

38

Chapter 38

SQL Sessions
An SQL-session spans the execution of one or more consecutive SQL statements by a single
user. In order to execute any SQL statements, your DBMS has to establish an SQL-Connec-
tion (using the CONNECT statement) — the SQL-session thus initiated is then associated with
that SQL-Connection. If you don’t explicitly do a CONNECT statement on your own, your
DBMS will effectively execute a default CONNECT statement to establish an SQL-Connection
for you — this is known as the default SQL-Connection.

An SQL-Connection has two possible states: it is either current or dormant. Only one
SQL-Connection (and its associated SQL-session) can be current at a time. An SQL-Connec-
tion is initially established by a CONNECT statement as the current SQL-Connection and it
remains the current SQL-Connection unless and until another CONNECT statement or a SET
CONNECTION statement puts it (and its associated SQL-session) into a dormant state by estab-
lishing another SQL-Connection as the current SQL-Connection. When would you use SET
CONNECTION? Well, the SQL Standard says that your DBMS must support at least one
SQL-Connection — but it may support more than one concurrent SQL-Connection. In the
latter case, your application program may connect to more than one SQL-server, selecting the
one it wants to use (the current or active SQL-Connection) with a SET CONNECTION statement.

An SQL-Connection ends either when you issue a DISCONNECT statement or in some imple-
mentation-defined way following the last call to an <externally-invoked procedure> within
the last active SQL-client Module.

Every SQL-session has a user <AuthorizationID> to provide your DBMS with an <Autho-
rizationID> for Privilege checking during operations on SQL-data. You can specify this
703

704

Chapter 38: SQL Sessions

<AuthorizationID> with the CONNECT statement or allow it to default to an <AuthorizationID>
provided by your DBMS. You can also change the <AuthorizationID> during the SQL-session.

Every SQL-session also has a default local time zone offset to provide your DBMS with a
time zone offset when a time or a timestamp value needs one. When you begin an SQL-ses-
sion, your DBMS sets the default time zone offset to a value chosen by your vendor. You can
change this to a more appropriate value with the SET TIME ZONE statement.

Every SQL-session has what the SQL Standard calls “enduring characteristics” — these all
have initial default values at the beginning of an SQL-session, but you change any of them
with the SET SESSION CHARACTERISTICS statement. SQL-sessions also have a “context” —
characteristics of the SQL-session that your DBMS preserves when an SQL-session is made
dormant so that it can restore the SQL-session properly when it is made current again. The
context of an SQL-session includes the current SESSION_USER, the CURRENT_USER, the
CURRENT_ROLE, the CURRENT_PATH, the identities of all temporary Tables, the current default
time zone offset, the current constraint mode for all Constraints, the current transaction
access mode, the position of all open Cursors, the current transaction isolation level, the cur-
rent transaction diagnostics area limit, the value of all valid locators, and information of any
active SQL-invoked routines.

SQL-Connections
You can establish an SQL-Connection either explicitly, by issuing a CONNECT statement; or
implicitly, by invoking a procedure that works on SQL-data when there is no current
SQL-session (in this case, your DBMS acts as if you explicitly issued CONNECT TO DEFAULT;).
You can change the state of an SQL-Connection (from current to dormant and back again)
with the SET CONNECTION statement. You can also end an SQL-Connection (and therefore its
associated SQL-session) with the DISCONNECT statement. Here’s how.

CONNECT Statement
The CONNECT statement explicitly establishes an SQL-Connection. The establishment of an
SQL-Connection gives you access to the SQL-data on an SQL-server in your environment and
thus starts an SQL-session. The required syntax for the CONNECT statement is as follows.

The CONNECT statement may not be executed during a transaction unless your DBMS supports
transactions that affect multiple SQL-servers.

DEFAULT Connection
The SQL Standard does not require an explicit CONNECT statement to start an SQL-session. If
the first SQL statement in an SQL-session is anything other than a CONNECT statement, your
DBMS will first execute this SQL statement:

CONNECT TO

 DEFAULT |

 <SQL-server name> [AS <Connection name>] [USER <AuthorizationID>]

CONNECT TO DEFAULT;

SQL-Connections

705

to establish the default SQL-Connection before proceeding further. You can also issue an
explicit CONNECT TO DEFAULT; statement if you want to deliberately establish your DBMS’s
default SQL-Connection. In either case, if the default SQL-Connection has already been
established, (e.g., it was already the subject of a CONNECT statement or a SET CONNECTION state-
ment and no DISCONNECT statement has been issued for it) CONNECT will fail; your DBMS will
return the SQLSTATE error 08002 “connection exception-connection name in use.”

[NON-PORTABLE] The effect of CONNECT TO DEFAULT; is non-standard because the SQL
Standard requires implementors to define the default SQL-Connection and the default
SQL-server. [OCELOT Implementation] The OCELOT DBMS that comes with this book
treats the (explicit or implicit) SQL statement:

as equivalent to this SQL statement:

This CONNECT statement causes the OCELOT DBMS to establish a SQL-Connection to a
default Cluster (or default SQL-server) called OCELOT, using a default <Connection name> of
OCELOT and a default user <AuthorizationID> of OCELOT. If the default Cluster can’t be found,
the DBMS will create it.

<SQL-Server name> Clause
The other form of the CONNECT statement has three possible arguments, only one of which is
mandatory. The syntax CONNECT TO <SQL-server name>; e.g.,

establishes an SQL-Connection to the SQL-server named. (Remember that the SQL-server is
that portion of your environment that actually carries out the database operations.)
<SQL-server name> is either a <character string literal>, a <host parameter name>, or an
<SQL parameter reference> whose value represents a valid <SQL-server name>. The SQL
Standard is deliberately vague about just what an SQL-server is and consequently leaves the
method for determining its location and the communication protocol required to access it up
to the DBMS.

AS Clause
The syntax CONNECT TO <SQL-server name> AS <Connection name>; e.g.,

establishes an SQL-Connection named connection_1 to the SQL-server named. <Connection
name> is a <simple value specification>, (e.g., a <character string literal>, <host parameter
name>, or <SQL parameter reference>) whose value represents a valid <Connection name>.
(If <Connection name> does not evaluate to a valid <Connection name>, CONNECT will fail;
your DBMS will return the SQLSTATE error 2E000 “invalid connection name.”)

[NON-PORTABLE] A <Connection name> must be a <regular identifier> or a <delimited
identifier> that is no more than 128 octets in length, but the value of a valid <Connection
name> is non-standard because the SQL Standard requires implementors to define what a
valid <Connection name> may be and to which Character set <Connection name>s belong.

CONNECT TO DEFAULT;

CONNECT TO 'ocelot' AS 'ocelot' USER 'ocelot';

CONNECT TO 'some_server';

CONNECT TO 'some_server' AS 'connection_1';

706

Chapter 38: SQL Sessions

[OCELOT Implementation] The OCELOT DBMS that comes with this book defines a <Con-
nection name> as any valid <regular identifier> or <delimited identifier> whose characters
belong to the INFORMATION_SCHEMA.SQL_TEXT Character set.

If your CONNECT statement doesn’t include the optional AS <Connection name> clause, the
value of <Connection name> defaults to the value of <SQL-server name>. The following SQL
statements are therefore equivalent (assuming that the default SQL-Connection is to an
SQL-server named some_server):

NOTE: The AS clause can only be omitted from the first CONNECT statement issued for a
particular SQL-server. On the second and subsequent Connections, an explicit <Con-
nection name> must be provided to your DBMS because <Connection name>s must be
unique for the entire SQL-environment at any given time. You’ll use the <Connection
name> with the SET CONNECTION statement to switch between different SQL-Connec-
tions. If <Connection name> evaluates to a <Connection name> that is already in use —
e.g., it was the subject of CONNECT TO or SET CONNECTION and DISCONNECT has not been
issued for it — CONNECT TO will fail; the DBMS will return the SQLSTATE error 08002
“connection exception-connection name in use.”

USER Clause
The syntax CONNECT TO <SQL-server name> USER <AuthorizationID>; e.g.,

establishes an SQL-Connection, with an SQL-session <AuthorizationID> of bob, to the
SQL-server named. <AuthorizationID> is a <simple value specification> — e.g., a <character
string literal>, <host parameter name>, or <SQL parameter reference> — whose value repre-
sents a valid <AuthorizationID>. (If <AuthorizationID> does not evaluate to a valid user
<AuthorizationID>, CONNECT will fail; your DBMS will return the SQLSTATE error 28000
“invalid authorization specification.”)

If your CONNECT statement doesn’t include the optional USER <AuthorizationID> clause, the
value of the SQL-session user defaults to an <AuthorizationID> chosen by your DBMS. The
following SQL statements are therefore equivalent (assuming that the default SQL-Connec-
tion is to an SQL-server named some_server):

[NON-PORTABLE] The effect of omitting the optional USER clause from a CONNECT state-
ment is non-standard because the SQL Standard requires implementors to define their own
initial default SQL-session <AuthorizationID>. [OCELOT Implementation] The OCELOT
DBMS that comes with this book has an initial default <AuthorizationID> of OCELOT.

CONNECT TO DEFAULT;

CONNECT TO 'some_server';

CONNECT TO 'some_server' AS 'some_server';

CONNECT TO 'some_server' USER 'bob';

CONNECT TO DEFAULT;

CONNECT TO 'some_server';

CONNECT TO 'some_server' AS 'some_server' USER 'default_user';

SQL-Connections 707
CONNECT Examples
This SQL statement:

establishes an SQL-Connection to the SQL-server specified. The <Connection name> defaults
to some_server; the SQL-session <AuthorizationID> is set to the DBMS’s initial default
<AuthorizationID>. This SQL statement:

establishes an SQL-Connection named Connection_1 to the SQL-server specified. The
SQL-session <AuthorizationID> is set to the DBMS’s initial default <AuthorizationID>. This
SQL statement:

establishes an SQL-Connection to the SQL-server specified. The <Connection name> defaults
to some_server; the SQL-session <AuthorizationID> is set to bob. And this SQL statement:

establishes an SQL-Connection named Connection_1 to the SQL-server specified. The
SQL-session <AuthorizationID> is set to bob.

Executing the CONNECT statement has the effect that the SQL-Connection established
becomes the current SQL-Connection and its associated SQL-session becomes the current
SQL-session. The SQL-Connection and SQL-session that were current when you executed
CONNECT (if any) become dormant with their context information preserved by the DBMS so
that they can be properly restored later on. If the CONNECT statement fails, the current
SQL-Connection and its associated SQL-session (if any) remain the current SQL-Connection
and current SQL-session.

If CONNECT fails because your DBMS is unable to establish the SQL-Connection, you’ll get
the SQLSTATE error 08001 “connection exception-SQL-client unable to establish
SQL-connection.” If CONNECT fails because the SQL-server refuses to accept the SQL-Connec-
tion, you’ll get the SQLSTATE error 08004 “connection exception-SQL-server rejected
establishment of SQL-connection.”

If you want to restrict your code to Core SQL, don’t use the CONNECT statement.

SET CONNECTION Statement
[NON-PORTABLE] An SQL-compliant DBMS can either limit the number of concurrent
SQL-Connections to one or it can support multiple concurrent SQL-Connections. [OCELOT
Implementation] The OCELOT DBMS that comes with this book allows multiple concurrent
SQL-Connections to be made; each begins a separate SQL-session for the <Cluster name>
specified. Thus, OCELOT supports multi-user operations — one or more Users may connect
to the same Cluster simultaneously — and OCELOT supports multi-tasking operations —
the same user may connect to multiple Clusters simultaneously. Each such connection is a
separate SQL-Connection (it must be identified by a unique <Connection name>) and is asso-
ciated with a separate SQL-session.

CONNECT TO 'some_server';

CONNECT TO 'some_server' AS 'Connection_1';

CONNECT TO 'some_server' USER 'bob';

CONNECT TO 'some_server' AS 'Connection_1' USER 'bob';

708 Chapter 38: SQL Sessions
The SET CONNECTION statement is used to select an SQL-Connection from all available
SQL-Connections — it makes a dormant SQL-Connection current. As a consequence, any
other SQL-Connection that was current then becomes dormant. The required syntax for the
SET CONNECTION statement is as follows.

The SET CONNECTION statement activates a dormant SQL-Connection and makes it the current
SQL-Connection. SET CONNECTION may not be executed during a transaction unless your
DBMS supports transactions that affect multiple SQL-servers. The SQL statement:

will establish your DBMS’s default SQL-Connection as the current SQL-Connection. If there
is no current or dormant default SQL-Connection (that is, if CONNECT TO DEFAULT; wasn’t pre-
viously issued during the SQL-session), SET CONNECTION will fail; your DBMS will return the
SQLSTATE error 08003 “connection exception-connection does not exist.”

The syntax SET CONNECTION <Connection name>; will establish the SQL-Connection spec-
ified as the current SQL-Connection. <Connection name> must be a <simple value specifica-
tion> — e.g., a <character string literal>, <host parameter name>, or <SQL parameter
reference> — whose value identifies the current, or a dormant, SQL-Connection. If <Connec-
tion name> does not evaluate to either the current or a dormant SQL-Connection, SET CON-
NECTION will fail; your DBMS will return the SQLSTATE error 08003 “connection
exception-connection does not exist.” For example, this SQL statement:

makes the SQL-Connection called connection_2 the current SQL-Connection and puts the
previous (if any) SQL-Connection into a dormant state. If your DBMS is unable to activate
connection_2, SET CONNECTION will fail and your DBMS will return the SQLSTATE error
08006 “connection exception-connection failure.”

If you want to restrict your code to Core SQL, don’t use the SET CONNECTION statement.

DISCONNECT Statement
An SQL-Connection can be closed whether it is the current SQL-Connection or a dormant
SQL-Connection, but may not be closed while a transaction is on-going for its associated
SQL-session. The required syntax for the DISCONNECT statement is as follows.

The DISCONNECT statement terminates an inactive SQL-Connection. DISCONNECT may not
be executed during a transaction — if you attempt to terminate an SQL-Connection that is
processing a transaction, DISCONNECT will fail; your DBMS will return the SQLSTATE error
25000 “invalid transaction state.”

You can disconnect a specific SQL-Connection by naming it (with DISCONNECT <Connec-
tion name>;), you can disconnect your DBMS’s default SQL-Connection (with DISCONNECT
DEFAULT;), you can disconnect the current SQL-Connection (with DISCONNECT CURRENT;) or
you can disconnect the current and all dormant SQL-Connections at once (with DISCONNECT

SET CONNECTION DEFAULT | <Connection name>

SET CONNECTION DEFAULT;

SET CONNECTION 'connection_2';

DISCONNECT <Connection name> | DEFAULT | CURRENT | ALL

SQL-Connections 709
ALL;). For example, this SQL statement closes an inactive SQL-Connection called
connection_1, whether it is current or dormant;

As usual, <Connection name> must be a <simple value specification> — e.g., a <character
string literal>, <host parameter name>, or <SQL parameter reference> — whose value identi-
fies the current, or a dormant, SQL-Connection. (If <Connection name> is not the name of
either the current SQL-Connection or a dormant SQL-Connection, DISCONNECT will fail; your
DBMS will return the SQLSTATE error 08003 “connection exception-connection does not
exist.”) If <Connection name> names the current SQL-Connection and DISCONNECT executes
successfully, there will no longer be a current SQL-Connection until another CONNECT state-
ment or SET CONNECTION statement establishes one. This SQL statement:

terminates the DBMS’s default SQL-Connection whether it is current or dormant. (If the
DBMS’s default SQL-Connection is neither the current SQL-Connection nor a dormant
SQL-Connection, DISCONNECT will fail; your DBMS will return the SQLSTATE error 08003
“connection exception-connection does not exist.”) If the default SQL-Connection is
the current SQL-Connection and DISCONNECT executes successfully, there will no longer be a
current SQL-Connection until another CONNECT statement or SET CONNECTION statement estab-
lishes one. This SQL statement:

terminates the current SQL-Connection. If there is no current SQL-Connection, DISCONNECT
will fail; your DBMS will return the SQLSTATE error 08003 “connection exception-connec-
tion does not exist.” If DISCONNECT executes successfully, there will no longer be a current
SQL-Connection until another CONNECT statement or SET CONNECTION statement establishes
one. This SQL statement:

closes the current, and all dormant, SQL-Connections. If there are no current or dormant
SQL-Connections, DISCONNECT will fail; your DBMS will return the SQLSTATE error 08003
“connection exception-connection does not exist.” If DISCONNECT executes successfully,
there will no longer be any SQL-Connection (current or dormant) until another CONNECT
statement or SET CONNECTION statement establishes one.

Any errors other than SQLSTATE 08003 or SQLSTATE 25000 that are detected by your DBMS
while DISCONNECT is being executed will not cause DISCONNECT to fail. Instead, DISCONNECT
will execute successfully and your DBMS will return the SQLSTATE warning 01002 “warn-
ing-disconnect error.”

The SQL Standard suggests that DISCONNECT should be automatic when an SQL-session
ends — but lets the DBMS decide when this has occurred. Recommendation: To be absolutely
sure of correct results, always end your SQL-sessions with the explicit DISCONNECT statement:

If you want to restrict your code to Core SQL, don’t use the DISCONNECT statement.

DISCONNECT 'connection_1';

DISCONNECT DEFAULT;

DISCONNECT CURRENT;

DISCONNECT ALL;

DISCONNECT ALL;

710 Chapter 38: SQL Sessions
SQL-Session Management
SQL provides four statements that help you manage your SQL-session. Each one lets you
specify a value for one or more SQL-session characteristics. The SQL-session management
statements are SET SESSION CHARACTERISTICS, SET SESSION AUTHORIZATION, SET ROLE, and SET
TIME ZONE.

SET SESSION CHARACTERISTICS Statement
The SET SESSION CHARACTERISTICS statement sets the value of one or more transaction char-
acteristics for the current SQL-session. The required syntax for the SET SESSION CHARACTERIS-
TICS statement is as follows.

You can set the same characteristics for all the transactions in an entire SQL-session as
you can for a single transaction. Each of the transaction characteristics — <isolation level>,
<transaction access mode>, and <diagnostics size> — works the same and has the same
options as those we discussed for the SET TRANSACTION statement in Chapter 37. The values
you specify for any transaction characteristic in a SET SESSION CHARACTERISTICS statement
are enduring values — should you cause the current SQL-session to go dormant and then
reactivate it later, your DBMS will reset each characteristic to the value you specified the last
time you issued SET SESSION CHARACTERISTICS for that SQL-session. Here’s an example:

If you want to restrict your code to Core SQL, don’t use the SET SESSION CHARACTERISTICS
statement.

SET SESSION AUTHORIZATION Statement
The SET SESSION AUTHORIZATION statement sets the session user <AuthorizationID> for the
current SQL-session. The required syntax for the SET SESSION AUTHORIZATION statement is as
follows.

When you start an SQL-session, your DBMS sets the value of the session user <Authoriza-
tionID> for the SQL-session to the <AuthorizationID> specified with the CONNECT statement.
The session user <AuthorizationID> is the value returned by the SESSION_USER function and is

SET SESSION CHARACTERISTICS AS
 <transaction mode> [{,<transaction mode>}...]

 <transaction mode> ::=

 <isolation level> |

 <transaction access mode> |

 <diagnostics size>

SET SESSION CHARACTERISTICS AS

 READ WRITE

 ISOLATION LEVEL REPEATABLE READ

 DIAGNOSTICS SIZE 5

SET SESSION AUTHORIZATION <value specification>

SQL-Session Management 711
usually also the value returned by the CURRENT_USER (or USER) function. Your DBMS uses the
session <AuthorizationID> as a default <AuthorizationID> in cases where no explicit
<AuthorizationID> overrides it — for example, whenever you run a Module that wasn’t
defined with an explicit AUTHORIZATION clause, your DBMS assumes the owner of the Module
is the SQL-session <AuthorizationID>. The owner of any temporary Tables defined for the
SQL-session is the SQL-session <AuthorizationID>.

[NON-PORTABLE] SET SESSION AUTHORIZATION may always be executed at the start of
an SQL-session. Whether you can use the SET SESSION AUTHORIZATION statement at any other
time is non-standard because the SQL Standard requires implementors to define whether the
SQL-session <AuthorizationID> may be changed once an SQL-session has begun. [OCELOT
Implementation] The OCELOT DBMS that comes with this book allows the SQL-session
<AuthorizationID> to be changed at any time (except during a transaction).

You can change the value of the SQL-session <AuthorizationID> with the SET SESSION
AUTHORIZATION statement; simply issue SET SESSION AUTHORIZATION followed by a <character
string literal>, a character string <host parameter name> (with optional indicator), a charac-
ter string <SQL parameter reference>, or a user function (either CURRENT_ROLE, CURRENT_USER,
SESSION_USER, SYSTEM_USER, or USER). Whichever you use, the value represented by the
<value specification> must be a valid user <AuthorizationID> — if it isn’t, SET SESSION
AUTHORIZATION will fail; your DBMS will return the SQLSTATE error 28000 “invalid autho-
rization specification.”

SET SESSION AUTHORIZATION can only be issued outside of a transaction. If you try to exe-
cute the statement and a transaction is currently active, SET SESSION AUTHORIZATION will fail;
your DBMS will return the SQLSTATE error 25001 “invalid transaction state-active
SQL-transaction.”

For an example of SET SESSION AUTHORIZATION, assume that the session user <Authoriza-
tionID> for your SQL-session is bob and you’d like to switch it to sam. Here’s three different
ways to do it:

If you want to restrict your code to Core SQL, don’t use the SET SESSION AUTHORIZATION
statement.

SET ROLE Statement
The SET ROLE statement sets the enabled Roles for the current SQL-session. The required syn-
tax for the SET ROLE statement is as follows.

When you start an SQL-session, your DBMS sets the value of the current Role <Authori-
zationID> for the SQL-session to the <AuthorizationID> specified with the CONNECT statement

SET SESSION AUTHORIZATION 'sam';

SET SESSION AUTHORIZATION :char_variable;

 -- assume the value of the host variable “char_variable” is SAM

SET SESSION AUTHORIZATION CURRENT_USER;

 -- assume the value of CURRENT_USER is SAM

SET ROLE <value specification> | NONE

712 Chapter 38: SQL Sessions
(or to NULL, if the CONNECT statement doesn’t provide a <Role name>). The current Role
<AuthorizationID> is the value returned by the CURRENT_ROLE function. Either one of
CURRENT_USER or CURRENT_ROLE may be NULL at any time, but they may not both be NULL at the
same time — the non-null identifier is the SQL-session’s current <AuthorizationID>. That is,
if CURRENT_ROLE is set to some <Role name>, then CURRENT_USER must be NULL and your
DBMS will use the current Role for Privilege checking before processing any SQL statements
in the SQL-session.

You can change the value of CURRENT_ROLE with the SET ROLE statement; simply issue SET
ROLE followed by a <character string literal>, a character string <host parameter name> (with
optional indicator), a character string <SQL parameter reference>, or a user function (either
CURRENT_ROLE, SESSION_USER, SYSTEM_USER, or USER). Whichever you use, the value repre-
sented by the <value specification> must be a valid <Role name> and that name must identify
a Role that has been granted either to PUBLIC or to the SQL-session <AuthorizationID> — if
it isn’t, SET ROLE will fail; your DBMS will return the SQLSTATE error 0P000 “invalid role
specification.” You can also change the value of CURRENT_ROLE to NULL by issuing SET ROLE
followed by the <keyword> NONE.

SET ROLE can only be issued outside of a transaction. If you try to execute the statement
and a transaction is currently active, SET ROLE will fail; your DBMS will return the SQLSTATE
error 25001 “invalid transaction state-active SQL-transaction.”

For an example of SET ROLE, assume that the current Role for your SQL-session is NULL
and you’d like to switch it to Teller_Role. Here’s two different ways to do it:

If you want to restrict your code to Core SQL, don’t use the SET ROLE statement.

SET TIME ZONE Statement
[NON-PORTABLE] An SQL-session always begins with an initial default time zone offset
that is non-standard because the SQL Standard requires implementors to define their own ini-
tial default time zone offset. [OCELOT Implementation] The OCELOT DBMS that comes
with this book has an initial default time zone that represents UTC — its default time zone
offset is INTERVAL +'00:00' HOUR TO MINUTE.

The SQL-session default time zone offset is used to specify the related time zone for all
times and timestamps that don’t include an explicit <time zone interval>. You can use the SET
TIME ZONE statement to change the default time zone offset for the current SQL-session. The
required syntax for the SET TIME ZONE statement is as follows.

The SET TIME ZONE statement changes the current SQL-session’s default time zone offset. It
has two possible arguments: the <keyword> LOCAL or an expression that evaluates to some
non-null INTERVAL HOUR TO MINUTE value between INTERVAL –'12:59' HOUR TO MINUTE and
INTERVAL +'13:00' HOUR TO MINUTE. (If you specify an interval that is NULL or an interval that

SET ROLE 'Teller_Role';

SET ROLE :char_variable;

 -- assume the value of the host variable “char_variable” is TELLER_ROLE

SET TIME ZONE LOCAL | interval_expression

SQL-Session Management 713
falls outside the proper range, SET TIME ZONE will fail; your DBMS will return the SQLSTATE
error 22009 “data exception-invalid time zone displacement value.”)

SET TIME ZONE can only be issued outside of a transaction. If you try to execute the state-
ment and a transaction is currently active, SET TIME ZONE will fail; your DBMS will return the
SQLSTATE error 25001 “invalid transaction state-active SQL-transaction.”

The effect of this SQL statement:

is to set the time zone offset for the current SQL-session to your DBMS’s initial default time
zone offset.

The SQL syntax SET TIME ZONE interval_expression is used to set the time zone offset for
the current SQL-session to the value that results when interval_expression is evaluated. For
example, this SQL statement:

uses the <interval literal> INTERVAL –'03:00' HOUR TO MINUTE to set the time zone offset for
the current SQL-session to minus three hours, i.e., UTC time plus 3 hours equals local time.

If you want to restrict your code to Core SQL, don’t use the SET TIME ZONE statement.

SET TIME ZONE LOCAL;

SET TIME ZONE INTERVAL –'03:00' HOUR TO MINUTE;

714 Chapter 38: SQL Sessions

	Chapter 38
	SQL Sessions

	An SQL-session spans the execution of one or more consecutive SQL statements by a single user. In...
	An SQL-Connection has two possible states: it is either current or dormant. Only one SQL-Connecti...
	An SQL-Connection ends either when you issue a DISCONNECT statement or in some implementation-def...
	Every SQL-session has a user <AuthorizationID> to provide your DBMS with an <AuthorizationID> for...
	Every SQL-session also has a default local time zone offset to provide your DBMS with a time zone...
	Every SQL-session has what the SQL Standard calls “enduring characteristics” — these all have ini...
	SQL-Connections

	You can establish an SQL-Connection either explicitly, by issuing a CONNECT statement; or implici...
	CONNECT Statement

	The CONNECT statement explicitly establishes an SQL-Connection. The establishment of an SQL-Conne...
	CONNECT TO
	DEFAULT |
	<SQL-server name> [AS <Connection name>] [USER <AuthorizationID>]
	The CONNECT statement may not be executed during a transaction unless your DBMS supports transact...
	DEFAULT Connection

	The SQL Standard does not require an explicit CONNECT statement to start an SQL-session. If the f...
	CONNECT TO DEFAULT;
	to establish the default SQL-Connection before proceeding further. You can also issue an explicit...
	[NON-PORTABLE] The effect of CONNECT TO DEFAULT; is non-standard because the SQL Standard require...
	CONNECT TO DEFAULT;
	as equivalent to this SQL statement:
	CONNECT TO 'ocelot' AS 'ocelot' USER 'ocelot';
	This CONNECT statement causes the OCELOT DBMS to establish a SQL-Connection to a default Cluster ...
	<SQL-Server name> Clause

	The other form of the CONNECT statement has three possible arguments, only one of which is mandat...
	CONNECT TO 'some_server';
	establishes an SQL-Connection to the SQL-server named. (Remember that the SQL-server is that port...
	AS Clause

	The syntax CONNECT TO <SQL-server name> AS <Connection name>; e.g.,
	CONNECT TO 'some_server' AS 'connection_1';
	establishes an SQL-Connection named connection_1 to the SQL-server named. <Connection name> is a ...
	[NON-PORTABLE] A <Connection name> must be a <regular identifier> or a <delimited identifier> tha...
	If your CONNECT statement doesn’t include the optional AS <Connection name> clause, the value of ...
	CONNECT TO DEFAULT;
	CONNECT TO 'some_server';
	CONNECT TO 'some_server' AS 'some_server';
	NOTE: The AS clause can only be omitted from the first CONNECT statement issued for a particular ...
	USER Clause

	The syntax CONNECT TO <SQL-server name> USER <AuthorizationID>; e.g.,
	CONNECT TO 'some_server' USER 'bob';
	establishes an SQL-Connection, with an SQL-session <AuthorizationID> of bob, to the SQL-server na...
	If your CONNECT statement doesn’t include the optional USER <AuthorizationID> clause, the value o...
	CONNECT TO DEFAULT;
	CONNECT TO 'some_server';
	CONNECT TO 'some_server' AS 'some_server' USER 'default_user';
	[NON-PORTABLE] The effect of omitting the optional USER clause from a CONNECT statement is non-st...
	CONNECT Examples

	This SQL statement:
	CONNECT TO 'some_server';
	establishes an SQL-Connection to the SQL-server specified. The <Connection name> defaults to some...
	CONNECT TO 'some_server' AS 'Connection_1';
	establishes an SQL-Connection named Connection_1 to the SQL-server specified. The SQL-session <Au...
	CONNECT TO 'some_server' USER 'bob';
	establishes an SQL-Connection to the SQL-server specified. The <Connection name> defaults to some...
	CONNECT TO 'some_server' AS 'Connection_1' USER 'bob';
	establishes an SQL-Connection named Connection_1 to the SQL-server specified. The SQL-session <Au...
	Executing the CONNECT statement has the effect that the SQL-Connection established becomes the cu...
	If CONNECT fails because your DBMS is unable to establish the SQL-Connection, you’ll get the SQLS...
	If you want to restrict your code to Core SQL, don’t use the CONNECT statement.
	SET CONNECTION Statement

	[NON-PORTABLE] An SQL-compliant DBMS can either limit the number of concurrent SQL-Connections to...
	The SET CONNECTION statement is used to select an SQL-Connection from all available SQL-Connectio...
	SET CONNECTION DEFAULT | <Connection name>
	The SET CONNECTION statement activates a dormant SQL-Connection and makes it the current SQL-Conn...
	SET CONNECTION DEFAULT;
	will establish your DBMS’s default SQL-Connection as the current SQL-Connection. If there is no c...
	The syntax SET CONNECTION <Connection name>; will establish the SQL-Connection specified as the c...
	SET CONNECTION 'connection_2';
	makes the SQL-Connection called connection_2 the current SQL-Connection and puts the previous (if...
	If you want to restrict your code to Core SQL, don’t use the SET CONNECTION statement.
	DISCONNECT Statement

	An SQL-Connection can be closed whether it is the current SQL-Connection or a dormant SQL-Connect...
	DISCONNECT <Connection name> | DEFAULT | CURRENT | ALL
	The DISCONNECT statement terminates an inactive SQL-Connection. DISCONNECT may not be executed du...
	You can disconnect a specific SQL-Connection by naming it (with DISCONNECT <Connection name>;), y...
	DISCONNECT 'connection_1';
	As usual, <Connection name> must be a <simple value specification> — e.g., a <character string li...
	DISCONNECT DEFAULT;
	terminates the DBMS’s default SQL-Connection whether it is current or dormant. (If the DBMS’s def...
	DISCONNECT CURRENT;
	terminates the current SQL-Connection. If there is no current SQL-Connection, DISCONNECT will fai...
	DISCONNECT ALL;
	closes the current, and all dormant, SQL-Connections. If there are no current or dormant SQL-Conn...
	Any errors other than SQLSTATE 08003 or SQLSTATE 25000 that are detected by your DBMS while DISCO...
	The SQL Standard suggests that DISCONNECT should be automatic when an SQL-session ends — but lets...
	DISCONNECT ALL;
	If you want to restrict your code to Core SQL, don’t use the DISCONNECT statement.
	SQL-Session Management

	SQL provides four statements that help you manage your SQL-session. Each one lets you specify a v...
	SET SESSION CHARACTERISTICS Statement

	The SET SESSION CHARACTERISTICS statement sets the value of one or more transaction characteristi...
	SET SESSION CHARACTERISTICS AS <transaction mode> [{,<transaction mode>}...]
	<transaction mode> ::=
	<isolation level> |
	<transaction access mode> |
	<diagnostics size>
	You can set the same characteristics for all the transactions in an entire SQL-session as you can...
	SET SESSION CHARACTERISTICS AS
	READ WRITE
	ISOLATION LEVEL REPEATABLE READ
	DIAGNOSTICS SIZE 5
	If you want to restrict your code to Core SQL, don’t use the SET SESSION CHARACTERISTICS statement.
	SET SESSION AUTHORIZATION Statement

	The SET SESSION AUTHORIZATION statement sets the session user <AuthorizationID> for the current S...
	SET SESSION AUTHORIZATION <value specification>
	When you start an SQL-session, your DBMS sets the value of the session user <AuthorizationID> for...
	[NON-PORTABLE] SET SESSION AUTHORIZATION may always be executed at the start of an SQL-session. W...
	You can change the value of the SQL-session <AuthorizationID> with the SET SESSION AUTHORIZATION ...
	SET SESSION AUTHORIZATION can only be issued outside of a transaction. If you try to execute the ...
	For an example of SET SESSION AUTHORIZATION, assume that the session user <AuthorizationID> for y...
	SET SESSION AUTHORIZATION 'sam';
	SET SESSION AUTHORIZATION :char_variable;
	-- assume the value of the host variable “char_variable” is SAM
	SET SESSION AUTHORIZATION CURRENT_USER;
	-- assume the value of CURRENT_USER is SAM
	If you want to restrict your code to Core SQL, don’t use the SET SESSION AUTHORIZATION statement.
	SET ROLE Statement

	The SET ROLE statement sets the enabled Roles for the current SQL-session. The required syntax fo...
	SET ROLE <value specification> | NONE
	When you start an SQL-session, your DBMS sets the value of the current Role <AuthorizationID> for...
	You can change the value of CURRENT_ROLE with the SET ROLE statement; simply issue SET ROLE follo...
	SET ROLE can only be issued outside of a transaction. If you try to execute the statement and a t...
	For an example of SET ROLE, assume that the current Role for your SQL-session is NULL and you’d l...
	SET ROLE 'Teller_Role';
	SET ROLE :char_variable;
	-- assume the value of the host variable “char_variable” is TELLER_ROLE
	If you want to restrict your code to Core SQL, don’t use the SET ROLE statement.
	SET TIME ZONE Statement

	[NON-PORTABLE] An SQL-session always begins with an initial default time zone offset that is non-...
	The SQL-session default time zone offset is used to specify the related time zone for all times a...
	SET TIME ZONE LOCAL | interval_expression
	The SET TIME ZONE statement changes the current SQL-session’s default time zone offset. It has tw...
	SET TIME ZONE can only be issued outside of a transaction. If you try to execute the statement an...
	The effect of this SQL statement:
	SET TIME ZONE LOCAL;
	is to set the time zone offset for the current SQL-session to your DBMS’s initial default time zo...
	The SQL syntax SET TIME ZONE interval_expression is used to set the time zone offset for the curr...
	SET TIME ZONE INTERVAL –'03:00' HOUR TO MINUTE;
	uses the <interval literal> INTERVAL –'03:00' HOUR TO MINUTE to set the time zone offset for the ...
	If you want to restrict your code to Core SQL, don’t use the SET TIME ZONE statement.

