
NMUDP unit

The NMUDP unit contains TNMUDP and it's related types and constants.

Components
TNMUDP

Types
TBuffInvalid
THandlerEvent
TOnErrorEvent
TOnReceive
TOnStatus
TStreamInvalid

TNMUDP component
Heirarchy Properties Methods Events Tasks
Unit
NMUDP

Description
The TNMUDP component is used for implementing the User Datagram Protocol (UDP) for sending
datagram packets across the internet or an intranet.

TNMUDP Properties
TNMUDP
Legend

In TNMUDP
LocalPort
RemoteHost
RemotePort

ReportLevel

Derived from TComponent
 ComObject
 ComponentCount

ComponentIndex
 Components
 ComponentState

 ComponentStyle
DesignInfo

 Owner
 Tag

VCLComObject

TNMUDP Methods
TNMUDP
Legend

In TNMUDP
Create
Destroy
ReadBuffer
ReadStream
SendBuffer
SendStream

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
FreeOnRelease

GetParentComponent
HasParent
InsertComponent
RemoveComponent
SafeCallException

Derived from TPersistent
Assign
GetNamePath

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TNMUDP Events
TNMUDP
Legend

In TNMUDP
OnBufferInvalid
OnDataReceived

OnDataSend
OnInvalidHost
OnStatus
OnStreamInvalid

About the TNMUDP component
TNMUDP reference
Purpose
The purpose of the TNMUDP component is for sending datagram packets across the internet or an
intranet using the User Datagram Protocol (UDP).

RFC: RFC 768

Tasks

Sending UDP Data
Before you can send datagram packets using UDP, you need to know the remote host and remote port
you will be sending data to. Assign the remote host to the RemoteHost property, and the remote port to
the RemotePort property.

To actually send the data, you can use either the SendBuffer method, for sending buffers (arrays of
characters) to the remote host, or the SendStream method, for sending streams of data.

Receiving UDP Data
Before you can receive UDP data, you must set the LocalPort property. This property must be set at
design-time, and cannot be changed during runtime once set.

When there is UDP data available to be read, the OnDataAvailable event is called. Within this event, use
the ReadBuffer method to read the data into a buffer, or the ReadStream method to read the data into a
stream.

LocalPort property
See also Example
Applies to
TNMUDP component

Declaration
property LocalPort: integer;

Description
The LocalPort property specifies a port number to listen for datagram packets sent to it on.

Note:
This property should not be set to 0 (zero) if you wish to receive UDP data.
**Also note, this property can only be set during design-time, unless the component is created
dynamically in your source code (using the Create method), in which case the LocalPort property can be
set once.

Scope: Published
Accessability: Runtime**, design-time

See also

RemotePort property

Example

To recreate this example, you will need to create a new blank Delphi application.

Place 2 TMemos, a TButton, and a TNMUDP on the form.

Memo1: Window for receiving data
Memo2: Status window
Button1: Sends UDP Data
NMUDP1: client and server for sending and receiving data

Insert the following code into Button1's OnClick event:

procedure TForm1.Button1Click(Sender: TObject);
var
 C: Array [1..3] of Char;
begin
 C := 'cat';
 NMUDP1.RemoteHost := '127.0.0.1';
 NMUDP1.ReportLevel := Status_Basic;
 NMUDP1.LocalPort := 6668;
 NMUDP1.RemotePort := 6668;
 NMUDP1.SendBuffer(C, 3);
end;

When Button1 is clicked, C (a variable of an array of characters, 3 to be exact) is filled with the value cat.
The RemoteHost property is set to 127.0.0.1, which is the IP address for local host. This could just as
easily be the host name or IP address of a remote computer as well. The ReportLevel property is set to
Status_Basic, to provide only basic status messages in the OnStatus event. The LocalPort property is
set to 6668, so that any data sent to the computer running this application on port 6668 will be received
by this component. The remote port property is also set to 6668, for sending data to port 6668 of
127.0.0.1 (basically, sending data to itself). The buffer C is now sent using the SendBuffer method.

Insert the followint code into NMUDP1's OnBufferInvalid event:

procedure TForm1.NMUDP1BufferInvalid(var handled: Boolean; var Buff: array of Char; var length:
Integer);
begin
 ShowMessage('Buffer Invalid: Buffer contains no data');
end;

When the OnInvalidBuffer event is called, a message is displayed to the user informing them that the
buffer being sent is invalid because it contains no data. This error could be corrected by modifying the
Buff parameter so it contains the data to be sent, and the length parameter to contain the length of the
Buffer. The handled property would then have to be set to TRUE to allow the component to send the data
again.

Insert the following code into NMUDP1's OnDataReceived event:

procedure TForm1.NMUDP1DataReceived(Sender: TComponent; NumberBytes: Integer; FromIP:
String; Port: Integer);
var
 C: array [1..3] of Char;
 I: Integer;

begin
 if NumberBytes <= 3 then
 begin
 NMUDP1.ReadBuffer(C, I);
 Memo1.Lines.Add(C+': received '+IntToStr(I)+' bytes from '+FromIP+' on port '+IntToStr(Port));
 end
 else
 Memo1.Lines.Add(IntToStr(I)+' bytes incoming, buffer too small');
end;

When data is received by NMUDP1, if the NumberBytes parameter is 3 or less (3 or les bytes), the data
is read into an array of characters (C) by the ReadBuffer method and displayed in Memo1, along with
how many bytes were actually read, the IP address of the computer sending the data (FromIP), and the
port the data was sent from (Port parameter). If there are more than 3 bytes, Memo1 is updated to inform
the user that the incoming data was too large for the supplied buffer.

Insert the following code into NMUDP1's OnDataSend event:

procedure TForm1.NMUDP1DataSend(Sender: TObject);
begin
 Memo2.Lines.Add('Data sent');
end;

When data has been successfully sent by pressing Button1, the OnDataSend event is called, and adds a
status line stating the data was sent to Memo2.

Insert the following code into NMUDP1's OnStatus event:

procedure TForm1.NMUDP1Status(Sender: TComponent; status: String);
begin
 Memo2.Lines.Add(status);
end;

When a status message is received, the OnStatus event adds the current status string to Memo2.

Insert the following code into NMUDP1's OnInvalidHost event:

procedure TForm1.NMUDP1InvalidHost(var handled: Boolean);
var
 S: String;
begin
 S := NMUDP1.RemoteHost;
 if InputQuery('Invalid host', 'Specify valid hostname: ', S) then
 begin
 NMUDP1.RemoteHost := S;
 handled := TRUE;
 end;
end;

When the host name specified to send data to is an invalid host name or IP address, the OnInvalidHost
event is called. In this instance, the InputQuery function gives the user the opportunity to correct the
invalid name. If the user clicks the Ok button, the host name entered is set as the host to send data to,
and the handled parameter is set to true, which allows the component to attempt the action again. If the

user clicks the Cancel button, the host is not changed, and handled remains false, raising an exception.

Example Description:
This simple example sends data to itself using a single TNMUDP component that acts as both a client
and a server. When Button1 gets clicked, the data is sent to the local machine. The data is then received
by the same component, and manipulated accordingly.

OnBufferInvalid event
See also Example
Applies to
TNMUDP component

Declaration
property OnBufferInvalid: TBuffInvalid;

Description
The OnBufferInvalid event is called if a buffer sent to the SendBuffer method contains no data.

Event Parameters:
The Buff parameter is the buffer to be sent, and the length parameter is the size of the buffer. These
parameter may be modified to reflect a valid buffer. If the buffer is modified to be valid, the handled
parameter can be set to TRUE, and the buffer will resend. If the handled parameter is FALSE (default),
and exception is raised.

See also

OnStreamInvalid event
SendBuffer method

OnDataReceived event
See also Example
Applies to
TNMUDP component

Declaration
property OnDataReceived: TOnReceive;

Description
The OnDataReceived event is called when data is received from the remote host

Event Parameters:
The NumberBytes parameter specifies the number of incoming bytes.
The FromIP parameter specifies the IP address of the computer that sent the data.
The Port property specifies which port the data was sent from.

See also

ReadBuffer method
ReadStream method

OnStatus event
See also Example
Applies to
TNMUDP component

Declaration
property OnStatus: TOnStatus;

Description
The OnStatus event is called when there is a status change in the component.

Event Parameters:
The status parameter is the current status of the component.

See Also

ReportLevel property

OnStreamInvalid event
See also Example
Applies to
TNMUDP component

Declaration
property OnStreamInvalid: TStreamInvalid;

Description
The OnStreamInvalid event is called when a steam passed to the SendStream method contains no data.

Event Parameters:
The Stream parameter is the stream that contains no data. It should be populated with data, and the
handled parameter should be set to TRUE. If the handled parameter is TRUE, the stream is resent. If
handled is FALSE, an exception is raised.

See also

OnBufferInvalid event
SendStream method

Example

To recreate this example, you will need to create a new blank Delphi application.

Place a TButton, 2 TMemos, a TEdit, and a TNMUDP on the form.

Insert the following code into Button1's OnClick event:

procedure TForm1.Button1Click(Sender: TObject);
var
 MyStream: TMemoryStream;
 C: String;
begin
 C := Edit1.Text;
 NMUDP1.RemoteHost := '127.0.0.1';
 NMUDP1.ReportLevel := Status_Basic;
 NMUDP1.RemotePort := 6668;
 MyStream := TMemoryStream.Create;
 try
 MyStream.Write(C[1], Length(C));
 NMUDP1.SendStream(MyStream);
 finally
 MyStream.Free;
 end;
end;

When Button1 is clicked, the text in Edit1 is written into the stream MyStream. The SendStream method
is used to send the stream to the remote host, which is 127.0.0.1 (local host) in this instance. Note that
MyStream is utilized within a try...finally loop to prevent a memory leak.

Insert the following code into NMUDP1's OnDataReceived event:

procedure TForm1.NMUDP1DataReceived(Sender: TComponent; NumberBytes: Integer; FromIP:
String; Port: Integer);
var
 C: String;
 MyStream: TMemoryStream;
begin
 MyStream := TMemoryStream.Create;
 try
 NMUDP1.ReadStream(MyStream);
 SetLength(C, NumberBytes);
 MyStream.Read(C[1], NumberBytes);
 Memo1.Lines.Add(C+': received '+IntToStr(NumberBytes)+' bytes from '+FromIP+' on port
'+IntToStr(Port));
 finally
 MyStream.Free;
 end;
end;

When data is received on the LocalPort, the OnDataReceived event is called. In this instance, a
MemoryStream is created, and the ReadStream method is used to fill it with the incoming data. The
incoming data is then read out of the stream into a string, and added to Memo1 along with the
NumberBytes parameter, specifying the amount of incoming data, the FromIP parameter, specifying the
computer that sent the data, and the Port property which specifies the port the data was sent from.

Note that MyStream is enclosed in a try...finally loop so it will be freed properly

Insert the following code into NMUDP1's OnDataSend event:

procedure TForm1.NMUDP1DataSend(Sender: TObject);
begin
 Memo2.Lines.Add('Data sent');
end;

When Button1 has been pressed and the data is sent successfully, the OnDataSend event is called,
adding a message to Memo2 stating that the data has been sent.

Insert the following code into NMUDP1's OnStatus event:

procedure TForm1.NMUDP1Status(Sender: TComponent; status: String);
begin
 Memo2.Lines.Add(status);
end;

When a status message is generated, it is displayed in Memo2 when the OnStatus event is called by
adding the status parameter.

Insert the following code into NMUDP1's OnInvalidHost event:

procedure TForm1.NMUDP1InvalidHost(var handled: Boolean);
var
 S: String;
begin
 S := NMUDP1.RemoteHost;
 if InputQuery('Invalid host', 'Specify valid hostname: ', S) then
 begin
 NMUDP1.RemoteHost := S;
 handled := TRUE;
 end;
end;

When the OnInvalidHost event is called, the InputQuery function is called, allowing the user to input a
new host name to replace the invalid one previously entered. If the user clicks the Ok Button, the handled
parameter is set to TRUE, and the component attempts it's action again with the new hostname. If the
hostname is still invalid, or the cancel button was clicked in the dialog, an exception is raised.

Insert the following code into NMUDP1's OnStreamInvalid event:

procedure TForm1.NMUDP1StreamInvalid(var handled: Boolean; Stream: TStream);
begin
 ShowMessage('Invalid Stream: Stream contains no data');
end;

When the OnStreamInvalid event is called due to a stream containing no data, a message is displayed
to the user stating that the stream is invalid because it contains no data. It would be possible to correct
this error by adding data to the Stream parameter and changing the handled parameter to TRUE.

RemoteHost property
See also Example
Applies to
TNMUDP component

Declaration
property RemoteHost: string;

Description
The RemoteHost property specifies the dotted IP address or host name of the remote computer that is the
target of the SendBuffer or SendStream methods.

Scope: Published
Accessability: Runtime, design-time

See also

RemotePort property

RemotePort property
See also Example
Applies to
TNMUDP component

Declaration
property RemotePort: integer;

Description
The RemotePort property specifies the port on the remote host to send data to using the SendStream
and SendBuffer methods.

Scope: Published
Accessability: Runtime, design-time

See also

RemoteHost property
LocalPort property

ReportLevel property
See also Example
Applies to
TNMUDP component

Declaration
property ReportLevel: integer;

Description
The ReportLevel property specifies the level of detail in the status reporting given by the OnStatus event.

Default: Status_Informational

Range: You can use any of the following predefined contants to set the ReportLevel property:

 Status_None
 Status_Informational
 Status_Basic
 Status_Routines
 Status_Debug
 Status_Trace

Scope: Published
Accessability: Runtime, design-time

See also

OnStatus event

Create method
See also
Applies to
TNMUDP component

Declaration
constructor Create(AOwner: TComponent); override;

Description
The create method allocates memory and constructs a safely initialized instance of a component.
See TComponent.Create for details on inherited actions. TNMUDP also initializes WinSock when it is
created.

See also

Destroy method

Destroy method
See also
Applies to
TNMUDP component

Declaration
destructor Destroy; override;

Description
You should not call the Destroy method in your application. Instead, call the Free method.
The Destroy method Disposes of the component and its owned components.See TComponent.Destroy
for details on inherited actions. TNMUDP also cleans up WinSock when it is destroyed.

See also

Create method

ReadBuffer method
See also Example
Applies to
TNMUDP component

Declaration
procedure ReadBuffer(var Buff: array of char; var length: integer);

Description
The ReadBuffer method reads incoming UDP data into a Buffer.

Parameters:
The Buff parameter specifies the buffer to read the data into.
The length parameter is the size of the data to be read.

Notes:
The Buff parameter must be large enough to hold the size of the incoming data. If the buffer is to small,
an access violation will occur.

See also

OnDataReceived event
ReadStream method

ReadStream method
See also Example
Applies to
TNMUDP component

Declaration
procedure ReadStream(DataStream: TStream);

Description
The ReadStream method is used to read UDP data being sent from a remote computer into a stream.

Parameters:
The DataStream parameter is any TStream or TStream descendent that has been initialized.

Notes:
If the stream passed as DataStream has not been initialized (it's Create method hasn't been called), an
access violation will occur.

See also

OnDataReceived event
ReadBuffer method

SendBuffer method
See also Example
Applies to
TNMUDP component

Declaration
procedure SendBuffer(Buff: array of char; length: integer);

Description
The SendBuffer method is used for sending a buffer of data stored in an array of char to the remote host.

Parameters:
The Buff parameter is the array of characters that are to be sent to the remote host.
The length parameter specifies the length of the data in the Buff parameter.

Notes:
If the buffer passed as the Buff parameter contains no data, the OnBufferInvalid event is called.

See also

OnBufferInvalid event
SendStream method

SendStream method
See also Example
Applies to
TNMUDP component

Declaration
procedure SendStream(DataStream: TStream);

Description
The SendStream method is used to send a stream of data to the remote host.

Parameters:
The DataStream parameter is any TStream of TStream descendant that is to be sent to the remote host.

Notes:
If DataStream contains no data, the OnStreamInvalid event is called.

See also

OnStreamInvalid event
SendBuffer method

OnDataSend event
See also Example
Applies to
TNMUDP component

Declaration
property OnDataSend: TNotifyEvent;

Description
The OnDataSend event is called when UDP data has been sent successfully by either the SendStream
or SendBuffer method.

Note:
The OnDataSend event does not guarantee that the data is received by the remote host. It only
guarantees that it was sent. The UDP protocol does not acknowledge when data is received.

See also

SendBuffer method
SendStream method

OnInvalidHost event
See also Example
Applies to
TNMUDP component

Declaration
property OnInvalidHost: THandlerEvent;

Description
The OnInvalidHost event is called when the host specified by the RemoteHost property is invalid.

Event Parameters:
If the handled parameter is set to TRUE, the data is sent again. If it fails a second time due to the host
being invalid, an exception is raised.
if the handled parameter is FALSE (the default), an exception is raised.

See also

RemoteHost property
SendBuffer method
SendStream method

TBuffInvalid type

Unit
NMUDP

Declaration
type
 TBuffInvalid = procedure(var handled: boolean; var Buff: array of char; var
length: integer) of object;

Description
The TBuffInvalid event type is used for the OnBufferInvalid event. TBuffInvalid is a modified THandler
event type. If the handled parameter is set to FALSE (generally the default), the default actions will be
taken by the component. If handled is set to TRUE, then the default component behavior is not taken.

THandlerEvent type

Unit
NMUDP

Declaration
type THandlerEvent = procedure(var handled: boolean) of object;

Description
The THandlerEvent event type is used for events that give the option of overriding the component's
default behavior. Typically, if the handled parameter is FALSE (which is normally the default, see
inidvidual event descriptions for details), teh component's default action is taken. If handled is TRUE, the
component's default action is overridden.

TOnErrorEvent type

Unit
NMUDP

Declaration
type TOnErrorEvent = procedure(Sender: TComponent; errno: word; Errmsg:
string) of object;

Description
<<< Description of TOnErrorEvent type >>>

TOnReceive type

Unit
NMUDP

Declaration
type
 TOnReceive = procedure(Sender: TComponent; NumberBytes: Integer; FromIP:
string; Port: integer) of object;

Description
The TOnReceive event type is used for the handling of incoming data in the TNMUDP Component.

TOnStatus type

Unit
NMUDP

Declaration
type TOnStatus = procedure(Sender: TComponent; status: string) of object;

Description
The TOnStatus event type is used for events that report a status message.

TStreamInvalid type

Unit
NMUDP

Declaration
type
 TStreamInvalid = procedure(var handled: boolean; Stream: TStream) of object;

Description
The TStreamInvalid event type is a modified THandler event type used for handling invalid streams. If the
handled parameter is FALSE (the default value), the component's default actions are executed. If the
handled parameter is TRUE, the default action taken by the component is ignored.

Heirarchy

TObject
 |
TPersistent
 |
TComponent

Legend
 Run-time only
 Read-Only
 Published
 Protected

 Key item

