
ActivateWizard Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofmthActivateWizardC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofmthActivateWizardX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofmthActivateWizardA"}                 
{ewc HLP95EN.DLL, DYNALINK, "Specifics":"ofmthActivateWizardS"}

Resumes or suspends an Office Assistant wizard session.

Note      This method is used as part of the process begun with the StartWizard method.

Syntax
expression.ActivateWizard(WizardID, Act, Animation)
expression      Required. An expression that returns an Assistant object.
WizardID      Required Long. A number that uniquely identifies the Office Assistant wizard session, as

returned by the StartWizard method.
Act      Required Variant. Specifies the way the Office Assistant wizard session changes. Can be one

of the following constants: msoWizardActTypes: msoWizardActActive, msoWizardActInactive,
msoWizardActResume, or msoWizardActSuspend.

Animation      Optional Variant. The type of animation that the Office Assistant performs when it
resumes or suspends the wizard session.

ActivateWizard Method Example

This example suspends the Office Assistant wizard session begun with the StartWizard method. The
variable helpForWiz was set to the return value of the StartWizard method.

Assistant.ActivateWizard WizardID:=helpForWiz, _
 Act:=msoWizardActSuspend, Animation:=msoAnimationGoodbye

Close Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofmthCloseC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofmthCloseX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofmthCloseA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofmthCloseS"}

Closes the active modeless balloon.

Syntax
expression.Close
expression      Required. An expression that returns a Balloon object.

Close Method Example

This example displays a balloon that contains instructions for selecting a printer. After the user clicks
the OK button on the balloon, the ProcessPrinter procedure is run and the balloon is closed.

Sub shar()
Set bln = Assistant.NewBalloon
With bln
 .Heading = "Instructions for Choosing a Printer."
 .Text = "Click OK when you've chosen a printer."
 .Labels(1).Text = "Choose File, Print."
 .Labels(2).Text = "Click Setup."
 .Labels(3).Text = "Select the name of the printer."
 .BalloonType = msoBalloonTypeNumbers
 .Mode = msoModeModeless
 .Callback = "ProcessPrinter"
 .Button = msoButtonSetOK
 .Show
End With
End Sub

Sub ProcessPrinter(bln As Balloon, ibtn As Long, _
 iPriv As Long)
 Assistant.Animation = msoAnimationSearching
 ' Insert printer-specific code
 bln.Close
End Sub

EndWizard Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofmthEndWizardC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofmthEndWizardX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofmthEndWizardA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofmthEndWizardS"}

Closes the Office Assistant window and releases the variable that uniquely identifies the wizard
session.

Note      You use this method to complete the process begun with the StartWizard.method.

Syntax
expression.EndWizard(WizardID, varfSuccess, Animation)
expression       Required. An expression that returns an Assistant object.
WizardID      Required Long. A number that uniquely identifies the Office Assistant wizard session, as

returned by the StartWizard method.
varfSuccess      Required Boolean. When the method returns, this argument is True if the user

completes the wizard successfully.
Animation      Optional Variant. The type of animation that the Office Assistant performs when the

wizard session ends.

EndWizard Method Example

This example closes the Office Assistant for a wizard session that was completed successfully by the
user. The variable helpForWiz was assigned the return value of the StartWizard method.

Assistant.EndWizard WizardId:=helpForWiz, _
 varfSuccess:=True, Animation:=msoAnimationGoodbye

StartWizard Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofmthStartWizardC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofmthStartWizardX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofmthStartWizardA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofmthStartWizardS"}

Starts the Office Assistant as part of a process to provide additional explanation for existing custom
wizard panels. Returns a number that uniquely identifies the Office Assistant wizard session.

Syntax
expression.StartWizard(On, Callback, PrivateX, Animation, CustomTeaser, Top, Left, Bottom,

Right)
expression       Required. An expression that returns an Assistant object.
On      Required Boolean. The wizard's local state. When the method returns, this argument is True if

the user requests help for the wizard from the standard balloon that asks the user whether he or
she wants help.

Callback      Required String. The name of the callback procedure to be run.
PrivateX      Required Long. The unique identifier of the Office Assistant balloon panel that initiates

the callback procedure.
Animation      Optional Variant. The type of animation that the Office Assistant performs when it

appears. The default value is msoAnimationGetWizardy.
CustomTeaser      Optional Variant. True to have the standard balloon that asks the user whether he

or she wants help be replaced with a custom balloon.
Top, Left, Bottom, Right      Optional Variant. The position of the corners (in points and relative to the

screen) of the custom wizard panel that the Office Assistant will avoid when the user starts it or
switches to it.

Remarks
It isn't necessary to use the Visible property to display the Office Assistant if you use the StartWizard
method.

StartWizard Method Example

This example starts the Office Assistant as part of a process to provide additional explanation for
existing custom wizards. If the user clicks the selection in the balloon that requests additional help,
the callback procedure will be run. The variable helpForWiz is set to the return value of the
StartWizard method.
helpForWiz = Assistant.StartWizard(on:=True, _
 PrivateX:=23, Callback:="myCallback", _
 Animation:=msoAnimationGetAttentionMajor, _
 CustomTeaser:=False, Top:=100, Left:=200, _
 Bottom:=50, Right:=200)

AssistWithAlerts Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproAssistWithAlertsC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproAssistWithAlertsX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproAssistWithAlertsA"}               
{ewc HLP95EN.DLL, DYNALINK, "Specifics":"ofproAssistWithAlertsS"}

True if application alerts are delivered by the Office Assistant balloon whenever the Office Assistant is
visible. Read/write Boolean.

Remarks
The AssistWithAlerts property corresponds to the Display alerts option under Assistant
capabilities on the Options tab in the Office Assistant dialog box.

If this property is False, the application displays alerts in dialog boxes without the Office Assistant.

AssistWithAlerts Property Example
This example sets the Office Assistant to be displayed whenever an application alert is generated.
With Assistant
 .AssistWithHelp = True
 .AssistWithAlerts = True
 .Animation = msoAnimationGreeting
 .Visible = True
End With

AssistWithHelp Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproAssistWithHelpC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproAssistWithHelpX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproAssistWithHelpA"}                 
{ewc HLP95EN.DLL, DYNALINK, "Specifics":"ofproAssistWithHelpS"}

True if the Office Assistant appears whenever the user presses the F1 key to display Help. Read/write
Boolean.

Remarks
The AssistWithHelp property corresponds to the Respond to F1 key option under Assistant
capabilities on the Options tab in the Office Assistant dialog box.

If this property is set to False, the Help Topics dialog box appears instead of the Office Assistant.

AssistWithHelp Property Example
This example displays the Office Assistant whenever the user presses the F1 key to display Help.
With Assistant
 .AssistWithHelp = True
 .AssistWithAlerts = True
 .Animation = msoAnimationGreeting
 .Visible = True
End With

Callback Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproCallbackC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproCallbackX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproCallbackA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofproCallbackS"}

Sets the name of the procedure to be run whenever a modeless balloon is displayed. Read/write
String.

Note      If you specify a macro that exists behind an Excel worksheet, you must include the worksheet
in the reference, as in "Sheet1.myCallback" instead of "myCallback".

Callback Property Example
This example displays a balloon that contains a selection of three printers. After the user clicks the
OK button on the balloon, the ProcessPrinter procedure is run and the balloon is closed.

Sub shar()
Set bln = Assistant.NewBalloon
With bln
 .Heading = "Select a Printer."
 .Text = "Click OK when you've selected a printer."
 .Labels(1).Text = "Network Printer"
 .Labels(2).Text = "Local Printer"
 .Labels(3).Text = "Local Color Printer"
 .BalloonType = msoBalloonTypeButtons
 .Mode = msoModeModeless
 .Callback = "ProcessPrinter"
 .Button = msoButtonSetOK
 .Show
End With
End Sub
(Every procedure specified in the Callback property is passed three arguments: the balloon that
activated the procedure, the return value of the button the user pressed, and an integer that uniquely
identifies the balloon that called the procedure.)
Sub ProcessPrinter(bln As Balloon, ibtn As Long, _
 iPriv As Long)
 Assistant.Animation = msoAnimationPrinting
 Select Case ibtn
 Case 1
 ' Insert printer-specific code
 bln.Close
 Case 2
 ' Insert printer-specific code
 bln.Close
 Case 3
 ' Insert printer-specific code
 bln.Close
 End Select
 End Sub

Private Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproPrivateC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproPrivateX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproPrivateA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofproPrivateS"}

Returns or sets an integer that uniquely identifies the Office Assistant balloon that initiates the
callback procedure. Read/write Long.

Remarks
It may be helpful to use this property if you use the same callback procedure for a variety of
circumstances.

Private Property Example
This example identifies the Office Assistant balloon by setting the Private property to 129. The
callback procedure, myCallback, is used in a variety of circumstances, and the integer 129 will be
used to identify this circumstance.
With myBalloon
 .Heading = "Select a region"
 .Private = 129
 .Callback = "myCallback"
 .Show
End With

SetAvoidRectangle Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofmthSetAvoidRectangleC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofmthSetAvoidRectangleX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofmthSetAvoidRectangleA"} 
{ewc HLP95EN.DLL, DYNALINK, "Specifics":"ofmthSetAvoidRectangleS"}

Prevents the Office Assistant balloon from being displayed in a specified area of the screen.

Syntax
expression.SetAvoidRectangle(Left, Top, Right, Bottom)
expression      Required. An expression that returns an Assistant object.
Left, Top, Right, Bottom      Required Long. The coordinates (in points and relative to the screen) of

the area of the screen that the Office Assistant balloon will be excluded from when it's displayed.

Remarks
This property is intended to prevent the Office Assistant balloon from overlapping with custom dialog
boxes and wizards.

SetAvoidRectangle Method Example

This example prevents the Office Assistant balloon represented by the variable myBalloon from
being displayed in the region of the screen denoted by the specified coordinates (measured in pixels).
With myBalloon
 .SetAvoidRectangle 300, 250, 700, 500
 .Show
End With

ResetTips Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofmthResetTipsC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofmthResetTipsX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofmthResetTipsA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofmthResetTipsS"}

Resets the application tips that will appear in the Office Assistant balloon.

Syntax
expression.ResetTips
expression      Required. An expression that returns an Assistant object.

Remarks
The ResetTips method corresponds to the Reset my tips button on the Options tab in the Office
Assistant dialog box.

ResetTips Method Example

This example resets the application tips before making the Office Assistant visible. A confirmation
balloon will appear, telling the user that his or her application tips have been reset.
With Application.Assistant
 .Visible = True
 .Animation = msoAnimationGreeting
 .ResetTips
End With

MoveWhenInTheWay Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproMoveWhenInTheWayC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproMoveWhenInTheWayX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"ofproMoveWhenInTheWayA"}                  {ewc HLP95EN.DLL, DYNALINK, "Specifics":"ofproMoveWhenInTheWayS"}

True if the Office Assistant window automatically moves when it's in the way of the user's work area.
For example, the Assistant will move if it's in the way of dragging or dropping or in the way of
keystroke entries. Read/write Boolean.

Remarks
The MoveWhenInTheWay property corresponds to the Move when in the way option under
Assistant capabilities on the Options tab in the Office Assistant dialog box.

MoveWhenInTheWay Property Example

This example displays the Office Assistant in a specific location, and it sets several options before
making the Assistant visible.
With Assistant
 .Reduced = True
 .Left = 400
 .MoveWhenInTheWay = True
 .TipOfDay = True
 .Visible = True
 .Animation = msoAnimationGreeting
End With

NewBalloon Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproNewBalloonC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproNewBalloonX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproNewBalloonA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofproNewBalloonS"}

Creates a new Office Assistant balloon. Returns a Balloon object.

NewBalloon Property Example

This example creates a balloon with a heading, text, and three region choices, and then displays it.
With Assistant.NewBalloon
 .Button = msoButtonSetOK
 .Heading = "Regional Sales Data"
 .Text = "Select a region"
 For i = 1 To 3
 .CheckBoxes(i).Text = "Region " & i
 Next
 .Show
End With

Reduced Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproReducedC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproReducedX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproReducedA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofproReducedS"}

True if the Office Assistant window appears in its smaller size. Read/write Boolean.

Reduced Property Example

This example displays the Office Assistant in a specific location, and it sets several options before
making the Assistant visible.
With Assistant
 .Reduced = True
 .Left = 400
 .MoveWhenInTheWay = True
 .TipOfDay = True
 .Visible = True
 .Animation = msoAnimationGreeting
End With

SearchWhenProgramming Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproSearchWhenProgrammingC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproSearchWhenProgrammingX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"ofproSearchWhenProgrammingA"}                  {ewc HLP95EN.DLL, DYNALINK,
"Specifics":"ofproSearchWhenProgrammingS"}

True if the Office Assistant displays application help as well as programming help while the user is
working in Visual Basic. Read/write Boolean.

Remarks
The SearchWhenProgramming property corresponds to the Search for both product and
programming help when programming option under Assistant capabilities on the Options tab in
the Office Assistant dialog box.

SearchWhenProgramming Property Example

This example enables you to search both application and programming help while you're working in
Visual Basic.
Assistant.SearchWhenProgramming = True

Show Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofmthShowC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofmthShowX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofmthShowA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofmthShowS"}

Balloon object: Displays the specified balloon object. Returns an msoBalloonType constant that
indicates which balloon the user clicks.

FileFind object: Displays the Find File dialog and the current search criteria. Macintosh only.

Syntax
expression.Show
expression     Required. An expression that returns a Balloon object or a FileFind object.

Remarks
For the Balloon object, you can use the return value of the Show method to display a user's button
selection. The Show method returns one of the following msoBalloonType constants:

msoBalloonButtonAbort
msoBalloonButtonCancel
msoBalloonButtonIgnore
msoBalloonButtonNo
msoBalloonButtonOK
msoBalloonButtonRetry
msoBalloonButtonSnooze
msoBalloonButtonYes

msoBalloonButtonBack
msoBalloonButtonClose
msoBalloonButtonNext
msoBalloonButtonNull
msoBalloonButtonOptions
msoBalloonButtonSearch
msoBalloonButtonTips
msoBalloonButtonYesToAll

Show Method Example

This example creates a balloon containing three choices. The variable x is set to the return value of
the Show method, which will be 1, 2 or 3, corresponding to the label the user clicks. In the example, a
simple message box displays the value of the variable x, but you can pass the value to another
procedure, or you can use the value in a Select Case statement.
Set b = Assistant.NewBalloon
With b
 .Heading = "This is my heading"
 .Text = "Select one of these things:"
 .Labels(1).Text = "Choice One"
 .Labels(2).Text = "Choice Two"
 .Labels(3).Text = "Choice Three"
 x = .Show
End With
MsgBox x

Sounds Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproSoundsC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproSoundsX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproSoundsA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofproSoundsS"}

True if the Office Assistant produces the sounds that correspond to animations. Read/write Boolean.

Remarks
If a sound card is not installed, this property has no effect.

Sounds Property Example

This example displays the Office Assistant, animates it, and generates sound.
With Assistant
 .Visible = True
 .Sounds = True
 .Animation = msoAnimationBeginSpeaking
End With

TipOfDay Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproTipOfDayC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproTipOfDayX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproTipOfDayA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofproTipOfDayS"}

True if the Office Assistant displays a special tip each time the Office application is opened.
Read/write Boolean.

Remarks
The TipOfDay property corresponds to the Show the Tip of the Day at startup option under Other
tip options on the Options tab in the Office Assistant dialog box.

TipOfDay Property Example

This example displays the Office Assistant in a specific location, and it sets several options before
making the Assistant visible.
With Assistant
 .Reduced = True
 .Left = 400
 .MoveWhenInTheWay = True
 .TipOfDay = True
 .Visible = True
 .Animation = msoAnimationGreeting
End With

Animation Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproAnimationC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproAnimationX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproAnimationA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofproAnimationS"}

Returns or sets the animation action for the Office Assistant. When this property is applied to the
Assistant object, the Assistant is animated immediately (if the Assistant is visible). When this
property is applied to the Balloon object, the Assistant is animated only while the balloon is
displayed. Read/write Long.

Can be one of the following MsoAnimationType constants:

msoAnimationAppear
msoAnimationBeginSpeaking
msoAnimationCharacterSuccessMajor
msoAnimationCheckingSomething
msoAnimationDisappear
msoAnimationEmptyTrash
msoAnimationGestureDown
msoAnimationGestureLeft
msoAnimationGestureRight
msoAnimationGestureUp
msoAnimationGetArtsy
msoAnimationGetAttentionMajor
msoAnimationGetAttentionMinor
msoAnimationGetTechy
msoAnimationGetWizardy
msoAnimationGoodbye
msoAnimationGreeting

msoAnimationIdle
msoAnimationListensToComputer
msoAnimationLookDown
msoAnimationLookDownLeft
msoAnimationLookDownRight
msoAnimationLookLeft
msoAnimationLookRight
msoAnimationLookUp
msoAnimationLookUpLeft
msoAnimationLookUpRight
msoAnimationPrinting
msoAnimationSaving
msoAnimationSearching
msoAnimationSendingMail
msoAnimationThinking
msoAnimationWorkingAtSomething
msoAnimationWritingNotingSomething

Remarks
Clippit is the default Assistant, and msoAnimationIdle is the default animation type for the Assistant.

Depending on the selected Assistant, setting the Animation property may or may not result in any
obvious animation. However, all MsoAnimationType constants are valid for all Assistants.

The following MsoAnimationType constants represent animations that repeat the specified action
until the Assistant is dismissed, or until the Animation property is reset with another animation.

msoAnimationCheckingSomething
msoAnimationGetArtsy
msoAnimationGetTechy
msoAnimationSaving

msoAnimationSearching
msoAnimationThinking
msoAnimationWorkingAtSomething
msoAnimationWritingNotingSomething

Animation Property Example
This example displays the Office Assistant in a specific location, and it sets several options before
making the Assistant visible.
With Assistant
 .Reduced = True
 .Move xLeft:= 400, yTop:= 300
 .MoveWhenInTheWay = True
 .TipOfDay = True
 .Visible = True
 .Animation = msoAnimationGreeting
End With

FileName Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproFileNameC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproFileNameX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproFileNameA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofproFileNameS"}

Assistant object: Returns or sets the name of the file for the active Office Assistant. Read/write
String.

FileSearch object: Returns or sets the name of the file to look for during a file search. The name of
the file may include the * (asterisk) or ? (question mark) wildcards. Use the question mark wildcard to
match any single character. For example, type gr?y to match both "gray" and "grey." Use the asterisk
wildcard to match any number of characters. For example, type *.txt to find all files that have the .TXT
extension. Read-write String.

Remarks
In Windows, the file name extension for Assistant files is .act, and the files are installed in the \
Program Files\Microsoft Office\Office\Actors folder in Windows 95, in the \Windows\MsApps\Actors
folder in Windows NT, and in the Microsoft:Assistants folder on the Macintosh.

The following file names correspond to the Assistants in Office 97.

Character File name
Office Logo Logo.act
PowerPup Powerpup.act
The Genius Genius.act
Hoverbot Hoverbot.act
Scribble Scribble.act
The Dot Dot.act
Clippit Clippit.act
Mother Nature MNature.act
Will Will.act

FileName Property Example
This example uses the FileName property to customize balloon text for specific Office Assistants. The
variable btext can be used for the value of the Text property in a Print Wizard balloon.

Select Case Assistant.FileName
Case "will.act"
 btext = "To Print, or Not to Print. That is the question."
Case "genius.act"
 btext = "The sum of the checkboxes equals the document to print."
Case Else
 btext = "Choose the document you want to print."
End Select
This example searches for all files located in the My Documents folder that begin with "cmd." The
example displays the name and location of each found file.
Set fs = Application.FileSearch
With fs
 .LookIn = "C:\My Documents"
 .FileName = "cmd*"
 If .Execute > 0 Then
 MsgBox "There were " & .FoundFiles.Count & _
 " file(s) found."
 For i = 1 To .FoundFiles.Count
 MsgBox .FoundFiles(i)
 Next i
 Else
 MsgBox "There were no files found."
 End If
End With

BalloonType Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproBalloonTypeC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproBalloonTypeX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproBalloonTypeA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofproBalloonTypeS"}

Returns or sets the type of balloon the Office Assistant uses. Can be one of the following
MsoBalloonType constants: msoBalloonTypeButtons, msoBalloonTypeBullets, or
msoBalloonTypeNumbers. When you create a new balloon with the NewBalloon method, this
property is initially set to msoBalloonTypeButtons. Read/write Long.

BalloonType Property Example
This example creates an instruction balloon that explains how to select a printer. The balloon is
modeless, so the user can follow the instructions in the balloon and keep the balloon visible as he or
she works.
Set bln = Assistant.NewBalloon
With bln
 .Heading = "Instructions for Choosing a Printer."
 .Text = "Click OK when you've chosen a printer."
 .Labels(1).Text = "From the File menu, choose Print."
 .Labels(2).Text = "Click Setup."
 .Labels(3).Text = "Select the name of the printer."
 .BalloonType = msoBalloonTypeNumbers
 .Mode = msoModeModeless
 .Callback = "ProcessPrinter"
 .Button = msoButtonSetOK
 .Show
End With

Button Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproButtonC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproButtonX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproButtonA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofproButtonS"}

Returns or sets the type of button displayed at the bottom of the Office Assistant balloon. When you
create a new balloon with the NewBalloon method, this property is initially set to msoButtonSetOK.
Read/write Long.

Can be one of the following MsoButtonSetType constants:

msoButtonSetAbortRetryIgnore
msoButtonSetBackClose
msoButtonSetBackNextClose
msoButtonSetBackNextSnooze
msoButtonSetCancel
msoButtonSetNextClose
msoButtonSetNone
msoButtonSetOK

msoButtonSetOkCancel
msoButtonSetRetryCancel
msoButtonSetSearchClose
msoButtonSetTipsOptionsClose
msoButtonSetYesAllNoCancel
msoButtonSetYesNoCancel
msoButtonSetYesNo

Button Property Example
This example creates a balloon with a heading, text, and three region choices, and then displays it.
With Assistant.NewBalloon
 .Heading = "Regional Sales Data"
 .Text = "Select a region"
 For i = 1 To 3
 .CheckBoxes(i).Text = "Region " & i
 Next
 .Button = msoButtonSetOkCancel
 .Show
End With

Checkboxes Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproCheckboxesC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproCheckboxesX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproCheckboxesA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofproCheckboxesS"}

Returns the BalloonCheckboxes collection that represents all the check boxes contained in the
specified balloon. Read-only.

For information about returning a single member of a collection, see Returning an Object from a
Collection.

Checkboxes Property Example
This example creates a balloon with a heading, text, and three region choices. When the user selects
a check box and then clicks OK in the balloon, the appropriate procedure is run.
With Assistant.NewBalloon
 .Heading = "Regional Sales Data"
 .Text = "Select your region"
 For i = 1 To 3
 .CheckBoxes(i).Text = "Region " & i
 Next
 .Button = msoButtonSetOkCancel
 .Show
Select Case True
 Case .CheckBoxes(1).Checked
 runregion1
 Case .CheckBoxes(2).Checked
 runregion2
 Case .CheckBoxes(3).Checked
 runregion3
End Select
End With

Checked Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproCheckedC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproCheckedX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproCheckedA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofproCheckedS"}

True if the specified check box in the Office Assistant balloon is selected. Read/write Boolean.

Checked Property Example
This example creates a balloon with a heading, text, and three region choices. When the user selects
a check box and then clicks OK in the balloon, the appropriate procedure is run.
With Assistant.NewBalloon
 .Heading = "Regional Sales Data"
 .Text = "Select your region"
 For i = 1 To 3
 .CheckBoxes(i).Text = "Region " & i
 Next
 .Button = msoButtonSetOkCancel
 .Show
Select Case True
 Case .CheckBoxes(1).Checked
 runregion1
 Case .CheckBoxes(2).Checked
 runregion2
 Case .CheckBoxes(3).Checked
 runregion3
End Select
End With

FeatureTips Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproFeatureTipsC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproFeatureTipsX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproFeatureTipsA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofproFeatureTipsS"}

True if the Office Assistant provides information about using application features more effectively.
Read/write Boolean.

Remarks
The FeatureTips property corresponds to the Using features more effectively check box on the
Options tab in the Assistant dialog box.

FeatureTips Property Example
This example sets the Office Assistant to provide information about using application features more
effectively.
Assistant.FeatureTips = True

GuessHelp Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproGuessHelpC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproGuessHelpX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproGuessHelpA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofproGuessHelpS"}

True if the Office Assistant displays a list of relevant Help topics based on the context immediately
before the user clicks the Assistant window or presses F1. Read/write Boolean.

Remarks
The GuessHelp property corresponds to the Guess help topics option under Assistant capabilities
on the Options tab in the Office Assistant dialog box.

GuessHelp Property Example
This example sets the Office Assistant to guess at Help topics.
Assistant.GuessHelp = True

Heading Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproHeadingC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproHeadingX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproHeadingA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofproHeadingS"}

Returns or sets the heading that appears in the Office Assistant balloon. Read/write String.

Remarks
You can specify a graphic to display by using the following syntax: {type location sizing_factor}, where
type is bmp (bitmap), wmf (Windows metafile), or pict (Macintosh PICT file); location is the resource id
or the path and file name; and sizing_factor specifies the width of the wmf or pict (omitted for bmp).

Heading Property Example
This example creates a balloon with a heading, text, and three region choices, and then displays it.
With Assistant.NewBalloon
 .Button = msoButtonSetOkCancel
 .Heading = "Regional Sales Data"
 .Text = "Select a region"
 For i = 1 To 3
 .CheckBoxes(i).Text = "Region " & i
 Next
 .Show
End With

Help Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofmthHelpC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofmthHelpX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofmthHelpA"}                  {ewc HLP95EN.DLL,
DYNALINK, "Specifics":"ofmthHelpS"}

Displays the Office Assistant and the built-in Assistant balloon.

Syntax
expression.Help
expression      Required. An expression that returns an Assistant object.

Help Method Example
This example displays the built-in Assistant balloon when the user selects the "I need more
information" checkbox.
Set b = Assistant.NewBalloon
With b
 .Heading = "User Information"
 .Text = "Select your skill level"
 .CheckBoxes(1).Text = "Beginner."
 .CheckBoxes(2).Text = "Advanced."
 .CheckBoxes(3).Text = "I need more information."
 .Show
End With
If b.CheckBoxes(3).Checked = True Then
 Assistant.Help
End If

AssistWithWizards Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproAssistWithWizardsC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproAssistWithWizardsX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproAssistWithWizardsA"}     
{ewc HLP95EN.DLL, DYNALINK, "Specifics":"ofproAssistWithWizardsS"}

True if the Office Assistant provides Help information about wizards. Read/write Boolean.

Remarks
The AssistWithWizards property corresponds to the Help with wizards option under Assistant
capabilities on the Options tab in the Office Assistant dialog box.

AssistWithWizards Property Example
This example sets the Office Assistant to provide Help information about wizards.
Assistant.AssistWithWizards = True

HighPriorityTips Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproHighPriorityTipsC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproHighPriorityTipsX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproHighPriorityTipsA"}                 
{ewc HLP95EN.DLL, DYNALINK, "Specifics":"ofproHighPriorityTipsS"}

True if the Office Assistant displays high-priority tips. Read/write Boolean.

Remarks
The HighPriorityTips property corresponds to the Only show high priority tips option under Other
tip options on the Options tab in the Office Assistant dialog box.

HighPriorityTips Property Example
This example sets the Office Assistant to display high-priority tips.
Assistant.HighPriorityTips = True

Icon Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproIconC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproIconX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproIconA"}                  {ewc HLP95EN.DLL,
DYNALINK, "Specifics":"ofproIconS"}

Returns or sets the type of icon that appears in the upper-left portion of the Office Assistant balloon.
Can be one of the following MsoIconType constants: msoIconAlert, msoIconNone, or msoIconTip.
Read/write String.

Icon Property Example
This example creates a balloon with an alert icon that instructs the user to select a printer.
With Assistant.NewBalloon
 .Heading = "Select A Printer"
 .Text = "You must select a printer before printing."
 .Icon = msoIconAlert
 .CheckBoxes(1).Text = "Local printer"
 .CheckBoxes(2).Text = "Network printer"
 .Show
End With

KeyboardShortcutTips Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproKeyboardShortcutTipsC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproKeyboardShortcutTipsX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"ofproKeyboardShortcutTipsA"}                  {ewc HLP95EN.DLL, DYNALINK, "Specifics":"ofproKeyboardShortcutTipsS"}

True if the Office Assistant provides Help information about keyboard shortcuts. Read/write Boolean.

Remarks
The KeyboardShortcutTips property corresponds to the Keyboard shortcuts option under Show
tips about on the Options tab in the Office Assistant dialog box.

KeyboardShortcutTips Property Example
This example sets the Office Assistant to provide Help information about keyboard shortcuts.
Assistant.KeyboardShortcutTips = True

Labels Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproLabelsC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproLabelsX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproLabelsA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofproLabelsS"}

Returns a BalloonLabels collection that represents the button labels, number labels, and bullet
labels contained in the specified Office Assistant balloon. Read-only.

For information about returning a single member of a collection, see Returning an Object from a
Collection.

Labels Property Example
This example creates a balloon containing three choices. The variable x is set to the return value of
the Show method, which will be 1, 2 or 3, corresponding to the label the user clicks. In the example, a
simple message box displays the value of the variable x, but you can pass the value to another
procedure, or you can use the value in a Select Case statement.
Set b = Assistant.NewBalloon
With b
 .Heading = "This is my heading"
 .Text = "Select one of these things:"
 .Labels(1).Text = "Choice One"
 .Labels(2).Text = "Choice Two"
 .Labels(3).Text = "Choice Three"
 x = .Show
End With
MsgBox x

BalloonError Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproBalloonErrorC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproBalloonErrorX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproBalloonErrorA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofproBalloonErrorS"}

Returns a value that indicates the last recorded balloon error. Read-only String.

Can be one of the following MsoBalloonErrorType constants.

Constant Description
msoBalloonErrorBadPictureRef The balloon contains a bitmap that

couldn't be displayed because the file
doesn't exist or because the bitmap
isn't a valid .BMP or .WMF file (or
PICT file on the Macintosh).

msoBalloonErrorBadReference The balloon contains an unrecognized
or unsupported reference.

msoBalloonErrorButtonlessModal The balloon you attempted to display
is modal, but it contains no buttons.
The balloon won't be shown because
it cannot be dismissed.

msoBalloonErrorButtonModeless The balloon you attempted to display
is modeless, contains no buttons, and
has no procedure assigned to the
Callback property. The balloon won't
be shown because a procedure is
required to evaluate the button clicked
in the balloon.

msoBalloonErrorNone The property succeeded in displaying
the balloon; no error was
encountered.

msoBalloonErrorBadCharacter The balloon contains an ASCII control
character other than CR or LF and
greater than 32.

msoBalloonErrorOutOfMemory The balloon won't appear because
there is insufficient memory.

msoBalloonErrorTooBig The balloon is too big to appear on
the screen.

msoBalloonErrorOther The balloon won't appear because
some other error occurred, such as
another modal balloon is already
active.

BalloonError Property Example
This example creates a balloon that generates an error. The error is caused because the balloon is
created without a way to dismiss it: the button type was set to msoButtonSetNone and the default
balloon mode is msoModeModal, resulting in a buttonless balloon. Note that there's no way to
dismiss a buttonless modal balloon.
With Application.Assistant
With .NewBalloon
 .Heading = "This will never show."
 .Text = "Imagine a balloon here."
 .Button = msoButtonSetNone
 .Show
End With
.Visible = True
If .BalloonError = msoBalloonErrorButtonlessModal Then
 MsgBox "You need a button to dismiss the balloon."
End If
End With

Mode Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproModeC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproModeX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproModeA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofproModeS"}

Returns or sets the type of balloon displayed. Can be one of the following MsoModeType constants:
msoModeAutoDown, msoModeModal, or msoModeModeless. When you create a new balloon
with the NewBalloon method, this property is initially set to msoModeModal. Read/write Long.

Remarks
If the Mode property for a balloon is set to msoModeModeless, the user can work in the application
while the balloon is visible. If the property is set to msoModeModal, the user must dismiss the
balloon before he or she can return to working in the application. If the property is set to
msoModeAutoDown, the balloon is instantly dismissed when the user clicks anywhere on the
screen.

If the Mode property for a balloon is set to msoModeModeless, a value for the Callback property is
required. The Close method can only be used if the property is set to msoModeModeless.

Mode Property Example
This example creates a balloon with an alert icon that instructs the user to select a printer. Because
the balloon is modeless, the user has access to printer commands while the balloon is visible.
With Assistant.NewBalloon
 .Heading = "Select A Printer"
 .Text = "You must select a printer before printing."
 .Icon = msoIconAlert
 .CheckBoxes(1).Text = "Local printer"
 .CheckBoxes(2).Text = "Network printer"
 .Mode = msoModeModeless
 .Callback = "ProcessPrinter"
 .Show
End With

MouseTips Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproMouseTipsC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproMouseTipsX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproMouseTipsA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofproMouseTipsS"}

True if the Office Assistant provides suggestions for using the mouse more effectively. Read/write.
Boolean.

Remarks
The MouseTips property corresponds to the Using the mouse more effectively option under Show
tips about on the Options tab in the Office Assistant dialog box.

MouseTips Property Example
This example sets the Office Assistant to provide suggestions for using the mouse more effectively.
Assistant.MouseTips = True

Assistant Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofobjCommandBarC "}              {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofobjAssistantX":1}              {ewc HLP95EN.DLL, DYNALINK, "Properties":"ofobjAssistantP "}              {ewc
HLP95EN.DLL, DYNALINK, "Methods":"ofobjAssistantM "}              {ewc HLP95EN.DLL, DYNALINK, "Specifics":"ofobjAssistantS
"}

Represents the Microsoft Office Assistant.

Using the Assistant Object
Use the Assistant property to return the Assistant object. There's no collection for the Assistant
object; only one Assistant object can be active at a time. Use the Visible property to display the
Assistant.

Remarks
The default Assistant is Clippit. To select a different Assistant programatically, use the FileName
property.

The following example displays a previously selected Assistant and animates it with the associated
sound. If your computer doesn't have a sound card installed, this example won't generate an error,
but the sound won't be heard.
With Assistant
 .Visible = True
 .Sounds = True
 .Animation = msoAnimationBeginSpeaking
End With

Balloon Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofobjCommandBarC "}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofobjBalloonX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Properties":"ofobjBalloonP "}                  {ewc
HLP95EN.DLL, DYNALINK, "Methods":"ofobjBalloonM "}                  {ewc HLP95EN.DLL, DYNALINK, "Specifics":"ofobjBalloonS
"}

Represents the balloon in which the Office Assistant displays headings and text information. A balloon
can contain controls such as check boxes and labels.

Using the Balloon Object
Use the NewBalloon property to return a Balloon object. There's no collection for the Balloon
object; only one balloon can be visible at a time. However, it's possible to define several balloons and
call any one of them when needed. For more information, see "Defining and Reusing Balloons" later
in this topic.

Use the Show method to make the specified balloon visible. Use the Callback property to run
procedures based on selections from modeless balloons (balloons that remain visible while a user
works in the application). Use the Close method to close modeless balloons.

The following example creates a balloon that contains tips for saving entered data.
With Assistant.NewBalloon
 .BalloonType = msoBalloonTypeBullets
 .Icon = msoIconTip
 .Button = msoButtonSetOkCancel
 .Heading = "Tips for Saving Information."
 .Labels(1).Text = "Save your work often."
 .Labels(2).Text = "Install a surge protector."
 .Labels(3).Text = "Exit your application properly."
 .Show
End With

Defining and Reusing Balloons
You can reuse balloons by assigning them to object variables and calling them when needed
throughout your procedure. This example defines balloon1, balloon2, and balloon3 as separate
balloons, and it displays the balloons at various points in the procedure.
Set balloon1 = Assistant.NewBalloon
balloon1.Heading = "First balloon"

Set balloon2 = Assistant.NewBalloon
balloon2.Heading = "Second balloon"
Set balloon3 = Assistant.NewBalloon
balloon3.Heading = "Third balloon"
balloon1.Show
balloon3.Show
balloon2.Show
You can also combine balloon object variables in an array and index into the array.

BalloonCheckboxes Collection Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofobjBalloonCheckboxesC "}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofobjBalloonCheckboxesX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Properties":"ofobjBalloonCheckboxesP "} 
{ewc HLP95EN.DLL, DYNALINK, "Methods":"ofobjBalloonCheckboxesM "}                  {ewc HLP95EN.DLL, DYNALINK,
"Specifics":"ofobjBalloonCheckboxesS "}

A collection of BalloonCheckbox objects that represent all the check boxes in the Office Assistant
balloon.

Using the BalloonCheckboxes Collection
Use the Checkboxes property to return the BalloonCheckboxes collection.

Use Checkboxes(index), where index is a number from 1 through 5, to return a single
BalloonCheckbox object. There can be up to five check boxes in one balloon; each check box
appears when a value is assigned to its Text property.

The following example writes the checkbox text of all visible checkboxes, in an existing balloon, to the
debug window.
For Each box In .CheckBoxes
 If box.Text <> "" Then
 Debug.Print box.Text
 End If
Next
You cannot add check boxes to or remove check boxes from the BalloonCheckboxes collection.

Remarks
Balloon check boxes display the user's choices until he or she dismisses the balloon. Balloon labels
record the user's choice as soon as he or she clicks the button beside the label.

BalloonCheckbox Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofobjBalloonCheckboxC "}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofobjBalloonCheckboxX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Properties":"ofobjBalloonCheckboxP "}           
{ewc HLP95EN.DLL, DYNALINK, "Methods":"ofobjBalloonCheckboxM "}                  {ewc HLP95EN.DLL, DYNALINK,
"Specifics":"ofobjBalloonCheckboxS "}

Represents a check box in the Office Assistant balloon. The BalloonCheckbox object is a member of
the BalloonCheckboxes collection.

Using the BalloonCheckbox Object
Use Checkboxes(index), where index is a number from 1 through 5, to return a single
BalloonCheckbox object. There can be up to five check boxes in one balloon; each check box
appears when a value is assigned to its Text property.

The following example creates a balloon with a heading, text, and three region choices. When the
user selects a check box and then clicks OK, the appropriate procedure is run.
With Assistant.NewBalloon
 .Heading = "Regional Sales Data"
 .Text = "Select your region"
 For i = 1 To 3
 .CheckBoxes(i).Text = "Region " & i
 Next
 .Button = msoButtonSetOkCancel
 .Show
 Select Case True
 Case .CheckBoxes(1).Checked
 runregion1
 Case .CheckBoxes(2).Checked
 runregion2
 Case .CheckBoxes(3).Checked
 runregion3
 End Select
End With

Remarks
Balloon check boxes display the user's choices until the user dismisses the balloon. Balloon labels
record the user's choice as soon as the user clicks the button beside the label.

BalloonLabels Collection Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofobjBalloonLabelsC "}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofobjBalloonLabelsX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Properties":"ofobjBalloonLabelsP "}                 
{ewc HLP95EN.DLL, DYNALINK, "Methods":"ofobjBalloonLabelsM "}                  {ewc HLP95EN.DLL, DYNALINK,
"Specifics":"ofobjBalloonLabelsS "}

A collection of BalloonLabel objects that represent all the labels in the Office Assistant balloon.

Using the BalloonLabels Collection
Use the Labels property to return the BalloonLabels collection.

Use Labels(index), where index is a number from 1 through 5, to return a BalloonLabel object.
There can be up to five labels in one balloon; each label appears when a value is assisgned to its
Text property.

The following example creates a balloon containing three choices. The variable x is set to the return
value of the Show method, which will be 1, 2, or 3, corresponding to the label the user clicks. The
example displays the value of the variable x, but you can pass the value to another procedure, or you
can use the value in a Select Case statement.
Set b = Assistant.NewBalloon
With b
 .Heading = "This is my heading"
 .Text = "Select one of these things:"
 .Labels(1).Text = "Choice One"
 .Labels(2).Text = "Choice Two"
 .Labels(3).Text = "Choice Three"
 x = .Show
End With
MsgBox x

Remarks
Balloon check boxes display the user's choices until the user dismisses the balloon. Balloon labels
record the user's choice as soon as the user clicks the button beside the label.

BalloonLabel Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofobjBalloonLabelC "}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofobjBalloonLabelX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Properties":"ofobjBalloonLabelP "}                  {ewc
HLP95EN.DLL, DYNALINK, "Methods":"ofobjBalloonLabelM "}                  {ewc HLP95EN.DLL, DYNALINK,
"Specifics":"ofobjBalloonLabelS "}

Represents a label in the Office Assistant balloon. The BalloonLabel object is a member of the
BalloonLabels collection.

Using the BalloonLabel Object
Use Labels(index), where index is a number from 1 through 5, to return a BalloonLabel object.
There can be up to five labels on one balloon; each label appears when a value is assisgned to its
Text property.

The following example creates a balloon that asks the user to click the label corresponding to his or
her age.
With Assistant.NewBalloon
 .Heading = "Check Your Age Group."
 .Labels(1).Text = "Under 30."
 .Labels(2).Text = "Over 30."
 .Labels(3).Text = "None of your business."
 .Text = "Which of the following " _
 & .Labels.Count & " choices apply to you?"
 .Show
End With

Remarks
Balloon check boxes display the user's choices until he or she dismisses the balloon. Balloon labels
record the user's choice as soon as he or she clicks the button beside the label.

Add Method

Adds an object to a collection. Select one of the following collections to see a detailed description of
the Add method for that collection.

CommandBarControls
CommandBars
DocumentProperties
PropertyTests

Add Method (CommandBarControls Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofmthAddCommandBarControlsObjC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofmthAddCommandBarControlsObjX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"ofmthAddCommandBarControlsObjA"}                  {ewc HLP95EN.DLL, DYNALINK,
"Specifics":"ofmthAddCommandBarControlsObjS"}

Creates a new command bar control and adds it to the collection of controls on the specified
command bar. Returns a CommandBarButton, CommandBarComboBox, or CommandBarPopup
object.

Syntax
expression.Add(Type, Id, Parameter, Before, Temporary)
expression      Required. An expression that returns a CommandBarControls object.
Type      Optional Variant. The type of control to be added to the specified command bar. Can be one

of the following MsoControlType constants: msoControlButton, msoControlEdit,
msoControlDropdown, msoControlComboBox, or msoControlPopup.

Id      Optional Variant. An integer that specifies a built-in control. If the value of this argument is 1, or if
this argument is omitted, a blank custom control of the specified type will be added to the
command bar.

Parameter      Optional Variant. For built-in controls, this argument is used by the container
application to run the command. For custom controls, you can use this argument to send
information to Visual Basic procedures, or you can use it to store information about the control
(similar to a second Tag property value).

Before      Optional Variant. A number that indicates the position of the new control on the command
bar. The new control will be inserted before the control at this position. If this argument is omitted,
the control is added at the end of the specified command bar.

Temporary      Optional Variant. True to make the new control temporary. Temporary controls are
automatically deleted when the container application is closed. The default value is False.

Add Method (CommandBarControls Collection) Example

This example adds a button control with a charting face to the command bar named "Custom," and
then it assigns the control the procedure named "Analyze."
Set custBar = CommandBars("Custom")
custBar.Visible = True
Set graphBtn = custBar.Controls.Add(Type:=msoControlButton)
graphBtn.FaceId = 17
graphBtn.OnAction = "Analyze"

Add Method (CommandBars Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofmthAddCommandBarsObjC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofmthAddCommandBarsObjX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"ofmthAddCommandBarsObjA"}                  {ewc HLP95EN.DLL, DYNALINK, "Specifics":"ofmthAddCommandBarsObjS"}

Creates a new command bar and adds it to the collection of command bars. Returns a CommandBar
object.

Syntax
expression.Add(Name, Position, MenuBar, Temporary)
expression      Required. An expression that returns a CommandBars object.
Name      Optional Variant. The name of the new command bar. If this argument is omitted, Word

assigns a default name to the command bar (such as "Custom 1").
Position      Optional Variant. The position of the new command bar. Can be one of the following

MsoBarPosition constants.
Constant Description
msoBarLeft, msoBarTop,
msoBarRight, msoBarBottom

Indicate the left, top, right, and
bottom coordinates of the new
command bar

msoBarFloating Indicates that the new command bar
won't be docked

msoBarPopup Indicates that the new command bar
will be a shortcut menu

msoBarMenuBar Indicates that the new command bar
will replace the system menu bar on
the Macintosh

MenuBar      Optional Variant. True to replace the active menu bar with the new command bar. The
default value is False.

Temporary      Optional Variant. True to make the new command bar temporary. Temporary
command bars are deleted when the container application is closed. The default value is False.

Add Method (CommandBars Collection) Example

This example adds a top-level command bar named "Custom" that won't be saved when the session
ends. The example also adds a built-in spelling-checker button to the command bar.
Set mybar = CommandBars _
 .Add(Name:="Custom", Position:=msoBarTop, _
 Temporary:=True)
With mybar
 .Controls.Add Type:=msoControlButton, Id:=2
 .Visible = True
End With

Add Method (DocumentProperties Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofmthAddDocumentPropertiesObjC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofmthAddDocumentPropertiesObjX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"ofmthAddDocumentPropertiesObjA"}                  {ewc HLP95EN.DLL, DYNALINK,
"Specifics":"ofmthAddDocumentPropertiesObjS"}

Creates a new custom document property. You can use this method only with the collection of custom
document properties.

Syntax
expression.Add(Name, LinkToContent, Type, Value, LinkSource)
expression      Required. The custom DocumentProperties object.
Name      Required String. The name of the property.
LinkToContent      Required Boolean. Specifies whether the property is linked to the contents of the

container document. If this argument is True, the LinkSource argument is required; if it's False,
the value argument is required.

Type      Required Long. The data type of the property. Can be one of the following
MsoDocProperties constants: msoPropertyTypeBoolean, msoPropertyTypeDate,
msoPropertyTypeFloat, msoPropertyTypeNumber, or msoPropertyTypeString.

Value      Optional Variant. The value of the property if it's not linked to the contents of the container
document. The value is converted to match the data type specified by the type argument, if
possible; otherwise, an error occurs. If LinkToContent is True, the Value argument is ignored and
the new document property has a default value until linked property values are updated by the
container application (usually when the document is saved).

LinkSource      Optional Boolean. Ignored if LinkToContent is False. The source of the linked
property. The container application determines what types of source linking you can use.

Add Method (DocumentProperties Collection) Example

This example adds a new custom document property and names it "Complete." You must pass the
custom DocumentProperties collection to the procedure.
Sub AddCustomProperty(dp As DocumentProperties)
 dp.Add name:="Complete", linkToContent:=False, _
 type:=msoPropertyTypeBoolean, value:=False
End Sub

Add Method (PropertyTests Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofmthAddPropertyTestsObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofmthAddPropertyTestsObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofmthAddPropertyTestsObjA"}

Adds a PropertyTest object to the PropertyTests collection.

Syntax
expression.Add(Name, Condition, Value, SecondValue, Connector)
expression      An expression that returns a PropertyTests object.
Name      Required String. The name of the property criterion. The name corresponds to a value in

the Property box in the Advanced Find dialog box.
Condition      Required Variant. The condition of the search criteria. Can be one of the following

MsoCondition constants:
msoConditionAnyNumberBetween
msoConditionAnytime
msoConditionAnytimeBetween
msoConditionAtLeast
msoConditionAtMost
msoConditionBeginsWith
msoConditionDoesNotEqual
msoConditionEndsWith
msoConditionEquals
msoConditionFileTypeAllFiles
msoConditionFileTypeBinders
msoConditionFileTypeDatabases
msoConditionFileTypeExcelWorkbooks
msoConditionFileTypeOfficeFiles
msoConditionFileTypePowerPointPresentations
msoConditionFileTypeTemplates
msoConditionFileTypeWordDocuments
msoConditionIncludesNearEachOther
msoConditionIncludesPhrase
msoConditionInTheLast

msoConditionInTheNext
msoConditionIsExactly
msoConditionIsNo
msoConditionIsNot
msoConditionIsYes
msoConditionLastMonth
msoConditionLastWeek
msoConditionLessThan
msoConditionMoreThan
msoConditionNextMonth
msoConditionNextWeek
msoConditionOn
msoConditionOnorAfter
msoConditionOnorBefore
msoConditionThisMonth
msoConditionThisWeek
msoConditionToday
msoConditionTomorrow
msoConditionYesterday

Value      Optional Variant. The value of the search criterion to test for.
SecondValue      Optional Variant. An upper value for the search range. You can use this argument

only if Condition is msoConditionAnyTimeBetween or msoConditionAnyNumberBetween.
Connector      Optional Variant. Specifies the way two search criteria are combined. Can be either of

the following msoConnector constants: msoConnectorAnd or msoConnectorOr.

Add Method (PropertyTests Collection) Example

This example adds two property tests to the search criteria. The first test is that the found files must
be Word documents, and the second test is that the found files must have been modified between
January 1, 1996 and June 30, 1996.
Set fs = Application.FileSearch
fs.NewSearch
With fs.PropertyTests
 .Add Name:="Files of Type", _
 Condition:=msoConditionFileTypeWordDocuments, _
 Connector:=msoConnectorOr
 .Add Name:="Last Modified", _
 Condition:=msoConditionAnytimeBetween, _
 Value:="1/1/96", SecondValue:="6/30/96", _
 Connector:=msoConnectorAnd
End With

Copy Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofmthCopyC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofmthCopyX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofmthCopyA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofmthCopyS"}

Copies the specified command bar control to an existing command bar.

Syntax
expression.Copy(Bar, Before)
expression      Required. An expression that returns a CommandBarControl, CommandBarButton,

CommandBarPopup, or CommandBarComboBox object.
Bar      Optional Variant. A CommandBar object that represents the destination command bar. If this

argument is omitted, the control is copied to the same command bar (the command bar it's already
on).

Before      Optional Variant. A number that indicates the position for the new control on the specified
command bar. The new control will be inserted before the control at this position. If this argument is
omitted, the control is copied to the end of the command bar.

Copy Method Example

This example copies the first control from the command bar named "Standard" to the command bar
named "Custom" and positions it as the first control there too. The example assigns a new parameter
to the control and sets the focus to the new button.
Set myCustomBar = CommandBars("Custom")
Set myControl = CommandBars("Standard").Controls(1)
With myControl

.Copy Bar:=myCustomBar, Before:=1

.Parameter = "2"

.SetFocus
End With

Count Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproCountC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproCountX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproCountA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofproCountS"}

Returns the number of items in the specified collection. Read-only Long.

Remarks
For the CommandBars collection, the count includes only menu bars, toolbars, and shortcut menus.
Menus and submenus aren't included.

Count Property Example

This example uses the Count property to display the number of command bars in the collection.
MsgBox "There are " & CommandBars.Count & " bars in your collection."
This example uses the Count property to display the number of check boxes in the Office Assistant
balloon.
With Assistant.NewBalloon
 .CheckBoxes(1).Text = "First Choice"
 .CheckBoxes(2).Text = "Second Choice"
 .Text = "You have the following " _
 & .CheckBoxes.Count & " choices."
 .Show
End With
This example uses the Count property to display the number of labels in the Office Assistant balloon.
With Assistant.NewBalloon
 .Heading = "Check Your Age Group."
 .Labels(1).Text = "20 to 29."
 .Labels(2).Text = "30 to 39."
 .Labels(3).Text = "40 or over"
 .Text = "Which of the following " _
 & .Labels.Count & " choices apply to you?"
 .Show
End With
This example displays the number of document properties in the DocumentProperties collection that
was passed to the procedure.
Sub CountDocumentProperties(dp As DocumentProperties)
 MsgBox "There are " & dp.Count & " properties in the collection."
End Sub

Delete Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofmthDeleteC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofmthDeleteX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofmthDeleteA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofmthDeleteS"}

Deletes the specified object from the collection it's contained in.

Syntax 1
expression.Delete
Syntax 2
expression.Delete(Temporary)
Syntax 3
expression.Delete(BstrQueryName)

expression      Required. An expression that returns a CommandBar or DocumentProperty object
(Syntax 1), a CommandBarControl object (Syntax 2), or a FileFind object (Syntax 3).

Temporary      Optional Variant. True to delete the control for the current session. The application will
display the control again in the next session.

BstrQueryName      Required String. A string containing up to 31 characters that indicates the name
of the saved search criterion to be deleted.

Remarks
You cannot delete a built-in document property.

Delete Method Example

This example deletes all custom command bars that aren't visible.
foundFlag = False
delBars = 0
For Each bar In CommandBars
 If (bar.BuiltIn = False) And _
 (bar.Visible = False) Then
 bar.Delete
 foundFlag = True
 delBars = delBars + 1
 End If
Next
If Not foundFlag Then
 MsgBox "No command bars have been deleted."
Else
 MsgBox delBars & " custom bar(s) deleted."
End If
This example deletes a custom document property. You must pass a DocumentProperty object to
the procedure.
Sub DeleteCustomDocumentProperty(dp As DocumentProperty)
 dp.Delete
End Sub

Execute Method

Runs a procedure associated with a command bar control or begins searching for files. Select one of
the following objects to see a detailed description of the Execute method for that object.

CommandBarButton
CommandBarControl
CommandBarPopup
CommandBarComboBox
FileSearch
FileFind

Execute Method (Command Bar Controls)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofmthExecuteCommandBarControlObjC"}                  {ewc HLP95EN.DLL,
DYNALINK, "Example":"ofmthExecuteCommandBarControlObjX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"ofmthExecuteCommandBarControlObjA"}                  {ewc HLP95EN.DLL, DYNALINK,
"Specifics":"ofmthExecuteCommandBarControlObjS"}

Runs the macro or built-in command assigned to the specified command bar control. For custom
controls, use the OnAction property to specify the macro to run.

Syntax
expression.Execute
expression      Required. An expression that returns a CommandBarControl, CommandBarButton,

CommandBarPopup, or CommandBarComboBox object.

Execute Method (Command Bar Controls) Example

This example checks the value of    the combo box control on the custom command bar named "My
Command Bar." If the value is "First," the example runs the macro specified by the OnAction property
of the command bar control.
Set mycontrol = CommandBars("My Custom Bar").Controls(1)
With mycontrol

If .List(.ListIndex) = "First" Then
mycontrol.Execute

 End If
End With

Execute Method (FileSearch and FileFind Objects)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofmthExecuteFileSearchObjC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofmthExecuteFileSearchObjX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"ofmthExecuteFileSearchObjA"}                  {ewc HLP95EN.DLL, DYNALINK, "Specifics":"ofmthExecuteFileSearchObjS"}

FileSearch object: Begins the seach for the specified files.

FileFind object: Begins the search for the specified files and updates the FindFileResults collection.
Macintosh only.

Syntax 1
expression.Execute(SortBy, SortOrder, AlwaysAccurate)
Syntax 2
expression.Execute
expression      Required. An expression that returns a FileSearch object (Syntax 1) or a FileFind

object (Syntax 2).
SortBy      Optional Variant. The method used to sort the returned files. Can be one of the following

MsoSortBy constants: msoSortbyFileName, msoSortbyFileType, msoSortbyLastModified, or
msoSortbySize.

SortOrder      Optional Variant. The order in which the returned files are to be sorted. Can be either of
the following MsoSortOrder constants: msoSortOrderAscending or msoSortOrderDescending.

AlwaysAccurate      Optional Boolean. True to have the file search include files that have been
added, modified, or deleted since the file index was last updated. The default value is True.

Execute Method (FileSearch and FileFind Objects) Example

This example searches for all files that begin with "cmd" in the My Documents folder and displays the
location and name of each file that's found. The example sorts the list of returned files in ascending
alphabetic order, by file name.
Set fs = Application.FileSearch
With fs
 .LookIn = "C:\My Documents"
 .FileName = "cmd*"
 If .Execute(SortBy:=msoSortbyFileName, _
 SortOrder:=msoSortOrderAscending) > 0 Then
 MsgBox "There were " & .FoundFiles.Count & _
 " file(s) found."
 For i = 1 To .FoundFiles.Count
 MsgBox .FoundFiles(i)
 Next i
 Else
 MsgBox "There were no files found."
 End If
End With

SetFocus Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofmthSetFocusC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofmthSetFocusX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofmthSetFocusA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofmthSetFocusS"}

Moves the keyboard focus to the specified command bar control so that it can receive keyboard input.
The kind of keyboard input you can direct to the control depends on what type of control it is.

Note If the control is disabled or isn't visible from the current state, this method will fail.

Syntax
expression.SetFocus
expression      Required. An expression that returns a CommandBarControl, CommandBarButton,

CommandBarPopup, or CommandBarComboBox object.

SetFocus Method Example

This example copies the fourth control from the My Custom Bar custom command bar and pastes it
onto the same command bar as the first control. The example also assigns a new parameter to the
control and sets the focus to the new button.
Set mycontrol = CommandBars("My Custom Bar") _
 .Controls(4)
With mycontrol

.Copy Before:=1

.Parameter = "2"

.SetFocus
End With

Text Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproTextC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproTextX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproTextA"}                  {ewc HLP95EN.DLL,
DYNALINK, "Specifics":"ofproTextS"}

CommandBarComboBox object: Returns or sets the text in the display or edit portion of the
command bar combo box control. Read/write String.

BalloonLabel or BalloonCheckbox object: Returns or sets the text displayed next to the specified
check box or label in the Office Assistant balloon. Read/write String.

Balloon object: Returns or sets the text displayed after the heading but before the labels or check
boxes in the Office Assistant balloon. Read/write String.

FileFind object: Returns or sets the string to look for, up to 80 characters, in a the body of a
document during a file search. Macintosh only. Read-write String.

Remarks
For the Balloon, BalloonLabel, and BalloonCheckbox objects, you can specify a graphic to display
by using the following syntax: {type location sizing_factor}, where type is bmp (bitmap), wmf
(Windows metafile), or pict (Macintosh PICT file); location is the resource id or the path and file name;
and sizing_factor specifies the width of the wmf or pict (omitted for bmp).

Text Property Example

This example checks the number of items in the combo box control on the command bar named
"Custom." If there are more than three items in the list, the example clears the list and adds a new
first item to it. The new default item for this control is "Floyd."
Set myBar = CommandBars("Custom")
Set myControl = myBar.Controls(2)
With myControl
 If .ListCount > 3 Then
 .Clear
 .AddItem "Floyd", 1
 .Text = "Floyd"
 End If
End With
This example creates a new Office Assistant balloon with a heading, text, and three region choices.
The example uses the Text property to provide a label for each check box.
With Assistant.NewBalloon
 .Heading = "Regional Sales Data"
 .Text = "Select a region"
 For i = 1 To 3
 .CheckBoxes(i).Text = "Region " & i
 Next
 .Show
End With
This example creates a new Office Assistant balloon with a heading, text, and three region choices.
The example uses the Text property to provide balloon-related instructions to the user.
With Assistant.NewBalloon
 .Heading = "Regional Sales Data"
 .Text = "Select a region"
 For i = 1 To 3
 .CheckBoxes(i).Text = "Region " & i
 Next
 .Show
End With

Top Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproTopC"}                  {ewc HLP95EN.DLL, DYNALINK, "Example":"ofproTopX":1} 
{ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproTopA"}                  {ewc HLP95EN.DLL, DYNALINK, "Specifics":"ofproTopS"}

CommandBar or CommandBarControl object: Returns or sets the distance (in pixels) from the top
edge of the specified command bar or command bar control to the top edge of the screen. For docked
command bars, this property returns or sets the distance from the command bar to the top of the
docking area. Read/write Long for CommandBar, read-only Long for CommandBarControl.
Assistant object: Sets or returns the vertical position of the Office Assistant window (in points),
relative to the screen. Read/write Integer.

Top Property Example

This example positions the upper-left corner of the floating command bar named "Custom" 140 pixels
from the left edge of the screen and 100 pixels from the top of the screen.
Set myBar = CommandBars("Custom")
myBar.Position = msoBarFloating
With myBar
 .Left = 140
 .Top = 100
End With
This example moves the Office Assistant to the specified coordinate.
Assistant.Top = 500

HelpContextId Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproHelpContextIdC"}              {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproHelpContextIdX":1}            {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproHelpContextIdA"}              {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofproHelpContextIdS"}

Returns or sets the Help context ID number for the Help topic attached to the command bar control.
Read/write Long.

Remarks
To use this property, you must also set the HelpFile property.

HelpContextId Property Example
This example adds a custom report manager button to the File menu and specifies a Help topic to be
displayed as that button's context-sensitive Help.
Set fileMenu = CommandBars _
 .FindControl(Type:=msoControlPopup, Id:=fileID)
Set fileMenuDropdown = fileMenu.CommandBar
Set newButton = fileMenuDropdown.Controls _
 .Add(Type:=msoControlButton, Before:=3)
With newButton
 .Caption = "Open Report"
 .DescriptionText = "Opens a quarterly report form"
 .OnAction = "ReportManager"
 .HelpFile = "C:\corphelp\custom.hlp"
 .HelpContextID = 47
End With

HelpFile Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproHelpFileC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproHelpFileX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproHelpFileA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofproHelpFileS"}

Returns or sets the Help file name for the Help topic attached to the command bar control. Read/write
String.

Remarks
To use this property, you must also set the HelpContextID property.

HelpFile Property Example
This example adds a custom report manager button to the File menu and specifies a Help topic to be
displayed as that button's context-sensitive Help.
Set fileMenu = CommandBars _
 .FindControl(Type:=msoControlPopup, Id:=fileId)
Set fileMenuDropdown = fileMenu.CommandBar
Set newbutton = fileMenuDropdown.Controls _
 .Add(Type:=msoControlButton, Id:=customId, Before:=3)
With newButton
 .Caption = "Open Report"
 .DescriptionText = "Opens a quarterly report form"
 .OnAction = "ReportManager"
 .HelpFile = "C:\corphelp\custom.hlp"
 .HelpContextID = 47
End With

LargeButtons Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproLargeButtonsC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproLargeButtonsX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproLargeButtonsA"}                 
{ewc HLP95EN.DLL, DYNALINK, "Specifics":"ofproLargeButtonsS"}

True if large toolbar buttons are displayed. Read/write Boolean.

LargeButtons Property Example
This example displays large toolbar buttons and ScreenTips on all command bars if the main menu
bar that's active is named "Custom."
Set allBars = CommandBars
If allBars.ActiveMenuBar.Name = "Custom" Then
 allBars.LargeButtons = True
 allBars.ShowToolTips = True
End If

List Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproListC"}                  {ewc HLP95EN.DLL, DYNALINK, "Example":"ofproListX":1} 
{ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproListA"}                  {ewc HLP95EN.DLL, DYNALINK, "Specifics":"ofproListS"}

Returns or sets the value of a list item in the command bar combo box control. Read/write String.

Note      This property is read-only for built-in combo box controls.

Syntax
expression.List(Index)
expression      Required. An expression that returns a CommandBarComboBox object.
Index      Required Long. The list item to be set.

List Property Example
This example checks the value of the fourth list item in the combo box control named "Vegetables" on
the command bar named "Custom." If the value is "Tomato," the code specified by the OnAction
property of the command bar control is run.
Set myBar = CommandBars("Custom")
Set myControl = myBar.Controls("Vegetables")
If myControl.List(4) = "Tomatoes" Then myControl.Execute

ListCount Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproListCountC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproListCountX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproListCountA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofproListCountS"}

Returns the number of list items in the specified command bar combo box control. Read-only Long.

ListCount Property Example
This example checks the number of items in the combo box control on the command bar named
"Custom." If there are more than three items in the list, the list is cleared and a new first item is added
and displayed as the default for the combo box control.
Set myBar = CommandBars("Custom")
Set myControl = myBar.Controls(2)
With myControl
 If .ListCount > 3 Then
 .Clear
 .AddItem Text:="Floyd", Index:=1
 .ListIndex = 1
 End If
End With

ListHeaderCount Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproListHeaderCountC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproListHeaderCountX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproListHeaderCountA"}             
{ewc HLP95EN.DLL, DYNALINK, "Specifics":"ofproListHeaderCountS"}

Returns or sets the number of list items in the command bar combo box control that appear above the
separator line. Read/write Long.

Note      This property is read-only for built-in combo box controls.

Remarks
A ListHeaderCount property value of – 1 indicates that there's no separator line in the combo box
control.

ListHeaderCount Property Example
The following example adds a combo box control to the command bar named "Custom," and then it
adds two items to the combo box list. The example also sets the number of line items, the width of the
combo box, and an empty default for the combo box.
Set myBar = CommandBars("Custom")
Set myControl = myBar.Controls.Add(Type:=msoControlComboBox)
With myControl
 .AddItem Text:="First Item", Index:=1
 .AddItem Text:="Second Item", Index:=2
 .DropDownLines = 3
 .DropDownWidth = 75
 .ListHeaderCount = 1
End With

ListIndex Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproListIndexC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproListIndexX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproListIndexA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofproListIndexS"}

Returns or sets the index number of the selected item in the list portion of the command bar combo
box control.. If nothing is selected in the list, this property returns zero.Read/write Long.

Note      This property fails when applied to controls other than list controls.

Remarks
Setting the ListIndex property causes the specified control to select the given item and execute the
appropriate action in the application.

ListIndex Property Example
This example runs an existing procedure, based on the selection in the combo box. The text in the
combo box can be anything, because the example uses either the ListIndex property or the index
number of the text entry to determine which procedure to run.
With myControl
 Select Case .ListIndex
 Case 1
 chartcourse
 Case 2
 displaygraph
 Case Else
 MsgBox "invalid choice"
 End Select
End With

NameLocal Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproNameLocalC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproNameLocalX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproNameLocalA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofproNameLocalS"}

Returns the name of a built-in command bar as it's displayed in the language version of the container
application, or returns or sets the name of a custom command bar. Read/write String.

Note      If you attempt to set this property for a built-in command bar, an error occurs.

Remarks
The local name of a built-in command bar is displayed in the title bar (when the command bar isn't
docked) and in the list of available command bars, wherever that list is displayed in the container
application.

If you change the value of the LocalName property for a custom command bar, the value of Name
changes as well, and vice versa.

NameLocal Property Example
This example displays the name and localized name of the first command bar in the container
application.
With CommandBars(1)
 MsgBox "The name of the command bar is " & .Name
 MsgBox "The localized name of the command bar is " & .NameLocal
End With

OLEMenuGroup Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproOLEMenuGroupC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproOLEMenuGroupX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproOLEMenuGroupA"}               
{ewc HLP95EN.DLL, DYNALINK, "Specifics":"ofproOLEMenuGroupS"}

Returns or sets the menu group that the specified command bar pop-up control belongs to when the
menu groups of the OLE server are merged with the menu groups of an OLE client (that is, when an
object of the container application type is embedded in another application). Can be one of the
following MsoOLEMenuGroup constants: msoOleMenuGroupNone, msoOleMenuGroupFile,
msoOleMenuGroupEdit, msoOleMenuGroupContainer, msoOleMenuGroupObject,
msoOleMenuGroupWindow, or msoOleMenuGroupHelp. Read/write Long.

Note      This property is read-only for built-in controls.

Remarks
This property is intended to allow add-in applications to specify how their command bar controls will
be represented in the Office application. If either the container or the server does not implement
command bars, normal OLE menu merging will occur: the menu bar will be merged, as well as all the
toolbars from the server, and none of the toolbars from the container. This property is relevant only for
pop-up controls on the menu bar because menus are merged on the basis of their menu group
category.

If both of the merging applications implement command bars, command bar controls are merged
according to the OLEUsage property.

OLEMenuGroup Property Example
This example checks the OLEMenuGroup property of a new custom popup control on the active
menu bar, and sets it to msoOLEMenuGroupNone.
Set myControl = ActiveMenuBar.Controls _
 .Add(Type:=msoControlPopup,Temporary:=False)
myControl.OLEMenuGroup = msoOLEMenuGroupNone

       

OLEUsage Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproOLEUsageC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproOLEUsageX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproOLEUsageA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofproOLEUsageS"}

Returns or sets the OLE client and OLE server roles in which a command bar control will be used
when two Microsoft Office applications are merged. Can be one of the following
MsoControlOLEUsage constants: msoControlOLEUsageNeither, msoControlOLEUsageServer,
msoControlOLEUsageClient, or msoControlOLEUsageBoth. Read/write Long.

Remarks
This property is intended to allow you to specify how individual add-in applications' command bar
controls will be represented in one Office application when it is merged with another Office
application. If both the client and server implement command bars, the command bar controls are
embedded in the client control by control. Custom controls marked as client-only (or neither client nor
server) are dropped from the server, and controls marked as server-only (or neither server nor client)
are dropped from the client. The remaining controls are merged.

If one of the merging applications isn't an Office application, normal OLE menu merging is used,
which is controlled by the OLEMenuGroup property.

OLEUsage Property Example
This example adds a new button to the command bar named Tools, and sets its OLEUsage
property.
Set myControl = CommandBars("Tools").Controls _
 .Add(Type:=msoControlButton,Temporary:=True)
myControl.OLEUsage = msoControlOLEUsageNeither

OnAction Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproOnActionC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproOnActionX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproOnActionA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofproOnActionS"}

Returns or sets the name of the Visual Basic macro that will be run when the user clicks or changes
the value of a command bar control. Read/write String.

Note      The container application determines whether the value is a valid macro name.

OnAction Property Example
This example adds a command bar control to the command bar named "Custom" and sets the macro
named "MySub" to run whenever the button is clicked.
Set myBar = .CommandBars("Custom")
Set myControl = myBar.Controls _
 .Add(Type:=msocontrolButton)
With myControl
 .FaceId = 2
 .OnAction = "MySub"
End With
myBar.Visible = True

Parameter Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproParameterC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproParameterX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproParameterA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofproParameterS"}

Returns or sets a string that an application can use to execute a command associated with a
command bar control. Read/write String.

Remarks
If the specified parameter is set for a built-in control, the application can modify its default behavior if
it's able to parse and use the new value. If the parameter is set for custom controls, it can be used to
send information to Visual Basic procedures, or it can be used to hold information about the control
(similar to a second Tag property value).

Parameter Property Example
This example copies the fourth control from the custom command bar named "Custom" and pastes it
onto the same command bar as the new first control. The example assigns a new parameter and sets
the focus to the new button.
Set myControl = CommandBars("Custom").Controls(4)
With myControl
 .Copy , 1
 .Parameter = "2"
 .SetFocus
End With

PasteFace Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofmthPasteFaceC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofmthPasteFaceX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofmthPasteFaceA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofmthPasteFaceS"}

Pastes the contents of the Clipboard onto the specified command bar button control.

Syntax
expression.PasteFace
expression      Required. An expression that returns a CommandBarButton object.

PasteFace Method Example
This example finds the built-in FileOpen button and pastes a custom face onto it from the Clipboard,
where the user had previously altered it. This example will fail if a custom face doesn't already exist in
the Clipboard; use the CopyFace method to copy a specified button face to the Clipboard.
Set myControl = CommandBars.FindControl(Type:=msoControlButton, Id:=23)
myControl.PasteFace

Position Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproPositionC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproPositionX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproPositionA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofproPositionS"}

Returns or sets the position of the specified command bar. Can be one of the following
MsoBarPosition constants: msoBarLeft, msoBarTop, msoBarRight, msoBarBottom,
msoBarFloating, msoBarPopup, or msoBarMenu. Read/write Long.

Position Property Example
This example steps through the collection of command bars, docking the custom command bars at
the bottom of the application window and docking the built-in command bars at the top of the window.
For Each bar In CommandBars
 If bar.Visible = True Then
 If bar.BuiltIn Then
 bar.Position = msoBarTop
 Else
 bar.Position = msoBarBottom
 End If
 End If
Next

Priority Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproPriorityC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproPriorityX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproPriorityA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofproPriorityS"}

Returns or sets the priority of the specified command bar control. A control's priority determines
whether it can be dropped from a docked command bar if the command bar controls don't fit in a
single row. Read/write Long.

Remarks
A priority of 1 means the control cannot be dropped. Controls with the highest priority numbers are
dropped first.

A priority of 0 indicates an "automatic" value, which will choose an effective priority based on the
control type. A priority of 1 means that the control will never be dropped. The other valid priorities are
from 2 through 7, and these controls will be dropped in order of their values (starting with the highest
values).

Priority Property Example
This example moves the first combo box control from the custom command bar named "Custom" to
the position before the seventh control on the command bar, sets the tag to "selection box," and then
assigns the control a high priority so that it will likely be dropped from the command bar if the controls
don't all fit in one row.
Set allcontrols = CommandBars("Custom").Controls
For Each ctrl In allControls
 If ctrl.Type = msoControlComboBox Then
 With ctrl
 .Move Before:=7
 .Tag = "Selection box"
 .Priority = 5
 End With
 Exit For
End If
Next

Protection Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproProtectionC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproProtectionX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproProtectionA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofproProtectionS"}

Returns or sets the way the specified command bar is protected from user customization. Can be one
of or a sum of the following MsoBarProtection constants: msoBarNoProtection,
msoBarNoCustomize, msoBarNoResize, msoBarNoMove, msoBarNoChangeVisible,
msoBarNoChangeDock, msoBarNoVerticalDock, or msoBarNoHorizontalDock. Read/write
Long.

Protection Property Example
This example steps through the collection of command bars to find the command bar named "Forms."
If this command bar is found, the example makes it visible and protects its docking state.
foundFlag = False
For i = 1 To .CommandBars.Count
 If .CommandBars(i).Name = "Forms" Then
 .CommandBars(i).Protection = msoBarNoChangeDock
 .CommandBars(i).Visible = True
 foundFlag = True
 End If
Next
If Not foundFlag Then
 MsgBox "'Forms' command bar is not in the collection."
End If

ReleaseFocus Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofmthReleaseFocusC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofmthReleaseFocusX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofmthReleaseFocusA"}                 
{ewc HLP95EN.DLL, DYNALINK, "Specifics":"ofmthReleaseFocusS"}

Releases the user interface focus from all command bars.

Syntax
expression.ReleaseFocus
expression      Required. An expression that returns a CommandBars object.

ReleaseFocus Method Example
This example releases the user interface focus from all command bars.
CommandBars.ReleaseFocus

RemoveItem Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofmthRemoveItemC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofmthRemoveItemX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofmthRemoveItemA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofmthRemoveItemS"}

Removes a list item from the specified command bar combo box control.

Note      The property fails when applied to controls other than list controls.

Syntax
expression.RemoveItem(Index)
expression      Required. An expression that returns a CommandBarComboBox object.
Index      Required Long. The item to be removed from the list.

RemoveItem Method Example
The following example determines whether there are more than three items in the combo box control
named "Combo1" on the custom command bar named "Custom." If there are more than three items,
the example removes the second item, alters the style to not show the combo box label, and sets a
new value. It also sets the Tag property of the parent object (the CommandBarControl object) to
show that the list has changed.
Set myBar = CommandBars("Custom")
Set myControl = myBar.Controls("Combo1")
With myControl
 If .ListCount > 3 Then
 .RemoveItem 2
 .Style = msoComboNormal
 .Text = "New Default"
 Set ctrl = .Parent
 ctrl.Tag = "Contents Changed"
 End If
End With

Reset Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofmthResetC"}              {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofmthResetX":1}              {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofmthResetA"}              {ewc HLP95EN.DLL,
DYNALINK, "Specifics":"ofmthResetS"}

Resets the specified built-in command bar to its default configuration of controls, or resets the
specified built-in command bar control to its default function and face.

Syntax
expression.Reset
expression      Required. An expression that returns a CommandBar, CommandBarControl,

CommandBarButton, CommandBarPopup, or CommandBarComboBox object.

Remarks
Resetting a built-in control restores the actions originally intended for the control and resets each of
the control's properties back to its original state. Resetting a built-in command bar removes custom
controls and restores built-in controls.

Reset Method Example
This example uses the value of user to adjust the command bars according to the user level. If user
is "Level 1," the command bar named "Custom" is displayed. If user is any other value, the built-in
Visual Basic command bar is reset to its default state and the command bar named "Custom" is
disabled.
Set myBar = CommandBars("Custom")
If user = "Level 1" Then
 myBar.Visible = True
Else
 .CommandBars("Visual Basic").Reset
 myBar.Enabled = False
End If

RowIndex Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproRowIndexC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproRowIndexX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproRowIndexA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofproRowIndexS"}

Returns or sets the docking order of the specified command bar in relation to other command bars in
the same docking area. Can be an integer greater than zero, or either of the following msoBarRow
constants: msoBarRowFirst or msoBarRowLast. Read/write Long.

Remarks
Command bars with lower numbers are docked first. Several command bars can share the same row
index. If two or more command bars share the same row index, the command bar most recently
assigned will be displayed first in its group.

RowIndex Property Example
This example adjusts the position of the command bar named "Custom" by moving it to the left 110
pixels more than the default, and it makes this command bar the first to be docked by changing its
row index to 1.
Set myBar = CommandBars("Custom")
With myBar
 .RowIndex = 1
 .Left = 140
End With

ShowPopup Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofmthShowPopupC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofmthShowPopupX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofmthShowPopupA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofmthShowPopupS"}

Displays the specified command bar as a shortcut menu at the specified coordinates or at the current
pointer coordinates.

Note      If the Position property of the command bar is not set to msoBarPopup, this method fails.

Syntax
expression.ShowPopup(x, y)
expression      Required. An expression that returns a CommandBar object.
x      Optional Variant. The x-coordinate for the location of the shortcut menu. If this argument is

omitted, the current x-coordinate of the pointer is used.
y      Optional Variant. The y-coordinate for the location of the shortcut menu. If this argument is

omitted, the current y-coordinate of the pointer is used.

ShowPopup Method Example
This example creates a shortcut menu containing two controls. The ShowPopup method is used to
make the shortcut menu visible.
Set myBar = CommandBars _
 .Add(Name:="Custom1", Position:=msoBarPopup, Temporary:=False)
With myBar
 .Controls.Add Type:=msoControlButton, Id:=3
 .Controls.Add Type:=msoControlComboBox
End With
myBar.ShowPopup

State Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproStateC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproStateX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproStateA"}                  {ewc HLP95EN.DLL,
DYNALINK, "Specifics":"ofproStateS"}

Returns or sets the appearance of the specified command bar button control. Can be one of the
following MsoButtonState constants: msoButtonUp, msoButtonDown, or msoButtonMixed.
Read/write Long.

State Property Example
This example determines whether the first control on the command bar named "Custom" has a built-in
button face. If it does, the example copies the button face to the Clipboard so that it can be
customized with an application such as Microsoft Paint. The example then sets the button state to
msoButtonUp.
Set myControl = CommandBars("Custom").Controls(1)
With myControl
 If .BuiltInFace = True Then
 .CopyFace
 End If
 .State = msoButtonUp
End With

Style Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproStyleC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproStyleX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproStyleA"}                  {ewc HLP95EN.DLL,
DYNALINK, "Specifics":"ofproStyleS"}

CommandBarButton object: Returns or sets the way the specified command bar button control is
displayed. Can be one of the following MsoButtonStyle constants: msoButtonAutomatic,
msoButtonIcon, msoButtonCaption, or msoButtonIconandCaption. Read/write Long.

CommandBarComboBox object: Returns or sets the way the specified command bar combo box
control is displayed. Can be either of the following MsoComboStyle constants: msoComboLabel or
msoComboNormal. Read/write Long.

Style Property Example
This example creates a shortcut menu containing a button control and a combobox control and sets
the style of each.
Set myBar = CommandBars _
 .Add(Name:="Custom1", Position:=msoBarPopup, Temporary:=False)
With myBar
 .Controls.Add Type:=msoControlButton, Id:=3
 .Controls(1).Style = msoButtonCaption
 .Controls.Add Type:=msoControlComboBox
 With .Controls(2)
 .Style = msoComboLabel
 .AddItem "vanilla"
 .AddItem "chocolate"
 .AddItem "cookie dough"
 End With
End With
myBar.ShowPopup

Tag Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproTagC"}                  {ewc HLP95EN.DLL, DYNALINK, "Example":"ofproTagX":1} 
{ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproTagA"}                  {ewc HLP95EN.DLL, DYNALINK, "Specifics":"ofproTagS"}

Returns or sets information about the command bar control, such as data that can be used as an
argument in procedures, or information that identifies the control. Read/write String.

Tag Property Example
This example moves the first combo box control from the custom command bar named "My Custom
Bar" to the position before the seventh control on the command bar, sets the tag to "selection box,"
and assigns the control a high priority so that it will likely be dropped from the command bar if the
controls don't all fit in one row.
Set allControls = CommandBars("My Custom Bar").Controls
For Each ctrl In allControls
 If ctrl.Type = msoControlComboBox Then
 With ctrl
 .Move Before:=7
 .Tag = "Selection box"
 .Priority = 5
 End With
 Exit For
 End If
Next

TooltipText Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproTooltipTextC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproTooltipTextX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproTooltipTextA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofproTooltipTextS"}

Returns or sets the text displayed in the specified command bar control's ScreenTip. Read/write
String.

Remarks
By default, the value of the Caption property is used as the ScreenTip.

TooltipText Property Example
This example sets the last control on the active menu bar to begin its own group, and then adds a
ScreenTip to it.
Set myMenuBar = CommandBars.ActiveMenuBar
Set lastCtrl = myMenuBar _
 .Controls(myMenuBar.Controls.Count)
lastCtrl.BeginGroup = True
lastCtrl.TooltipText = "Click for help on UI feature"
End With

ActiveMenuBar Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproActiveMenuBarC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproActiveMenuBarX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproActiveMenuBarA"}                 
{ewc HLP95EN.DLL, DYNALINK, "Specifics":"ofproActiveMenuBarS"}

Returns a CommandBar object that represents the active menu bar in the container application.
Read-only.

ActiveMenuBar Property Example
This example adds a temporary pop-up control named "Custom" to the end of the active menu bar,
and then it adds a button control named "Import" to the command bar displayed by the control.
Set myMenuBar = CommandBars.ActiveMenuBar
Set newMenu = myMenuBar.Controls.Add(Type:=msoControlPopup,
Temporary:=True)
newMenu.Caption = "Custom"
Set ctrl1 = newMenu.CommandBar.Controls _
 .Add(Type:=msoControlButton, Id:=1)
With ctrl1
 .Caption = "Import"
 .TooltipText = "Import"
 .Style = msoButtonCaption
End With

AddItem Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofmthAddItemC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofmthAddItemX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofmthAddItemA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofmthAddItemS"}

Adds a list item to the specified command bar combo box control. The combo box control must be a
custom control and it must be either a drop-down list box or a combo box.

Note      This method will fail if it's applied to a combo box control that's either an edit box or a built-in
combo box control.

Syntax
expression.AddItem(Text, Index)
expression      Required. An expression that returns a CommandBarComboBox object.
Text      Required String. The item to be added to the specified control.
Index      Optional Variant. The position of the specified item in the list of items. If this argument is

omitted, the item is added at the end of the list.

AddItem Method Example
This example adds a combo box control to the command bar named "Custom," and then it adds two
items to the list. The example also sets the number of line items, the width of the combo box, and an
empty default for the combo box.
Set myBar = CommandBars("Custom")
Set myControl = myBar.Controls.Add(Type:=msoControlComboBox, Id:=1)
With myControl
 .AddItem "First Item", 1
 .AddItem "Second Item", 2
 .DropDownLines = 3
 .DropDownWidth = 75
 .ListHeaderCount = 0
End With

BeginGroup Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproBeginGroupC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproBeginGroupX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproBeginGroupA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofproBeginGroupS"}

True if the specified command bar control is at the beginning of a group of controls on the command
bar. Read/write Boolean.

BeginGroup Property Example
This example sets the last control on the active menu bar to be at the beginning of its own group.
Set myMenuBar = CommandBars.ActiveMenuBar
Set lastMenu = myMenuBar _
 .Controls(myMenuBar.Controls.Count)
lastMenu.BeginGroup = True

BuiltIn Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproBuiltInC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproBuiltInX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproBuiltInA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofproBuiltInS"}

True if the specified command bar or command bar control is a built-in command bar or control of the
container application. False if it's a custom command bar or control, or if it's a built-in control who's
OnAction property has been set. Read-only Boolean.

BuiltIn Property Example
This example deletes all custom command bars that aren't visible.
foundFlag = False
deletedBars = 0
For Each bar In CommandBars
 If (bar.BuiltIn = False) And (bar.Visible = False) Then
 bar.Delete
 foundFlag = True
 deletedBars = deletedBars + 1
 End If
Next
If Not foundFlag Then
 MsgBox "No command bars have been deleted."
Else
 MsgBox deletedBars & " custom command bar(s) deleted."
End If

BuiltInFace Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproBuiltInFaceC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproBuiltInFaceX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproBuiltInFaceA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofproBuiltInFaceS"}

True if the face of the specified command bar button control is its built-in face. This property can only
be set to True, which will reset the face to the built-in one. Read/write Boolean.

BuiltInFace Property Example
This example determines whether the face of the first control on the command bar named "Custom" is
its built-in button face. If it is, the example copies the button face to the Clipboard.
Set myControl = CommandBars("My Custom Bar").Controls(1)
With myControl
 If .BuiltInFace = True Then .CopyFace
End With

Caption Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproCaptionC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproCaptionX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproCaptionA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofproCaptionS"}

Returns or sets the caption text for the specified command bar control. Read/write String.

Note      The caption for a control is also displayed as its default ScreenTip.

Caption Property Example
This example adds a command bar control with a spelling checker button face to a custom command
bar, and then it sets the caption to "Spelling checker."
Set myBar = CommandBars.Add(Name:="Custom", _
Position:=msoBarTop, Temporary:=True)
myBar.Visible = True
Set myControl = myBar.Controls _
.Add(Type:=msoControlButton, Id:=2)
With myControl
 .DescriptionText = "Starts the spelling checker"
 .Caption = "Spelling checker"
End With

Clear Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofmthClearC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofmthClearX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofmthClearA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofmthClearS"}

Removes all list items from the specified command bar combo box control (drop-down list box or
combo box) and clears the text box (edit box or combo box).

Note      This method will fail if it's applied to a built-in command bar control.

Syntax
expression.Clear
expression      Required. An expression that returns a CommandBarComboBox object.

Clear Method Example
This example checks the number of items in the combo box control named "Names" on the command
bar named "Custom." If there are more than three items in the list, the example clears the list, adds a
new first item to the list, and displays this new item as the default for the combo box control.
Set myBar = CommandBars("Custom Bar")
Set myControl = myBar.Controls("Names")
With myControl
 If .ListCount > 3 Then
 .Clear
 .AddItem Text:="Bendel", Index:=1
 .ListIndex = 1
 End If
End With

CommandBar Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproCommandBarC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproCommandBarX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproCommandBarA"}                 
{ewc HLP95EN.DLL, DYNALINK, "Specifics":"ofproCommandBarS"}

Returns a CommandBar object that represents the menu displayed by the specified pop-up control.
Read-only.

CommandBar Property Example
This example sets thirdLevel to the fourth control on the command bar named "Drawing."

Set thirdLevel = CommandBars("Drawing") _
 .Controls(1).CommandBar.Controls(4)

Controls Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproControlsC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproControlsX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproControlsA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofproControlsS"}

Returns a CommandBarControls object that represents all the controls on the specified command
bar or popup control. Read-only.

For information about returning a single member of a collection, see Returning an Object from a
Collection.

Controls Property Example
This example adds a combo box control to the command bar named "Custom" and adds two items to
the combo box list. The example also sets the number of line items, the width of the combo box, and
an empty default for the combo box.
Set myControl = CommandBars("Custom").Controls _
 .Add(Type:=msoControlComboBox, Before:=1)
With myControl
 .AddItem Text:="First Item", Index:=1
 .AddItem Text:="Second Item", Index:=2
 .DropDownLines = 3
 .DropDownWidth = 75
 .ListHeaderCount = 0
End With

CopyFace Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofmthCopyFaceC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofmthCopyFaceX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofmthCopyFaceA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofmthCopyFaceS"}

Copies the face of the specified command bar button control to the Clipboard.

Syntax
expression.CopyFace
expression      Required. An expression that returns a CommandBarButton object.

Remarks
Use the PasteFace method to paste the contents of the Clipboard onto a button face.

CopyFace Method Example
This example finds the built-in Open button and copies its button face to the Clipboard.
Set myControl = CommandBars.FindControl(Type:=msoControlButton, Id:=23)
myControl.CopyFace

DescriptionText Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproDescriptionTextC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproDescriptionTextX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproDescriptionTextA"}                 
{ewc HLP95EN.DLL, DYNALINK, "Specifics":"ofproDescriptionTextS"}

Returns or sets the description for the specified command bar control. The description is displayed in
the status bar of the container application when the user positions the pointer over a command bar
control. Read/write String.

Remarks
Not all applications display a status bar. This property is also used for Balloon Help on the Macintosh.

DescriptionText Property Example
This example adds a command bar control with a spelling checker button face to a custom command
bar. The example also sets the text "Starts the spelling checker" to appear in the status bar whenever
the user positions the pointer over the button.
Set myBar = CommandBars.Add("Custom", msoBarTop, , True)
myBar.Visible = True
Set myControl = myBar.Controls _
.Add(Type:=msoControlButton, Id:=2)
With myControl
 .DescriptionText = "Starts the spelling checker"
 .Caption = "Spelling checker"
End With

DisplayTooltips Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproDisplayTooltipsC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproDisplayTooltipsX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproDisplayTooltipsA"}                 
{ewc HLP95EN.DLL, DYNALINK, "Specifics":"ofproDisplayTooltipsS"}

True if ScreenTips are displayed whenever the user positions the pointer over command bar controls.
Read/write Boolean.

Remarks
Setting the DisplayTooltips property in a container application immediately affects all the command
bars in that application, in any other Office 97 application running at that time, and in any Office 97
application opened after that time, until the property is set again.

DisplayTooltips Property Example
This example displays large controls and ScreenTips on all command bars if the    menu bar named
"Custom Menu Bar" is the active menu bar.
Set allBars = CommandBars
If allBars.ActiveMenuBar.Name = "Custom Menu Bar" Then
 allBars.LargeButtons = True
 allBars.DisplayTooltips = True
End If

DropDownLines Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproDropDownLinesC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproDropDownLinesX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproDropDownLinesA"}                 
{ewc HLP95EN.DLL, DYNALINK, "Specifics":"ofproDropDownLinesS"}

Returns or sets the number of lines in the specified command bar combo box control. The combo box
control must be a custom control and it must be either a drop-down list box or a combo box.
Read/write Long.

Note      If this property is set for a combo box control that's either an edit box or a built-in combo box
control, an error occurs.

Remarks
If this property is set to 0 (zero), the number of lines in the control will be based on the number of
items in the list.

DropDownLines Property Example
This example adds a combo box control to the command bar named "Custom" and then adds two
items to the combo box list. The example also sets the number of line items, the width of the combo
box, and an empty default for the combo box.
Set myBar = CommandBars("Custom")
Set myControl = myBar.Controls.Add(Type:=msoControlComboBox, Id:=1)
With myControl
 .AddItem Text:="First Item", Index:=1
 .AddItem "Second Item", 2
 .DropDownLines = 3
 .DropDownWidth = 75
 .ListHeaderCount = 0
End With

DropDownWidth Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproDropDownWidthC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproDropDownWidthX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproDropDownWidthA"}               
{ewc HLP95EN.DLL, DYNALINK, "Specifics":"ofproDropDownWidthS"}

Returns or sets the width (in pixels) of the list for the specified command bar combo box control.
Read/write Long.

Note      If this property is set for a built-in combo box control, an error occurs.

Remarks
If this property is set to -1, the width of the list is based on the length of the longest item in the combo
box list. If this property is set to 0, the width of the list is based on the width of the control.

DropDownWidth Property Example
This example adds a combo box control to the command bar named "Custom" and then adds two
items to the combo box list. The example also sets the number of line items, the width of the combo
box, and an empty default for the combo box.
Set myBar = CommandBars("Custom")
Set myControl = myBar.Controls.Add(Type:=msoControlComboBox, Id:=1)
With myControl
 .AddItem "First Item", 1
 .AddItem "Second Item", 2
 .DropDownLines = 3
 .DropDownWidth = 75
 .ListHeaderCount = 0
End With

Enabled Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproEnabledC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproEnabledX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproEnabledA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofproEnabledS"}

True if the specified command bar or command bar control is enabled. Read/write Boolean.

Remarks
For command bars, setting this property to True causes the name of the command bar to appear in
the list of available command bars.

For built-in controls, if you set the Enabled property to True the application determines its state but
setting it to False will force it to be disabled.

Enabled Property Example
This example adjusts the command bars according to the user level specified by user. If user is
"Level 1," the command bar named "VB Custom Bar" is displayed. If user is any other value, the
built-in command bar "Visual Basic" is reset to its default state and the command bar named "VB
Custom Bar" is disabled.
Set myBar = CommandBars("VB Custom Bar")
If user = "Level 1" Then
 myBar.Visible = True
Else
 CommandBars("Visual Basic").Reset
 myBar.Enabled = False
End If
This example adds two command bar buttons to the command bar represented by the variable
myBar. The first control is disabled and will appear grey. The second control is enabled by default.

With myBar
 .Controls.Add Type:=msoControlButton, Id:=3
 .Controls(1).Enabled = False
 .Controls.Add Type:=msoControlButton, Id:=3
End With
myBar.Visible = True

FaceId Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproFaceIdC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproFaceIdX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproFaceIdA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofproFaceIdS"}

Returns or sets the ID number for the button face that's currently assigned to the specified command
bar button control. Read/write Long.

Remarks
The FaceId property dictates the look, but not the function, of a command bar button. The Id property
of the CommandBarControl object determines the function of the button.

The value of the FaceId property for a command bar button with a custom face is 0 (zero).

FaceId Property Example
This example adds a command bar button to a custom command bar. Clicking this button is
equivalent to clicking the Open command on the File menu because the ID number is 23, yet the
button has the same button face as the built-in Charting button. When you click this button, the Open
dialog box is displayed.
Set newBar = CommandBars.Add(Name:="Custom2", _
 Position:=msoBarTop, Temporary:=True)
newBar.Visible = True
Set con = newBar.Controls.Add(Type:=msoControlButton, Id:=23)
con.FaceId = 17

FindControl Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofmthFindControlC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofmthFindControlX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofmthFindControlA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofmthFindControlS"}

Returns a CommandBarControl object that fits the specified criteria.

Syntax
expression.FindControl(Type, Id, Tag, Visible, Recursive)
expression      Required. An expression that returns a CommandBars object.
Type      Optional Variant. The type of control to be searched for. Can be one of the following

MsoControlType constants:
msoControlCustom
msoControlButton
msoControlEdit
msoControlDropdown
msoControlComboBox
msoControlButtonDropdown
msoControlSplitDropdown
msoControlGenericDropdown
msoControlGraphicCombo
msoControlSplitButtonMRUPopup
msoControlSplitExpandingGrid

msoControlGraphicDropdown
msoControlPopup
msoControlGraphicPopup
msoControlButtonPopup
msoControlGauge
msoControlLabel
msoControlExpandingGrid
msoControlGrid
msoControlOCXDropDown
msoControlSplitButtonPopup

Id      Optional Variant. The identifier of the control to be searched for.
Tag      Optional Variant. The tag value of the control to be searched for.
Visible       Optional Variant. True to include only visible command bar controls in the search. The

default value is False.
Recursive       Optional Boolean. True to include the command bar and all of its popup sub-toolbars

in the search. The default value is False.

Remarks
If the CommandBars collection contains two or more controls that fit the search criteria, FindControl
returns the first control that's found. If no control that fits the criteria is found, FindControl returns
Nothing. None of the arguments for the FindControl method have a default value.

FindControl Method Example
This example adds the Save button to the Help menu on the menu bar. Using the FindControl
method ensures that the Help menu will be found even if the user has customized the menu bar.
Set helpMenu = CommandBars.FindControl _
 (Type:=msoControlPopup, Id:=helpId)
Set helpMenuDrop = helpMenu.Control.CommandBar
helpMenuDrop.Controls.Add Type:=msoControlButton, Id:=saveId

DisplayKeysInTooltips Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproDisplayKeysInTooltipsC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproDisplayKeysInTooltipsX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"ofproDisplayKeysInTooltipsA"}                  {ewc HLP95EN.DLL, DYNALINK, "Specifics":"ofproDisplayKeysInTooltipsS"}

True if shortcut keys are displayed in the ToolTips for each command bar control . Read/write
Boolean.

Remarks
To display shortcut keys in ToolTips, you must also set the DisplayTooltips property to True.

DisplayKeysInTooltips Property Example

This example sets the options for all command bars in Microsoft Office.
With CommandBars
 .LargeButtons = True
 .DisplayTooltips = True
 .DisplayKeysInTooltips = True
 .MenuAnimationStyle = msoMenuAnimationUnfold
End With

MenuAnimationStyle Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproMenuAnimationStyleC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproMenuAnimationStyleX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"ofproMenuAnimationStyleA"}                  {ewc HLP95EN.DLL, DYNALINK, "Specifics":"ofproMenuAnimationStyleS"}

Returns or sets the way the specified command bar is animated. Can be one of the following
msoMenuAnimation types: msoMenuAnimationNone, msoMenuAnimationRandom,
msoMenuAnimationUnfold, or msoMenuAnimationSlide. Read/write.

MenuAnimationStyle Property Example

This example sets the options for all command bars in Microsoft Office.
With CommandBars
 .LargeButtons = True
 .DisplayTooltips = True
 .DisplayKeysInTooltips = True
 .MenuAnimationStyle = msoMenuAnimationUnfold
End With

ActionControl Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproActionControlC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproActionControlX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproActionControlA"}                 
{ewc HLP95EN.DLL, DYNALINK, "Specifics":"ofproActionControlS"}

Returns the CommandBarControl object whose OnAction property is set to the running procedure.
If the running procedure was not initiated by a command bar control, this property returns
Nothing.Read-only.

ActionControl Property Example

This example disables the command bar control that initiated the running procedure while a series of
statements runs, and then enables the control.
Set theCtrl = CommandBars.ActionControl
theCtrl.Enabled = False
 'insert OnAction process here
theCtrl.Enabled = True

Context Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproContextC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproContextX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproContextA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofproContextS"}

Returns or sets a string that determines where the specified command bar will be saved. The string is
defined and interpreted by the application. Read/write String.

Remarks
You can set the Context property only for custom command bars. This property will fail if the
application doesn't recognize the context string, or if the application doesn't support changing context
strings programmatically.

Type Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproTypeC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproTypeX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproTypeA"}                  {ewc HLP95EN.DLL,
DYNALINK, "Specifics":"ofproTypeS"}

DocumentProperty object: Returns or sets the document property type. Can be one of the following
MsoDocProperties constants: msoPropertyTypeBoolean, msoPropertyTypeDate,
msoPropertyTypeFloat, msoPropertyTypeNumber, or msoPropertyTypeString. Read-only for
built-in document properties; read/write for custom document properties.

CommandBar object: Returns the type of command bar. Can be one of the following MsoBarType
constants: msoBarTypeNormal, msoBarTypeMenuBar, or msoBarTypePopup. Read-only Long.

CommandBarControl object: Returns the type of command bar control. Read-only Long.

Can be one of the following MsoControlType constants.

Constant Control type
msoControlButton
msoControlButtonDropdown

msoControlButtonPopup

msoControlComboBox

msoControlCustom Reserved for future use.
msoControlDropdown

msoControlEdit

msoControlExpandingGrid

msoControlGauge

msoControlGenericDropdown Reserved for future use.
msoControlGraphicCombo

msoControlGraphicDropdown

msoControlGraphicPopup Reserved for future use.
msoControlGrid

msoControlLabel Reserved for future use.

msoControlOCXDropDown

msoControlPopup

msoControlSplitButtonMRUPopup

msoControlSplitButtonPopup

msoControlSplitDropdown

msoControlSplitExpandingGrid Reserved for future use.

Type Property Example

This example finds the first control with the tag value "Change this bar." If the control with that tag
value is a command bar button, the example adds a new combo box control to the end of the
command bar and changes the tag value of the found button to "Changed."
Set ctrl = CommandBars _
 .FindControl(Tag:="Change this bar")
If ctrl Is Nothing Then Goto notFound
If ctrl.Type = msoControlButton Then
 Set br = ctrl.Parent
br.Controls.Add(Type:=msoControlComboBox)
 ctrl.Tag = "Changed"
End If
This example displays the name, type, and value of a document property. You must pass a valid
DocumentProperty object to the procedure.
Sub DisplayPropertyInfo(dp As DocumentProperty)
 MsgBox "value = " & dp.Value & Chr(13) & _
 "type = " & dp.Type & Chr(13) & _
 "name = " & dp.Name
End Sub

Visible Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproVisibleC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproVisibleX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproVisibleA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofproVisibleS"}

CommandBar and CommandBarControl object: True if the specified command bar or command
bar control is visible. Read/write Boolean.

Assistant object: True if the Office Assistant is visible. Read-write Boolean.

Remarks
The Visible property for newly created custom command bars is False by default.

The Enabled property for a command bar must be set to True before the visible property is set to
True.

Visible Property Example

This example steps through the collection of command bars to find the Forms command bar. If the
Forms command bar is found, the example makes it visible and protects its docking state.
foundFlag = False
For Each cmdbar In CommandBars
 If cmdbar.Name = "Forms" Then
 cmdbar.Protection = msoBarNoChangeDock
 cmdbar.Visible = True
 foundFlag = True
 End If
Next
If Not foundFlag Then
 MsgBox "'Forms'command bar is not in the collection."
End If
This example makes the Office Assistant visible and sets its animation.
With Application.Assistant
 .Visible = True
 .Sounds = True
 .Animation = msoAnimationBeginSpeaking
End With

Width Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproWidthC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproWidthX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproWidthA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofproWidthS"}

Returns or sets the width (in pixels) of the specified command bar or command bar control.
Read/write Long.

Width Property Example

This example adds a custom control before the second control on the command bar named "Custom."
The example sets the height of the custom control to half the height of the command bar and sets its
width to 50 pixels.
Set myBar = cmdbar.CommandBars("Custom")
barheight = myBar.Height
Set myControl = myBar.Controls _
 .Add(Type:=msoControlComboBox, Id:=4, Before:=2, Temporary:=True)
With myControl
 .Height = barheight / 2
 .Width = 50
End With
myBar.Visible = True

Application Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproApplicationC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproApplicationX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproApplicationA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofproApplicationS"}

Returns an Application object that represents the container application for the specified object (you
can use this property with an Automation object to return that object's container application). Read-
only.

Application Property Example

This example returns the application in which the command bar named "Documents" was created.
Set Appobj = CommandBars("Document").Application

Creator Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproCreatorC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproCreatorX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproCreatorA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofproCreatorS"}

Returns the four-character code for the application in which the specified object was created.
Macintosh only. Read-only Long.

Parent Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproParentC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproParentX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproParentA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofproParentS"}

Returns the parent object for the specified object. Read-only.

Parent Property Example

This example displays the name of the parent object for a document property. You must pass a valid
DocumentProperty object to the procedure.
Sub DisplayParent(dp as DocumentProperty)
 MsgBox dp.Parent.Name
End Sub

ShortcutText Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproShortcutTextC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproShortcutTextX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproShortcutTextA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofproShortcutTextS"}

Returns or sets the shortcut key text displayed next to the specified button control when that button
appears on a menu, submenu, or shortcut menu. Read/write String.

Remarks
You can set this property only for command bar buttons that have an attached OnAction macro.

ShortcutText Property Example

This example places a charting button on the command bar named "Custom" and assigns an
OnAction macro to the button, along with a shortcut key and a caption.
Set myControl = CommandBars("Custom").Controls _
 .Add(Type:=msoControlButton, Id:= 17)
With myControl
 .OnAction = "MySub"
 .Caption = "Graph Results"
 .Control.ShortcutText = "CTRL+SHIFT+M"
End With

Height Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproHeightC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproHeightX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproHeightA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofproHeightS"}

Returns or sets the height of the specified command bar or command bar control, in pixels.
Read/write Long.

Remarks
Setting the Height property will cause an error if the command bar isn't in a resizable state (that is, if
it's docked or protected from resizing).

Height Property Example

This example adds a custom control before the second control on the command bar named "Custom."
The example sets the height of the control to half the height of the command bar and sets its width to
50 pixels.
Set myBar = cmdbar.CommandBars("Custom")
barHeight = myBar.Height
Set myControl = myBar.Controls _
 .Add(Type:=msoControlComboBox, Before:=2, Temporary:=True)
With myControl
 .Height = barHeight / 2
 .Width = 50
End With
myBar.Visible = True

Id Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproIdC"}                  {ewc HLP95EN.DLL, DYNALINK, "Example":"ofproIdX":1}       
{ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproIdA"}                  {ewc HLP95EN.DLL, DYNALINK, "Specifics":"ofproIdS"}

Returns the ID for the specified built-in command bar control. Read-only Long.

Remarks
A control's ID determines the built-in action for that control. The value of the Id property for all custom
controls is 1.

Id Property Example

This example changes the button face of the first control on the command bar named "Custom2" if the
button's ID value is less than 25.
Set ctrl = CommandBars("Custom2").Controls(1)
With ctrl
 If .Id < 25 Then
 .FaceId = 17
 .Tag = "Changed control"
 End If
End With
The following example changes the caption of every control on the toolbar named "Standard" to the
current value of the Id property for that control.
For Each ctl In CommandBars("Standard").Controls
 ctl.Caption = CStr(ctl.Id)
Next ctl

Index Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproIndexC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproIndexX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproIndexA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofproIndexS"}

Returns the index number of the specified object in the collection.. Read-only Long.

Remarks
The position of the first command bar control is 1. Separators are not counted in the
CommandBarControls collection.

Index Property Example

This example searches the command bar named "Custom2" for a control with an ID value of 23. If
such a control is found and the index number of the found control is greater than 5, the control will be
positioned as the first control on the command bar.
Set myBar = CommandBars("Custom2")
Set ctrl1 = myBar.FindControl(Id:=23)
If ctrl1.Index > 5 Then
 ctrl1.Move before:=1
End If

Item Property

Returns an object from a collection, or returns text associated with an object.

Item is the default member of the object or collection. For example, the following two statements both
assign a CommandBar object to cmdBar.

Set cmdBar = CommandBars.Item("Standard")
Set cmdBar = CommandBars("Standard")
The following two statements both assign the text of the first label in the Balloon object assigned to
myBalloon to lblText.

lblText = myBalloon.Labels(1).Item
lblText = myBalloon.Labels(1)
Select one of the following objects to see a detailed description of the Item property for that object.

Assistant
BalloonCheckboxes
BalloonCheckbox
BalloonLabel
BalloonLabels
CommandBarControls
CommandBars
DocumentProperties
FileFindResults
FoundFiles
PropertyTests

Item Property (CommandBars and CommandBarControls
Collections)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproItemCommandBarsObjC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproItemCommandBarsObjX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"ofproItemCommandBarsObjA"}                  {ewc HLP95EN.DLL, DYNALINK, "Specifics":"ofproItemCommandBarsObjS"}

Returns a CommandBar object from a CommandBars collection, or returns a
CommandBarControl object from a CommandBarControls collection. Read-only.

Syntax
expression.Item(Index)
expression      Required. An expression that returns a CommandBars or CommandBarControls

object.
Index      Required Variant. The name or index number of the object to be returned. Note that you can

only use index numbers to return PropertyTest objects from the PropertyTests collection.

Item Property (BalloonCheckboxes Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproItemBalloonCheckboxesObjC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproItemBalloonCheckboxesObjX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"ofproItemBalloonCheckboxesObjA"}                  {ewc HLP95EN.DLL, DYNALINK,
"Specifics":"ofproItemBalloonCheckboxesObjS"}

Returns a BalloonCheckbox object from a BalloonCheckboxes collection. Read-only.

Syntax
expression.Item(iCbx)
expression      An expression that returns a BalloonCheckboxes object.
iCbx      Required Long. The index number of the check box to be returned.

Item Property (BalloonLabels Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproItemBalloonLabelsObjC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproItemBalloonLabelsObjX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"ofproItemBalloonLabelsObjA"}                  {ewc HLP95EN.DLL, DYNALINK, "Specifics":"ofproItemBalloonLabelsObjS"}

Returns a BalloonLabel object from a BalloonLabels collection. Read-only.

Syntax
expression.Item(iLbl)
expression      An expression that returns a BalloonLabels object.
iLbl      Required Long. The index number of the label to be returned.

Item Property (Assistant, BalloonLabel, and BalloonCheckbox
Objects)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproItemAssistantObjC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproItemAssistantObjX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproItemAssistantObjA"}             
{ewc HLP95EN.DLL, DYNALINK, "Specifics":"ofproItemAssistantObjS"}

Returns the text associated with the specified object. Read-only String.

Syntax
expression.Item
expression      Required. An expression that returns an Assistant, BalloonCheckbox, or

BalloonLabel object.

Item Property (DocumentProperties Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproItemDocumentPropertiesObjC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproItemDocumentPropertiesObjX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"ofproItemDocumentPropertiesObjA"}                  {ewc HLP95EN.DLL, DYNALINK,
"Specifics":"ofproItemDocumentPropertiesObjS"}

Returns an DocumentProperty object from a DocumentProperties collection. Read-only.

Syntax
expression.Item(Index)
expression      Required. An expression that returns a DocumentProperties object.
Index      Required Variant. The name or index number of the document property to be returned.

Item Property (PropertyTests Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproItemPropertyTestsObjC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproItemPropertyTestsObjX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"ofproItemPropertyTestsObjA"}                  {ewc HLP95EN.DLL, DYNALINK, "Specifics":"ofproItemPropertyTestsObjS"}

Returns an PropertyTest object from a PropertyTests collection. Read-only.

Syntax
expression.Item(Index)
expression      Required. An expression that returns a PropertyTests object.
Index      Required Variant. The index number of the property test to be returned.

Item Property (FoundFiles and FileFindResults Objects)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproItemFoundFilesObjC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproItemFoundFilesObjX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproItemFoundFilesObjA"}     
{ewc HLP95EN.DLL, DYNALINK, "Specifics":"ofproItemFoundFilesObjS"}

Returns a file name from the list of file names represented by the FoundFiles or FileFindResults
object. Read-only String.

Syntax
expression.Item(Index)
expression      Required. An expression that returns a FoundFiles or FileFindResults object

(FileFindResults is Macintosh only).
Index      Required Variant. The index number of the file name to be returned.

Left Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproLeftC"}                  {ewc HLP95EN.DLL, DYNALINK, "Example":"ofproLeftX":1}
{ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproLeftA"}                  {ewc HLP95EN.DLL, DYNALINK, "Specifics":"ofproLeftS"}

CommandBar or CommandBarControl object: Returns or sets the distance (in pixels) from the left
edge of the specified command bar or command bar control to the left edge of the screen. Returns
the distance from the left side of the docking area. Read/write Long for CommandBar, read-only
Long for CommandBarControl.
Assistant object: Sets or returns the horizontal position of the Office Assistant window (in points),
relative to the screen. Read/write Long.

Left Property Example

This example adjusts the position of the custom command bar named "Custom" by moving it to the
left 110 pixels more than the default. The example also makes this command bar the first one to be
docked by changing the row index number to 1.
Set myBar = CommandBars("Custom")
With myBar
 .RowIndex = 1
 .Left = 140
End With
This example displays the Office Assistant and moves it to the specified position.
With Assistant
 .Visible = True
 .Left = 300
 .Top = 300
End With

Move Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofmthMoveC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofmthMoveX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofmthMoveA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofmthMoveS"}

CommandBarControl object: Moves the specified command bar control to an existing command bar.

Assistant object: Moves the Office Assistant to the specified location.

Syntax 1
expression.Move(Bar, Before)
Syntax 2
expression.Move(xLeft, yTop)
expression      Syntax 1: Required. An expression that returns a CommandBarControl,

CommandBarButton, CommandBarPopup, or CommandBarComboBox object.
Syntax 2: Required. An expression that returns an Assistant object.

Bar      Optional Variant. A CommandBar object that represents the destination command bar for the
control. If this argument is omitted, the control is moved to the end of the same command bar (the
command bar that the control currently resides on).

Before      Optional Variant. A number that indicates the position for the control. The control is inserted
before the control currently occupying this position. If this argument is omitted, the control is
inserted on the same command bar.

xLeft      Required Integer. The left postion of the Office Assistant window, in points.
yTop      Required Integer. The top position of the Office Assistant window, in points.

Move Method Example

This example moves the first combo box control from the custom command bar named "Custom" to
the position before the seventh control on that command bar. The example sets the tag to "Selection
box" and assigns the control a low priority so that it will likely be dropped from the command bar if all
the controls don't fit in one row.
Set allcontrols = CommandBars("Custom").Controls
For Each ctrl In allControls
 If ctrl.Type = msoControlComboBox Then
 With ctrl
 .Move Before:=7
 .Tag = "Selection box"
 .Priority = 5
 End With
 Exit For
 End If
Next
This example displays the Office Assistant in the specified location and sets several options before
making it visible.
With Assistant
 .Reduced = True
 .Move xLeft:= 400, yTop:= 300
 .MoveWhenInTheWay = True
 .TipOfDay = True
 .Visible = True
 .Animation = msoAnimationGreeting
End With

Name Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproNameC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproNameX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproNameA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofproNameS"}

Returns or sets the name of the specified object. Read/write String for the CommandBar object,
read-only String for all other objects.

Remarks
The local name of a built-in command bar is displayed in the title bar (when the command bar isn't
docked) and in the list of available command bars ¾ wherever that list is displayed in the container
application.

For a built-in command bar, the Name property returns the command bar's U.S. English name. Use
the NameLocal property to return the localized name.

If you change the value of the LocalName property for a custom command bar, the value of Name
changes as well, and vice versa.

Name Property Example

This example searches the collection of command bars for the command bar named "Custom." If this
command bar is found, the example makes it visible.
foundFlag = False
For Each bar In CommandBars
 If bar.Name = "Custom" Then
 foundFlag = True
 bar.Visible = True
 End If
Next
If Not foundFlag Then
 MsgBox "'Custom' bar isn't in collection."
Else
 MsgBox "'Custom' bar is now visible."
End If
This example displays the name, type, and value of a document property. You must pass a valid
DocumentProperty object to the procedure.
Sub DisplayPropertyInfo(dp As DocumentProperty)
 MsgBox "value = " & dp.Value & Chr(13) & _
 "type = " & dp.Type & Chr(13) & _
 "name = " & dp.Name
End Sub

command bar
A programmable object that you use in Visual Basic to control a menu or toolbar. All the following
items are represented by CommandBar objects:

· Menu bars, toolbars, and shortcut menus
· Menus on menu bars and toolbars
· Submenus on menus, submenus, and shortcut menus

command bar control
A built-in or custom control on a menu bar, toolbar, menu, submenu, or shortcut menu. Custom
controls you can add to command bars include buttons, edit boxes, drop-down list boxes, combo
boxes, and pop-up controls (controls that display a menu or submenu).

button control
A button on a toolbar or a menu item on a menu, submenu, or shortcut menu that runs a command
when it's clicked. Toolbar buttons and menu items share the same properties and methods.

On a toolbar, a button control can be displayed as an icon only, an icon and a caption, or a caption
only. On a menu, a button control can be displayed either as an icon and a caption or as a caption
only.

combo box control
A custom edit box, drop-down list box, or combo box on a menu bar, toolbar, menu, submenu, or
shortcut menu. A custom combo box control can be displayed with or without a label. When a toolbar
is docked vertically, any custom combo box controls that it contains aren't visible.

Many built-in controls, such as the Undo button, are also considered to be combo box controls;
however, most properties and methods for modifying combo box controls aren't available for those
built-in controls.

pop-up control
A built-in or custom control on a menu bar or toolbar that displays a menu when it's clicked; or a built-
in or custom menu item on a menu, submenu, or shortcut menu that displays a submenu when the
pointer is positioned over it.

Many built-in controls, such as the Font Color button, are also considered to be pop-up controls;
however, most properties and methods for modifying pop-up controls aren't available for those built-in
controls.

CommandBars Collection Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofobjCommandBarsC "}              {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofobjCommandBarsX":1}              {ewc HLP95EN.DLL, DYNALINK, "Properties":"ofobjCommandBarsP "}              {ewc
HLP95EN.DLL, DYNALINK, "Methods":"ofobjCommandBarsM "}              {ewc HLP95EN.DLL, DYNALINK,
"Specifics":"ofobjCommandBarsS "}

A collection of CommandBar objects that represent the command bars in the container application.

Using the CommandBars Collection
Use the CommandBars property to return the CommandBars collection. The following example
displays in the Immediate window both the name and local name of each menu bar and toolbar, and
it displays a value that indicates whether the menu bar or toolbar is visible.
For Each cbar in CommandBars
 Debug.Print cbar.Name, cbar.NameLocal, cbar.Visible
Next
Use the Add method to add a new command bar to the collection. The following example creates a
custom toolbar named "Custom1" and displays it as a floating toolbar.
Set cbar1 = CommandBars.Add(Name:="Custom1", Position:=msoBarFloating)
cbar1.Visible = True
Use CommandBars(index), where index is the name or index number of a command bar, to return a
single CommandBar object. The following example docks the toolbar named "Custom1" at the
bottom of the application window.
CommandBars("Custom1").Position = msoBarBottom
Note      You can use the name or index number to specify a menu bar or toolbar in the list of available
menu bars and toolbars in the container application. However, you must use the name to specify a
menu, shortcut menu, or submenu (all of which are represented by CommandBar objects).
If two or more custom menus or submenus have the same name, CommandBars(index) returns the
first one. To ensure that you return the correct menu or submenu, locate the pop-up control that
displays that menu. Then apply the CommandBar property to the pop-up control to return the
command bar that represents that menu.

CommandBar Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofobjCommandBarC "}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofobjCommandBarX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Properties":"ofobjCommandBarP "}                 
{ewc HLP95EN.DLL, DYNALINK, "Methods":"ofobjCommandBarM "}                  {ewc HLP95EN.DLL, DYNALINK,
"Specifics":"ofobjCommandBarS "}

Represents a command bar in the container application. The CommandBar object is a member of
the CommandBars collection.

Using the CommandBar Object
Use CommandBars(index), where index is the name or index number of a command bar, to return a
single CommandBar object. The following example steps through the collection of command bars to
find the command bar named "Forms." If it finds this command bar, the example makes it visible and
protects its docking state. In this example, the variable cb represents a CommandBar object.

foundFlag = False
For Each cb In CommandBars
 If cb.Name = "Forms" Then
 cb.Protection = msoBarNoChangeDock
 cb.Visible = True
 foundFlag = True
 End If
Next cb
If Not foundFlag Then
 MsgBox "The collection does not contain a Forms command bar."
End If
You can use a name or index number to specify a menu bar or toolbar in the list of available menu
bars and toolbars in the container application. However, you must use a name to specify a menu,
shortcut menu, or submenu (all of which are represented by CommandBar objects). This example
adds a new menu item to the bottom of the Tools menu. When clicked, the new menu item runs the
procedure named "qtrReport."
Set newItem = CommandBars("Tools").Controls.Add(Type:=msoControlButton)
With newItem
 .BeginGroup = True
 .Caption = "Make Report"

 .FaceID = 0
 .OnAction = "qtrReport"
End With
If two or more custom menus or submenus have the same name, CommandBars(index) returns the
first one. To ensure that you return the correct menu or submenu, locate the pop-up control that
displays that menu. Then apply the CommandBar property to the pop-up control to return the
command bar that represents that menu.

Assuming that the third control on the toolbar named "Custom Tools" is a pop-up control, this example
adds the Save command to the bottom of that menu.
Set viewMenu = CommandBars("Custom Tools").Controls(3).CommandBar
viewMenu.Controls.Add ID:=3 'ID of Save command is 3

CommandBarControls Collection Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofobjCommandBarControlsC "}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofobjCommandBarControlsX":1}                  {ewc HLP95EN.DLL, DYNALINK,
"Properties":"ofobjCommandBarControlsP "}                  {ewc HLP95EN.DLL, DYNALINK,
"Methods":"ofobjCommandBarControlsM "}                  {ewc HLP95EN.DLL, DYNALINK, "Specifics":"ofobjCommandBarControlsS
"}

A collection of CommandBarControl objects that represent the command bar controls on a
command bar.

Using the CommandBarControls Collection
Use the Controls property to return the CommandBarControls collection. The following example
changes the caption of every control on the toolbar named "Standard" to the current value of the Id
property for that control.
For Each ctl In CommandBars("Standard").Controls

ctl.Caption = CStr(ctl.Id)
Next ctl
Use the Add method to add a new command bar control to the CommandBarControls collection.
This example adds a new, blank button to the command bar named "Custom."
Set myBlankBtn = CommandBars("Custom").Controls.Add
Use Controls(index), where index is the caption or index number of a control, to return a
CommandBarControl, CommandBarButton, CommandBarComboBox, or CommandBarPopup
object. The following example copies the first control from the command bar named "Standard" to the
command bar named "Custom."
Set myCustomBar = CommandBars("Custom")
Set myControl = CommandBars("Standard").Controls(1)
myControl.Copy Bar:=myCustomBar, Before:=1

CommandBarControl Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofobjCommandBarControlC "}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofobjCommandBarControlX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Properties":"ofobjCommandBarControlP
"}                  {ewc HLP95EN.DLL, DYNALINK, "Methods":"ofobjCommandBarControlM "}                  {ewc HLP95EN.DLL,
DYNALINK, "Specifics":"ofobjCommandBarControlS "}

Represents a command bar control. The CommandBarControl object is a member of the
CommandBarControls collection. The properties and methods of the CommandBarControl object
are all shared by the CommandBarButton, CommandBarComboBox, and CommandBarPopup
objects.

Note      When writing Visual Basic code to work with custom command bar controls, you use the
CommandBarButton, CommandBarComboBox, and CommandBarPopup objects. When writing
code to work with built-in controls in the container application that cannot be represented by one of
those three objects, you use the CommandBarControl object.

Using the CommandBarControl Object
Use Controls(index), where index is the index number of a control, to return a CommandBarControl
object. (The Type property of the control must be msoControlLabel, msoControlExpandingGrid,
msoControlSplitExpandingGrid, msoControlGrid, or msoControlGauge.)

Note      Variables declared as CommandBarControl can be assigned CommandBarButton,
CommandBarComboBox, and CommandBarPopup values.

You can also use the FindControl method to return a CommandBarControl object. The following
example searches for a control of type msoControlGauge; if it finds one, it displays the index
number of the control and the name of the command bar that contains it. In this example, the variable
lbl represents a CommandBarControl object.

Set lbl = CommandBars.FindControl(Type:= msoControlGauge)
If lbl Is Nothing Then
 MsgBox "A control of type msoControlGauge was not found."
Else
 MsgBox "Control " & lbl.Index & " on command bar " _
 & lbl.Parent.Name & " is type msoControlGauge"
End If

CommandBarButton Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofobjCommandBarButtonC "}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofobjCommandBarButtonX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Properties":"ofobjCommandBarButtonP
"}                  {ewc HLP95EN.DLL, DYNALINK, "Methods":"ofobjCommandBarButtonM "}                  {ewc HLP95EN.DLL,
DYNALINK, "Specifics":"ofobjCommandBarButtonS "}

Represents a button control on a command bar.

Using the CommandBarButton Object
Use Controls(index), where index is the index number of the control, to return a
CommandBarButton object. (The Type property of the control must be msoControlButton.)

Assuming that the second control on the command bar named "Custom" is a button, the following
example changes the style of that button.
Set c = CommandBars("Custom").Controls(2)
With c
If .Type = msoControlButton Then
 If .Style = msoButtonIcon Then
 .Style = msoButtonIconAndCaption
 Else
 .Style = msoButtonIcon
 End If
End If
End With
You can also use the FindControl method to return a CommandBarButton object.

CommandBarComboBox Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofobjCommandBarComboBoxC "}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofobjCommandBarComboBoxX":1}                  {ewc HLP95EN.DLL, DYNALINK,
"Properties":"ofobjCommandBarComboBoxP "}                  {ewc HLP95EN.DLL, DYNALINK,
"Methods":"ofobjCommandBarComboBoxM "}                  {ewc HLP95EN.DLL, DYNALINK,
"Specifics":"ofobjCommandBarComboBoxS "}

Represents a combo box control on a command bar.

Using the CommandBarComboBox Object
Use Controls(index), where index is the index number of the control, to return a
CommandBarComboBox object. (The Type property of the control must be msoControlEdit,
msoControlDropdown, msoControlComboBox, msoControlButtonDropdown,
msoControlSplitDropdown, msoControlOCXDropdown, msoControlGraphicCombo, or
msoControlGraphicDropdown.)

The following example adds two items to the second control on the command bar named "Custom,"
and then it adjusts the size of the control.
Set combo = CommandBars("Custom").Controls(2)
With combo
 .AddItem "First Item", 1
 .AddItem "Second Item", 2
 .DropDownLines = 3
 .DropDownWidth = 75
 .ListIndex = 0
End With
You can also use the FindControl method to return a CommandBarComboBox object. The
following example searches all command bars for a visible CommandBarComboBox object whose
tag is "sheet assignments."
Set myControl = CommandBars.FindControl _
(Type:=msoControlComboBox, Tag:="sheet assignments", Visible:=True)

CommandBarPopup Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofobjCommandBarPopUpC "}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofobjCommandBarPopUpX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Properties":"ofobjCommandBarPopUpP
"}                  {ewc HLP95EN.DLL, DYNALINK, "Methods":"ofobjCommandBarPopUpM "}                  {ewc HLP95EN.DLL,
DYNALINK, "Specifics":"ofobjCommandBarPopUpS "}

Represents a pop-up control on a command bar.

Using the CommandBarPopup Object
Use Controls(index), where index is the number of the control, to return a CommandBarPopup
object. (The Type property of the control must be msoControlPopup, msoControlGraphicPopup,
msoControlButtonPopup, msoControlSplitButtonPopup, or
msoControlSplitButtonMRUPopup.)

You can also use the FindControl method to return a CommandBarPopup object. The following
example searches all command bars for a CommandBarPopup object whose tag is "Graphics."
Set myControl = Application.CommandBars.FindControl _
(Type:=msoControlPopup, Tag:="Graphics")

Remarks
Every pop-up control contains a CommandBar object. To return the command bar from a pop-up
control, apply the CommandBar property to the CommandBarPopup object.

FileType Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproFileTypeC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproFileTypeX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproFileTypeA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofproFileTypeS"}

FileSearch object: Returns or sets the type of file to be searched for during a file search. Can be one
of the following MsoFileType constants: msoFileTypeAllFiles, msoFileTypeBinders,
msoFileTypeDatabases, msoFileTypeExcelWorkbooks, msoFileTypeOfficeFiles,
msoFileTypePowerPointPresentations, msoFileTypeTemplates, or
msoFileTypeWordDocuments. The default value is msoFileTypeOfficeFiles. Read/write Variant.
FileFind object: Returns or sets the type of file to be searched for. Can be set to a number returned
by the MacId function. Macintosh only. Read/write Long.

Remarks
Use the arguments listed in the following table with the MacID function to return the appropriate
Macintosh file type.

File type Argument
Word document MSWD
Microsoft Excel workbook XCEL
PowerPoint presentation PPT3 (for use with all versions of PowerPoint)
Text file TTXT

FileType Property Example

This example searches for all Binder files located in the My Documents folder. The example displays
the name and location of each found file in a message dialog.
Set fs = Application.FileSearch
With fs
 .LookIn = "C:\My Documents"
 .FileType = msoFileTypeBinders
 If .Execute > 0 Then
 MsgBox "There were " & .FoundFiles.Count & _
 " Binder file(s) found."
 For i = 1 To .FoundFiles.Count
 MsgBox .FoundFiles(i)
 Next i
 Else
 MsgBox "There were no Binder files found."
 End If
End With

FoundFiles Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproFoundFilesC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproFoundFilesX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproFoundFilesA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofproFoundFilesS"}

Returns a FoundFiles object that contains the names of all files found in a search operation. Read-
only.

FoundFiles Property Example

This example steps through the list of found files and displays the path for each file.
With Application.FileSearch
For i = 1 To .FoundFiles.Count
 MsgBox .FoundFiles(i)
Next I
End With

LastModified Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproLastModifiedC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproLastModifiedX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproLastModifiedA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofproLastModifiedS"}

Returns or sets a constant that represents the amount of time since the specified file was last
modified and saved. Can be one of the following msoLastModified constants:
msoLastModifiedAnyTime, msoLastModifiedLastMonth, msoLastModifiedLastWeek,
msoLastModifiedThisMonth, msoLastModifiedThisWeek, msoLastModifiedToday, or
msoLastModifiedYesterday. The default value is msoLastModifiedAnyTime. Read/write Variant.

LastModified Property Example

This example sets options for a file search. The files that this search will return have been previously
modified and are located in the C:\My Documents folder or in a subfolder of that folder.
Set fs = Application.FileSearch
With fs
 .LookIn = "C:\My Documents"
 .SearchSubFolders = True
 .LastModified = msoLastModifiedYesterday
End With

LookIn Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproLookInC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproLookInX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproLookInA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofproLookInS"}

Returns or sets the folder to be searched during the specified file search. Read/write String.

LookIn Property Example

This example searches the My Documents folders for all files whose names begin with "Cmd" and
displays the name and location of each file that's found.
Set fs = Application.FileSearch
With fs
 .LookIn = "C:\My Documents"
 .FileName = "cmd.*"
 If .Execute > 0 Then
 MsgBox "There were " & .FoundFiles.Count & _
 " file(s) found."
 For i = 1 To .FoundFiles.Count
 MsgBox .FoundFiles(i)
 Next i
 Else
 MsgBox "There were no files found."
 End If
End With

MatchAllWordForms Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproMatchAllWordFormsC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproMatchAllWordFormsX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"ofproMatchAllWordFormsA"}                  {ewc HLP95EN.DLL, DYNALINK, "Specifics":"ofproMatchAllWordFormsS"}

True if the specified file search will be expanded to include all forms of the specified word in the body
of the file, or in the file's properties. Read/write Boolean.

Remarks
This property is available only if the file Mswds_en.lex has been installed and registered. Note that
this file isn't installed as part of a Typical setup.

MatchAllWordForms Property Example
This example returns all files that contain the word "run," "running," "runs," or "ran" in the body of the
file, or in the file properties. The TextOrProperty property sets the word to be matched, and limits the
search to either the body of the file or the file properties.
With Application.FileSearch
 .NewSearch
 .LookIn = "C:\My Documents"
 .SearchSubFolders = True
 .TextOrProperty = "run"
 .MatchAllWordForms = True
 .FileType = msoFileTypeAllFiles
End With

MatchTextExactly Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproMatchTextExactlyC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproMatchTextExactlyX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproMatchTextExactlyA"}           
{ewc HLP95EN.DLL, DYNALINK, "Specifics":"ofproMatchTextExactlyS"}

True if the specified file search will find only files whose body text or file properties contain the exact
word or phrase that you've specified. Read/write Boolean.

MatchTextExactly Property Example

This example searches the C:\My Documents folder and returns all files that contain the word "Run"
either in their body text or in their file properties.
With Application.FileSearch
 .NewSearch
 .LookIn = "C:\My Documents"
 .TextOrProperty = "Run"
 .MatchTextExactly = True
 .FileType = msoFileTypeAllFiles
End With

NewSearch Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofmthNewSearchC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofmthNewSearchX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofmthNewSearchA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofmthNewSearchS"}

Resets all the search criteria settings to their default settings.

Syntax
expression.NewSearch
expression      Required. An expression that returns a FileSearch object.

Remarks
Search criteria settings are retained throughout an application session. Use this method every time
you change search criteria. This method will not reset the value of the LookIn property.

NewSearch Method Example

This example uses the NewSearch method to reset the default search criteria before beginning a
new search.
With Application.FileSearch
 .NewSearch
 .LookIn = "C:\My Documents"
 .SearchSubFolders = True
 .FileName = "run"
 .MatchAllWordForms = True
 .FileType = msoFileTypeAllFiles
 If .Execute() > 0 Then
 MsgBox "There were " & .FoundFiles.Count & _
 " file(s) found."
 For i = 1 To .FoundFiles.Count
 MsgBox .FoundFiles(i)
 Next i
 Else
 MsgBox "There were no files found."
 End If
End With

PropertyTests Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproPropertyTestsC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproPropertyTestsX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproPropertyTestsA"}                 
{ewc HLP95EN.DLL, DYNALINK, "Specifics":"ofproPropertyTestsS"}

Returns a PropertyTestscollection that represents all the search criteria for a file search. Read-only.

For information about returning a single member of a collection, see Returning an Object from a
Collection.

PropertyTests Property Example

This example displays all the search criteria for the first property test in the collection.
With Application.FileSearch.PropertyTests(1)
myString = "This is the search criteria: " _
 & " The name is: " & .Name & ". The condition is: " _
 & .Condition
If .Value <> "" Then
 myString = myString & ". The value is: " & .Value
 If .SecondValue <> "" Then
 myString = myString _
 & ". The second value is: " _
 & .SecondValue & ", and the connector is" _
 & .Connector
 End If
End If
MsgBox myString
End With

SearchSubFolders Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproSearchSubFoldersC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproSearchSubFoldersX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproSearchSubFoldersA"}     
{ewc HLP95EN.DLL, DYNALINK, "Specifics":"ofproSearchSubFoldersS"}

True if the specified search includes all the subfolders in the folder specified by the LookIn property.
Read/write Boolean.

SearchSubFolders Property Example

This example searches the My Documents folder and all of its subfolders for all files whose names
begin with "Cmd." The example also displays the name and location of each file that's found.
Set fs = Application.FileSearch
With fs
 .LookIn = "C:\My Documents"
 .SearchSubFolders = True
 .FileName = "cmd*"
 If .Execute() > 0 Then
 MsgBox "There were " & .FoundFiles.Count & _

 " file(s) found."
 For i = 1 To .FoundFiles.Count
 MsgBox .FoundFiles(i)
 Next i
 Else
 MsgBox "There were no files found."
 End If
End With

TextOrProperty Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproTextOrPropertyC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproTextOrPropertyX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproTextOrPropertyA"}                 
{ewc HLP95EN.DLL, DYNALINK, "Specifics":"ofproTextOrPropertyS"}

Returns or sets the word or phrase to be searched for, in either the body of a file or the file's
properties, during the specified file search. The word or phrase can include the * (asterisk) or ?
(question mark) wildcard character. Read/write String.

Remarks
Use the question mark wildcard character to match any single character. For example, type gr?y to
find all files that contain at least one instance of either "gray" or "grey."

Use the asterisk wildcard character to match any number of characters. For example, type San* to
return all files that contain at least one word that begins with t "San."

TextOrProperty Property Example

This example searches the C:\My Documents folder and all of its subfolders and returns all files
whose body text or file properties contain any words that begin with "San." The TextOrProperty
property sets the word to be searched for and limits the search to either the body of the file or the file
properties.
With Application.FileSearch
 .NewSearch
 .LookIn = "C:\My Documents"
 .SearchSubFolders = True
 .TextOrProperty = "San*"
 .FileType = msoFileTypeAllFiles
End With

Connector Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproConnectorC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproConnectorX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproConnectorA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofproConnectorS"}

Returns the connector between two similar property test values. Can be either of the following
MsoConnector constants: msoConnectorAnd or msoConnectorOr. The default value is
msoConnectorAnd. Read-only Variant.

Remarks
A connector specifies whether two similar search criteria will be combined to form one property test
(as with msoConnectorAnd), or treated independently (as with msoConnectorOr).

Connector Property Example

This example displays a message that describes how the search criteria will be evaluated in a file
search.
With Application.FileSearch.PropertyTests(1)
If .Connector = msoConnectorAnd Then
 MsgBox "All search criteria will be combined."
Else
 MsgBox "Criteria will be treated independently"
End If
End With

Condition Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproConditionC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproConditionX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproConditionA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofproConditionS"}

Returns the condition of the specified search criteria. Read-only Variant.
Can be one of the following MsoCondition constants:

msoConditionAnyNumberBetween
msoConditionAnytime
msoConditionAnytimeBetween
msoConditionAtLeast
msoConditionAtMost
msoConditionBeginsWith
msoConditionDoesNotEqual
msoConditionEndsWith
msoConditionEquals
msoConditionFileTypeAllFiles
msoConditionFileTypeBinders
msoConditionFileTypeDatabases
msoConditionFileTypeExcelWorkbooks
msoConditionFileTypeOfficeFiles
msoConditionFileTypePowerPointPresentations
msoConditionFileTypeTemplates
msoConditionFileTypeWordDocuments
msoConditionIncludesNearEachOther
msoConditionIncludesPhrase
msoConditionInTheLast

msoConditionInTheNext
msoConditionIsExactly
msoConditionIsNo
msoConditionIsNot
msoConditionIsYes
msoConditionLastMonth
msoConditionLastWeek
msoConditionLessThan
msoConditionMoreThan
msoConditionNextMonth
msoConditionNextWeek
msoConditionOn
msoConditionOnorAfter
msoConditionOnorBefore
msoConditionThisMonth
msoConditionThisWeek
msoConditionToday
msoConditionTomorrow
msoConditionYesterday

Condition Property Example

This example returns the connection value for search criteria for the first property test.
With Application.FileSearch.PropertyTests(1)
 MsgBox "The condition you've set is: " & .Condition
End With

SecondValue Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproSecondValueC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproSecondValueX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproSecondValueA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofproSecondValueS"}

Returns an optional second value property test (as in a range) for the specified file search. Read-only
Variant.

Remarks
This property is intended to be used to specify a range, and it can only be used with the
MsoCondition constants msoConditionAnyTimeBetween or msoConditionAnyNumberBetween.

SecondValue Property Example

This example displays the second value of the search criteria (if it exists) in a dialog box. If the
second value doesn't exist, the example displays another message.
With Application.FileSearch.PropertyTests(1)
If .SecondValue = "" Then
 MsgBox "You haven't specified a second value."
Else
 MsgBox "The second value you've set is: " _
 & .SecondValue
End If
End With

Remove Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofmthRemoveC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofmthRemoveX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofmthRemoveA"}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofmthRemoveS"}

Removes a PropertyTest object from the PropertyTests collection.

Syntax
expression.Remove(lndex)
expression      Required. An expression that returns a PropertyTests object.
lndex      Required Long. The index number of the property test to remove.

Remove Method Example

This example removes the first search criterion from the collection.
Application.FileSearch.PropertyTests.Remove(1)

FileSearch Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofobjFileSearchC "}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofobjFileSearchX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Properties":"ofobjFileSearchP "}                  {ewc
HLP95EN.DLL, DYNALINK, "Methods":"ofobjFileSearchM "}                  {ewc HLP95EN.DLL, DYNALINK,
"Specifics":"ofobjFileSearchS "}

Represents the functionality of the Open dialog box (File menu).

Using the FileSearch Object
Use the FileSearch property to return the FileSearch object. The following example searches for the
specified files and displays both the number of files found and the title of each found file.
With Application.FileSearch
 If .Execute() > 0 Then
 MsgBox "There were " & .FoundFiles.Count & _
 " file(s) found."
 For i = 1 To .FoundFiles.Count
 MsgBox .FoundFiles(i)
 Next i
 Else
 MsgBox "There were no files found."
 End If
End With
Use the NewSearch method to reset the search criteria to the default settings. All property values are
retained after each search is run, and by using the NewSearch method you can selectively set
properties for the next file search without manually resetting previous property values. The following
example resets the search criteria to the default settings before beginning a new search.
With Application.FileSearch
 .NewSearch
 .LookIn = "C:\My Documents"
 .SearchSubFolders = True
 .FileName = "Run"
 .MatchTextExactly = True
 .FileType = msoFileTypeAllFiles
End With

PropertyTest Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofobjPropertyTestC "}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofobjPropertyTestX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Properties":"ofobjPropertyTestP "}                  {ewc
HLP95EN.DLL, DYNALINK, "Methods":"ofobjPropertyTestM "}                  {ewc HLP95EN.DLL, DYNALINK,
"Specifics":"ofobjPropertyTestS "}

Represents a single file search criterion. Search criteria are listed in the Advanced Find dialog box
(File menu, Open command, Advanced Find button). The PropertyTest object is a member of the
PropertyTests collection.

Using the PropertyTest Object
Use PropertyTests(index), where index is the index number, to return a single PropertyTest object.
The following example displays all the search criteria for the first property test in the PropertyTests
collection.
With Application.FileSearch.PropertyTests(1)
myString = "This is the search criteria: " _
 & " The name is: " & .Name & ". The condition is: " _
 & .Condition
If .Value <> "" Then
 myString = myString & ". The value is: " & .Value
 If .SecondValue <> "" Then
 myString = myString _
 & ". The second value is: " _
 & .SecondValue & ", and the connector is" _
 & .Connector
 End If
End If
MsgBox myString
End With

PropertyTests Collection Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofobjPropertyTestsC "}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofobjPropertyTestsX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Properties":"ofobPropertyTestsP "}                 
{ewc HLP95EN.DLL, DYNALINK, "Methods":"ofobjPropertyTestsM "}                  {ewc HLP95EN.DLL, DYNALINK,
"Specifics":"ofobjPropertyTestsS "}

A collection of PropertyTest objects that represent all the search criteria of a file search. Search
criteria are listed in the Advanced Find dialog box (File menu, Open command, Advanced Find
button).

Using the PropertyTests Collection
Use the PropertyTests property to return the PropertyTests collection. The following example
displays the number of advanced-find search criteria that will be used for one file search.
FileSearch.PropertyTests.Count
Use the Add method to add a new PropertyTest object to the PropertyTests collection. The
following example adds two property tests to the search criteria. The first criterion specifies that the
found files must be Word documents, and the second one specifies that the found files must have
been modified between January 1, 1996 and June 30, 1996.
Set fs = Application.FileSearch
fs.NewSearch
With fs.PropertyTests
 .Add Name:="Files of Type", _
 Condition:=msoConditionFileTypeWordDocuments, _

 Connector:=msoConnectorOr
 .Add Name:="Last Modified", _
 Condition:=msoConditionAnytimeBetween, _
 Value:="1/1/96", SecondValue:="6/30/96", _
 Connector:=msoConnectorAnd
End With
Use PropertyTests(index), where index is the index number, to return a single PropertyTest object.
The following example displays all the search criteria for the first property test in the PropertyTests
collection.
With Application.FileSearch.PropertyTests(1)
myString = "This is the search criteria: " _
 & " The name is: " & .Name & ". The condition is: " _
 & .Condition
If .Value <> "" Then
 myString = myString & ". The value is: " & .Value
 If .SecondValue <> "" Then
 myString = myString _
 & ". The second value is: " _
 & .SecondValue & ", and the connector is" _
 & .Connector
 End If

End If
MsgBox myString
End With

FoundFiles Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofobjFoundFilesC "}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofobjFoundFilesX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Properties":"ofobFoundFilesP "}                  {ewc
HLP95EN.DLL, DYNALINK, "Methods":"ofobjFoundFilesM "}                  {ewc HLP95EN.DLL, DYNALINK,
"Specifics":"ofobjFoundFilesS "}

Represents the list of files returned from a file search.

Using the FoundFiles Object
Use the FoundFiles property to return the FoundFiles object. This example steps through the list of
found files and displays the path and file name of each found file.
With Application.FileSearch
 For i = 1 To .FoundFiles.Count
 MsgBox .FoundFiles(i)
 Next I
End With
Use FoundFiles(index), where index is the index number, to return the path and file name of a found
file. The following example steps through the collection of found files and displays the path and file
name of each one.
With Application.FileSearch
For i = 1 To .FoundFiles.Count
 MsgBox .FoundFiles(i)
Next I
End With
Use the Execute method to begin the file search and update the FoundFiles object. The following
example searches the My Documents folder for all files whose names begin with "Cmd" and displays
the name and location of each file that's found. The example also sorts the returned files in ascending
alphabetic order by file name.
Set fs = Application.FileSearch
With fs
 .LookIn = "C:\My Documents"
 .FileName = "cmd*"
 If .Execute(SortBy:=msoSortbyFileName, _
 SortOrder:=msoSortOrderAscending) > 0 Then
 MsgBox "There were " & .FoundFiles.Count & _
 " file(s) found."
 For i = 1 To .FoundFiles.Count
 MsgBox .FoundFiles(i)
 Next i
 Else
 MsgBox "There were no files found."
 End If
End With

DocumentProperties Collection Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofobjDocumentPropertiesC "}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofobjDocumentPropertiesX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Properties":"ofobjDocumentPropertiesP
"}                  {ewc HLP95EN.DLL, DYNALINK, "Methods":"ofobjDocumentPropertiesM "}                  {ewc HLP95EN.DLL,
DYNALINK, "Specifics":"ofobjDocumentPropertiesS "}

A collection of DocumentProperty objects. Each DocumentProperty object represents a built-in or
custom property of a container document.

Using the DocumentProperties Collection
Use the BuiltinDocumentProperties property to return a DocumentProperties collection that
contains all the built-in properties of a container document. Use the CustomDocumentProperties
property to return a DocumentProperties collection that contains all the custom properties of the
document.

Use the Add method to create a new custom property and add it to the DocumentProperties
collection. You cannot use the Add method to create a built-in document property.

Use BuiltinDocumentProperties(index), where index is the index number of the built-in document
property, to return a single DocumentProperty object that represents a specific built-in document
property. Use CustomDocumentProperties(index), where index is the number of the custom
document property, to return a DocumentProperty object that represents a specific custom
document property.

DocumentProperty Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofobjDocumentPropertyC "}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofobjDocumentPropertyX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Properties":"ofobjDocumentPropertyP "}     
{ewc HLP95EN.DLL, DYNALINK, "Methods":"ofobjDocumentPropertyM "}                  {ewc HLP95EN.DLL, DYNALINK,
"Specifics":"ofobjDocumentPropertyS "}

Represents a custom or built-in document property of a container document. The DocumentProperty
object is a member of the DocumentProperties collection.

Using the DocumentProperty Object
Use BuiltinDocumentProperties(index), where index is the name or index number of the built-in
document property, to return a single DocumentProperty object that represents a specific built-in
document property. Use CustomDocumentProperties(index), where index is the name or index
number of the custom document property, to return a DocumentProperty object that represents a
specific custom document property.

The names of all the available built-in document properties are shown in the following list:

Title
Subject
Author
Keywords
Comments
Template
Last Author
Revision Number
Application Name
Last Print Date
Creation Date
Last Save Time
Total Editing Time
Number of Pages

Number of Words
Number of Characters
Security
Category
Format
Manager
Company
Number of Bytes
Number of Lines
Number of Paragraphs
Number of Slides
Number of Notes
Number of Hidden Slides
Number of Multimedia Clips

Container applications don't necessarily define a value for every built-in document property. If a given
application doesn't define a value for one of the built-in document properties, returning the Value
property for that document property causes an error.

LinkToContent Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproLinkToContentC "}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproLinkToContentX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproLinkToContentA "}                 
{ewc HLP95EN.DLL, DYNALINK, "Specifics":"ofproLinkToContentS "}

True if the value of the specified custom document property is linked to the content of the container
document. False if the value is static. Read/write Boolean.

Remarks
This property applies only to custom document properties. For built-in document properties, this
property is always False.

Use the LinkSource property to set the source for the specified linked property. Setting the
LinkSource property sets the LinkToContent property to True.

LinkToContent Property Example

This example displays the linked status of the custom document property. For the example to work,
dp must be a valid DocumentProperty object.

Sub DisplayLinkStatus(dp As DocumentProperty)
 Dim stat As String, tf As String
 If dp.LinkToContent Then
 tf = ""
 Else
 tf = "not "
 End If
 stat = "This property is " & tf & "linked"
 If dp.LinkToContent Then
 stat = stat + Chr(13) & "The link source is " & dp.LinkSource
 End If
 MsgBox stat
End Sub

LinkSource Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproLinkSourceC "}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproLinkSourceX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproLinkSourceA "}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofproLinkSourceS "}

Returns or sets the source of the specified linked custom document property. Read/write String.

Remarks
This property applies only to custom document properties; you cannot use it with built-in document
properties.

The source of the specified link is defined by the container application.

Setting the LinkSource property sets the LinkToContent property to True.

LinkSource Property Example

This example displays the linked status of a custom document property. For the example to work, dp
must be a valid DocumentProperty object.
Sub DisplayLinkStatus(dp As DocumentProperty)
 Dim stat As String, tf As String
 If dp.LinkToContent Then
 tf = ""
 Else
 tf = "not "
 End If
 stat = "This property is " & tf & "linked"
 If dp.LinkToContent Then
 stat = stat + Chr(13) & "The link source is " & dp.LinkSource
 End If
 MsgBox stat
End Sub

Value Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofproValueC "}                  {ewc HLP95EN.DLL, DYNALINK,
"Example":"ofproValueX":1}                  {ewc HLP95EN.DLL, DYNALINK, "Applies To":"ofproValueA "}                  {ewc
HLP95EN.DLL, DYNALINK, "Specifics":"ofproValueS "}

DocumentProperty object: Returns or sets the value of the specified document property. Read/write
Variant.
PropertyTest object: Returns the value of a property test for a file search. Read-only Variant.

Remarks
If the container application doesn't define a value for one of the built-in document properties, reading
the Value property for that document property causes an error.

Value Property Example

This example displays the name, type, and value of a document property. For the example to work,
dp must be a valid DocumentProperty object.

Sub DisplayPropertyInfo(dp As DocumentProperty)
 MsgBox "value = " & dp.Value & Chr(13) & _
 "type = " & dp.Type & Chr(13) & _
 "name = " & dp.Name
End Sub
This example displays the value of the search criteria (if it exists) in a dialog box. If the second value
doesn't exist, the example displays another message.
With Application.FileSearch.PropertyTests(1)
If .Value = "" Then
 MsgBox "You haven't specified a value."
Else
 MsgBox "The value you've set is: " _
 & .Value
End If
End With

Item not available
The item is not available on this release of Office. It may be that your language version doesn't
support this item, or that the item is designed for non-Windows versions only.

Overview of the Office Assistant
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofhowOverviewAssistantC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Specifics":"ofhowOverviewAssistantS"}

Microsoft Office 97 introduces a new type of Help component: the Office Assistant. The Office
Assistant, the Office Assistant balloon, and all the items inside the balloon are controlled
programmatically through the objects, properties, and methods of the Assistant object.

The following illustration shows the Office Assistant, the Office Assistant balloon, and all the
programmable objects inside the balloon.

For information about how you can make design-time and run-time changes to the Office Assistant,
see the following topics.

Using the Office Assistant

Creating and modifying balloons

Making run-time modifications to balloons

Using the Office Assistant
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofhowUsingAssistantC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Specifics":"ofhowUsingAssistantS"}

You can use the Office Assistant in your application to offer help in specific areas, and you can use
the controls in the Office Assistant balloon to run your own procedures.

Everything associated with the Office Assistant is represented in Visual Basic by the Assistant object
and the objects it contains. Many of the changes you can make to the Assistant at run time are the
same changes you can make at design time by right-clicking the Assistant. Each of the options listed
on the Options tab in the Office Assistant dialog box corresponds to a property of the Assistant that
you can set at run time. The properties listed in the following table are commonly used to modify the
Office Assistant.

Property Description
Animation Animates the Office Assistant. Some animations are

continuous; others occur only once.
FileName Specifies the file name for the Office Assistant, complete

with the .act extension. For example, the file name for the
Clippit Office Assistant is Clippit.act.

Name Returns the name of the Office Assistant. If you want to
keep track of which Office Assistant the user selects, use
this property.

Visible Specifies whether the Assistant is visible to or hidden.

The following example selects Will as the Office Assistant, makes the Assitant visible, and sets an
animation. The example also sets several of the customized Help properties that are available on the
Options tab in the Office Assistant dialog box at design time
With Assistant
 .FileName = "Will.act"
 .Animation = msoAnimationBeginSpeaking
 .AssistWithHelp = True
 .GuessHelp = True
 .FeatureTips = False
 .Visible = True
End With
There are nine different Office Assistant actors you can choose to install with Microsoft Office. Only
one Assistant actor can be active at a time. You can let the user select the Assistant at design time, or
you can select an Assistant for the user at run time. You cannot modify the installed Assistant actor
files, and you cannot substitute your own actor file in place of the files provided.

Creating and modifying balloons
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofhowCreatingBalloonsC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Specifics":"ofhowCreatingBalloonsS"}

You use the Office Assistant baloon to provide information for the user. The information inside the
balloon can be a simple message, a request for more information, or a list of choices for the user.
Changes you make to the Office Assistant balloon must be made at run time.

The following table contains the most commonly used properties and methods for changing either the
appearance or function of a newly created (blank) balloon or an existing balloon. Changes you make
to any balloon will appear the next time the Show method is used.

Property or method Description
Heading Specifies the bold text appearing at the top of the

Office Assistant balloon.
Text Specifies the text appearing in the body of the

Office Assistant balloon. This text appears after the
heading but before any check boxes, labels, or
buttons.

Labels Returns the collection of labels in the balloon. The
format of the labels is determined by the
BalloonType property. Labels appear after the
balloon text. The list of labels can be numbered or
bulleted, or it can be a list of buttons. Unlike check
boxes, the user's choice is registered as soon as a
button is clicked.

Checkboxes Returns the collection of check boxes in the
balloon. The user clicks the chec k box and then
clicks the appropriate button at the bottom of the
balloon (for example, OK or Next) to register his or
her choice.

Close Closes and dismisses a modeless balloon, but
doesn't release the object variable. The object
variable assigned to the balloon is still valid ¾ you
can display it again, or you can modify it and
display it later. You can use this method only on
modeless balloons.

Show Displays the balloon, and all the objects inside it, to
the user. Use this method only for Balloon objects;
use the Visible property for the Assistant object.

The following example creates a balloon that helps the user select a printer. The example provides a
check box option for users who want to skip the information in the balloon.
Set bln = Assistant.NewBalloon
With bln
 .Heading = "Instructions for Choosing a Printer."
 .Text = "Click OK when you've chosen a printer."
 lblTxt = "From the File menu, choose Print."
 .Labels(1).Text = lblTxt
 .Labels(2).Text = "Click Setup."
 .Labels(3).Text = "Select the name of the printer."
 .Checkboxes(1).Text = "Skip this information."
 .BalloonType = msoBalloonTypeNumbers
 .Mode = msoModeModal
 .Button = msoButtonSetOK

 .Show
End With

Creating balloons
To create a new balloon, use the NewBalloon property of the Assistant object. The balloon you
create will be blank. Use the Heading property to add a heading, and use the Text property to add
text to the body of the balloon and then add controls, if needed. Finally, use the Show method to
display the balloon. The Show method will show the balloon as it appears at that moment; therefore,
it's important to use this method after setting all the other properties of the balloon. The following
example creates a new balloon, sets the heading and body text, and creates three check box controls
that the user can select.
With Assistant.NewBalloon
 .Button = msoButtonSetOkCancel
 .Heading = "Regional Sales Data"
 .Text = "Select a region"
 For i = 1 To 3
 .CheckBoxes(i).Text = "Region " & i
 Next
 .Show
End With

Managing multiple balloons
The Office Assistant does not have a Balloons collection. To manage multiple balloons, you can set a
separate object variable for each balloon you create and refer to the variable as needed. Or you can
create an array of Balloon object variables and assign    a balloon to each one. The following example
creates an array and adds three blank Balloon objects to the array.
Dim myBalloonArray(3) As Balloon

With Assistant
 For i = 1 To 3
 Set myBalloonArray(i) = .NewBalloon
 Next
End With

Making run-time modifications to balloons
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofhowModifyingBalloonsC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Specifics":"ofhowModifyingBalloonsS"}

After you create a balloon for the Office Assistant, you can customize it by adding bitmaps, icons,
Windows metafiles, or Macintosh PICT files to the balloon's heading or text. You may want to add
controls such as check boxes or buttons to your balloon so that you can respond to the user when he
or she clicks an item in the balloon.

Adding icons and bitmaps to balloons
To customize your application, you can add icons and bitmaps to Office Assistant balloons. To add an
icon, assign an MsoIconType constant to the Icon property of the Balloon object. To add a Windows
or Macintosh bitmap, a Windows metafile, or a Macintosh PICT file to the text in an Office Assistant
balloon, specify the type, the location, and the sizing factor (if applicable) when you set the Text
property of a heading, text, check box, or label. The following example inserts a Windows bitmap file
into the text of a balloon.
myBmp = "{bmp c:\windows\circles.bmp}"
myText1 = "This is before the picture, "
myText2 = " and this is after the picture"
Set bln = Assistant.NewBalloon
With bln
 .Heading = "Instructions for Choosing a Bitmap."
 .Text = myText1 & myBmp & myText2
 .Show
End With

Adding controls to balloons
There are two types of controls you can add to a balloon: check boxes and buttons. There are five
check boxes in the balloon when it's created; you can make any one of them visible by specifying text
for the control. There are five label buttons in the balloon as well (if, that is, the balloon type is
msoBalloonTypeButtons), and you can expose any one of them in the same way you would a check
box. If you try to add more than five check boxes or five label buttons to a balloon, an error occurs.

You can change the appearance of any control on a balloon by changing the control's Text property.
You can change the functionality of a check box or a button in a balloon by specifying another
procedure that will be run whenever the check box or button is selected (clicked).

The following example creates a balloon with a heading, text, and three region choices. When the
user selects a check box and then clicks OK, the appropriate procedure is run.
With Assistant.NewBalloon
 .Heading = "Regional Sales Data"
 .Text = "Select your region"
 For i = 1 To 3
 .CheckBoxes(i).Text = "Region " & i
 Next
 .Button = msoButtonSetOkCancel
 .Show
Select Case True
 Case .CheckBoxes(1).Checked
 runregion1
 Case .CheckBoxes(2).Checked
 runregion2
 Case .CheckBoxes(3).Checked
 runregion3
End Select

End With

Overview of command bars
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofhowOverviewOfCommandBarsC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Specifics":"ofhowOverviewOfCommandBarsS"}

In Microsoft Office 97, toolbars, menu bars, and shortcut menus are all controlled programmatically as
one type of object: command bars. All the following items are represented in Visual Basic by
CommandBar objects:

· Menu bars, toolbars, and shortcut menus
· Menus on menu bars and toolbars
· Submenus on menus, submenus, and shortcut menus

You can modify any built-in menu bar or toolbar, and you can create and modify custom toolbars,
menu bars, and shortcut menus to deliver with your Visual Basic application. You present the features
of your application as individual buttons on toolbars or as groups of command names on menus.
Because toolbars and menus are both command bars, you use the same kind of controls on both of
them. For example, the docked toolbar shown in the following illustration contains three buttons.

The menu shown in the following illustration contains the same three commands as in the previous
illustration, but here they're displayed as menu items.

In Microsoft Office 97, menu bars and toolbars can both contain menus. The floating toolbar shown in
the following illustration contains three buttons, and it also contains a menu with the same three
commands displayed as menu items.

In Visual Basic, buttons and menu items are represented by CommandBarButton objects. The pop-
up controls that display menus and submenus are represented by CommandBarPopup objects. In
the following illustration, the control named "Menu" and the control named "Submenu" are both pop-
up controls that display a menu and a submenu, respectively. Both the menu and the submenu are
unique CommandBar objects with their own set of controls.

In Microsoft Office 97, you can also add text boxes, drop-down list boxes, and combo boxes to any
command bar. These three types of controls are all represented in Visual Basic by

CommandBarComboBox objects.

Note      Although they share similar appearances and behaviors, command bar controls and ActiveX
controls aren't the same. You cannot add ActiveX controls to command bars, and you cannot add
command bar controls to documents or forms.

The built-in command bar controls in container applications are also represented in Visual Basic by
CommandBarButton, CommandBarPopup, and CommandBarComboBox objects, even though
their appearances and behaviors may be more complex than the controls you can add yourself.
Although you can modify the location and appearance of built-in controls, you cannot modify their
built-in behavior. You can, however, assign a custom macro to any built-in control to completely
replace it's built-in behavior.

Using command bars
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofhowUsingCommandBarsC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Specifics":"ofhowUsingCommandBarsS"}

In general, to create or modify toolbars, menu bars, and shortcut menus that you want to deliver with
your Visual Basic application, you should use the customization features of the container application.
Changes made to toolbars, menu bars, and shortcut menus using the features of the container
application are known as "design-time" changes. For information about using the container
application to make design-time changes, see the the online Help for that application.

You can add and modify toolbars, menu bars, and shortcut menus (and their component parts) by
using the CommandBars portion of the Microsoft Office object model in Visual Basic code. You can
write code that runs once to create toolbars and menu bars; in effect, the code simulates making
design-time changes. In some container applications, however, you may be required to use a
combination of this kind of Visual Basic code and the customization interface to design your Visual
Basic application. The following are some common areas where you must use a combination of code
and the container application's interface:

· If your container application doesn't provide an interface for adding or modifying edit boxes, drop-
down list boxes, or combo boxes on toolbars, you must use Visual Basic code to add and design
one of these controls.

· If your container application provides an interface for creating toolbars but doesn't provide one for
creating a new menu bar, you'll need to create a menu bar by using Visual Basic. After you've
created the menu bar in Visual Basic, you can design menus on that menu bar by using the
container application's interface.

· If your container application doesn't provide a way to display custom shortcut menus while the
customization interface is displayed, you must use Visual Basic code to modify those shortcut
menus.

You can also write code that exists in your Visual Basic application to make changes to toolbars and
menu bars while your application is running (for example, you can write code to disable a command
on a menu bar under certain conditions, or to add buttons to a toolbar in response to a user's actions).
Changes brought about by your code while your Visual Basic application is running are known as
"run-time" changes.

The following topics provide information about how you can make design-time and run-time changes
to toolbars and menu bars from your Visual Basic code.

Adding and modifying toolbars

Adding and managing menu bars and menu items

Adding and displaying shortcut menus

Adding and modifying toolbars
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofhowToolbarsC"}                  {ewc HLP95EN.DLL, DYNALINK,
"Specifics":"ofhowToolabarsS"}

All host applications have an extensive interface for adding and designing custom toolbars (adding
built-in buttons, adding macros as buttons, even adding pop-up controls to toolbars). The design-time
changes you'll usually make from Visual Basic code are ones that add or modify combo box controls.
Otherwise, working with toolbars in code is almost completely limited to making run-time changes
(changing the button state, changing the button appearance, changing the button action, and so on).

Making run-time modifications to toolbars
There are several modifications you can make to a toolbar at run time. One of these modifications is
to change the state of a command bar button on the toolbar. Each button control has two active
states: pushed (True) and not pushed (False). To change the state of a button control, use the
appropriate constant for the State property, as explained in the table later in this topic.

Another modification you can make at run time is to change the appearance or action of a button. To
change the appearance of a button but not its action, use the CopyFace and PasteFace properties.
These properties are useful if you want to copy the face of a particular button onto the Clipboard or
import it into another application to change some of its features. Use the PasteFace property to
transfer the button image from the Clipboard onto a specific button.

To change a button's action to a function you've developed, assign the custom procedure name to the
button's OnAction property.

The following table lists the most common properties and methods for changing the state,
appearance, or action of a button.

Property or method Description
CopyFace, PasteFace Copies or pastes the image on the face of a button.

Use the CopyFace method to copy the face of the
specified button to the Clipboard. Use the
PasteFace method to paste the contents of the
Clipboard onto the face of the specified button. The
PasteFace method will fail if the Clipboard is empty.
If the image on the Clipboard is too large for the
button face, the image won't be scaled down.
Generally, it's more convenient to copy and paste a
button face at design time, but you can also make
changes to a button face at run time. You can also
use the FaceId property to assign a different built-in
button face to a button.

Id Specifies the value that represents the button's built-
in functionality. For example, a button that copies
highlighted text to the Clipboard has an Id value of
19.

State Specifies the appearance, or state, of the button.
Can be one of the following constants:
msoButtonDown, msoButtonMixed, or
msoButtonUp.

Style Specifies whether the button face displays its icon or
its caption. Can be one of the following constants:
msoButtonAutomatic, msoButtonIcon,
msoButtonCaption, or
msoButtonIconandCaption.

OnAction Specifies the procedure to be run when the user
clicks a button, displays a menu, or changes the
contents of a combo box controls.

Visible Specifies whether the control is to be displayed or
hidden from the user.

Enabled Enables or disables a command bar; the name of a
disabled command bar won't appear in the list of
available command bars.

The following example assumes that the first two controls on the CustomButtons command bar are
buttons. The HideThem procedure hides the first button and assigns a procedure to the OnAction
property of the second button. When the OnAction procedure is run, the first control will be made
visible and the second control will be hidden. If the second button is pressed while the procedure is
running, the procedure will be halted. Note that you must declare both startBtn and stopBtn as
global variables.
Sub HideThem()
Set v = CommandBars("CustomButtons")
Set startBtn = v.Controls(1)
With startBtn
 .Visible = False
 .Caption = "Stop Processing"
End With
Set stopBtn = v.Controls(2)
stopBtn.OnAction = "onActionButtons"
End Sub

Sub onActionButtons()
stopBtn.Visible = False
With startBtn
 .Visible = True
 .Style = msoButtonCaption
End With
Do While startBtn.State <> True
'Continue processing sub
Loop
End Sub
Adding and modifying combo box controls
Edit boxes, drop-down list boxes, and combo boxes are powerful new controls you can add to
toolbars in your Visual Basic application. However, most container applications require that you use
Visual Basic code to design these controls. To design a combo box control, you use the properties
and methods described in the following table.

Property or method Description
Add Adds a combo box control to a command bar by

specifying one of the following MsoControlType
constants for the Type argument: msoControlEdit,
msoControlDropdown, or
msoControlComboBox.

AddItem Adds an item to the drop-down list portion of a drop-
down list box or combo box. You can specify the
index number of the new item in the existing list, but
if this number is larger than the number of items in
the list, AddItem fails.

Caption Specifies the label for the combo box control. This is

the label that's displayed next to the control if you
set the Style property to msoComboLabel.

Style Specifies whether the caption for the specified
control will be displayed next to the control. Can be
either of the following constants: msoComboLabel
(the label is displayed) or msoComboNormal (the
label isn't displayed).

OnAction Specifies the procedure to be run when the user
changes the contents of the combo box control.

The following example adds a combo box with the label "Quarter" to a custom toolbar and assigns the
macro named "ScrollToQuarter" to the control.
Set newCombo = CommandBars("Custom1").Controls _
 .Add(Type:=msoControlComboBox)
With newCombo
 .AddItem "Q1"
 .AddItem "Q2"
 .AddItem "Q3"
 .AddItem "Q4"
 .Style = msoComboNormal
 .OnAction = "ScrollToQuarter"
End With
While your application is running, the procedure assigned to the OnAction property of the combo box
control is called each time the user changes the control. In the procedure, you can use the
ActionControl property of the CommandBars object to find out which control was changed and to
return the changed value. The ListIndex property will return the item typed or selected in the combo
box.

Adding and managing menu bars and menu items
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofhowMenuBarsC"}                    {ewc HLP95EN.DLL, DYNALINK,
"Specifics":"ofhowMenuBarsS"}

Some container applications don't provide an way for you to create new menu bars, so you'll need to
create menu bars by using Visual Basic. After you've created a menu bar in Visual Basic, you can
customize it either by using the container application's interface or by continuing to use Visual Basic.

Adding menu bars at run time
When you add a menu bar to an application at run time, you use the Add method for the
CommandBars collection and specify True for the MenuBar argument. The following example adds
a menu bar that cannot be moved. The example also docks this menu bar along the right side of the
application window. The new menu bar becomes active whenever the user presses the ALT key.
Set menubar = CommandBars.Add _
 (Name:="mBar", Position:=msoBarRight, MenuBar:=True)
With menubar
 .Protection = msoBarNoMove
 .Visible = True
End With

Making run-time modifications to menu bars
You can make modifications to the both the menu bar and the controls on that menu bar at run time.
The changes you make to the menu bar may affect its appearance or its position; changes you make
to the controls depend on the control type. The properties and methods listed in the following table
are the most common ones used to modify menu bars at run time.

Property or method Description
Add Adds a menu bar by using the Add method of the

CommandBars collection and specifying True for
the MenuBar argument.

Enabled If this property is set to True, the user can make the
specified menu bar visible, using Visual Basic code.
If this property is set to False, the user cannot make
the menu bar visible, but it will appear in the list of
available command bars.

Protection Make it possible for you to protect the menu bar
from specific user actions. Can be one of or a sum
of the following constants: msoBarNoChangeDock,
msoBarNoChangeVisible, msoBarNoCustomize,
msoBarNoCustomize,
msoBarNoHorizontalDock, msoBarNoMove,
msoBarNoProtection, msoBarNoResize, and
msoBarNoVerticalDock.

Position Specifies the position of the new menu bar, relative
to the application window. Can be one of the
following constants: msoBarLeft, msoBarTop,
msoBarRight, msoBarBottom, msoBarFloating,
msoBarPopup (used to create shortcut menus), or
msoBarMenuBar (specifies a menu bar for the
Macintosh).

Visible Specifies whether the control will be displayed or
hidden from the user. If the control is hidden from
the user, the menu bar name will still appear in the

list of available command bars.

The following example hides the active menu bar and replaces it with a temporary menu bar that's
docked along the right side of the application window and is protected from the user.
Set oldMbar = CommandBars.ActiveMenuBar
Set newMbar = CommandBars.Add _
(Name:="newMenubar", Position:=msoBarRight, _
MenuBar:=True, temporary:=True)
With newMbar
 .Visible = True
 .Protection = msoBarNoMove
End With

Merging menu bars at run time
If you have custom menu bars in an application that's intended to be an add-in, you may want to
specify how the controls will be represented in the container application. You can use the
OLEMenuGroup property of the CommandBarPopup control to specify how the menu bar merging
will occur.

If either the container application or the server doesn't implement command bars, "non-Office"
merging will occur: the menu bar will be merged, along with all the toolbars from the server, and none
of the toolbars from the container application will be merged. You can also use the OLEUsage
property to specify how menu bar merging will occur.

If both the container application and the server implement command bars, "Office-in-Office" merging
will occur: the command bar controls are embedded in the Office application, control by control. Both
of these properties (OLEMenuGroup and OLEUsage) are relevant only for pop-up controls on menu
bars, because menus are considered on the basis of their menu group category.

Making run-time modifications to menu items
The range of modifications you can make to a menu item depends on the control type. Generally,
buttons are enabled, or hidden. Edit boxes, drop-down list boxes, and combo boxes are more
versatile in that you can add or delete items from the list, and you can determine the action performed
by looking at the value selected. You can change the action of any control to either a built-in or
custom function.

The following table lists the most common properties and methods for changing the state, action, or
contents of a control.

Property or method Purpose
Add Adds a menu item to a command bar. Can be one of

the following MsoControlType constants for the
Type argument for a built-in control:
msoControlButton, msoControlEdit,
msoControlDropdown, or
msoControlComboBox.

AddItem Adds an item to the drop-down list portion of a drop-
down list box or combo box. You can specify the
index number of the new item in the existing list, but
if this number is larger than the number of items in
the list, AddItem fails.

Style Specifies whether the button face displays its icon or
its caption. Can be one of the following constants:
msoButtonAutomatic, msoButtonIcon,
msoButtonCaption, or
msoButtonIconandCaption.

OnAction Specifies the procedure to be run whenever the user
changes the value of the specified control.

Visible Specifies whether the control will be displayed or
hidden from the user.

This following example adds a temporary pop-up control named "Custom" at the end of the active
menu bar, and then it adds a button control named "Import" to the Custom pop-up command bar.
Set myMenuBar = CommandBars.ActiveMenuBar
Set newMenu = myMenuBar.Controls.Add(Type:=msoControlPopup,
Temporary:=True)
newMenu.Caption = "Custom"
Set ctrl1 = newMenu.Controls
 .Add(Type:=msoControlButton, Id:=1)
ctrl1.Caption = "Import"
ctrl1.TooltipText = "Import"
ctrl1.Style = msoButtonCaption

Adding and displaying shortcut menus
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofhowShortcutMenusC"}                    {ewc HLP95EN.DLL, DYNALINK,
"Specifics":"ofhowShortcutMenusS"}

A shortcut menu is a floating command bar that the user displays by right-clicking. It can contain the
same control types as a command bar, and the controls behave in the same way as on a command
bar. In most applications, however, you cannot create or modify shortcut menus from the application's
interface. Therefore, you need to create and modify your shortcut menus at run time.

Adding shortcut menus at run time
The only difference between shortcut menus and other toolbars is that when you create the shortcut
menu with the Add method, you must specify msoBarPopUp as the Position argument. The
following example creates a new shortcut menu, adds two controls (with captions) to it, and then uses
the ShowPopup method to display the new menu.
Set x = CommandBars.Add("Custom", msoBarPopup)
Set y = x.Controls.Add
With y
 .FaceId = 26
 .Caption = "Analyze the data"
End With
Set z = x.Controls.Add
With z
 .FaceId = 17
 .Caption = "Graph the data"
End With
x.ShowPopup 200, 200

Displaying shortcut menus
Use the ShowPopup method to display shortcut menus, as demonstrated in the preceding example.

If the container application supports assigning event procedures to user actions, you can display a
shortcut menu in response to a right-click event. However, not all applications support event
procedures. Check the documentation for your container application to see whether the application
supports event procedures.

Making run-time modifications to shortcut menus
Any changes you make to a shortcut menu must be made at run time, and the changes you make will
generally be limited to changing the appearance or action of the controls on the menu. For more
information about adding and managing menu items, see Adding and managing menu bars and menu
items.

Microsoft Office Objects
{ewc HLP95EN.DLL, DYNALINK, "See Also":"oftocObjectModelApplicationC"}

Returning an Object from a Collection
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofhowReturningAnObjectC "}

The Item property returns a single object from a collection. The following example sets the cmdbar
variable to a CommandBar object that represents the first command bar in the collection.
Set cmdbar = CommandBars.Item(1)
The Item property is the default property for most collections, so you can write the same statement
more concisly by omitting the Item keyword.
Set cmdbar = CommandBars(1)
For more information about a specific collection, see the Help topic for the collection or the Item
property for the collection.

Help Topic Not Available

The Help topic cannot be displayed because Visual Basic for Applications Help cannot be found or
was not installed.

To install Visual Basic for Applications Help
1. Run Microsoft Office 97 Setup, and click Add/Remove.
1. Click Microsoft Access, Microsoft Excel, Microsoft PowerPoint, or Microsoft Word, and then

click Change Option.
1. Click Help, and then click Change Option.
1. Make sure that the Help for Visual Basic or Language Reference (Microsoft Access) check box

is selected.
1. Continue with Setup.

OLE Programmatic Identifiers (ActiveX Controls)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ofmscProgrammaticIdentifiersC;vafctCreateObject;vafctGetObject;OLE
Programmatic Identifiers"}

You use an OLE programmatic identifier (sometimes called a ProgID) to create an Automation object.
Use one of the following OLE programmatic identifiers to create an ActiveX control.

Use this identifier To create this object
Forms.CheckBox.1 CheckBox
Forms.ComboBox.1 ComboBox
Forms.CommandButton.1 CommandButton
Forms.Frame.1 Frame
Forms.Image.1 Image
Forms.Label.1 Label
Forms.ListBox.1 ListBox
Forms.MultiPage.1 MultiPage
Forms.OptionButton.1 OptionButton
Forms.ScrollBar.1 ScrollBar
Forms.SpinButton.1 SpinButton
Forms.TabStrip.1 TabStrip
Forms.TextBox.1 TextBox
Forms.ToggleButton.1 ToggleButton

