
1

Coven
a Framework for High Performance 

Problem Solving Environments

� Nathan A. DeBardeleben
� Walter B. Ligon III

Sourabh Pandit
� Dan C. Stanzione Jr.

�

� Parallel Architecture Research Laboratory
� Clemson University



2

Problem Solving
Environments in HPC

�PSEs are integral parts of modern HPC
�Help manage complexity of modern scientific computing
�Good PSE hides many details of the system, application, or 

both
�Good PSE flexible enough to solve the problem yet 

powerful enough to provide reasonably high 
performance



3

PSE Construction

�Some good examples of PSEs for HPCs, but specific to an 
application domain

�Little work has been done in creating a reusable 
framework for PSE construction

�Two important characteristics of a good PSE framework:
�Flexibility

�The ability to support a wide range of computational models that 
various domains may require

�Abstraction
�Carefully hide the details of both the underlying computer system 

and the problem domain, where appropriate



4

Coven

�Framework for building PSEs for parallel computers
�Three main components: runtime system, front-end, and 

module library



5

Runtime Driver

�Multi-threaded parallel runtime system
�Targets Beowulf clusters
�Uses a runtime generated data structure (TPH) to manage 

partitioning data sets among cluster nodes
�Executes applications capable of supporting most parallel 

programming constructs



6

Agent Based Front End

�Allows multiple custom interfaces to be constructed
�Stores information about the specification, 

implementation, and performance of the application in an 
attributed graph format

�Facilitates ways for agents to provide suitable abstractions 
for a particular class of user



7

GUI Screenshot



8

Module Library

�Collaborative repository
�Many pre-defined modules
�Users can add their own modules
�Holds both system and application modules
�Transfers modules from the front-end (GUI) machine to 

the back-end (parallel) machine



9

Tagged Partition Handle

�Internal data structure within Coven
�Hold buffers of data and provide means for creating, 

accessing, modifying, and destroying these buffers
�Handles all inputs to and outputs from modules
�Since TPHs pass from machine to machine, module 

programmers describe the data to access through a tag



10

Tagged Partition Handle

�Parallel task
�Module

�Piece of code which operates on some data
�Tagged Partition Handle

�Data structure containing related data
�Goal is to schedule execution of modules and TPHs to 

perform tasks in parallel
�Coven runtime driver provides means for this which 

allows overlapping of I/O, computation, and 
communication



11

Modules

�Reside in the module library on front-end machine
�Transferred to parallel computer upon execution
�Two classes of modules:

�Application modules
�System modules



12

Application Modules

�Written by an application designer
�Examples:

�Compute resultant of vector multiplication
�Compute partial force between two bodies
�Calculate lat / long of a buffer of grid points
�Update a temperature matrix based on values of neighboring 

cells



13

System Modules

�Written by someone familiar with parallel computing, load 
balancing, etc.

�Allows for steering of computation
�Examples:

�Perform parallel communication such as shifting data to 
neighbor in a parallel stage (such as with MPI)

�Partition data
�Create TPHs
�Consume TPHs



14

Prototype PSEs

�CERSe
�Remotely sensed satellite data
�Legacy NASA remote sensing code

�Medea
�N-Body simulations

�Still in development
�Molecular dynamics
�CFD / Heat transfer



15

CERSe



16

Medea



17

NDVI Performance



18

N-Body Performance



19

Conclusions and Future Work

�Presented a customizable framework for the creation of 
PSEs for HPCs

�Prototype PSEs have been demonstrated
�Applications built using these PSEs have achieved 

promising performance
�Coven can speed up the PSE construction process
�Create additional prototype PSEs to evaluate the flexibility 

of the framework
�Study performance tuning with the framework



20

Acknowledgements

�This work was supported in part by:
�NASA grant NAG5-8605
�ERC Program of the National Science Foundation under Award 

Number EEC-9731680
�The Parallel Architecture Research Laboratory

�http://www.parl.clemson.edu

http://www.parl.clemson.edu/


21


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

