
VHDL SYNTHESIS TOOL

Tutorial
last updated October 2, 1997

The purpose of this tutorial is as a follow-on to the VHDL simulation tools
tutorial. In that tutorial, we set up the directories and files necessary to simulate VHDL.
Then, we take a simple design, count3.vhd, and demonstrate how to compile it and
simulate it through the use of a testbench. In this tutorial, we will take that simple design
and synthesize it through the use of the Synopsys synthesis tools. Again, we will first
have to add and modify the necessary files. Then, we will synthesize count3.vhd and go
over the use of the synthesis tool.

I. Setup

The files can be found in my home directory in the Riggs 10 lab: fstiver.

First, copy the following files from ~fstiver/TA426/turorial/counter to your
ece426/tutorial/counter directory:

compile.script
.synopsys_dc.setup

Create the following directory in your counter directory: WORK

.synopsys_dc.setup is used by the synthesis tool to set up the paths to the proper libraries
and to the desired WORK directory. It needs to be in any directory that you start-up the
synthesis tool in.

The compile.script file is not required by the synthesis tool. It controls the synthesis tool
through all of the steps of the synthesis process. The synthesis tool can be controlled
manually from either the pull-down menus or the command line. However, many of the
steps of synthesis are difficult to understand and go beyond the scope of this tutorial.
Therefore, we will use the compile.script. (The other reason for using the compile.script
is that synthesis can take from 5 minutes for a simple design to over 1 hour for a complex
design. It would be a tedious process to input the separate commands by hand when the
compile.script does it automatically.)

First, edit the .synopsys_dc.setup (remember this is different from the .synopsys_vss.setup
used for simulation). Go to line 29 and adjust the path in order to point to your local
WORK directory. Typically, for every part that you synthesize you should synthesize it
in its own directory with its own WORK directory. It is not necessary for the file
containing the actual part to be in the directory that you are synthesizing in. If the file
containing the part to be synthesized is in another directory, you just need to set up the
proper search path (line 4 search_path = {). This can be helpful when you have a
hierachical design with several levels of instantiation or a design with multiple parts
instantiated into a single part. The remaining parts of this file point to the proper

libraries for the synthesis tool and to the Xilinx libraries (Xilinx is a major manufacturer
of fpga’s and the synthesis tool needs to know what architecture it is synthesizing for).

Now, edit the compile.script file. At this level it is not necessary to understand what this
script is doing. Some of the commands are easy to decipher, while others require a deep
understanding of the synthesis tool. Go to line 4 and set TOP = filename of your top
level design (minus the .vhd). Modify line 6 to be your name. If there is only one part
being synthesized, this is all you need to do. However, if you have a design that includes
several parts instantiated in it, you need to make some additional modifications. Between
lines 7 and 9, include the following line for each part in order from lowest level of the
design to top level:

analyze -format vhdl filename.vhd (this time we do include the .vhd). (You do not need
to include this line for the top level part because it is already taken care of by line 9.)

Once you have made these modifications, you are ready to synthesize your part.

II. Synthesis

To invoke the Synopsys synthesis tool, use the following command:

fpga_analyzer &

The synthesis tool will eventually come up although it might take a little time depending
on the speed of the machine you are working on. A window titled: Synopsys Design
Analyzer will come up. At this point there are only 2 menus you have access to. Using
the Setup menu, select the Command Window… option. This will bring up another
window titled: Command Window. When you initiate the compile.script, this will show
you the commands that are being executed and any warnings. (Note: The synthesis tool
produces many, many warnings even with a perfect design. It is a good idea to look at
them, but, if you part simulates properly, you can typically ignore them.) Next, using the
Setup menu, select the Execute script… option. This will bring up a window titled
Execute file. Select compile.script from the list and select OK. Once you select OK, the
synthesis tool will start work. The command window will start displaying the commands
being executed and their result. If you part compiles and simulates correctly, the only
errors you will usually receive here are a result of an improper or not included search
path in the .synopsys_dc.setup or an improper part name or not included part in the
compile.script. If you receive an error here, the synthesis tool will typically display an
error window which describes the problem. Select the cancel script option, quit the
synthesis tool (File menu, quit option) and troubleshoot your error.

When the synthesis tool completes operation, it displays your part in the work area of the
Synopsys Design Analyzer window. It starts with a top-level design and you can work

your way down to the actual logic created by double clicking on the design. At the base
level, the tool displays the flip flops, logic and hard macros used to create your design.
The hard macros are colored red. For example if you used a + or - in your design the
synthesis tool uses an adder/subtractor or a incrementer/decrementer that was already
designed and optimized by Xilinx. For a large design, you may have to zoom in order to
get a good look at your design. To zoom, click your right mouse button. Then select
Zoom with your right mouse button. You can then zoom using your left mouse button.
To return to a full view, click your right mouse button and select Full View with your
right mouse button. You can move around the hierarchy of the design created using the
buttons on the left of the window. (Note: practice moving around in your design using
these buttons and Zoom/Full View.)

In order to look at the warnings from the synthesis tool, input the following on the
command line of the Synopsys Design Analyzer window:

check_design

The warnings will be displayed in the command window. You can scroll up this window
to look at the warnings. Once you are finished with this, go ahead and quit out of the
synthesis tool (File menu, Quit option).

At this point, the synthesis tool has created all of the files required by the Place and
Route tool. The options we selected in the compile.script are for Xilinx parts. These
options created the netlist (.sxnf files) needed by the Place and Route tool. The Place
and Route tool can now be used to create a bit file needed to program the desired fpga
with your design. (Note: Of course there are some other considerations I have left out,
i.e. how do you lock down which pins on the fpga are used, the interface with the host,
etc. But, for the scope of this tutorial, once you have synthesized your design, you could
then place and route it and create a design for a fpga.)

The synthesis tool also creates several other files that can be helpful. The command.log
file is a copy of everything that was displayed by the Command Window (Instead of
scrolling around the command window, you could look at the warnings displayed by the
check_design command here). If you have an error, it is usually helpful to look at this
file to help in troubleshooting. Another file created is the filename.fpga which gives a
listing of the logic required to implement your design. For larger designs this can give
you an indication of whether your design will fit into your selected fpga. Finally, we
also created a file named ygtest.rpt. Two of the commands issued by the compile.script
was check_design and check_timing and the output of the commands was redirected to
this file. (Note: The only files required by the Place and Route tool are the ones
containing the netlists (.sxnf). All of the other files just contain information about the
operation of the synthesis tool and the part created. They may or may not be useful.)

