
NMFtp unit

The TNMFTP unit contains the TNMFTP component, and it's supporting types and objects.

Components
TNMFTP

Objects
TFTPDirectoryList
TFTPUnixList
TFTPNETWAREList
TFTPDOSList
TFTPVMSList
TFTPMVSList
TFTPVMList
TFTPMACOSList
TFTPAS400List
TFTPOTHERList

Types
TCmdType
TFailureEvent
TNMListItem
TSuccessEvent
TUnsupportedEvent

TFTPDirectoryList object
Properties Methods
Unit
NMFtp

Description
The TFTPDirectoryList object is the base class for all of the other FTP Directory List parsing objects. If
you encounter an FTP host that does not comply with any of the predefined list objects currently
available, you can use this class to derive your own list parser.

Each property of this object is a TStringList. The indexes of each property correspond with the same
index in each of the other properties. So name[1] and Attribute[1] contain the name and attributes for the
second (TStringLists are 0-based) item in the listing.

TFTPDirectoryList Properties
TFTPDirectoryList
Legend

Attribute
ModifDate
name
Size

TFTPDirectoryList Methods
TFTPDirectoryList
Legend

Clear
ParseLine

Attribute property

Applies to
TFTPDirectoryList object

Declaration
property Attribute: TStringlist;

Description
The Attribute property specifies the attributes of the list items.

ModifDate property

Applies to
TFTPDirectoryList object

Declaration
property ModifDate: TStringlist;

Description
The ModifDate property specifies the dates of the last time the files were modified.

name property

Applies to
TFTPDirectoryList object

Declaration
property name: TStringlist;

Description
The name property specifies the names of the files listed.

Size property

Applies to
TFTPDirectoryList object

Declaration
property Size: TStringlist;

Description
The Size property specifies the sizes, in bytes, of the files in the listing.

Clear method

Applies to
TFTPDirectoryList object

Declaration
procedure Clear;

Description
The Clear method clears the properties of the directory listing object.

Notes:
After a call to the clear method, each of the TStringLists contain no data.

ParseLine method

Applies to
TFTPDirectoryList object

Declaration
procedure ParseLine(Line: string); virtual;

Description
The ParseLine method parses a line from a directory listing, and separates the file name, size, modified
date, and attributes into their respective properties in the object.

TFTPUnixList component

Unit
NMFtp

Description
The TFTPUnixList component provides directory list parsing for FTP hosts that are being run from a Unix
platform.

TFTPNETWAREList component

Unit
NMFtp

Description
The TFTPNETWAREList component provides directory list parsing for FTP hosts that are being run from
a Novell Netware platform.

TFTPDOSList component

Unit
NMFtp

Description
The TFTPDOSList component provides directory list parsing for FTP hosts that are being run from a
DOS or Windows platform.

TFTPVMSList component

Unit
NMFtp

Description
The TFTPVMSList component provides directory list parsing for FTP hosts that are being run from a
VMS platform.

TFTPMVSList component

Unit
NMFtp

Description
The TFTPMVSList component provides directory list parsing for FTP hosts that are being run from an
MVS platform.

TFTPVMList component

Unit
NMFtp

Description
The TFTPVMList component provides directory list parsing for FTP hosts that are being run from a VM
platform.

TFTPMACOSList component

Unit
NMFtp

Description
The TFTPMACOSList component provides directory list parsing for FTP hosts that are being run from a
Macintosh platform.

TFTPAS400List component

Unit
NMFtp

Description
The TFTPAS400List component provides directory list parsing for FTP hosts that are being run from an
AS/400 platform.

TFTPOTHERList component

Unit
NMFtp

Description
The TFTPOTHERList component provides directory list parsing for FTP hosts that are being run on an
unknown FTP host. This provides default directory list parsing that may or may not perform properly.

TNMFTP component
Heirarchy Properties Methods Events Tasks
Unit
NMFtp

Description
The purpose of the TNMFTP component is to transfer files to and from an internet/intranet FTP server via
the FTP protocol. The use of this component requires a 32-bit TCP/IP stack, WSOCK32.DLL, which can
be obtained from various vendors, including Microsoft, and is included with Windows 95, 98, and
Windows NT.

TNMFTP Properties
TNMFTP
Legend

In TNMFTP
CurrentDir
FTPDirectoryList
OnListItem
ParseList

Password
UserID

Vendor

Derived from TPowersock
 About

 BeenCanceled

BeenTimedOut

BytesRecvd

BytesSent

BytesTotal

 Connected

Handle

Host
 LastErrorNo

LocalIP

Port
 Proxy
 ProxyPort

RemoteIP

ReplyNumber
 ReportLevel

 Status

 TimeOut

TransactionReply

WSAInfo

Derived from TComponent
 ComObject

 ComponentCount
ComponentIndex

 Components
 ComponentState
 ComponentStyle

DesignInfo
 Owner

 Tag
VCLComObject

TNMFTP Methods
TNMFTP
Legend

In TNMFTP
Allocate
ChangeDir
Delete
DoCommand
Download
DownloadRestore
List
MakeDirectory
Mode
Nlist
Reinitialize
RemoveDir
Rename
Upload
UploadAppend
UploadRestore
UploadUnique

Derived from TPowersock
Abort
Accept

Cancel
CaptureFile
CaptureStream
CaptureString

CertifyConnect
Connect

Create
Destroy

Disconnect
FilterHeader
GetLocalAddress
GetPortstring

Listen
read
ReadLn

RequestCloseSocket
SendBuffer

SendFile
SendStream
Transaction
write
writeln

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification

FreeOnRelease
GetParentComponent

HasParent
InsertComponent
RemoveComponent
SafeCallException

Derived from TPersistent
Assign
GetNamePath

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TNMFTP Events
TNMFTP
Legend

In TNMFTP
OnAuthenticationFailed
OnAuthenticationNeeded
OnFailure
OnSuccess
OnTransactionStart
OnTransactionStop
OnUnSupportedFunction

Derived from TPowersock
 OnAccept

OnConnect
OnConnectionFailed

 OnConnectionRequired
OnDisconnect

 OnError
OnHostResolved
OnInvalidHost
OnPacketRecvd
OnPacketSent
OnRead
OnStatus

About the TNMFTP component
TNMFTP reference
Purpose
The purpose of the TNMFTP component is to transfer files to and from an internet/intranet FTP server via
the FTP protocol.

RFC: RFC 959

Tasks
Before you can use the TNMFTP component for transferring files to and from a remote host, you must
connect. This is accomplished by setting the Host and Port properties to those of a valid FTP server.
Then, set the UserID and Password properties to a valid account on that server. Many servers will
accept Anonymous as a user ID and your E-Mail address as a password for FTPing. After these
properties are set, call the Connect method to connect to the server.

Getting a directory list on a remote host:
Once you are connected to the server, you can get a listing of the files and directories there by calling the
List method, and writing an event handler for the OnListItem event.

Changing directory on a remote host:
You can change the directory you are currently in (called the 'working' directory) by calling the ChangeDir
method, specifying a valid directory name to change to.

Uploading Files to a remote host:
To upload files to the directory you are currently in on the remote host, you call the Upload method. The
Upload method takes the name of a file on your local computer, and a filename to store it as on the
remote host as parameters. Please note, that you cannot upload to an FTP host unless you have
sufficient rights to do so. This is most common allowed in a directory called 'incoming'. Also, if a file
already exists on the server with the same name as the file name you specified in the Upload method,
that file will be overwritten. See the UploadUnique method for a solution.

Downloading files from a remote host:
To download files from the remote host, you should do a List first, so that you know the file you are
looking for will be available for download. Then, call the Download method, passing the name of the file
you wish to download, and the path and name to save it to on your local drive as parameters. Please
note, you will not be able to download files from everywhere on an FTP host. Most generally, you will be
allowed to download many files from a directory called 'pub' (for public). Also, if a file with the same name
exists on your local drive, it will be overwritten when you download the file from the remote host.

Create Directories on remote host:
To create a directory on the remote host, you must first have sufficient rights to do so. Most generally, you
would be allowed to create directories in an 'incoming' directory on an FTP host. To create the directory,
call the MakeDirectory method, and pass the name of the directory you wish to create as a parameter.

Remove directories on a remote host:
To remove a directory on the remote host, you must first have sufficient rights to do so. Once you do, you
call the RemoveDir method, passing the name of the directory you wish to remove as a parameter.

CurrentDir property
See also Example
Applies to
TNMFTP component

Declaration
property CurrentDir: string;

Description
The CurrentDir property contains the name of the currently occupied directory on the remote system.

Scope: Public
Accessibility: RunTime, ReadOnly

Notes:
This property will be different after a successful call to the ChangeDir method.

See also

ChangeDir method
OnFailure event
OnSuccess event

Example

To recreate this example, you will need to create a new blank Delphi application.

Place 3 TEdits, 10 TButtons, a TMemo, a TStringGrid, a TStatusBar, and a TNMFTP on the form.

Component Descriptions:

Edit1: FTP host
Edit2: FTP User ID
Edit3: FTP Password (set the PasswordChar property to *)
Button1: Connect/Disconnect
Button2: List
Button3: Change Directory
Button4: Make Directory
Button5: Remove Directory
Button6: Delete File
Button7: Rename File
Button8: Reinitialize
Button9: Authenticate
Button10: Get Current Directory
Memo1: Status Display
StringGrid1: Directory Listing Display
StatusBar1: Transfer progress *

* Set the SimplePanel property of StatusBar1 to TRUE in the Object Inspector
* Set the ParseList property of NMFTP1 to TRUE in the Object Inspector

Insert the following code into Button1's OnClick event:

procedure TForm1.Button1Click(Sender: TObject);
begin
 if NMFTP1.Connected then
 NMFTP1.Disconnect
 else
 begin
 NMFTP1.Vendor := NMOS_AUTO;
 NMFTP1.Host := Edit1.Text;
 NMFTP1.UserID := Edit2.Text;
 NMFTP1.Password := Edit3.Text;
 NMFTP1.Connect;
 end;
end;

When Button1 is clicked, if there is already a connection present, the Disconnect method is used to close
the connection. If there is no connection present, the Vendor property is set to NMOS_AUTO, which will
auto-detect the FTP host vendor, if possible. The Host property is set to the host name or IP address
entered in Edit1. The UserID property is set to the username that has been entered in Edit2. The
Password property is set to the value of Edit3, and a connection is established with the Connect method.

Insert the following code into Button2's OnClick event:

procedure TForm1.Button2Click(Sender: TObject);
begin
 NMFTP1.List;

end;

When Button2 is clicked, the List method is executed to get a listing of files and directories in the current
directory. Since the ParseList property was previously set to TRUE, the directory listing will be parsed
and it's fields placed in the FTPDirectoryList property.

Insert the following code into Button3's OnClick event:

procedure TForm1.Button3Click(Sender: TObject);
var
 TheDir: String;
begin
 if InputQuery('Change Directory', 'Which directory?', TheDir) then
 NMFTP1.ChangeDir(TheDir);
end;

When Button3 is clicked, the InputQuery function is used to obtain the name of a directory. If the Ok
button is clicked, the ChangeDir method attempts to change the current directory to the directory
specified.

Insert the following code into Button4's OnClick event:

procedure TForm1.Button4Click(Sender: TObject);
var
 TheDir: String;
begin
 if InputQuery('Create Directory', 'Directory name?', TheDir) then
 NMFTP1.MakeDirectory(TheDir);
end;

When Button4 is clicked, the InputQuery function is used to obtain the name of a directory. If the Ok
button is clicked, the MakeDirectory method attempts to create the directory specified.

Insert the following code into Button5's OnClick event:

procedure TForm1.Button5Click(Sender: TObject);
var
 TheDir: String;
begin
 if InputQuery('Remove Directory', 'Directory name?', TheDir) then
 NMFTP1.RemoveDir(TheDir);
end;

When Button5 is clicked, the InputQuery function is used to obtain the name of a directory. If the Ok
button is clicked, the RemoveDir method attempts to remove the specified directory from the remote
host.

Insert the following code into Button6's OnClick event:

procedure TForm1.Button6Click(Sender: TObject);
var
 TheFile: String;

begin
 if InputQuery('Delete File', 'File name?', TheFile) then
 NMFTP1.Delete(TheFile);
end;

When Button6 is clicked, the InputQuery function is used to obtain the name of a file. If the Ok button is
clicked, the Delete method attempts to delete the file specified.

Insert the following code into Button7's OnClick event:

procedure TForm1.Button7Click(Sender: TObject);
var
 OldFile,
 NewFile: String;
begin
 if InputQuery('Rename file', 'File to rename?', OldFile) then
 if InputQuery('Rename file', 'New file name?', NewFile) then
 NMFTP1.Rename(OldFile, NewFile);
end;

When Button7 is clicked, the InputQuery function is called twice. The first time, the user is prompted for
the file to rename. If the user enters a filename and clicks the Ok button, the second InputQuery asks for
the new name for the file. If the OK button is also clicked here, the Rename method attempts to rename
the file specified.

Insert the following code into Button8's OnClick event:

procedure TForm1.Button8Click(Sender: TObject);
begin
 ShowMessage('After reinitilizing, you must click the authenticate button');
 NMFTP1.Reinitialize;
end;

When Button8 is clicked, the ShowMessage procedure is used to display a warning that once the
Reinitialize method is called, authentication is required. When the Ok button is clicked on the message,
the Reinitialize method attempts to reinitialize the connection with the server back to the authentication
state.

Insert the following code into Button9's OnClick event:

procedure TForm1.Button9Click(Sender: TObject);
var
 AnID,
 APass: String;
begin
 if InputQuery('Authentication needed', 'Enter User ID', AnID) then
 if InputQuery('Authentication needed', 'Enter Password', APass) then
 begin
 NMFTP1.DoCommand('USER '+AnID);
 NMFTP1.DoCommand('PASS '+APass);
 end;
end;

When Button9 is clicked the InputQuery function is used to obtain the user's User ID. If the Ok button is
clicked, InputQuery is called again to obtain the user's password. If the Ok button is clicked a second
time, the DoCommand method is used to send the USER and PASS commands to the remote host,
effectively logging in to the FTP host.
***Please note that this is the only way to continue an FTP session once the Reinitialize method has
been called.

Insert the following code into Button10's OnClick event:

procedure TForm1.Button10Click(Sender: TObject);
begin
 ShowMessage(NMFTP1.CurrentDir);
end;

When Button10 is clicked, the ShowMessage procedure is used to display the value of the CurrentDir
property, which contains the current working directory on the remote host.

Insert the following code into NMFTP1's OnAuthenticationFailed event:

procedure TForm1.NMFTP1AuthenticationFailed(var Handled: Boolean);
var
 ThePass,
 TheID: String;
begin
 if MessageDlg('Authentication Failed. Retry?', mtConfirmation, [mbYes, mbNo], 0) = mrYes then
 begin
 ThePass := NMFTP1.Password;
 TheID := NMFTP1.UserID;
 InputQuery('Reauthenticate', 'Enter User ID', TheID);
 InputQuery('Reauthenticate', 'Enter Password', ThePass);
 NMFTP1.Password := ThePass;
 NMFTP1.UserID := TheID;
 Handled := TRUE;
 end;
end;

When authentication fails on the remote host (Password and UserID don't match, aren't correct), the
OnAuthenticationFailed event is called. In this instance, a dialog box is displayed using the
MessageDlg function. If the user clicks the Yes button to attempt authentication again, the InputQuery
function is used to obtain a new UserID and Password. The Password and UserID properties are set to
the new values accordingly, and the Handled parameter of the event is set to TRUE to allow the
component to reauthenticate.

Insert the following code into NMFTP1's OnAuthenticationNeeded event:

procedure TForm1.NMFTP1AuthenticationNeeded(var Handled: Boolean);
var
 APass,
 AnID: String;
begin
 if NMFTP1.Password = '' then
 begin
 if InputQuery('Password needed', 'Enter password: ', APass) then

 begin
 NMFTP1.Password := APass;
 Handled := TRUE;
 end
 else
 Handled := FALSE;
 end;
 if NMFTP1.UserID = '' then
 begin
 if InputQuery('User ID needed', 'Enter User ID: ', AnID) then
 begin
 NMFTP1.UserID := AnID;
 Handled := TRUE;
 end
 else
 Handled := FALSE;
 end;
end;

If either the UserID or Password property are blank, the OnAuthenticationNeeded event is called. In
this instance, if the Password property is blank, the InputQuery function is used to get a password. If the
Ok button is clicked, the Password property is set to the new password, and the Handled parameter is
set to FALSE. If the UserID property is blank, the InputQuery function is used to get a UserID. If the Ok
button is clicked, the UserID property is set to the new value, and the Handled parameter is set to TRUE.
If a password and/or user ID are not supplied, Handled is set to FALSE, which will cause an exception to
be raised, and the connection to be cancelled.

Insert the following code into NMFTP1's OnConnect event:

procedure TForm1.NMFTP1Connect(Sender: TObject);
begin
 Memo1.Lines.Add('Connected');
 Button1.Caption := 'Disconnect';
end;

The OnConnect event is called once a connection has been established with the remote FTP host. In this
case, Memo1 is updated to display the connection notice, and the caption of Button1 is set to Disconnect,
since Button1 is used for connecting and disconnecting.

Insert the following code into NMFTP1's OnDisconnect event:

procedure TForm1.NMFTP1Disconnect(Sender: TObject);
begin
 Memo1.Lines.Add('Disconnected');
 Button1.Caption := 'Connect';
end;

When the OnDisconnect event is called when the connection to the remote FTP host has been
terminated, the disconnection notice is added to Memo1 (status display memo), and Button1's caption is
set to Connect, since Button1 is used both for connecting and disconnecting.

Insert the following code into NMFTP1's OnFailure event:

procedure TForm1.NMFTP1Failure(var Handled: Boolean; Trans_Type: TCmdType);
begin
 case Trans_Type of
 cmdChangeDir: Memo1.Lines.Add('ChangeDir failed');
 cmdMakeDir: Memo1.Lines.Add('MakeDir failed');
 cmdDelete: Memo1.Lines.Add('Delete failed');
 cmdRemoveDir: Memo1.Lines.Add('RemoveDir failed');
 cmdList: Memo1.Lines.Add('List failed');
 cmdRename: Memo1.Lines.Add('Rename failed');
 cmdUpRestore: Memo1.Lines.Add('UploadRestore failed');
 cmdDownRestore: Memo1.Lines.Add('DownloadRestore failed');
 cmdDownload: Memo1.Lines.Add('Download failed');
 cmdUpload: Memo1.Lines.Add('Upload failed');
 cmdAppend: Memo1.Lines.Add('UploadAppend failed');
 cmdReInit: Memo1.Lines.Add('Reinitialize failed');
 cmdAllocate: Memo1.Lines.Add('Allocate failed');
 cmdNList: Memo1.Lines.Add('NList failed');
 cmdDoCommand: Memo1.Lines.Add('DoCommand failed');
 cmdCurrentDir: Memo1.Lines.Add('CurrentDir failed');
 end;
end;

The OnFailure event is called when a command has failed to execute properly. In this instance, the
Trans_Type parameter is checked, and Memo1 is updated to display which command failed to execute.
The Handled parameter is left to FALSE (the default), so an exception will be raised due to the failure.

Insert the following code into NMFTP1's OnPacketRecvd event:

procedure TForm1.NMFTP1PacketRecvd(Sender: TObject);
begin
 StatusBar1.SimpleText := 'Received '+IntToStr(NMFTP1.BytesRecvd)+' bytes of
'+IntToStr(NMFTP1.BytesTotal)+' total';
end;

When data is received during a file transfer, the OnPacketRecvd event is called. This example updates
the Statusbar StatusBar1 to display how many bytes of the total transfer have been received.

Insert the following code into NMFTP1's OnPacketSent event:

procedure TForm1.NMFTP1PacketSent(Sender: TObject);
begin
 StatusBar1.SimpleText := 'Sent '+IntToStr(NMFTP1.BytesSent)+' bytes of
'+IntToStr(NMFTP1.BytesTotal)+' total';
end;

When data is sent to the remote host during a file transfer, the OnPacketSent event is called. This
example updates the Statusbar StatusBar1 to display how many bytes of the total transfer have been
sent.

Insert the following code into NMFTP1's OnTransactionStart event:

procedure TForm1.NMFTP1TransactionStart(Sender: TObject);
begin

 Memo1.Lines.Add('Data transfer start');
end;

When a data transaction takes place in the TNMFTP component, the OnTransactionStart event is called
to signify the data transaction's beginning. This example updates Memo1 to display that the data transfer
has started.

Insert the following code into NMFTP1's OnTransactionStop event:

procedure TForm1.NMFTP1TransactionStop(Sender: TObject);
begin
 Memo1.Lines.Add('Data transfer end');
end;

When a data transaction completes in the TNMFTP component, the OnTransactionStop event is called
to signify the data transaction's end. This example updates Memo1 to display that the data transfer has
finished.

Insert the following code into NMFTP1's OnSuccess event:

procedure TForm1.NMFTP1Success(Trans_Type: TCmdType);
var
 I: Integer;
begin
 case Trans_Type of
 cmdList:
 begin
 for I := 0 to (StringGrid1.ColCount - 1) do
 StringGrid1.Cols[I].Clear;
 StringGrid1.RowCount := NMFTP1.FTPDirectoryList.name.Count;
 StringGrid1.ColCount := 4;
 StringGrid1.Cells[0, 0] := 'Filename';
 StringGrid1.Cells[1, 0] := 'File Size';
 StringGrid1.Cells[2, 0] := 'Modified Date';
 StringGrid1.Cells[3, 0] := 'Attributes';
 for I := 0 to (NMFTP1.FTPDirectoryList.name.Count - 1) do
 with NMFTP1.FTPDirectoryList do
 begin
 StringGrid1.Cells[0, I+1] := name[I];
 StringGrid1.Cells[1, I+1] := Size[I];
 StringGrid1.Cells[2, I+1] := ModifDate[I];
 StringGrid1.Cells[3, I+1] := Attribute[I];
 end;
 end;
 cmdChangeDir:
 begin
 Memo1.Lines.Add('ChangeDir successful');
 NMFTP1.List;
 end;
 cmdMakeDir: Memo1.Lines.Add('MakeDir successful');
 cmdRemoveDir: Memo1.Lines.Add('RemoveDir successful');
 cmdDelete: Memo1.Lines.Add('Delete successful');
 cmdRename: Memo1.Lines.Add('Rename successful');
 cmdReInit: Memo1.Lines.Add('Reinitialize successful');

 cmdCurrentDir: Memo1.Lines.Add('CurrentDir successful');
 end;
end;

When an FTP command has completed successfully, the OnSuccess event is called. In this case, the
Trans_Type parameter is tested, and Memo1 is updated to display the success of the command.
If the command was a call to the List method, StringGrid1 is used to display the resulting directory list
upon successful completion by using the FTPDirectoryList property to separate the different fields of the
directory listing. If the command was a call to the ChangeDir method, the new directory listing is
automatically initiated by the List method.

Insert the following code into NMFTP1's OnUnSupportedFunction event:

procedure TForm1.NMFTP1UnSupportedFunction(Trans_Type: TCmdType);
begin
 case Trans_Type of
 cmdChangeDir: Memo1.Lines.Add('ChangeDir not supported by this server');
 cmdMakeDir: Memo1.Lines.Add('MakeDir not supported by this server');
 cmdDelete: Memo1.Lines.Add('Delete not supported by this server');
 cmdRemoveDir: Memo1.Lines.Add('RemoveDir not supported by this server');
 cmdList: Memo1.Lines.Add('List not supported by this server');
 cmdRename: Memo1.Lines.Add('Rename not supported by this server');
 cmdUpRestore: Memo1.Lines.Add('UploadRestore not supported by this server');
 cmdDownRestore: Memo1.Lines.Add('DownloadRestore not supported by this server');
 cmdDownload: Memo1.Lines.Add('Download not supported by this server');
 cmdUpload: Memo1.Lines.Add('Upload not supported by this server');
 cmdAppend: Memo1.Lines.Add('UploadAppend not supported by this server');
 cmdReInit: Memo1.Lines.Add('Reinitialize not supported by this server');
 cmdAllocate: Memo1.Lines.Add('Allocate not supported by this server');
 cmdNList: Memo1.Lines.Add('NList not supported by this server');
 cmdDoCommand: Memo1.Lines.Add('DoCommand not supported by this server');
 cmdCurrentDir: Memo1.Lines.Add('CurrentDir not supported by this server');
 end;
end;

When an FTP command is not supported by the remote FTP host, the OnUnSupportedFunction event is
called. In this case, the Trans_Type parameter is tested, and Memo1 is updated to display the command
that was unsupported.

FTPDirectoryList property
See also Example
Applies to
TNMFTP component

Declaration
property FTPDirectoryList: TFTPDirectoryList;

Description
The FTPDirectoryList property is used only when the ParseList property is set to TRUE.
FTPDirectoryList contains the directory listing obtained from the List method, with each of the elements of
the listing separated into properties. See the TFTPDirectoryList object reference for details on the
properties of this object.

See also

List method
OnListItem event

OnListItem event
See also Example
Applies to
TNMFTP component

Declaration
property OnListItem: TNMListItem;

Description
The OnListItem event is called when a directory listing is taking place. This event is called once for each
item that gets listed.

Event Parameters:
The Listing parameter is the item being currently listed.

Notes:
This event gets called by the List and NList methods.

See also

FTPDirectoryList property
List method
NList method
ParseList property

Example

To recreate this example, you will need to create a new blank Delphi application.

Place 3 TEdits, 9 TButtons, 2 TMemos, a TStatusBar, a TRadioGroup, and a TNMFTP on the form.

Component Descriptions:

Edit1: Host
Edit2: User ID
Edit3: Password
Button1: Connect/Disconnect
Button2: NList
Button3: ChangeDir
Button4: Download
Button5: Upload
Button6: UploadAppend
Button7: UploadUnique
Button8: Upload Restore
Button9: Abort
Memo1: Status Window
Memo2: Directory List display
RadioGroup1: Transfer Mode *
StatusBar1: File Transfer progress

* Change RadioGroup1.Items to MODE_ASCCI, MODE_IMAGE, and MODE_BYTE, in that order.

Insert the following code into Button1's OnClick event:

procedure TForm1.Button1Click(Sender: TObject);
begin
 if NMFTP1.Connected then
 NMFTP1.Disconnect
 else
 begin
 NMFTP1.Host := Edit1.Text;
 NMFTP1.UserID := Edit2.Text;
 NMFTP1.Password := Edit3.Text;
 NMFTP1.Connect;
 end;
end;

When Button1 is clicked, if the Connected property is TRUE, a connection is present, and the
Disconnect method is called to disconnect from the remote FTP host. If Connected is FALSE, there is no
connection present, so the Host property is set to the value in Edit1 to specify the remote host to connect
to. The UserID property is set to the value in Edit2, and the Password property is set to the value in
Edit3. The UserID and Password are used to log in to the remote host when connected.

Insert the following code into Button2's OnClick event:

procedure TForm1.Button2Click(Sender: TObject);
begin
 Memo2.Clear;
 NMFTP1.NList;

end;

When Button2 is clicked, any text being displayed in Memo2 is cleared. The NList method is called,
retrieving the names of all files and directories in the current working directory. The results of this method
call can be seen in the OnListItem event.

Insert the following code into Button3's OnClick event:

procedure TForm1.Button3Click(Sender: TObject);
var
 TheDir: String;
begin
 if InputQuery('Change directory', 'Directory name?', TheDir) then
 NMFTP1.ChangeDir(TheDir);
end;

When Button3 is clicked, the InputQuery function is used to obtain the name of the directory desired. If
the Ok button is clicked, the ChangeDir method is used to change the current working directory to the
directory specified.

Insert the following code into Button4's OnClick event:

procedure TForm1.Button4Click(Sender: TObject);
var
 RemoteFile,
 LocalFile: String;
 O: TOpenDialog;
begin
 if InputQuery('Download a file', 'File to download: ', RemoteFile) then
 begin
 O := TOpenDialog.Create(Self);
 try
 O.Title := 'Save file as';
 if O.Execute then
 begin
 LocalFile := O.FileName;
 case RadioGroup1.ItemIndex of
 0: NMFTP1.Mode(MODE_ASCII);
 1: NMFTP1.Mode(MODE_IMAGE);
 2: NMFTP1.Mode(MODE_BYTE);
 end;
 NMFTP1.Download(RemoteFile, LocalFile);
 end;
 finally
 O.Free;
 end;
 end;
end;

When Button4 is clicked, the InputQuery function is used to retrieve the name of a remote file to download
to the local computer. if the Ok button is clicked, an OpenDialog is used to retrieve the name to store the
file as on the local computer. If the Open button is clicked, the Mode method is called, changing the
transfer mode depending on the selected item in RadioGroup1. Then the Download method is used to
download the remote file to the local disk.

Insert the following code into NMFTP1's OnDisconnect event:

procedure TForm1.NMFTP1Disconnect(Sender: TObject);
begin
 Memo1.Lines.Add('Disconnected');
 Button1.Caption := 'Connect';
end;

When the local computer disconnects from the remote host, the OnDisconnect event is called. In this
instance, the status display (Memo1) is updated to display the disconnect status, and the caption of
Button1 is changed to Connect (Since Button1 is used for connecting and disconnecting).

Insert the following code into NMFTP1's OnPacketRecvd event:

procedure TForm1.NMFTP1PacketRecvd(Sender: TObject);
begin
 StatusBar1.SimpleText := IntToStr(NMFTP1.BytesRecvd)+' bytes received out of
'+IntToStr(NMFTP1.BytesTotal);
end;

When data is received from the remote host during a file transfer, the OnPacketRecvd event is called. In
this instance, StatusBar1 displays the progress of the transfer by displaying the BytesRecvd property,
which contains the number of bytes received, and the BytesTotal property, which contains the total
number of bytes to transfer.

Insert the following code into NMFTP1's OnPacketSent event:

procedure TForm1.NMFTP1PacketSent(Sender: TObject);
begin
 StatusBar1.SimpleText := IntToStr(NMFTP1.BytesSent)+' bytes sent out of
'+IntToStr(NMFTP1.BytesTotal);
end;

When data is sent to the remote host during a file transfer, the OnPacketSent event is called. In this
instance, StatusBar1 displays the progress of the transfer by displaying the BytesSent property, which
contains the number of bytes sent, and the BytesTotal property, which contains the total number of bytes
to transfer.

Insert the following code into NMFTP1's OnTransactionStart event:

procedure TForm1.NMFTP1TransactionStart(Sender: TObject);
begin
 Memo1.Lines.Add('Transaction Start');
end;

When a data transfer begins, the OnTransactionStart event is called. In this instance, the Status Memo,
Memo1, displays that the transaction started.

Insert the following code into NMFTP1's OnTransactionStop event:

procedure TForm1.NMFTP1TransactionStop(Sender: TObject);
begin
 Memo1.Lines.Add('Transaction Stop');
end;

When a data transfer completes, the OnTransactionStop event is called. In this instance, the Status
Memo, Memo1, displays that the transaction has finished.

Insert the following code into Button5's OnClick event:

procedure TForm1.Button5Click(Sender: TObject);
var
 LocalFile,
 RemoteFile: String;
 F: File of Byte;
 FSize: Integer;
 O: TOpenDialog;
begin
 O := TOpenDialog.Create(Self);
 try
 O.Title := 'Select file to upload';
 if O.Execute then
 if InputQuery('Choose Remote File Name', 'Filename?', RemoteFile) then
 begin
 LocalFile := O.FileName;
 case RadioGroup1.ItemIndex of
 0: NMFTP1.Mode(MODE_ASCII);
 1: NMFTP1.Mode(MODE_IMAGE);
 2: NMFTP1.Mode(MODE_BYTE);
 end;
 AssignFile(F, LocalFile);
 Reset(F);
 FSize := FileSize(F);
 CloseFile(F);
 NMFTP1.Allocate(FSize);
 NMFTP1.Upload(LocalFile, RemoteFile);
 end;
 finally
 O.Free;
 end;
end;

When Button5 is clicked, an Open Dialog is displayed to select a file on the local computer to upload to
the remote host. If the Open button is clicked, the InputQuery function is used to retrieve the name the file
will be stored as on the remote host. If the Ok button is clicked, the file is opened so it's size can be
determined. The Allocate method is called to reserve space on the remote host for the file. This is not
normally necessary, but is done here to illustrate the use of the method. The Upload method is used to
send the file to the remote host.

Insert the following code into Button6's OnClick event:

procedure TForm1.Button6Click(Sender: TObject);
var
 LocalFile,

 RemoteFile: String;
 O: TOpenDialog;
begin
 O := TOpenDialog.Create(Self);
 try
 O.Title := 'Select file to upload';
 if O.Execute then
 if InputQuery('Choose Remote File Name', 'Filename?', RemoteFile) then
 begin
 LocalFile := O.FileName;
 case RadioGroup1.ItemIndex of
 0: NMFTP1.Mode(MODE_ASCII);
 1: NMFTP1.Mode(MODE_IMAGE);
 2: NMFTP1.Mode(MODE_BYTE);
 end;
 NMFTP1.UploadAppend(LocalFile, RemoteFile);
 end;
 finally
 O.Free;
 end;
end;

When Button6 is clicked, an Open Dialog is displayed to select a file on the local computer to upload to
the remote host. If the Open button is clicked, the InputQuery function is used to retrieve the name the file
will be stored as on the remote host. If the Ok button is clicked, the UploadAppend method is used to
send the file to the remote host. If a file with the same name already exists on the remote host, the file
being sent is appended to the end of the existing file.

Insert the following code into Button7's OnClick event:

procedure TForm1.Button7Click(Sender: TObject);
var
 LocalFile: String;
 O: TOpenDialog;
begin
 O := TOpenDialog.Create(Self);
 try
 O.Title := 'Upload file';
 if O.Execute then
 begin
 LocalFile := O.FileName;
 NMFTP1.UploadUnique(LocalFile);
 end;
 finally
 O.Free;
 end;
end;

When Button7 is clicked, an Open Dialog is displayed to select the file on the local computer to upload to
the remote host. If the Open button is clicked, the UploadUnique method is used to store the file on the
remote FTP host with a unique filename given by the FTP host.

Insert the following code into NMFTP1's OnFailure event:

procedure TForm1.NMFTP1Failure(var Handled: Boolean; Trans_Type: TCmdType);
begin
 case Trans_Type of
 cmdChangeDir: Memo1.Lines.Add('ChangeDir failure');
 cmdMakeDir: Memo1.Lines.Add('MakeDir failure');
 cmdDelete: Memo1.Lines.Add('Delete failure');
 cmdRemoveDir: Memo1.Lines.Add('RemoveDir failure');
 cmdList: Memo1.Lines.Add('List failure');
 cmdRename: Memo1.Lines.Add('Rename failure');
 cmdUpRestore: Memo1.Lines.Add('UploadRestore failure');
 cmdDownRestore: Memo1.Lines.Add('DownloadRestore failure');
 cmdDownload: Memo1.Lines.Add('Download failure');
 cmdUpload: Memo1.Lines.Add('Upload failure');
 cmdAppend: Memo1.Lines.Add('UploadAppend failure');
 cmdReInit: Memo1.Lines.Add('Reinitialize failure');
 cmdAllocate: Memo1.Lines.Add('Allocate failure');
 cmdNList: Memo1.Lines.Add('NList failure');
 cmdDoCommand: Memo1.Lines.Add('DoCommand failure');
 cmdCurrentDir: Memo1.Lines.Add('CurrentDir failure');
 end;
end;

When an FTP command fails, the OnFailure event is called. In this case, the Handled parameter is left
the default (FALSE), so an exception will be raised, in addition to a failure notification being added to the
status display (Memo1) noting the command that failed.

Insert the following code into NMFTP1's OnSuccess event:

procedure TForm1.NMFTP1Success(Trans_Type: TCmdType);
begin
 case Trans_Type of
 cmdChangeDir: Memo1.Lines.Add('ChangeDir success');
 cmdMakeDir: Memo1.Lines.Add('MakeDir success');
 cmdDelete: Memo1.Lines.Add('Delete success');
 cmdRemoveDir: Memo1.Lines.Add('RemoveDir success');
 cmdList: Memo1.Lines.Add('List success');
 cmdRename: Memo1.Lines.Add('Rename success');
 cmdUpRestore: Memo1.Lines.Add('UploadRestore success');
 cmdDownRestore: Memo1.Lines.Add('DownloadRestore success');
 cmdDownload: Memo1.Lines.Add('Download success');
 cmdUpload: Memo1.Lines.Add('Upload success');
 cmdAppend: Memo1.Lines.Add('UploadAppend success');
 cmdReInit: Memo1.Lines.Add('Reinitialize success');
 cmdAllocate: Memo1.Lines.Add('Allocate success');
 cmdNList: Memo1.Lines.Add('NList success');
 cmdDoCommand: Memo1.Lines.Add('DoCommand success');
 cmdCurrentDir: Memo1.Lines.Add('CurrentDir success');
 end;
end;

When an FTP command succeeds, the OnSuccess event is called. In this instance, the command that
succeeded is displayed in the status display (Memo1).

Insert the following code into Button8's OnClick event:

procedure TForm1.Button8Click(Sender: TObject);
var
 LocalFile,
 RemoteFile: String;
 FPosition: Integer;
 FPos: String;
 O: TOpenDialog;
begin
 O := TOpenDialog.Create(Self);
 try
 O.Title := 'Select file to upload';
 if O.Execute then
 if InputQuery('Choose Remote File Name', 'Filename?', RemoteFile) then
 if InputQuery('Choose restoration point', 'Byte Count: ', FPos) then
 begin
 FPosition := StrToInt(Fpos);
 LocalFile := O.FileName;
 case RadioGroup1.ItemIndex of
 0: NMFTP1.Mode(MODE_ASCII);
 1: NMFTP1.Mode(MODE_IMAGE);
 2: NMFTP1.Mode(MODE_BYTE);
 end;
 NMFTP1.UploadRestore(LocalFile, RemoteFile, FPosition);
 end;
 finally
 O.Free;
 end;
end;

When Button8 is clicked, an OpenDialog is displayed to select a file on the local computer to upload to the
remote host. If the Open button is clicked, the InputQuery function is used to retrieve the name the file will
use on the remote host. The InputQuery function is called once more to obtain the position to restore the
upload from. If the Ok button is clicked, the Mode method is used to set the mode as determined by
RadioGroup1. The UploadRestore method continues a previously interrupted upload at the position
specified.

Insert the following code into Button9's OnClick event:

procedure TForm1.Button9Click(Sender: TObject);
begin
 NMFTP1.Abort;
end;

When Button9 is clicked, the Abort method is called, aborting the current operation.

ParseList property
See also Example
Applies to
TNMFTP component

Declaration
property ParseList: boolean;

Description
The ParseList property determines whether to parse incoming directory listings into the
FTPDirectoryList property or not.

Scope: Published
Accessability: Runtime, Designtime

Note:
If this property is set to FALSE, directory listings will not be parsed out, and will need to be handled in the
OnListItem event.

See also

FTPDirectoryList property
List method
OnListItem event

Password property
See also Example
Applies to
TNMFTP component

Declaration
property Password: string;

Description
The Password property specifies the password used to log in to the remote FTP host.

Scope: Published
Accessability: Runtime, Designtime

Notes:
If the password supplied is invalid, the OnAuthenticationFailed event is called.
If there is no password supplied, the OnAuthenticationNeeded event is called.
The password supplied must correspond with the user ID specified by the UserID property.

See also

OnAuthenticationFailed event
OnAuthenticationNeeded event
UserID property

UserID property
See also Example
Applies to
TNMFTP component

Declaration
property UserID: string;

Description
The UserID property specifies the user ID to use when logging on to the remote FTP host.

Scope: Published
Accessability: Runtime, designtime

Notes:
If the User ID supplied is invalid, the OnAuthenticationFailed event is called.
If there is no User ID supplied, the OnAuthenticationNeeded event is called.
The User ID supplied must correspond with the password specified by the Password property.

See also

OnAuthenticationFailed event
OnAuthenticationNeeded event
Password property

Vendor property
See also Example
Applies to
TNMFTP component

Declaration
property Vendor: integer;

Description
The Vendor property specifies the vendor of the FTP host that is being connected to. This allows the
component to parse directory listings sent from the host in the proper manner. If the Vendor is not known,
the default value should auto detect the vendor for you.

Default: NMOS_AUTO

Range: Any of the following constants may be used for the Vendor property in your code:

 NMOS_UNIX
 NMOS_WINDOWS
 NMOS_VM
 NMOS_BULL
 NMOS_MAC
 NMOS_TOPS20
 NMOS_VMS
 NMOS_OS2
 NMOS_MVS_IBM
 NMOS_MVS_INTERLINK
 NMOS_OTHER
 NMOS_AUTO
 NMOS_NT
 NMOS_TANDEM
 NMOS_AS400
 NMOS_OS9
 NMOS_NETWARE

Notes:
If the Vendor property is set to NMOS_AUTO, the component will try to auto-detect the type of host.

See also

FTPDirectoryList property

Allocate method
See also Example
Applies to
TNMFTP component

Declaration
procedure Allocate(FileSize: Integer);

Description
The Allocate method is used for allocating space on the remote host for storing files.

Parameters:
The FileSize parameter specifies the number of bytes to allocate on the server for the incoming file.

Notes:
This method is not required under most circumstances. It has been included to comply with the RFC, and
to provide support for servers that require disk space to be allocated before an upload can be performed.

See also

OnFailure event
OnSuccess event
OnUnSupportedFunction event
Upload method

ChangeDir method
See also Example
Applies to
TNMFTP component

Declaration
procedure ChangeDir(DirName: string);

Description
The ChangeDir method changes the current (also called "working") directory.

Parameters:
The DirName parameter specifies the directory name to change to. This can be a directory that resides in
the current working directory, or a full path.

Notes:
When the ChangeDir method is called, the CurrentDir property will change.
If this command succeeds, the OnSuccess event will be called, otherwise the OnFailure event is called.
In either case, cmdChangeDir is passed as the Trans_Type parameter in the event.

See also

CurrentDir property
OnFailure event
OnSuccess event
OnUnSupportedFunction event

Delete method
See also Example
Applies to
TNMFTP component

Declaration
procedure Delete(Filename: string);

Description
The Delete method deletes a file from the remote host.

Parameters:
The FileName parameter specifies the file on the remote host to delete. This can be the name of a file in
the current working directory, or the path and filename of a file elsewhere on the remote system.

Notes:
You must have write priviledges in the current working directory in order to delete files.
If this command succeeds, the OnSuccess event will be called, otherwise the OnFailure event is called.
In either case, cmdDelete is passed as the Trans_Type parameter in the event.

See also

OnFailure event
OnSuccess event
OnUnSupportedFunction event

DoCommand method
See also Example
Applies to
TNMFTP component

Declaration
procedure DoCommand(CommandStr: string);

Description
The DoCommand method is used for sending a command to the remote FTP host. This method is
especially useful for use with custom FTP hosts, that may have non-standard commands, or for support
of unimplemented commands.

Parameters:
The CommandStr parameter is the command that is to be sent to the server. This can be as simple as
'PWD' (command for obtaining the name of the current directory), or as complex as a multi-file download.

Notes:
This method is used internally in the component as well for executing many of the commands available.

See also

OnFailure event
OnSuccess event

Download method
See also Example
Applies to
TNMFTP component

Declaration
procedure Download(RemoteFile, LocalFile: string);

Description
The Download method is used for downloading files from the remote FTP host to the local computer.

Parameters:
The RemoteFile parameter specifies the name of a file in the current working directory on the remote
host to be downloaded.
The LocalFile parameter specifies the name the file will have when retrieved and stored on the local
machine. Please note, if a file with the same name already exists locally, the existing file is overwritten.
If this command succeeds, the OnSuccess event will be called, otherwise the OnFailure event is called.
In either case, cmdDownload is passed as the Trans_Type parameter in the event.

See also

Mode method
OnFailure event
OnSuccess event
OnTransactionStart event
OnTransactionStop event
DownloadRestore method
Upload method

DownloadRestore method
See also Example
Applies to
TNMFTP component

Declaration
procedure DownloadRestore(RemoteFile, LocalFile: string);

Description
The DownloadRestore method continues a file transfer that was previously interrupted. This can only be
done if there is a part of the file downloaded onto the local drive.

Parameters:
The RemoteFile parameter specifies the name of the file to continue downloading.
The LocalFile parameter specifies the name of the file on the local drive that contains part of the remote
file.

Notes:
Not all hosts support DownloadRestore.
If this command is successful, the OnSuccess event will be called, otherwise the OnFailure event will be
called.

See also

Download method
Mode method
OnFailure event
OnSuccess event
OnTransactionStart event
OnTransactionStop event
OnUnSupportedFunction event
UploadRestore method

Example

To recreate this example, you will need to create a new blank Delphi application.

Place 7 TButtons, 3 TEdits, a TMemo, a TOpenDialog, a TStatusBar, and a TNMFTP on the form.

Component Descriptions:
Button1: Connect
Button2: Disconnect
Button3: Abort
Button4: Download
Button5: DownloadRestore
Button6: Change Directory
Button7: List
Edit1: FTP Host Name
Edit2: FTP User ID
Edit3: FTP Password
Memo1: Directory listing box

Insert the following code into Button1's OnClick event:

procedure TForm1.Button1Click(Sender: TObject);
begin
 NMFTP1.Host := Edit1.Text;
 NMFTP1.UserID := Edit2.Text;
 NMFTP1.Password := Edit3.Text;
 NMFTP1.Connect;
end;

Insert the following code into NMFTP1's OnConnect event:

procedure TForm1.NMFTP1Connect(Sender: TObject);
begin
 StatusBar1.SimpleText := 'Connected';
 NMFTP1.Mode(MODE_IMAGE);
end;

When the client connects to the remote FTP host, the OnConnect method is called. Here, the status bar
is updated to inform the user of the connection, and the Mode method is called to set the data transfer
mode to MODE_IMAGE.

Insert the following code into Button2's OnClick event:

procedure TForm1.Button2Click(Sender: TObject);
begin
 NMFTP1.Disconnect;
end;

Insert the following code into NMFTP1's OnDisconnect event:

procedure TForm1.NMFTP1Disconnect(Sender: TObject);
begin

 StatusBar1.SimpleText := 'Disconnected';
end;

Insert the following code into NMFTP1's OnListItem event:

procedure TForm1.NMFTP1ListItem(Listing: String);
begin
 Memo1.Lines.Add(Listing);
end;

Insert the following code into Button3's OnClick event:

procedure TForm1.Button3Click(Sender: TObject);
begin
 NMFTP1.Abort;
end;

Insert the following code into Button4's OnClick event:

procedure TForm1.Button4Click(Sender: TObject);
var
 RemoteFileName: String;
begin
 if InputQuery('Download', 'Remote File: ', RemoteFileName) then
 if OpenDialog1.Execute then
 NMFTP1.Download(RemoteFileName, OpenDialog1.FileName);
end;

Insert the following code into NMFTP1's OnPacketRecvd event:

procedure TForm1.NMFTP1PacketRecvd(Sender: TObject);
begin
 StatusBar1.SimpleText := IntToStr(NMFTP1.BytesRecvd)+' bytes out of '+IntToStr(NMFTP1.BytesTotal)
+' received';
end;

Insert the following code into NMFTP1's OnTransactionStart event:

procedure TForm1.NMFTP1TransactionStart(Sender: TObject);
begin
 StatusBar1.SimpleText := 'Beginning Data Transfer';
end;

Insert the following code into NMFTP1's OnTransactionStop event:

procedure TForm1.NMFTP1TransactionStop(Sender: TObject);
begin
 StatusBar1.SimpleText := 'Data Transfer complete';
end;

Insert the following code into NMFTP1's OnUnSupportedFunction event:

procedure TForm1.NMFTP1UnSupportedFunction(Trans_Type: TCmdType);
begin
 if Trans_Type = cmdDownRestore then
 ShowMessage('DownloadRestore not supported');
end;

If the DownloadRestore method is not supported by the server currently connected to, the
OnUnSupportedFunction event is called. Here, a message box is shown stating that the
DownloadRestore method is unsupported.

Insert the following code into NMFTP1's OnSuccess event:

procedure TForm1.NMFTP1Success(Trans_Type: TCmdType);
begin
 if Trans_Type = cmdDownRestore then
 StatusBar1.SimpleText := 'DownloadRestore successful';
 if Trans_Type = cmdChangeDir then
 StatusBar1.SimpleText := 'Directory changed to '+NMFTP1.CurrentDir;
end;

If the DownloadRestore or Download method executes successfully, the OnSuccess event updates the
status bar to display the success.

Insert the following code into Button6's OnClick event:

procedure TForm1.Button6Click(Sender: TObject);
var
 Dir: String;
begin
 if InputQuery('Change Directory', 'Directory Name: ', Dir) then
 NMFTP1.ChangeDir(Dir);
end;

Insert the following code into Button7's OnClick event:

procedure TForm1.Button7Click(Sender: TObject);
begin
 Memo1.Clear;
 Memo1.Lines.Add('Listing of '+NMFTP1.CurrentDir);
 Memo1.Lines.Add('----------------------------');
 NMFTP1.List;
end;

Insert the following code into Button5's OnClick event:

procedure TForm1.Button5Click(Sender: TObject);
var
 RemoteFileName: String;
begin

 if InputQuery('Download Restore', 'Remote File: ', RemoteFileName) then
 if OpenDialog1.Execute then
 NMFTP1.DownloadRestore(RemoteFileName, OpenDialog1.FileName);
end;

When Button5 is clicked, the InputQuery function is used to retrieve the name of the remote file to
download. If a filename is entered, and the ok button clicked, the OpenDialog is executed so the user can
choose the file to continue downloading. If the user clicks the Open button, the DownloadRestore
method is called to continue the interrupted download.

Running this example:
After compiling and running this example, connect to any give FTP server. Begin the download of a file
using the download button, and once the download is underway, click the Abort button. Reconnect to the
server, and the click the download restore button. Select the same remote file, and local file name and
location as you did with the download, and the file will continue downloading.

List method
See also Example
Applies to
TNMFTP component

Declaration
procedure List;

Description
The List method is used for getting a list of files and directories from the remote host. The listing retrieved
is for the current working directory.

Notes:
For each item listed, the OnListItem event is called.
If the ParseList property is set to TRUE, the FTPDirectoryList property will contain the elements for
each listing, including name, size, and attributes.
If this command succeeds, the OnSuccess event will be called, otherwise the OnFailure event is called.
In either case, cmdList is passed as the Trans_Type parameter in the event.

See also

FTPDirectoryList property
NList method
OnFailure event
OnListItem event
OnSuccess event
OnTransactionStart event
OnTransactionStop event

MakeDirectory method
See also Example
Applies to
TNMFTP component

Declaration
procedure MakeDirectory(DirectoryName: string);

Description
The MakeDirectory method creates a directory in the current working directory on the remote FTP host.

Parameters:
The DirectoryName parameter specifies the name of the directory to create on the remote host. This can
be a single directory name to be created in the current working directory, or a full directory path.

Notes:
If this command succeeds, the OnSuccess event will be called, otherwise the OnFailure event is called.
In either case, cmdMakeDir is passed as the Trans_Type parameter in the event.

See also

OnFailure event
OnSuccess event
OnUnSupportedFunction event
RemoveDir method

Mode method
See also Example
Applies to
TNMFTP component

Declaration
procedure Mode(TheMode: Integer);

Description
The Mode method changes the file transfer mode used when transfering files between the remote host
and the local computer.

Parameters:
The TheMode parameter specifies the transfer mode to use. Any of the following values may be used:

MODE_ASCII - Sends data as ASCII text
MODE_IMAGE - raw binary data in 8-bit bytes
MODE_BYTE - raw binary data using variable-length bytes

See also

Download method
DownloadRestore method
Upload method
UploadAppend method
UploadRestore method
UploadUnique method

Nlist method
See also Example
Applies to
TNMFTP component

Declaration
procedure Nlist;

Description
The NList method is used to retrieve just the names of files and directories in the current working
directory.

Notes:
For each item that gets listed, the OnListItem event is called.
If this command succeeds, the OnSuccess event will be called, otherwise the OnFailure event is called.
In either case, cmdNList is passed as the Trans_Type parameter in the event.

See also

List method
OnFailure event
OnListItem event
OnSuccess event
OnTransactionStart event
OnTransactionStop event
OnUnSupportedFunction event

Reinitialize method
See also Example
Applies to
TNMFTP component

Declaration
procedure Reinitialize;

Description
The Reinitialize method is used to reset the connection with the server. This leaves the connection with
the remote host at the point right before the Authentication (UserID and Password) takes place.

Notes:
After a call to Reinitialize, the connection is left in an unusable state. Before proceeding with further FTP
transactions, you must resend the user ID and password. Otherwise, any commands executed will fail.
See the Example for more details.

See also

OnFailure event
OnSuccess event
OnUnSupportedFunction event
Password property
UserID property

RemoveDir method
See also Example
Applies to
TNMFTP component

Declaration
procedure RemoveDir(DirectoryName: string);

Description
The RemoveDir method is used to remove a directory on the remote FTP host.

Parameters:
The DirectoryName parameter specifies the name of the directory to remove. This can be the name of a
directory that resides within the current working directory, or a full directory path.

Notes:
If this command succeeds, the OnSuccess event will be called, otherwise the OnFailure event is called.
In either case, cmdRemoveDir is passed as the Trans_Type parameter in the event.

See also

MakeDirectory method
OnFailure event
OnSuccess event
OnUnSupportedFunction event

Rename method
See also Example
Applies to
TNMFTP component

Declaration
procedure Rename(Filename, FileName2: string);

Description
The Rename method is used to rename a file in the current working directory on the remote FTP host.

Parameters:
The FileName parameter specifies the name of the file that will be renamed.
The FileName2 parameter specifies the new name for the file.
These parameters can be the name of a file in the current working directory, or the path and filename of a
file elsewhere on the system.

Notes:
If this command succeeds, the OnSuccess event will be called, otherwise the OnFailure event is called.
In either case, cmdRename is passed as the Trans_Type parameter in the event.

See also

OnFailure event
OnSuccess event
OnUnSupportedFunction event

Upload method
See also Example
Applies to
TNMFTP component

Declaration
procedure Upload(LocalFile, RemoteFile: string);

Description
The Upload method is used for sending a file on the local computer to the remote host.

Parameters:
The LocalFile parameter specifies the name of the file on the local computer that will be sent to the
remote host.
The RemoteFile parameter specifies the name the file will have on the remote host when it is sent.

Notes:
Please note, if a file with the same name already exists on the remote host, the existing file is
overwritten.
If this command succeeds, the OnSuccess event will be called, otherwise the OnFailure event is called.
In either case, cmdUpload is passed as the Trans_Type parameter in the event.

See also

Download method
OnFailure event
OnSuccess event
OnTransactionStart event
OnTransactionStop event
OnUnSupportedFunction event
UploadAppend method
UploadRestore method
UploadUnique method

UploadAppend method
See also Example
Applies to
TNMFTP component

Declaration
procedure UploadAppend(LocalFile, RemoteFile: string);

Description
The UploadAppend method is used for storing a file on the local computer on the remote FTP host. If a
file with the same name already exists, the new file is appended to the end of the existing file.

Parameters:
The LocalFile parameter specifies the name of the file on the local computer to send to the remote host.
The RemoteFile parameter specifies the name the file will have on the remote FTP host. If a file with this
name already exists, the local file is appended to the end of the existing remote file.

Notes:
If this command succeeds, the OnSuccess event will be called, otherwise the OnFailure event is called.
In either case, cmdAppend is passed as the Trans_Type parameter in the event.

See also

Download method
OnFailure event
OnSuccess event
OnTransactionStart event
OnTransactionStop event
OnUnSupportedFunction event
Upload method
UploadRestore method
UploadUnique method

UploadRestore method
See also Example
Applies to
TNMFTP component

Declaration
procedure UploadRestore(LocalFile, RemoteFile: string; Position: Integer);

Description
The UploadRestore method is used for continuing the upload of a file on the local computer to the
remote FTP host.

Parameters:
The LocalFile parameter specifies the name of the file on the local computer to send the the remote host.
The RemoteFile parameter specifies the name the file will have when sent to the remote host. When
using this method, this file should already partly exist on the remote FTP host.
The Position parameter specifies how far into the file to start the transfer. If 100 bytes were sent
successfully before the transfer was interrupted previously, the position would be 101.

Notes:
If this command succeeds, the OnSuccess event will be called, otherwise the OnFailure event is called.
In either case, cmdUpRestore is passed as the Trans_Type parameter in the event.

See also

Download method
OnFailure event
OnSuccess event
OnTransactionStart event
OnTransactionStop event
OnUnSupportedFunction event
Upload method
UploadAppend method
UploadUnique method

UploadUnique method
See also Example
Applies to
TNMFTP component

Declaration
procedure UploadUnique(LocalFile: string);

Description
The UploadUnique method is used for upload a file to the remote host. The name of the file on the local
computer is used for the filename on the remote FTP host. If a file with the same name already exists, a
unique name is used for the file.

Parameters:
The LocalFile parameter specifies the file on the local computer that will be sent to the remote host.

Notes:
If the file specifies already exists on the remote host, the file will be given a new name when it is
uploaded.
If this command succeeds, the OnSuccess event will be called, otherwise the OnFailure event is called.
In either case, cmdUpload is passed as the Trans_Type parameter in the event.

See also

Download method
OnFailure event
OnSuccess event
OnTransactionStart event
OnTransactionStop event
OnUnSupportedFunction event
Upload method
UploadAppend method
UploadRestore method

OnAuthenticationFailed event
See also Example
Applies to
TNMFTP component

Declaration
property OnAuthenticationFailed: THandlerEvent;

Description
The OnAuthenticationFailed event is called when either the UserID property or the Password property
are invalid. This could be due to an invalid account name (UserID), or an invalid password.

Event Parameters:
If the Handled parameter is set to TRUE, authentication will be attempted again to complete the login
with the remote host. If the Handled parameter is set to FALSE (the default), or if the second attempt at
logging in fails, an exception will be raised.

See also

OnAuthenticationNeeded event
Password property
UserID property

OnAuthenticationNeeded event
See also Example
Applies to
TNMFTP component

Declaration
property OnAuthenticationNeeded: THandlerEvent;

Description
The OnAuthenticationNeeded event is called when either the UserID property or the Password
property are blank.

Event Parameters:
If the Handled parameter is left FALSE, an exception will be raised, and the connection will be aborted.
If the Handled parameter is set to TRUE, and a UserID and/or Password are provided, the authentication
will be attempted again. If it fails a second time, an exception will be raised and the connection is aborted.

Notes:
This event is typically called when the Connect method is called, and there is no user ID and/or password
supplied.

See also

OnAuthenticationFailed event
Password property
UserID property

OnFailure event
See also Example
Applies to
TNMFTP component

Declaration
property OnFailure: TFailureEvent;

Description
The OnFailure event is called if an executed FTP command fails.

Event Parameters:
If the Handled parameter is set to TRUE, an exception is not raised.
If the Handled parameter is set to FALSE, an exception will be raised due to the failing command.
The Trans_Type parameter specifies the command that failed. The following are the possible values for
this parameter:

cmdChangeDir
cmdMakeDir
cmdDelete
cmdRemoveDir
cmdList
cmdRename
cmdUpRestore
cmdDownRestore
cmdDownload
cmdUpload
cmdAppend
cmdReInit
cmdAllocate
cmdNList
cmdDoCommand
cmdCurrentDir

See also

Allocate method
ChangeDir method
CurrentDir property
Delete method
DoCommand method
Download method
DownloadRestore method
List method
MakeDirectory method
NList method
OnSuccess event
Reinitialize method
RemoveDir method
Rename method
Upload method
UploadAppend method
UploadRestore method

OnSuccess event
See also Example
Applies to
TNMFTP component

Declaration
property OnSuccess: TSuccessEvent;

Description
The OnSuccess event is called when a command completes successfully.

Event Parameters:
The Trans_Type parameter specifies the command that completed successfully. The possible values for
this parameter are listed below:

cmdChangeDir
cmdMakeDir
cmdDelete
cmdRemoveDir
cmdList
cmdRename
cmdUpRestore
cmdDownRestore
cmdDownload
cmdUpload
cmdAppend
cmdReInit
cmdAllocate
cmdNList
cmdDoCommand
cmdCurrentDir

See also

Allocate method
ChangeDir method
CurrentDir property
Delete method
DoCommand method
Download method
DownloadRestore method
List method
MakeDirectory method
NList method
OnFailure event
Reinitialize method
RemoveDir method
Rename method
Upload method
UploadAppend method
UploadRestore method

OnTransactionStart event
See also Example
Applies to
TNMFTP component

Declaration
property OnTransactionStart: TNotifyEvent;

Description
The OnTransactionStart event is called each time data is sent from the remote host to the local
computer using the Data socket.

Notes:
The following methods will execute the OnTransactionStart event:

List
Download
UploadUnique
Upload
NList
DownloadRestore
UploadAppend
UploadRestore

See also

Download method
DownloadRestore method
List method
NList method
OnTransactionStop event
UploadUnique method
Upload method
UploadAppend method
UploadRestore method

OnTransactionStop event
See also Example
Applies to
TNMFTP component

Declaration
property OnTransactionStop: TNotifyEvent;

Description
The OnTransactionStop event is called when a data transfer from the remote FTP host to the local
computer has completed.

Notes:
The following methods will cause the OnTransactionStop event to execute:

List
Download
UploadUnique
Upload
NList
DownloadRestore
UploadAppend
UploadRestore

See also

Download method
DownloadRestore method
List method
NList method
OnTransactionStart event
UploadUnique method
Upload method
UploadAppend method
UploadRestore method

OnUnSupportedFunction event
See also Example
Applies to
TNMFTP component

Declaration
property OnUnSupportedFunction: TUnsupportedEvent;

Description
The OnUnSupportedFunction event is called when an FTP command fails to execute because it is not
implemented on the remote FTP host.

Event Parameters:
The Trans_Type parameter specifies which command failed to execute. The possibles values for this
parameter are listed below.

cmdChangeDir
cmdMakeDir
cmdDelete
cmdRemoveDir
cmdList
cmdRename
cmdUpRestore
cmdDownRestore
cmdDownload
cmdUpload
cmdAppend
cmdReInit
cmdAllocate
cmdNList
cmdDoCommand
cmdCurrentDir

See also

DoCommand method
Download method
List method
Rename method
UploadUnique method
Upload method

TCmdType type

Unit
NMFtp

Declaration
type
 TCmdType = (cmdChangeDir, cmdMakeDir, cmdDelete, cmdRemoveDir, cmdList,
cmdRename, cmdUpRestore, cmdDownRestore, cmdDownload, cmdUpload, cmdAppend,
cmdReInit, cmdAllocate, cmdNList, cmdDoCommand, cmdCurrentDir);

Description
The TCmdType type provides a simple way of referencing the commands available to the TNMFTP
component.

 Member Descriptions:
cmdChangeDir - ChangeDir method
cmdMakeDir - MakeDirectory method
cmdDelete - Delete method
cmdRemoveDir - RemoveDir method
cmdList - List method
cmdRename - Rename method
cmdUpRestore - UploadRestore method
cmdDownRestore - DownloadRestore method
cmdDownload - Download method
cmdUpload - Upload and UploadUnique methods
cmdAppend - UploadAppend method
cmdReInit - Reinitialize method
cmdAllocate - Allocate method
cmdNList - NList method
cmdDoCommand - DoCommand method
cmdCurrentDir - accessing the CurrentDir property

TFailureEvent type

Unit
NMFtp

Declaration
type
 TFailureEvent = procedure(var Handled: Boolean; Trans_Type: TCmdType) of
object;

Description
The TFailureEvent event type is used for the OnFailure event.
The Handled parameter determines whether the component's default actions will be carried out or not.
See event descriptions for a more detailed description of the role the Handled parameter takes.
The Trans_Type parameter specifies the command that failed.

TNMListItem type

Unit
NMFtp

Declaration
type
 TNMListItem = procedure(Listing: string) of object;

Description
The TNMListItem event type is used for listing strings items one by one in an event. This is used for the
OnListItem event, which returns listings from the List method and the NList method.
The Listing parameter contains the current item that has been listed.

TSuccessEvent type

Unit
NMFtp

Declaration
type TSuccessEvent = procedure(Trans_Type: TCmdType) of object;

Description
The TSuccessEvent event type is used by the OnSuccess event when a command executes
successfully.
The Trans_Type parameter specifies the command that executed successfully.

TUnsupportedEvent type

Unit
NMFtp

Declaration
type
 TUnsupportedEvent = procedure(Trans_Type: TCmdType) of object;

Description
The TUnsupportedEvent event type is used in the OnUnSupportedFunction event. This passes the
command that is unsupported to the event for handling by the application developer.

Legend
 Run-time only
 Read-Only
 Published
 Protected

 Key item

Heirarchy

TObject
 |
TPersistent
 |
TComponent
 |
TPowersock

