
Coven Module Writer’s Guide
Parallel Architecture Research Laboratory

version 1.1

Nathan DeBardeleben

February 13, 2003

Contents

1 Introduction 3

2 Module Concepts 3

3 Coven Data Types 3

4 Coven Type Modifiers 3
4.1 Scalar Modifiers . 4

4.1.1 const Modifier . 4
4.1.2 input Modifier . 4
4.1.3 output Modifier . 4
4.1.4 inout Modifier . 5

4.2 Buffer Modifiers . 5
4.2.1 const Modifier . 5
4.2.2 input and inout Modifiers . 5
4.2.3 output Modifiers . 6

4.3 static Modifier . 6

5 Variable Names / Local Bindings 6

6 Buffers and Buffer Sizes 7

7 Putting it all Together 7

8 User Defined Data Types 8

9 Advanced Concepts 9
9.1 Scatter and Gather . 10

9.1.1 Scatter Example . 10
9.1.2 Gather Example . 11

9.2 Direct TPH Access . 13
9.3 Interesting extern Variables Available . 13

9.3.1 int myProcessorNumber . 13
9.3.2 int num Slave Processors . 13
9.3.3 MPI Comm MPI COMM THIS PARALLEL TASK 13

1

A Example Module 14

2

1 Introduction

This document is intended to serve as a manual on how to write modules for Coven. Coven is a
product of the Parallel Architecture Research Laboratory at Clemson University.

2 Module Concepts

A module in Coven is a single function with inputs and outputs and is contained within a single C
file. The file may have multiple C functions that are called from the Coven module function but
only one module may reside inside of each file.

Arguments are passed into and out of functions through specific constructs which are defined
in this document. As such, the normal prototype of a function:

int function(int arg1, char **arg2, float arg3, double *arg4)

will appear very different in Coven.
Modules are self contained. It is important when you write modules to not make any assump-

tions about what other modules this one will operate with. This is because those modules may be
replaced by other modules and as long as the interface between them (inputs and outputs) remain
constant the program writer will expect the behavior to remain the same. The module writer
should focus on making the module perform a specific, detailed task.

3 Coven Data Types

The following basic data types are defined in Coven. You can make scalar or buffers of these types:

• char

• unsigned char

• short

• unsigned short

• int

• unsigned int

• float

• double

• string

When creating data of these types they should be written exactly as above. For instance, uchar
or char ** are invalid types in Coven.

4 Coven Type Modifiers

All types must be modified in Coven. The following are possible Coven modifiers:

• const

• input

3

• output

• inout

The modifiers have slightly different meanings depending on whether they are modifying scalar
values or buffers.

4.1 Scalar Modifiers

4.1.1 const Modifier

The const modifier is only for input scalar values. A special portion of the Coven program (see
Coven Program Writer’s Guide) is used to define constants and their values before program execu-
tion.

While Coven does nothing directly to keep a programmer from modifying a constant value, the
action of modifying any constant is undefined. In general it can be assumed that any change to
a constant will not be seen outside of that module, even during multiple executions of the same
module.

Examples of const types are things like:

• the number of grid points in a simulation

• the maximum temperature

• the address of a machine to visualize the data on

In C, a Coven const might look something like:

const float max_temperature;

4.1.2 input Modifier

The input modifier is used to get a copy of a value that can not be modified. This is similar to a
const but differs in that this value was not known at the start of a program. Therefore, to use the
input modifier some module before hand must have created the required datum.

Examples of input types are things like:

• the current iteration

• the number of grid points processed so far

• the next portion of a buffer to search

In C, a Coven input might look something like:

int cur_iteration;

4.1.3 output Modifier

The output modifier is used create a value that will be set at some point in the module. This value
can be used by later modules by reading it with an input modifier.

When the programmer asks for an output type they will be handed a pointer to the variable
after it has been created. Therefore, to set the value the programmer must access it as they would
any C pointer. It is helpful to think of the output type as having been passed by reference.

Examples of output types are things like:

4

• the current iteration

• the number of grid points processed so far

• the next portion of a buffer to search

Notice that these are the same examples as from input because they must first be output before
they can be read as input.

In C, a Coven output might look something like:

int * cur_iteration;
. . .
cur_iteration = 0; / set it to zero */

4.1.4 inout Modifier

The inout modifier is used to access a value that has previously been created with an output call.
This differs from an input type in that the programmer is returned the variable as a pointer. With
this pointer, the programmer can read the value by dereferencing it, or set it by also dereferencing
it.

Examples of inout types are things like:

• the current iteration

• the number of grid points processed so far

• the next portion of a buffer to search

In C, a Coven output might look something like:

int * cur_iteration;
. . .
*cur_iteration = *cur_iteration + 1; /* increment by one */

4.2 Buffer Modifiers

4.2.1 const Modifier

Constant buffers do not make any sense in Coven so you cannot use this modifier.

4.2.2 input and inout Modifiers

The input and inout modifiers both mean the same thing in Coven. Coven does not maintain any
consistency to prevent module programmers from modifying input typed data. The rule of thumb
that must be followed by module programmers, however, is that any buffer data that is modified
within the module should be declared as inout.

The distinction is particularly important to Coven because inout data imposes a data depen-
dency on the dataflow graph used in the graphical interface. The reason for this is that data that
is declared as input only Coven reserves the right to perform optimizations on the data, such as
replicating the buffer to separate modules. If the modules were to modify the data and expect the
results to propagate further then undefined behavior may result.

5

4.2.3 output Modifiers

The output modifier instructs Coven to create a buffer of the specified type and size. Size here
is defined as the number of elements, not the number of bytes. A buffer of the requested size and
type will be created and returned so that it can be accessed and used throughout the module.

4.3 static Modifier

In addition to the above modifiers a type may be modified further with the use of the static
modifier. It is important to note that static must be used in conjunction with the other modifiers
input, output, and inout. It does not make sense to modify const with static.

The static modifier allows data to be created or access that will only be seen by this module and
instances of this module running on the same process. This is a very important distinction. Static
variables will not be propagated to other modules. Therefore, it is likely that the only acceptable
modifier to static is the inout type modifier.

An example of the use of a static modifier is when performing socket operations through a
visualization. For example, new sockets are assigned a file descriptor int value. That value is
used for all socket transactions until the socket is closed. If we were to write a module to send
visualization data across a socket it would be to our advantage to leave the socket open for as long
as possible. Additionally, assume that we were sending visualization data every iteration, perhaps
over thousands of iterations. In Coven, the best way to handle this would be through a static
inout variable. In this way, the first time the module was called we could notice the file descriptor
was -1 (unopen), open the connection, and assign the socket ID to the static inout variable.
Then, when this module was called on another iteration the socket ID could be read from this
static variable.

In the above example it would additionally be possible to create the value through a basic inout
modified variable but would unduly bother other modules by exposing this variable to them when
it was only needed by this module.

5 Variable Names / Local Bindings

Each Coven variable obviously requires a variable name. This will only be the variable name of the
data within the module. Other modules may refer to the same variable by a different name.

For example, we have a module, ModuleA, which declares an output scalar value and sets it to
zero with the following code:

output int * running_sum;
. . .
*running_sum = 0;

We can have another module, ModuleB, which increments the value. However, we are in no way
constrained in ModuleB to reference the variable as running sum. For example, ModuleB could do:

inout int * sum;
. . .
*sum = *sum + 1;

In Coven we refer to the symbols running sum and sum as local bindings. These are the local
(to the module) binding of the variable names. This will be important to understand when you
place modules together to form Coven programs.

6

NOTE : No variable you create should ever be prepended with or . These are reserved for
Coven special variables and the variable symbols may be placed in locations you are unaware and
could result in extremely difficult to debug behavior.

6 Buffers and Buffer Sizes

In Coven, when you create a buffer you must specify the size (in elements) of the buffer. This size
may be any valid C expression that resolves to an int. Therefore, it is possible to do something
like:

input int number_of_gridpoints,
output buffer float gridpoints[number_of_gridpoints],
output buffer float example[number_of_gridpoints/2],

In the above example two buffers would be created. If number of gridpoints were set to 100,
the buffer gridpoints would have size 100 and the buffer example would have size 50.

The above example was only for output buffers. For input and inout buffers the buffer has
already been created so setting a size does not make sense. However, for these types the programmer
must specify a variable name to store the size (number of elements) of the buffer. This allows the
programmer to very easily not only get a reference to the buffer but also get the size of the buffer,
as in this example:

input buffer float gridpoints[number_of_gridpoints],
inout buffer float example[number_of_example],

In the above example the buffers gridpoints and example would not be created, they would be
accessed. Additionally, two integer variables will be created automatically, number of gridpoints
and number of example, which would be set to 100 and 50 respectively (assuming the first output
buffer example were as stated).

7 Putting it all Together

The module header and entire module must be of the form:

COVEN_Module module_name
(
argument1,
argument2,
. . .
argumentN
)

{
. . .
. . . /* module code */
. . .

}

7

You must assign each module a module name and replace the above module name with that
name. The argument1-N in the above example must conform to the constraints outlined above. It
is here that the scalars and buffers are accessed and created.

Scalar arguments are of the form:

[static] <const/input/output/inout> <type> <name>

The static modifier is optional, as described above. One additional modifier must be present
(const, input, output, or inout). The type and name must conform to the style described earlier.
An example of scalar arguments are:

static inout int * visualization_socket,
const float timestep,
output double * temperature

Buffer arguments are of the form:

<input/output/inout> buffer <type> <name>[<size_name>]

Notice the required keyword buffer. Examples of buffer arguments are:

output buffer float gridpoints[number_of_gridpoints],
input buffer int temperature[size_of_temp_matrix]

See the appendix for a good example of a simple module that uses most of the concepts discussed
in this document.

8 User Defined Data Types

In Section 4 we declared the primitive types. Coven allows any string to go through the module
parser because it assumes that the type will be correctly defined and interpreted on the back-end
side.

The first step in setting up a new type is to go to the directory CovenDriver/src/PSE di-
rectory. Define your type in a new file in the include directory. Here is an example from the
medea structs.h file:

/* a generic vector struct */
typedef struct Medea_Vector {

double x, y, z;
} Medea_Vector;

/* a simple struct for what makes up a body */
typedef struct Medea_Body {

int id;
double mass;
Medea_Vector position;
Medea_Vector velocity;
Medea_Vector force;

} Medea_Body;

8

Notice that Medea Body is the real type we are defining and the one that describes a body in
our system. This is the one that we want to expose to Coven so that we can create buffers and
scalars of this type.

We expose this to Coven as a PSE (problem solving environment) type. Take a look at medea.h:

#include "medea_structs.h"
typedef Medea_Body * MEDEA_BODY_TYPE;
#define MEDEA_BODY 0 + PSE_TYPE_OFFSET

Here we define a new type MEDEA BODY. Additionally, we must give a unique integer value to
each of our types that we will use. This value must start from PSE TYPE OFFSET.

Next, to tell Coven which set of types (and therefore PSE) we are interested in using at this
time we change the file PSE types.h to include the chosen header, such as:

#include "medea.h"

Finally, we go to the CovenDriver/src/PSE/src directory and modify PSE types.c so that it
recognizes the size (in bytes) of the new type we defined. Here is the content of the file for this
example:

#include "coven.h"
#include "PSE_types.h"

int PSE_TypeSizeArray[] = {
sizeof(Medea_Body),

};

int PSE_get_type_size(int which)
{

return PSE_TypeSizeArray[which-PSE_TYPE_OFFSET];
}

The only change we made was to include the sizeof operation for the only type that we defined.
One very important note. Coven requires that all types defined such that the typedef of the

type itself is of the form TYPE NAME TYPE and that in modules you reference the type as TYPE NAME.
This would be like defining a float type as float TYPE but when we use it calling it like:

float temperature

An example of the body type appears in the appendix and the above PSE changes all are present
in the PSE subdirectory of the source tree.

9 Advanced Concepts

There are many advanced concepts which are available to Coven module writers. Coven’s philosophy
is to keep the advanced concepts from being used by average module writers. Scientific users should
never need the following knowledge. These ideas should be left only to the advanced system module
programmer. If there seems to be a need for these concepts in other modules please bring this to
the attention of the team so that these issues can be addressed and resolved.

9

9.1 Scatter and Gather

Coven has scatter and gather routines built in that are callable from modules. These were modeled
after MPI routines and MPI datatypes. An understanding of MPI datatypes is required to use
Coven scatter and gather methods.

These methods can best be described by example.

9.1.1 Scatter Example

The following module is an example of a scatter module. The basic idea is that a buffer of bod-
ies (my bodies) of size total num bodies is passed into this module and this buffer will be scattered
into num slave procs smaller buffers. The module uses a Coven internal call, COVEN get num slave processors,
to get the number of slave processors that the job is currently using.

We use MPI-style datatype construction calls to set up a body type type which will hold the
elements of our buffer when transmitted by Coven (and MPI at a lower level). We chose here to
create an indexed type which for each element of the indexed array specifies how many bodies are in
the segment and what the offset from the first body will be. Coven implements many (read: nearly
all to more than) MPI typing routines. This allows for extraordinarily complex data decomposition.

For each buffer we want to scatter we must create a COVEN Collective Action. We specify
here to create a scatter action and give it the previously created scatter type and the buffer name
to scatter. This name is the local variable name (local binding) of the buffer. Finally, we execute
the scatter by telling Coven the number of tasks to scatter to (this is the number of TPHs that
are created) and the collection actions to perform on them (as well as the number of collective
operations, 1 in the following example).

The scatter example follows.

COVEN_MODULE nbody_scatter
(
inout buffer MEDEA_BODY my_bodies[total_num_bodies]
)

{
int num_slave_procs = COVEN_get_num_slave_processors();
int target_num_bodies = (int)ceil((double)total_num_bodies /
(double)num_slave_procs);

int i, total_assigned_bodies;
COVEN_size *array_of_blocks, *array_of_displacements;
COVEN_Type body_type, scatter_type;

COVEN_Type_contiguous(sizeof(struct Medea_Body), COVEN_BYTE,
&body_type);

total_assigned_bodies = 0;
i = 0;

array_of_blocks = (COVEN_size*)malloc(num_slave_procs*
sizeof(COVEN_size));

array_of_displacements = (COVEN_size*)malloc(num_slave_procs*
sizeof(COVEN_size));

while(total_assigned_bodies < total_num_bodies) {
/* try and fit this many bodies */

10

int num_bodies = target_num_bodies;
/* starting at how many we’ve assigned so far */
int start_body = total_assigned_bodies;

total_assigned_bodies += num_bodies;
/* if we’ve assigned more than we have, then back off by that
* amount */
if(total_assigned_bodies > total_num_bodies)

num_bodies -= (total_assigned_bodies - total_num_bodies);

/* now num_bodies is the number of bodies for this TPH to take */
array_of_blocks[i] = num_bodies;
array_of_displacements[i] = start_body;
i++;

}

COVEN_Type_indexed(num_slave_procs, array_of_blocks,
array_of_displacements, body_type, &scatter_type);

{
struct COVEN_Collective_Action *col_action;

col_action = (struct COVEN_Collective_Action*)malloc(1*
sizeof(struct COVEN_Collective_Action));

COVEN_Create_Scatter_Action(&(col_action[0]), scatter_type,
"my_bodies");

COVEN_Scatter(num_slave_procs, col_action, 1);
free(col_action);

}

free(array_of_blocks);
free(array_of_displacements);

}

9.1.2 Gather Example

The following module is an example of a gather module. The basic idea is that many previously
scattered buffers of bodies (to gather bodies) of size num to gather are being gathered. It is
important to understand that this module is executed one time for each buffer that comes in.
Therefore, if we scattered the original buffer into 32 segments this module will be executed 32
times, each time gathering more of the total result together into a single large buffer.

Again, we use MPI-style datatypes and datatype calls. In the example we set up the indexed
type exactly the same way and go straight to the collective action. Here we choose a gather action
and simple tell Coven to gather the buffer to gather bodies together into a large buffer. The
buffers are gathered into a large buffer which resides in the static TPH. It is in this way that
the buffer fills in with each gather call until it finally is complete. The use of the static TPH is
completely transparent here.

The gather example follows.

/* we’re going to use the static TPH to gather into behind the scenes */

/* the buffer here is the buffer to gather from, but is also the buffer that
* all the gathered results will be placed in. it’s important to understand

11

* here that the buffer is of size N for the buffer to BE gathered and of
* size N * P for the buffer to gather INTO. this example assumes that
* there are P pieces (processes perhaps) of equal size, N. it can easily
* be extended to the more complex distributes that are possible. */

COVEN_Module nbody_gather
(
const int total_num_bodies,
inout buffer MEDEA_BODY to_gather_bodies[num_to_gather]
)

{
int total_assigned_bodies = 0;

int num_slave_procs = COVEN_get_num_slave_processors();
int target_num_bodies = (int)ceil((double)total_num_bodies /
(double)num_slave_procs);

int i = 0;
COVEN_size *array_of_blocks, *array_of_displacements;
COVEN_Type body_type, scatter_type;

COVEN_Type_contiguous(sizeof(struct Medea_Body), COVEN_BYTE,
&body_type);

array_of_blocks = (COVEN_size*)malloc(num_slave_procs*
sizeof(COVEN_size));

array_of_displacements = (COVEN_size*)malloc(num_slave_procs*
sizeof(COVEN_size));

while(total_assigned_bodies < total_num_bodies) {
/* try and fit this many bodies */
int num_bodies = target_num_bodies;
/* startingaat how many we’ve assigned so far */
int start_body = total_assigned_bodies;

total_assigned_bodies += num_bodies;
/* if we’ve assigned more than we have, then back off by that
* amount */
if(total_assigned_bodies > total_num_bodies)

num_bodies -= (total_assigned_bodies - total_num_bodies);

/* now num_bodies is the number of bodies from this TPH */
array_of_blocks[i] = num_bodies;
array_of_displacements[i] = start_body;
i++;

}

/* now that we have our displacements and blocks setup we can make
* the COVEN data type */
COVEN_Type_indexed(num_slave_procs, array_of_blocks,
array_of_displacements, body_type, &scatter_type);

{
struct COVEN_Collective_Action *col_action;

col_action = (struct COVEN_Collective_Action*)malloc(1*

12

sizeof(struct COVEN_Collective_Action));
/* this creates a collective action where we describe a region
* in the STATIC TPH to gather the results into. This will
* gather buffers of the global binding "to_gather_bodies"
* into a larger static TPH buffer of the same global binding.
* Once they’re all gathered, we will copy this buffer into the
* output buffer before sending the TPH onward */
COVEN_Create_Gather_Action(&(col_action[0]), scatter_type,
"to_gather_bodies");

/* make an action which says to gather into the static TPH
* and we want that buffer to be of size ’total_num_bodies’ */
COVEN_Gather(total_num_bodies, col_action, 1);

}
free(array_of_blocks);
free(array_of_displacements);

}

9.2 Direct TPH Access

It is the intent of Coven that module programmers should never directly access TPHs themselves.
There should always be helper functions provided to make access to TPHs transparent. However,
module programmers have complete access to any call in the Coven library (see the source tree).
There are three special TPH variables passed to every module: default tph, const tph, and
static tph. Direct TPH access will require knowing which TPH to pull what data from.

This is extremely discouraged.

9.3 Interesting extern Variables Available

The following variables are available to any module by simply placing the directive extern before
the type and variable name.

9.3.1 int myProcessorNumber

myProcessorNumber is the processor number under which this module is currently running. If this
module is executing on the Master task then this will be 0. Otherwise, it will be a value between
1 and the number of slave tasks.

9.3.2 int num Slave Processors

num Slave Processors is the number of slave processors under the current configuration. Some-
times this is available through another means and at some point we may get rid of this variable all
together.

9.3.3 MPI Comm MPI COMM THIS PARALLEL TASK

MPI Comm MPI COMM THIS PARALLEL TASK is a an MPI Communicator whose members are ONLY
the instances of this particular module running on each parallel process. Therefore, if a module
wanted to send a message to a copy of itself running on another processor it would use this Com-
municator Group. This does away with the module having to derive the MPI task IDs of those
parallel instances of itself.

13

A Example Module

The following is an example module which shows many of the concepts outlined in this document.
It is part of the N-Body suite of Coven modules. The module gathers the body data onto a single
parallel task and then sends it through a TCP socket to a visualizer on another host and port.

Notice the use of a user defined data type MEDEA BODY, a static modifier, some extern variables,
and MPI communication to other instances of itself running on other processors. Additionally, note
that there are calls to a separate library, libsockio, which can be found in the Coven source tree.
Finally, notice the use of a buffer and the size of the buffer being assigned a variable named
my num bodies.

14

#include "coven.h"
#include "medea.h"
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <fcntl.h>

extern int myProcessorNumber;
extern MPI_Comm MPI_COMM_THIS_PARALLEL_TASK;

COVEN_Module nbody_visualize
(
const float timestep,
const string vis_hostname,
const int vis_portnumber,
const int total_num_bodies,
const int num_slave_procs,
input int current_iteration,
input buffer MEDEA_BODY my_bodies[my_num_bodies],
static inout int * visualization_socket
)

{
int i, j, recv_target, *recv_counts, *displacements;
MPI_Status status;
MPI_Datatype body_type;
MEDEA_BODY_TYPE total_bodies; /* it’s typedefed as a pointer */

MPI_Type_contiguous(sizeof(struct Medea_Body), MPI_BYTE, &body_type);
MPI_Type_commit(&body_type);

/* only the head node needs to malloc space for it */
if(myProcessorNumber == 1) {

int offset;

total_bodies = (struct Medea_Body*)malloc(total_num_bodies*
sizeof(struct Medea_Body));

recv_counts = (int*)malloc(num_slave_procs*sizeof(int));
displacements = (int*)malloc(num_slave_procs*sizeof(int));
recv_counts[0] = my_num_bodies;
displacements[0] = 0;
offset = recv_counts[0];
for(recv_target=2; recv_target<=num_slave_procs; recv_target++)
{

MPI_Recv(&(recv_counts[recv_target-1]), 1, MPI_INT,
recv_target-1, 0, MPI_COMM_THIS_PARALLEL_TASK, &status);

/* we displace based on the PREVIOUS guy */
displacements[recv_target-1] = offset;
offset += recv_counts[recv_target-1];

}
}
else {

MPI_Send(&my_num_bodies, 1, MPI_INT, 0, 0,

15

MPI_COMM_THIS_PARALLEL_TASK);
}

/* we gather at 0 b/c proc 1 is the 0th node of SLAVE_COMM, strange,
* I know */
MPI_Gatherv(my_bodies, my_num_bodies, body_type, total_bodies,
recv_counts, displacements, body_type, 0,
MPI_COMM_THIS_PARALLEL_TASK);

if(myProcessorNumber == 1) {
Medea_Header info;
int sock;
int outfd;

info.numbodies = total_num_bodies;
info.cycle = current_iteration;
info.timestep = timestep;
if(*visualization_socket == -1) { /* we havn’t initted yet */

int *iptr;
int ret;

sock = new_sock();
ret = connect_sock(sock, vis_hostname, vis_portnumber);
if(ret < 0) COVEN_Error("connect_sock");

/* write to the attribute the socket value */
*visualization_socket = sock;

}
else sock = *visualization_socket;

COVEN_write(sock, &info, sizeof(Medea_Header));
COVEN_write(sock, total_bodies, sizeof(struct Medea_Body)*
total_num_bodies);

free(total_bodies);
free(recv_counts);
free(displacements);

}
}

16

