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Problem Solving
Environments in HPC

�PSEs are integral parts of modern HPC
�Help manage complexity of modern scientific computing
�Good PSE hides many details of the system, application, or 

both
�Good PSE flexible enough to solve the problem yet 

powerful enough to provide reasonably high 
performance
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PSE Construction

�Some good examples of PSEs for HPCs, but specific to an 
application domain

�Little work has been done in creating a reusable 
framework for PSE construction

�Two important characteristics of a good PSE framework:
�Flexibility

�The ability to support a wide range of computational models that 
various domains may require

�Abstraction
�Carefully hide the details of both the underlying computer system 

and the problem domain, where appropriate
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Coven

�Framework for building PSEs for parallel computers
�Three main components: runtime system, front-end, and 

module library
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Runtime Driver

�Multi-threaded parallel runtime system
�Targets Beowulf clusters
�Uses a runtime generated data structure (TPH) to manage 

partitioning data sets among cluster nodes
�Executes applications capable of supporting most parallel 

programming constructs
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Agent Based Front End

�Allows multiple custom interfaces to be constructed
�Stores information about the specification, 

implementation, and performance of the application in an 
attributed graph format

�Facilitates ways for agents to provide suitable abstractions 
for a particular class of user
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GUI Screenshot
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Module Library

�Collaborative repository
�Many pre-defined modules
�Users can add their own modules
�Holds both system and application modules
�Transfers modules from the front-end (GUI) machine to 

the back-end (parallel) machine
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Tagged Partition Handle

�Internal data structure within Coven
�Hold buffers of data and provide means for creating, 

accessing, modifying, and destroying these buffers
�Handles all inputs to and outputs from modules
�Since TPHs pass from machine to machine, module 

programmers describe the data to access through a tag
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Tagged Partition Handle

�Parallel task
�Module

�Piece of code which operates on some data
�Tagged Partition Handle

�Data structure containing related data
�Goal is to schedule execution of modules and TPHs to 

perform tasks in parallel
�Coven runtime driver provides means for this which 

allows overlapping of I/O, computation, and 
communication
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Modules

�Reside in the module library on front-end machine
�Transferred to parallel computer upon execution
�Two classes of modules:

�Application modules
�System modules
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Application Modules

�Written by an application designer
�Examples:

�Compute resultant of vector multiplication
�Compute partial force between two bodies
�Calculate lat / long of a buffer of grid points
�Update a temperature matrix based on values of neighboring 

cells
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System Modules

�Written by someone familiar with parallel computing, load 
balancing, etc.

�Allows for steering of computation
�Examples:

�Perform parallel communication such as shifting data to 
neighbor in a parallel stage (such as with MPI)

�Partition data
�Create TPHs
�Consume TPHs
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Prototype PSEs

�CERSe
�Remotely sensed satellite data
�Legacy NASA remote sensing code

�Medea
�N-Body simulations

�Still in development
�Molecular dynamics
�CFD / Heat transfer
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CERSe
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Medea
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NDVI Performance
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N-Body Performance
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Conclusions and Future Work

�Presented a customizable framework for the creation of 
PSEs for HPCs

�Prototype PSEs have been demonstrated
�Applications built using these PSEs have achieved 

promising performance
�Coven can speed up the PSE construction process
�Create additional prototype PSEs to evaluate the flexibility 

of the framework
�Study performance tuning with the framework
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