory instead of using files as in Khoros.

OSSIM provides a parallel runtime environment for re-
mote sensing applications. An internal data structure called
a tile is used for partitioning of data and distribution of data
between modules. This approach is similar to the TPH ap-
proach in that it provides a data partitioning mechanism but

not as flexible in that it does not provide a way to keep re-
lated data together or provide a tagged access mechanism.
While a GUI for dataflow graph generation is planned, OS-
SIM does not yet have a tool such as the graphical editor
agent of Coven.

Cactus is a PSE for grid-based applications only. As with
OSSIM, Cactus does not yet provide a GUI for dataflow
graph creation. Coven is based on a PSE designed for
non-cyclic dataflow (such as remote sensing) applications.
Coven attempts to generalize the PSE for parallel programs
to work in radically different domains such as grid-based,
iterative, and data rearranging computations.

6. Prototype PSEs

Two prototype environments have been created from
Coven at this time. The first isThe Component-based Envi-
ronment for Remote Sensing (CERSe)[5, 4].

The second isMedea, a PSE for n-body simulations.

6.1. CERSe

CERSe targets processing of satellite data and common
remote sensing algorithms such as Normalized Difference
Vegetation Index (NDVI), cloud masking, and Sea Surface
Temperature (SST) [2]. Individual datasets are recombined
and fused together with other datasets to create a composite
result. This composite is projected into a standard coordi-
nate system for visualization.

CERSe customizes the Coven framework by providing
tools for data selection and visualization. Agents were cre-
ated which prompt the user for a region of interest (Figure 4)



Figure 4. Latitude / Longitude Selector

Figure 5. Database Dataset Selector

and then query a relational database for available datasets
which meet the requirements (Figure 5). Users are also able
to constrain the search to meet temporal criteria such as time
of day, week, month or year as well as which satellites are
to be used. An agent then estimates the overlap of each se-
lected dataset with the chosen bounding box and presents
this to the user so that they may select those datasets which
they feel best fit the region. During runtime, results are sent
back from the Coven runtime driver to an agent which vi-
sualizes intermediate results. This has the effect of being
able to watch as the composite projected image evolves over
time.

6.2. Medea

The Medea prototype environment based on the Coven
framework is for n-body simulations. An interface for cre-
ating applications which is very similar to CERSe is pro-
vided. The user can specify the number of bodies to simu-
late and an Open-GL 3-D agent is available for visualizing

Figure 6. Medea Open-GL 3-D Visualization
Agent

results in real-time (Figure 6). This agent provides a fully
controllable 3-D world in which the user can watch the sim-
ulation evolve over time. Custom modules were built which
write checkpoint information to disk for off line visualiza-
tion. Modules have been built and tested which alter the
governing physical equations, the level of gravity, and the
interaction between colliding bodies.

7. Performance Results

A sequential NASA legacy remote sensing code was con-
verted into a parallel Coven application within the CERSe
prototype PSE for use as a performance test. This applica-
tion computes the Normalized Difference Vegetation Index
(NDVI) [2], masks clouds, and projects the output to a com-
mon coordinate system.

The Beowulf cluster used as a testbed consisted of 32
nodes with dual 1GHz Pentium III processors and 1GB
memory. The nodes were connected by Fast Ethernet and
running Scyld Beowulf with a Scyld modified 2.2.19 Linux
kernel. Each node had 60GB of disk space. For these tests
remotely sensed Advanced Very High Resolution Radiome-
ter (AVHRR) satellite data was replicated and placed on the
local disks of each processor. This allows fair, local access
to all data files without concern for overhead due to net-
work access of data. A parallel MPI version (without use of
Coven) was not implemented for this problem. The Coven-
based version of this code running on a single processor im-
posed a 12% overhead in execution time over the sequen-
tial version. This overhead is due to the use of components
(queues, threads, TPHs, etc.) which do not begin to show
benefit without parallelism. Figure 7 is a comparison of the
normalized execution time of the CERSe NDVI application
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running on one processor when compared to the sequen-
tial version. Figure 8 is the speedup graph of this applica-
tion running on up to 32 nodes of the Beowulf cluster. For
this graph the execution time of the sequential program was
used for speedup calculations. Figure 8 shows good scala-
bility to around 16 compute nodes. The tapering off effect
seen when 32 nodes are used is due to a sequential portion
of the NDVI code. This code segment (module) reassem-
bles results of dataset partitions into a final result. When
more compute nodes are employed the node responsible for
this module becomes overloaded with dataset partitions to
process. Modules which assemble the results in parallel are
being designed to address this drop off in scalability.

The second set of tests were performed using an n-body
application. A sequential application was used for speedup
calculations and a simple parallel version was implemented.
Medea was used to implement a Coven-based n-body pro-
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gram and tests were performed on the same cluster as the
NDVI application to compare the three codes. Figure 9 is a
comparison of the normalized execution time of the parallel
n-body and Medea n-body applications when compared to
the sequential version. Figure 10 is the speedup graph of
this application running on up to 32 nodes of the Beowulf
cluster. The Coven-based parallel n-body code runs slightly
slower than the hand-coded MPI parallel program. This ex-
ample indicates the level of overhead incurred by the mod-
ularity and abstraction provided by the Coven environment.

The design of the n-body program with Medea did re-
quire creation of new system modules to do parallel commu-
nication with other parallel modules. These modules now
exist in the module library which is anticipated in time to
become an extensive library.



8. Conclusions and Future Work

In this work, we have presented a customizable frame-
work for the creation of problem solving environments. The
use of this framework to build domain-specific problems
solving environments capable of taking advantage of Be-
owulf clusters has been demonstrated. Applications built
from the prototype environments were found to have rea-
sonably high performance. The use of the framework has
also shown the possibility of identifying a common core for
problem solving environments which can be reused from
one PSE to the next, taking advantage of the framework to
speed the PSE construction process. In the future we plan
to continue to investigate the flexibility of the framework
by creating additional prototype PSEs from Coven in new
domains, and to continue to study the effectiveness of the
PSEs themselves as well as the Coven framework.
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