
Using Object Pascal with the VCL
Topic groups See also
This section of the Help system discusses how to use Object Pascal and the object and component
library in Delphi applications.

Object Pascal and the VCL
Object Pascal, a set of object-oriented extensions to standard Pascal, is the language of Delphi. The
Visual Component Library (VCL) is a hierarchy of classes—written in Object Pascal and tied to the
Delphi IDE—that allows you to develop applications quickly. Using Delphi’s Component palette and
Object Inspector, you can place VCL components on forms and manipulate their properties without
writing code.
All VCL objects descend from TObject, an abstract class whose methods encapsulate fundamental
behavior like construction, destruction, and message handling. TObject is the immediate ancestor of
many simple classes.
Components in the VCL descend from the abstract class TComponent. Components are objects that
you can manipulate on forms at design time. Visual components—that is, components like TForm and
TSpeedButton that appear on the screen at runtime—are called controls, and they descend from
TControl.
Despite its name, the VCL consists mostly of nonvisual objects. The Delphi IDE allows you to add many
nonvisual components to your programs by dropping them onto forms. For example, if you were writing
an application that connects to a database, you might place a TDataSource component on a form.
Although TDataSource is nonvisual, it is represented on the form by an icon (which doesn’t appear at
runtime). You can manipulate the properties and events of TDataSource in the Object Inspector just as
you would those of a visual control.
When you write classes of your own in Object Pascal, they should descend from TObject. By deriving
new classes from the VCL’s base class (or one of its descendants), you provide your classes with
essential functionality and ensure that they work with the VCL.

Using the object model
Topic groups See also
Object-oriented programming is an extension of structured programming that emphasizes code reuse
and encapsulation of data with functionality. Once you create an object (or, more formally, a class), you
and other programmers can use it in different applications, thus reducing development time and
increasing productivity.
If you want to create new components and put them on the Delphi Component palette, see Overview of
component creation.
The following topics discuss how to use objects in your applications:

What is an object?
Inheriting data and code from an object
Scope and qualifiers
Using object variables
Creating, instantiating, and destroying objects

What is an object?
Topic groups See also
An object, or class, is a data type that encapsulates data and operations on data in a single unit. Before
object-oriented programming, data and operations (functions) were treated as separate elements.
You can begin to understand objects if you understand Object Pascal records. Records (analogous to
structures in C) are made of up fields that contain data, where each field has its own type. Records
make it easy to refer to a collection of varied data elements.
Objects are also collections of data elements. But objects—unlike records—contain procedures and
functions that operate on their data. These procedures and functions are called methods.
An object’s data elements are accessed through properties. The properties of Delphi objects have
values that you can change at design time without writing code. If you want a property value to change
at runtime, you need to write only a small amount of code.
The combination of data and functionality in a single unit is called encapsulation. In addition to
encapsulation, object-oriented programming is characterized by inheritance and polymorphism.
Inheritance means that objects derive functionality from other objects (called ancestors); objects can
modify their inherited behavior. Polymorphism means that different objects derived from the same
ancestor support the same method and property interfaces, which often can be called interchangeably.

Examining a Delphi object
Topic groups See also
When you create a new project, Delphi displays a new form for you to customize. In the Code editor,
Delphi declares a new class type for the form and produces the code that creates the new form
instance. The generated code looks like this:

unit Unit1;
interface
uses Windows, Classes, Graphics, Forms, Controls, Dialogs;
type
 TForm1 = class(TForm) { The type declaration of the form begins here }
 private
 { Private declarations }
 public
 { Public declarations }
 end;{ The type declaration of the form ends here }
var
 Form1: TForm1;
implementation { Beginning of implementation part }
{$R *.DFM}
end. { End of implementation part and unit}

The new class type is TForm1, and it is derived from type TForm, which is also a class.
A class is like a record in that they both contain data fields, but a class also contains methods—code
that acts on the object’s data. So far, TForm1 appears to contain no fields or methods, because you
haven’t added to the form any components (the fields of the new object) and you haven’t created any
event handlers (the methods of the new object). TForm1 does contain inherited fields and methods,
even though you don’t see them in the type declaration.
This variable declaration declares a variable named Form1 of the new type TForm1.

var
 Form1: TForm1;

Form1 represents an instance, or object, of the class type TForm1. You can declare more than one
instance of a class type; you might want to do this, for example, to create multiple child windows in a
Multiple Document Interface (MDI) application. Each instance maintains its own data, but all instances
use the same code to execute methods.
Although you haven’t added any components to the form or written any code, you already have a
complete Delphi application that you can compile and run. All it does is display a blank form.
Suppose you add a button component to this form and write an OnClick event handler that changes the
color of the form when the user clicks the button. The result might look like this:

A simple form
When the user clicks the button, the form’s color changes to green. This is the event-handler code for the
button’s OnClick event:

procedure TForm1.Button1Click(Sender: TObject);

begin
 Form1.Color := clGreen;
end;

Objects can contain other objects as data fields. Each time you place a component on a form, a new
field appears in the form’s type declaration. If you create the application described above and look at the
code in the Code editor, this is what you see:

unit Unit1;
interface
uses Windows, Classes, Graphics, Forms, Controls;
type
 TForm1 = class(TForm)
 Button1: TButton; { New data field }
 procedure Button1Click(Sender: TObject); { New method declaration }
 private
 { Private declarations }
 public
 { Public declarations }
 end;
var
 Form1: TForm1;
implementation
{$R *.DFM}
procedure TForm1.Button1Click(Sender: TObject); { The code of the new method }
begin
 Form1.Color := clGreen;
end;
end.

TForm1 has a Button1 field that corresponds to the button you added to the form. TButton is a class
type, so Button1 refers to an object.
All the event handlers you write in Delphi are methods of the form object. Each time you create an event
handler, a method is declared in the form object type. TheTForm1 type now contains a new method, the
Button1Click procedure, declared within the TForm1 type declaration. The code that implements the
Button1Click method appears in the implementation part of the unit.

Changing the name of a component
Topic groups See also
You should always use the Object Inspector to change the name of a component. For example, suppose
you want to change a form’s name from the default Form1 to a more descriptive name, such as
ColorBox. When you change the form’s Name property in the Object Inspector, the new name is
automatically reflected in the form’s .DFM file (which you usually don’t edit manually) and in the Object
Pascal source code that Delphi generates:

unit Unit1;
interface
uses Windows, Classes, Graphics, Forms, Controls;
type
 TColorBox = class(TForm){ Changed from TForm1 to TColorBox }
 Button1: TButton;
 procedure Button1Click(Sender: TObject);
 private
 { Private declarations }
 public
 { Public declarations }
 end;
var
 ColorBox: TColorBox; { Changed from Form1 to ColorBox }
implementation
{$R *.DFM}
procedure TColorBox.Button1Click(Sender: TObject);
begin
 Form1.Color := clGreen; { The reference to Form1 didn't change! }
end;
end.

Note that the code in the OnClick event handler for the button hasn’t changed. Because you wrote the
code, you have to update it yourself and correct any references to the form:

procedure TColorBox.Button1Click(Sender: TObject);
begin
 ColorBox.Color := clGreen;
end;

Inheriting data and code from an object
Topic groups See also
The TForm1 object described in Examining a Delphi object seems simple. TForm1 appears to contain
one field (Button1), one method (Button1Click), and no properties. Yet you can show, hide, or resize of
the form, add or delete standard border icons, and set up the form to become part of a Multiple
Document Interface (MDI) application. You can do these things because the form has inherited all the
properties and methods of the VCL component TForm. When you add a new form to your project, you
start with TForm and customize it by adding components, changing property values, and writing event
handlers. To customize any object, you first derive a new object from the existing one; when you add a
new form to your project, Delphi automatically derives a new form from the TForm type:

TForm1 = class(TForm)
A derived object inherits all the properties, events, and methods of the object it derives from. The
derived object is called a descendant and the object it derives from is called an ancestor. If you look up
TForm in the online Help, you’ll see lists of its properties, events, and methods, including the ones that
TForm inherits from its ancestors. An object can have only one immediate ancestor, but it can have
many direct descendants.

Objects, components, and controls
Topic groups See also

Simplified VCL hierarchy
The diagram above is a greatly simplified view of the inheritance hierarchy of the Visual Component
Library. Every object inherits from TObject, and many objects inherit from TComponent. Controls, which
inherit from TControl, have the ability to display themselves at runtime. A control like TCheckBox inherits
all the functionality of TObject, TComponent, and TControl, and adds specialized capabilities of its own.

Scope and qualifiers
Topic groups See also
Scope determines the accessibility of an object’s fields, properties, and methods. All members declared
within an object are available to that object and its descendants. Although a method’s implementation
code appears outside of the object declaration, the method is still within the scope of the object because
it is declared within the object’s declaration.
When you write code to implement a method that refers to properties, methods, or fields of the object
where the method is declared, you don’t need to preface those identifiers with the name of the object.
For example, if you put a button on a new form, you could write this event handler for the button’s
OnClick event:

procedure TForm1.Button1Click(Sender: TObject);
begin
 Color := clFuchsia;
 Button1.Color := clLime;
end;

The first statement is equivalent to
Form1.Color := clFuchsia

You don’t need to qualify Color with Form1 because the Button1Click method is part of TForm1;
identifiers in the method body therefore fall within the scope of the TForm1 instance where the method
is called. The second statement, in contrast, refers to the color of the button object (not of the form
where the event handler is declared), so it requires qualification.
Delphi creates a separate unit (source code) file for each form. If you want to access one form’s
components from another form’s unit file, you need to qualify the component names, like this:

Form2.Edit1.Color := clLime;
In the same way, you can access a component’s methods from another form. For example,

Form2.Edit1.Clear;
To access Form2’s components from Form1’s unit file, you must also add Form2’s unit to the uses
clause of Form1’s unit.
The scope of an object extends to the object’s descendants. You can, however, redeclare a field,
property, or method within a descendant object. Such redeclarations either hide or override the inherited
member.
For more information about scope, see Blocks and scope. For more information about the uses clause,
see Unit references and the uses clause. For more information about hiding and overriding inherited
members, see Classes and objects.

Private, protected, public, and published declarations
Topic groups See also
When you declare a field, property, or method, the new member has a visibility indicated by one of the
keywords private, protected, public, or published. The visibility of a member determines its
accessibility to other objects and units.

A private member is accessible only within the unit where it is declared. Private members are
often used within a class to implement other (public or published) methods and properties.

A protected member is accessible within the unit where its class is declared and within any
descendant class, regardless of the descendant class’s unit.

A public member is accessible from wherever the object it belongs to is accessible—that is, from
the unit where the class is declared and from any unit that uses that unit.

A published member has the same visibility as a public member, but the compiler generates
runtime type information for published members. Published properties appear in the Object Inspector at
design time.
For more information about visibility, see Visibility of class members.

Using object variables
Topic groups See also
You can assign one object variable to another object variable if the variables are of the same type or
assignment compatible. In particular, you can assign an object variable to another object variable if the
type of the variable you are assigning to is an ancestor of the type of the variable being assigned. For
example, here is a TDataForm type declaration and a variable declaration section declaring two
variables, AForm and DataForm:

type
 TDataForm = class(TForm)
 Button1: TButton;
 Edit1: TEdit;
 DataGrid1: TDataGrid;
 Database1: TDatabase;
 private
 { Private declarations }
 public
 { Public declarations }
 end;
var
 AForm: TForm;
 DataForm: TDataForm;

AForm is of type TForm, and DataForm is of type TDataForm. Because TDataForm is a descendant of
TForm, this assignment statement is legal:

AForm := DataForm;
Suppose you write an event handler for the OnClick event of a button. When the button is clicked, the
event handler for the OnClick event is called. Each event handler has a Sender parameter of type
TObject:

procedure TForm1.Button1Click(Sender: TObject);
begin
...
end;

Because Sender is of type TObject, any object can be assigned to Sender. The value of Sender is
always the control or component that responds to the event. You can test Sender to find the type of
component or control that called the event handler using the reserved word is. For example,

if Sender is TEdit then
 DoSomething
else
 DoSomethingElse;

Creating, instantiating, and destroying objects
Topic groups See also
Many of the objects you use in Delphi, such as buttons and edit boxes, are visible at both design time
and runtime. Some, such as common dialog boxes, appear only at runtime. Still others, such as timers
and datasource components, have no visual representation at runtime.
You may want to create your own objects. For example, you could create a TEmployee object that
contains Name, Title, and HourlyPayRate properties. You could then add a CalculatePay method that
uses the data in HourlyPayRate to compute a paycheck amount. The TEmployee type declaration might
look like this:

type
 TEmployee = class(TObject)
 private
 FName: string;
 FTitle: string;
 FHourlyPayRate: Double;
 public
 property Name: string read FName write FName;
 property Title: string read FTitle write FTitle;
 property HourlyPayRate: Double read FHourlyPayRate write FHourlyPayRate;
 function CalculatePay: Double;
 end;

In addition to the fields, properties, and methods you’ve defined, TEmployee inherits all the methods of
TObject. You can place a type declaration like this one in either the interface or implementation part of
a unit, and then create instances of the new class by calling the Create method that TEmployee inherits
from TObject:

var
 Employee: TEmployee;
begin
 Employee := TEmployee.Create;
end;

The Create method is called a constructor. It allocates memory for a new instance object and returns a
reference to the object.
Components on a form are created and destroyed automatically by Delphi. But if you write your own
code to instantiate objects, you are responsible for disposing of them as well. Every object inherits a
Destroy method (called a destructor) from TObject. To destroy an object, however, you should call the
Free method (also inherited from TObject), because Free checks for a nil reference before calling
Destroy. For example,

Employee.Free
destroys the Employee object and deallocates its memory.

Components and ownership
Topic groups See also
Delphi has a built-in memory-management mechanism that allows one component to assume
responsibility for freeing another. The former component is said to own the latter. The memory for an
owned component is automatically freed when its owner's memory is freed. The owner of a component
—the value of its Owner property—is determined by a parameter passed to the constructor when the
component is created. By default, a form owns all components on it and is in turn owned by the
application. Thus, when the application shuts down, the memory for all forms and the components on
them is freed.
Ownership applies only to TComponent and its descendants. If you create, for example, a TStringList or
TCollection object (even if it is associated with a form), you are responsible for freeing the object.
Note:Don’t confuse a component’s owner with its parent.

Using components
Topic groups See also
All components share features inherited from TComponent. By placing components on forms, you build
the interface and functionality of your application. The standard components included with Delphi are
sufficient for most application development, but you can extend the VCL by creating components of your
own. For more information about creating custom components, see Overview of component creation..

Delphi’s standard components
Topic groups See also
The Component palette contains a selection of components that handle a wide variety of programming
tasks. You can add, remove, and rearrange components on the palette, and you can create component
templates and frames that group several components.
The components on the palette are arranged in pages according to their purpose and functionality.
Which pages appear in the default configuration depends on the version of Delphi you are running. The
following table lists typical default pages and the kinds of components they contain.

Page name Contents
 Standard Standard Windows controls, menus
Additional Additional controls
Win32 Windows 9x/NT 4.0 common controls
System Components and controls for system-level access, including timers,

multimedia, and DDE
Internet Components for internet communication protocols and Web

applications
Data Access Nonvisual components for accessing databases tables, queries, and

reports
Data Controls Visual, data-aware controls
Decision Cube Controls that let you summarize information from databases and view it

from a variety of perspectives
QReport Quick Report components for creating embedded reports
Dialogs Windows common dialog boxes
Win 3.1 Components for compatibility with Delphi 1.0 projects
Samples Sample custom components
ActiveX Sample ActiveX controls
Midas Components used for creating multi-tiered database applications

The online Help provides information about the components on the default palette. The components on
the ActiveX and Samples pages, however, are provided as examples only and are not documented.

Properties common to visual components
Topic groups See also
All visual components (descendants of TControl) share certain properties including

Position and size properties
Display properties
Parent properties
Navigation properties
Drag-and-drop properties
Drag-and-dock properties

While these properties are inherited from TControl, they are published—and hence appear in the Object
Inspector—only for components to which they are applicable. For example, TImage does not publish the
Color property, since its color is determined by the graphic it displays.

Position and size properties
Topic groups See also
Four properties define the position and size of a control on a form:

Height sets the vertical size
Width sets the horizontal size
Top positions the top edge
Left positions the left edge

These properties aren’t accessible in nonvisual components, but Delphi does keep track of where you
place the component icons on your forms. Most of the time you’ll set and alter these properties by
manipulating the control’s image on the form or using the Alignment palette. You can, however, alter
them at runtime.

Display properties
Topic groups See also
The following properties govern the general appearance of a control:

BorderStyle specifies whether a control has a border.
Color changes the background color of a control.
BevelKind specifies the type of bevel if the control has beveled edges.
Font changes the color, type family, style, or size of text.

Parent properties
Topic groups See also
To maintain a consistent appearance across your application, you can make any control look like its
container—called its parent—by setting the parent- properties to True. For example, if you place a
button on a form and set the button’s ParentFont property to True, changes to the form’s Font property
will automatically propagate to the button (and to the form’s other children). Later, if you change the
button’s Font property, your font choice will take effect and the ParentFont property will revert to False.
Note:Although parents are also responsible for freeing their children’s memory, you should not confuse

a component’s parent with its owner.

Navigation properties
Topic groups See also
Several properties determine how users navigate among the controls in a form:

Caption contains the text string that labels a component. To underline a character in a string,
include an ampersand (&) before the character. This type of character is called an accelerator character.
The user can then select the control or menu item by pressing Alt while typing the underlined character.

TabOrder indicates the position of the control in its parent’s tab order, the order in which controls
receive focus when the user presses the Tab key. Initially, tab order is the order in which the components
are added to the form, but you can change this by changing TabOrder. TabOrder is meaningful only if
TabStop is True.

TabStop determines whether the user can tab to a control. If TabStop is True, the control is in the
tab order.

Drag-and-drop properties
Topic groups See also
Two component properties affect drag-and-drop behavior:

DragMode determines how dragging starts. By default, DragMode is dmManual, and the
application must call the BeginDrag method to start dragging. When DragMode is dmAutomatic, dragging
starts as soon as the mouse button goes down.

DragCursor determines the shape of the mouse pointer when it is over a draggable component.

Drag-and-dock properties
Topic groups See also
The following properties control drag-and-dock behavior.

DockSite
DragKind
DragMode
FloatingDockSiteClass
AutoSize

For more information, see Implementing drag-and-dock in controls.

Text controls
Topic groups See also
Many applications present text to the user or allow the user to enter text. The type of control used for
this purpose depends on the size and format of the information.

Use this component: When you want users to do this:
Edit Edit a single line of text
Memo Edit multiple lines of text
MaskEdit Adhere to a particular format, such as a postal code or phone

number
RichEdit Edit multiple lines of text using rich text format

Properties common to all text controls
Topic groups See also
All of the text controls have these properties in common:

Text determines the text that appears in the edit box or memo control.
CharCase forces the case of the text being entered to lowercase or uppercase.
ReadOnly specifies whether the user is allowed to change the text.
MaxLength limits the number of characters in the control.
PasswordChar hides the text by displaying a single character (usually an asterisk).
HideSelection specifies whether selected text remains highlighted when the control does not have

focus.

Properties shared by memo and rich text controls
Topic groups See also
Memo and rich text controls, which handle multiple lines of text, have several properties in common:

Alignment specifies how text is aligned (left, right, or center) in the component.
The Text property contains the text in the control. Your application can tell if the text changes by

checking the Modified property.
Lines contains the text as a list of strings.
OEMConvert determines whether the text is temporarily converted from ANSI to OEM as it is

entered. This is useful for validating file names.
WordWrap determines whether the text will wrap at the right margin.
WantReturns determines whether the user can insert hard returns in the text.
WantTabs determines whether the user can insert tabs in the text.
AutoSelect determines whether the text is automatically selected (highlighted) when the control

becomes active.
SelText contains the currently selected (highlighted) part of the text.
SelStart and SelLength indicate the position and length of the selected part of the text.

At runtime, you can select all the text in the memo with the SelectAll method.

Rich text controls
Topic groups See also
The rich edit component is a memo control that supports rich text formatting, printing, searching, and
drag-and-drop of text. It allows you to specify font properties, alignment, tabs, indentation, and
numbering.

Specialized input controls
Topic groups See also
The following components provide additional ways of capturing input.

Use this component: When you want users to do this:
ScrollBar Select values on a continuous range
TrackBar Select values on a continuous range (more visually effective than

scroll bar)
UpDown Select a value from a spinner attached to an edit component
HotKey Enter Ctrl/Shift/Alt keyboard sequences

Scroll bars
Topic groups See also
The scroll bar component is a Windows scroll bar that you can use to scroll the contents of a window,
form, or other control. In the OnScroll event handler, you write code that determines how the control
behaves when the user moves the scroll bar.
The scroll bar component is not used very often, since many visual components provide scroll bars of
their own that don’t require additional coding. For example, TForm has VertScrollBar and HorzScrollBar
properties that automatically configure scroll bars on the form. To create a scrollable region within a
form, use TScrollBox.

Track bars
Topic groups See also
A track bar can set integer values on a continuous range. It is useful for adjusting properties like volume
and brightness. The user moves the slide indicator by dragging it to a particular location or clicking
within the bar.

Use the Max and Min properties to set the upper and lower range of the track bar.
Use SelEnd and SelStart to highlight a selection range. See the figure “Three views of the track

bar component” below.
The Orientation property determines whether the track bar is vertical or horizontal.
By default, a track bar has one row of ticks along the bottom. Use the TickMarks property to

change their location. To control the intervals between ticks, use the TickStyle property and SetTicks
method.

Three views of the track bar component
Position sets a default position for the track bar and tracks the position at runtime.
By default, users can move one tick up or down by pressing the up and down arrow keys. Set

LineSize to change that increment.
Set PageSize to determine the number of ticks moved when the user presses Page Up and Page

Down.

Up-down controls
Topic groups See also
An up-down control consists of a pair of arrow buttons that allow users to change an integer value in
fixed increments. The current value is given by the Position property; the increment, which defaults to 1,
is specified by the Increment property. Use the Associate property to attach another component (such
as an edit control) to the up-down control.

Hot key controls
Topic groups See also
Use the hot key component to assign a keyboard shortcut that transfers focus to any control. The
HotKey property contains the current key combination and the Modifiers property determines which keys
are available for HotKey.

Splitter control
Topic groups See also
A splitter placed between aligned controls allows users to resize the controls. Used with components like
panels and group boxes, splitters let you divide a form into several panes with multiple controls on each
pane.
After placing a panel or other control on a form, add a splitter with the same alignment as the control.
The last control should be client-aligned, so that it fills up the remaining space when the others are
resized. For example, you can place a panel at the left edge of a form, set its Alignment to alLeft, then
place a splitter (also aligned to alLeft) to the right of the panel, and finally place another panel (aligned to
alLeft or alClient) to the right of the splitter.
Set MinSize to specify a minimum size the splitter must leave when resizing its neighboring control. Set
Beveled to True to give the splitter’s edge a 3D look.

Buttons and similar controls
Topic groups See also
Aside from menus, buttons provide the most common way to invoke a command in an application.
Delphi offers several button-like controls:

Use this component: To do this:
Button Present command choices on buttons with text
BitBtn Present command choices on buttons with text and glyphs
SpeedButton Create grouped toolbar buttons
CheckBox Present on/off options
RadioButton Present a set of mutually exclusive choices
ToolBar Arrange tool buttons and other controls in rows and automatically

adjust their sizes and positions
CoolBar Display a collection of windowed controls within movable, resizable

bands

Button controls
Topic groups See also
Users click button controls to initiate actions. Double-clicking a button at design time takes you to the
button’s OnClick event handler in the Code editor.

Set Cancel to True if you want the button to trigger its OnClick event when the user presses Esc.
Set Default to True if you want the Enter key to trigger the button’s OnClick event.

Bitmap buttons
Topic groups See also
A bitmap button (BitBtn) is a button control that presents a bitmap image on its face.

To choose a bitmap for your button, set the Glyph property.
Use Kind to automatically configure a button with a glyph and default behavior.
By default, the glyph is to the left of any text. To move it, use the Layout property.
The glyph and text are automatically centered in the button. To move their position, use the

Margin property. Margin determines the number of pixels between the edge of the image and the edge of
the button.

By default, the image and the text are separated by 4 pixels. Use Spacing to increase or
decrease the distance.

Bitmap buttons can have 3 states: up, down, and held down. Set the NumGlyphs property to 3 to
show a different bitmap for each state.

Speed buttons
Topic groups See also
Speed buttons, which usually have images on their faces, can function in groups. They are commonly
used with panels to create toolbars.

To make speed buttons act as a group, give the GroupIndex property of all the buttons the same
nonzero value.

By default, speed buttons appear in an up (unselected) state. To initially display a speed button
as selected, set the Down property to True.

If AllowAllUp is True, all of the speed buttons in a group can be unselected. Set AllowAllUp to
False if you want a group of buttons to act like a radio group.

Check boxes
Topic groups See also
A check box is a toggle that presents the user with two, or sometimes three, choices.

Set Checked to True to make the box appear checked by default.
Set AllowGrayed to True to give the check box three possible states: checked, unchecked, and

grayed.
The State property indicates whether the check box is checked (cbChecked), unchecked

(cbUnchecked), or grayed (cbGrayed).

Radio buttons
Topic groups See also
Radio buttons present a set of mutually exclusive choices. You can use individual radio buttons or the
radio group component, which arranges groups of radio buttons automatically. See Grouping
components for more information.

Toolbars
Topic groups See also
Toolbars provide an easy way to arrange and manage visual controls. You can create a toolbar out of a
panel component and speed buttons, or you can use the ToolBar component, then right-click and
choose New Button to add buttons to the toolbar. The ToolBar component has several advantages:
Buttons on a toolbar automatically maintain uniform dimensions and spacing; other controls maintain
their relative position and height; controls can automatically wrap around to start a new row when they
do not fit horizontally; and the ToolBar offers display options like transparency, pop-up borders, and
spaces and dividers to group controls.

Cool bars
Topic groups See also
A cool bar (or rebar) contains child controls that can be moved and resized independently. Each control
resides on an individual band. The user positions the controls by dragging the sizing grip to the left of
each band.
The cool bar requires version 4.70 or later of COMCTL32.DLL (usually located in the WINDOWS\
SYSTEM or WINDOWS\SYSTEM32 directory) at both design time and runtime.

The Bands property holds a collection of TCoolBand objects. At design time, you can add,
remove, or modify bands with the Bands editor. To open the Bands editor, select the Bands property in the
Object Inspector, then double-click in the Value column to the right, or click the ellipsis (...) button. You
can also create bands simply by adding new windowed controls from the palette.

The FixedOrder property determines users can reorder the bands.
The FixedSize property determines whether the bands maintain a uniform height.

Handling lists
Topic groups See also
Lists present the user with a collection of items to select from. Several components display lists:

Use this component: To display:
ListBox A list of text strings
CheckListBox A list with a check box in front of each item
ComboBox An edit box with a scrollable drop-down list
TreeView A hierarchical list
ListView A list of (draggable) items with optional icons, columns, and

headings
DateTimePicker A list box for entering dates or times
MonthCalendar A calendar for selecting dates

Use the nonvisual TStringList and TImageList components to manage sets of strings and images. For
more information about string lists, see Working with string lists.

List boxes and check-list boxes
Topic groups See also
List boxes and check-list boxes display lists from which users can select items.

Items uses a TStrings object to fill the control with values.
ItemIndex indicates which item in the list is selected.
MultiSelect specifies whether a user can select more than one item at a time.
Sorted determines whether the list is arranged alphabetically.
Columns specifies the number of columns in the list control.
IntegralHeight specifies whether the list box shows only entries that fit completely in the vertical

space.
ItemHeight specifies the height of each item in pixels. The Style property can cause ItemHeight to

be ignored.
The Style property determines how a list control displays its items. By default, items are displayed

as strings. By changing the value of Style, you can create owner-draw list boxes that display items
graphically or in varying heights. For information on owner-draw controls, see Adding graphics to controls.

Combo boxes
Topic groups See also
A combo box combines an edit box with a scrollable list. When users enter data into the control—by
typing or selecting from the list—the value of the Text property changes.
Use the Style property to select the type of combo box you need:

Use csDropdown if you want an edit box with a drop-down list. Use csDropDownList to make the
edit box read-only (forcing users to choose from the list). Set the DropDownCount property to change the
number of items displayed in the list.

Use csSimple to create a combo box with a fixed list that does not close. Be sure to resize the
combo box so that the list items are displayed.

Use csOwnerDrawFixed or csOwnerDrawVariable to create owner-draw combo boxes that
display items graphically or in varying heights. For information on owner-draw controls, see Adding
graphics to controls.

Tree views
Topic groups See also
A tree view displays items in an indented outline. The control provides buttons that allow nodes to be
expanded and collapsed. You can include icons with items’ text labels and display different icons to
indicate whether a node is expanded or collapsed. You can also include graphics, such as a check
boxes, that reflect state information about the items.

Indent sets the number of pixels horizontally separating items from their parents.
ShowButtons enables the display of '+' and '–' buttons to indicate whether an item can be

expanded.
ShowLines enables display of connecting lines to show hierarchical relationships.
ShowRoot determines whether lines connecting the top-level items are displayed.

List views
Topic groups See also
List views display lists in various formats. Use the ViewStyle property to choose the kind of list you want:

vsIcon and vsSmallIcon display each item as an icon with a label. Users can drag items within the
list view window.

vsList displays items as labeled icons that cannot be dragged.
vsReport displays items on separate lines with information arranged in columns. The leftmost

column contains a small icon and label, and subsequent columns contain subitems specified by the
application. Use the ShowColumnHeaders property to display headers for the columns.

Date-time pickers and month calendars
Topic groups See also
The DateTimePicker component displays a list box for entering dates or times, while the MonthCalendar
component presents a calendar for entering dates or ranges of dates. To use these components, you
must have version 4.70 or later of COMCTL32.DLL (usually located in the WINDOWS\SYSTEM or
WINDOWS\SYSTEM32 directory) at both design time and runtime.

Grouping components
Topic groups See also
A graphical interface is easier to use when related controls and information are presented in groups.
Delphi provides several components for grouping components:

Use this component: When you want this:
GroupBox A standard group box with a title
RadioGroup A simple group of radio buttons
Panel A more visually flexible group of controls
ScrollBox A scrollable region containing controls
TabControl A set of mutually exclusive notebook-style tabs
PageControl A set of mutually exclusive notebook-style tabs with corresponding

pages, each of which may contain other controls
HeaderControl Resizable column headers

Group boxes and radio groups
Topic groups See also
A group box is a standard Windows component that arranges related controls on a form. The most
commonly grouped controls are radio buttons. After placing a group box on a form, select components
from the Component palette and place them in the group box. The Caption property contains text that
labels the group box at runtime.
The radio group component simplifies the task of assembling radio buttons and making them work
together. To add radio buttons to a radio group, edit the Items property in the Object Inspector; each
string in Items makes a radio button appear in the group box with the string as its caption. The value of
the ItemIndex property determines which radio button is currently selected. Display the radio buttons in
a single column or in multiple columns by setting the value of the Columns property. To respace the
buttons, resize the radio group component.

Panels
Topic groups See also
The panel component provides a generic container for other controls. Panels can be aligned with the
form to maintain the same relative position when the form is resized. The BorderWidth property
determines the width, in pixels, of the border around a panel.

Header controls
Topic groups See also
Scroll boxes create scrolling areas within a form. Applications often need to display more information
than will fit in a particular area. Some controls—such as list boxes, memos, and forms themselves—can
automatically scroll their contents. Scroll boxes give you the additional flexibility to define arbitrary
scrolling subregions of a form.
Like panels and group boxes, scroll boxes contain other controls. But a scroll box is normally invisible. If
the controls in the scroll box cannot fit in its visible area, the scroll box automatically displays scroll bars.

Header controls
Topic groups See also
The tab control component looks like notebook dividers. You can create tabs by editing the Tabs
property in the Object Inspector; each string in Tabs represents a tab. The tab control is a single panel
with one set of components on it. To change the appearance of the control when the tabs are clicked,
you need to write an OnChange event handler. To create a multipage dialog box, use a page control
instead.

Page controls
Topic groups See also
The page control component is a page set suitable for multipage dialog boxes. To create a new page in
a page control, right-click the control and choose New Page.

Header controls
Topic groups See also
A header control is a is a set of column headers that the user can select or resize at runtime. Edit the
control’s Sections property to add or modify headers.

Visual feedback
Topic groups See also
There are many ways to provide users with information about the state of an application. For example,
some components—including TForm—have a Caption property that can be set at runtime. You can also
create dialog boxes to display messages. In addition, the following components are especially useful for
providing visual feedback at runtime.

Use this component or
property: To do this:
Label and StaticText Display non-editable text
StatusBar Display a status region (usually at the bottom of a window)
ProgressBar Show the amount of work completed for a particular task
Hint and ShowHint Activate fly-by or “tool-tip” help
HelpContext and
HelpFile

Link context-sensitive online Help

Labels and static-text components
Topic groups See also
Labels display text and are usually placed next to other controls. The standard label component, TLabel,
is a nonwindowed control, so it cannot receive focus; when you need a label with a window handle, use
TStaticText instead. Label properties include the following:

Caption contains the text string for the label.
FocusControl links the label to another control on the form. If Caption includes an accelerator key,

the control specified by FocusControl receives focus when the user presses the accelerator key.
ShowAccelChar determines whether the label can display an underlined accelerator character. If

ShowAccelChar is True, any character preceded by an ampersand (&) appears underlined and enables
an accelerator key.

Transparent determines whether items under the label (such as graphics) are visible.

Status bars
Topic groups See also
Although you can use a panel to make a status bar, it is simpler to use the status-bar component. By
default, the status bar’s Align property is set to alBottom, which takes care of both position and size.
You will usually divide a status bar into several text areas. To create text areas, edit the Panels property
in the Object Inspector, setting each panel’s Width, Alignment, and Text properties from the Panels
editor. The Text property contains the text displayed in the panel.

Progress bars
Topic groups See also
When your application performs a time-consuming operation, you can use a progress bar to show how
much of the task is completed. A progress bar displays a dotted line that grows from left to right.

A progress bar
The Position property tracks the length of the dotted line. Max and Min determine the range of Position.
To make the line grow, increment Position by calling the StepBy or StepIt method. The Step property
determines the increment used by StepIt.

Help and hint properties
Topic groups See also
Most visual controls can display context-sensitive Help as well as fly-by hints at runtime. The
HelpContext and HelpFile properties establish a Help context number and Help file for the control.
The Hint property contains the text string that appears when the user moves the mouse pointer over a
control or menu item. To enable hints, set ShowHint to True; setting ParentShowHint to True causes the
control’s ShowHint property to have the same value as its parent’s.

Grids
Topic groups See also
Grids display information in rows and columns. If you’re writing a database application, use the TDBGrid
or TDBCtrlGrid component described in "Using data controls”. Otherwise, use a standard draw grid or
string grid.

Draw grids
Topic groups See also
A draw grid (TDrawGrid) displays arbitrary data in tabular format. Write an OnDrawCell event handler to
fill in the cells of the grid.

The CellRect method returns the screen coordinates of a specified cell, while the MouseToCell
method returns the column and row of the cell at specified screen coordinates. The Selection property
indicates the boundaries of the currently selected cells.

The TopRow property determines which row is currently at the top of the grid. The LeftCol
property determines the first visible column on the left. VisibleColCount and VisibleRowCount are the
number of columns and rows visible in the grid.

You can change the width or height of a column or row with the ColWidths and RowHeights
properties. Set the width of the grid lines with the GridLineWidth property. Add scroll bars to the grid with
the ScrollBars property.

You can choose to have fixed or nonscrolling columns and rows with the FixedCols and
FixedRows properties. Assign a color to the fixed columns and rows with the FixedColor property.

The Options, DefaultColWidth, and DefaultRowHeight properties also affect the appearance and
behavior of the grid.

String grids
Topic groups See also
The string grid component is a descendant of TDrawGrid that adds specialized functionality to simplify
the display of strings. The Cells property lists the strings for each cell in the grid; the Objects property
lists objects associated with each string. All the strings and associated objects for a particular column or
row can be accessed through the Cols or Rows property.

Graphic display
Topic groups See also
The following components make it easy to incorporate graphics into an application.

Use this component To display:
Image Graphics files
Shape Geometric shapes
Bevel 3D lines and frames
PaintBox Graphics drawn by your program at runtime
Animate AVI files

Images
Topic groups See also
The image component displays a graphical image, like a bitmap, icon, or metafile. The Picture property
determines the graphic to be displayed. Use Center, AutoSize, Stretch, and Transparent to set display
options.

Shapes
Topic groups See also
The shape component displays a geometric shape. It is a nonwindowed control and cannot receive user
input. The Shape property determines which shape the control assumes. To change the shape’s color or
add a pattern, use the Brush property, which holds a TBrush object. How the shape is painted depends
on the Color and Style properties of TBrush.

Bevels
Topic groups See also
The bevel component is a line that can appear raised or lowered. Some components, such as TPanel,
have built-in properties to create beveled borders. When such properties are unavailable, use TBevel to
create beveled outlines, boxes, or frames.

Paint boxes
Topic groups See also
The paint box allows your application to draw on a form. Write an OnPaint event handler to render an
image directly on the paint box's Canvas. Drawing outside the boundaries of the paint box is prevented.
For more information, see Overview of graphics programming.

Animation control
Topic groups See also
The animation component is a window that silently displays an Audio Video Interleaved (AVI) clip. An AVI
clip is a series of bitmap frames, like a movie. Although AVI clips can have sound, animation controls
work only with silent AVI clips. The files you use must be either uncompressed AVI or compressed using
run-length encoding (RLE).

Windows common dialog boxes
Topic groups
The components on the Dialogs page of the Component palette make the Windows common dialog
boxes available in Delphi applications. These dialog boxes provide a consistent user interface for
standard operations like finding and opening files, setting fonts and colors, and printing. The dialogs do
not appear at runtime until activated by a call to their Execute method.

Setting component properties
Topic groups See also
Published properties can be set at design time in the Object Inspector and, in some cases, with special
property editors.
To set properties at runtime, assign them new values in your application source code.
For information about the properties of each component, see the VCL Help.

Using the Object Inspector
Topic groups See also
When you select a component on a form, the Object Inspector displays its published properties and
(when appropriate) allows you to edit them. Use the Tab key to toggle between the Value column and
the Property column. When the cursor is in the Property column, you can navigate to any property by
typing the first letters of its name. For properties of Boolean or enumerated types, you can choose
values from a drop-down list or toggle their settings by double-clicking in Value column. If a plus (+)
symbol appears next to a property name, clicking the plus symbol displays a list of subvalues for the
property. Similarly, if a minus (-) symbol appears next to the property name, clicking the minus symbol
hides the subvalues.
By default, properties in the Legacy category are not shown; to change the display filters, right-click in
the Object Inspector and choose View. For more information, see Property categories in the Object
Inspector.
When more than one component is selected, the Object Inspector displays all properties—except Name
—that are shared by the selected components. If the value for a shared property differs among the
selected components, the Object Inspector displays either the default value or the value from the first
component selected. When you change a shared property, the change applies to all selected
components.

Using property editors
Topic groups
Some properties, such as Font, have special property editors. Such properties appear with ellipsis
marks (...) next to their values when the property is selected in the Object Inspector. To open the
property editor, double-click in the Value column, click the ellipsis mark, or type Ctrl+Enter when focus is
on the property or its value. With some components, double-clicking the component on the form also
opens a property editor.
Property editors let you set complex properties from a single dialog box. They provide input validation
and often let you preview the results of an assignment.

Setting properties at runtime
Topic groups See also
Any writable property can be set at runtime in your source code. For example, you can dynamically
assign a caption to a form:

Form1.Caption := MyString;

Calling methods
Topic groups See also
Methods are called just like ordinary procedures and functions. For example, visual controls have a
Repaint method that refreshes the control’s image on the screen. You could call the Repaint method in a
draw-grid object like this:

DrawGrid1.Repaint;
As with properties, the scope of a method name determines the need for qualifiers. If you want, for
example, to repaint a form within an event handler of one of the form’s child controls, you don’t have to
prepend the name of the form to the method call:

procedure TForm1.Button1Click(Sender: TObject);
begin
 Repaint;
end;

For more information about scope, see Scope and qualifiers.

Working with events and event handlers
Topic groups See also
In Delphi, almost all the code you write is executed, directly or indirectly, in response to events. An event
is a special kind of property that represents a runtime occurrence, often a user action. The code that
responds directly to an event—called an event handler—is an Object Pascal procedure. The sections
that follow show how to

Generate a new event handler
Generate a handler for a component’s default event
Locate event handlers
Associate an event with an existing event handler
Associate menu events with event handlers
Delete event handlers

Generating a new event handler
Topic groups See also
Delphi can generate skeleton event handlers for forms and other components. To create an event
handler,
1 Select a component.
2 Click the Events tab in the Object Inspector. The Events page of the Object Inspector displays all

events defined for the component.
3 Select the event you want, then double-click the Value column or press Ctrl+Enter. Delphi

generates the event handler in the Code editor and places the cursor inside the begin...end block.
4 Inside the begin...end block, type the code that you want to execute when the event occurs.

Generating a handler for a component’s default event
Topic groups See also
Some components have a default event, which is the event the component most commonly needs to
handle. For example, a button’s default event is OnClick. To create a default event handler, double-click
the component in the Form Designer; this generates a skeleton event-handling procedure and opens the
Code editor with the cursor in the body of the procedure, where you can easily add code.
Not all components have a default event. Some components, such as the Bevel, don’t respond to any
events. Other components respond differently when you double-click on them in the Form Designer. For
example, many components open a default property editor or other dialog when they are double-clicked
at design time.

Locating event handlers
Topic groups See also
If you generated a default event handler for a component by double-clicking it in the Form Designer, you
can locate that event handler in the same way. Double-click the component, and the Code editor opens
with the cursor at the beginning of the event-handler body.
To locate an event handler that’s not the default,
1 In the form, select the component whose event handler you want to locate.
2 In the Object Inspector, click the Events tab.
3 Select the event whose handler you want to view and double-click in the Value column. The Code

editor opens with the cursor at the beginning of the event-handler body.

Associating an event with an existing event handler
Topic groups See also
You can reuse code by writing event handlers that respond to more than one event. For example, many
applications provide speed buttons that are equivalent to drop-down menu commands. When a button
initiates the same action as a menu command, you can write a single event handler and assign it to both
the button’s and the menu item’s OnClick event.
To associate an event with an existing event handler,
1 On the form, select the component whose event you want to handle.
2 On the Events page of the Object Inspector, select the event to which you want to attach a handler.
3 Click the down arrow in the Value column next to the event to open a list of previously written event

handlers. (The list includes only event handlers written for events of the same name on the same
form.) Select from the list by clicking an event-handler name.

The procedure above is an easy way to reuse event handlers. Action lists, however, provide a more
powerful tool for centrally organizing the code that responds to user commands.

Using the Sender parameter
Topic groups See also
In an event handler, the Sender parameter indicates which component received the event and therefore
called the handler. Sometimes it is useful to have several components share an event handler that
behaves differently depending on which component calls it. You can do this by using the Sender
parameter in an if...then...else statement. For example, the following code displays the title of the
application in the caption of a dialog box only if the OnClick event was received by Button1.

procedure TMainForm.Button1Click(Sender: TObject);
begin
if Sender = Button1 then
 AboutBox.Caption := 'About ' + Application.Title
else
 AboutBox.Caption := '';
AboutBox.ShowModal;
end;

Displaying and coding shared events
Topic groups See also
When components share events, you can display their shared events in the Object Inspector. First,
select the components by holding down the Shift key and clicking on them in the Form Designer; then
choose the Events tab in the Object Inspector. From the Value column in the Object Inspector, you can
now create a new event handler for, or assign an existing event handler to, any of the shared events.

Associating menu events with event handlers
Topic groups See also
Delphi’s Menu Designer, along with the MainMenu and PopupMenu components, make it easy to supply
your application with drop-down and pop-up menus. For the menus to work, however, each menu item
must respond to the OnClick event, which occurs whenever the user chooses the menu item or presses
its accelerator or shortcut key. This section explains how to associate event handlers with menu items.
For information about the Menu Designer and related components, see Creating and managing menus.
To create an event handler for a menu item,
1 Open the Menu Designer by double-clicking on a MainMenu or PopupMenu object.
2 Select a menu item in the Menu Designer. In the Object Inspector, make sure that a value is

assigned to the item’s Name property.
3 From the Menu Designer, double-click the menu item. Delphi generates an event handler in the

Code editor and places the cursor inside the begin...end block.
4 Inside the begin...end block, type the code that you want to execute when the user selects the

menu command.
To associate a menu item with an existing OnClick event handler,
1 Open the Menu Designer by double-clicking on a MainMenu or PopupMenu object.
2 Select a menu item in the Menu Designer. In the Object Inspector, make sure that a value is

assigned to the item’s Name property.
3 On the Events page of the Object Inspector, click the down arrow in the Value column next to

OnClick to open a list of previously written event handlers. (The list includes only event handlers
written for OnClick events on this form.) Select from the list by clicking an event handler name.

Deleting event handlers
Topic groups See also
When you delete a component using the Form Designer, Delphi removes the component from the form’s
type declaration. It does not, however, delete any associated methods from the unit file, since these
methods may still be called by other components on the form. You can manually delete a method—such
as an event handler—but if you do so, be sure to delete both the method’s forward declaration (in the
interface section of the unit) and its implementation (in the implementation section); otherwise you’ll
get a compiler error when you build your project.

Using helper objects
Topic groups See also
The VCL includes a variety of nonvisual objects that simplify common programming tasks. These topics
describe a few Helper objects that facilitate

Creating and managing lists
Creating and managing string lists
Editing the Windows registry and .INI files
Streaming data to a hard disk or other storage device

Working with lists
Topic groups See also
Several VCL objects provide functionality for creating and managing lists:

TList maintains a list of pointers.
TObjectList maintains a memory-managed list of instance objects.
TComponentList maintains a memory-managed list of components (that is, instances of classes

descended from TComponent).
TQueue maintains a first-in first-out list of pointers.
TStack maintains a last-in first-out list of pointers.
TObjectQueue maintains a first-in first-out list of objects.
TObjectStack maintains a last-in first-out list of objects.
TClassList maintains a list of class types.
TCollection, TOwnedCollection, and TCollectionItem maintain indexed collections of specially

defined items.
TStringList maintains a list of strings.

For more information about these objects, see the VCL Reference in the online Help.

Working with string lists
Topic groups See also
Applications often need to manage lists of character strings. Examples include items in a combo box,
lines in a memo, names of fonts, and names of rows and columns in a string grid. The VCL provides a
common interface to any list of strings through an object called TStrings and its descendant TStringList.
In addition to providing functionality for maintaining string lists, these objects allow easy interoperability;
for example, you can edit the lines of a memo (which are an instance of TStrings) and then use these
lines as items in a combo box (also an instance of TStrings).
A string-list property appears in the Object Inspector with TStrings in the Value column. Double-click
TStrings to open the String List editor, where you can edit, add, or delete lines.
You can also work with string-list objects at runtime to perform such tasks as

Loading and saving string lists
Creating a new string list
Manipulating strings in a list
Associating objects with a string list

Loading and saving string lists
Topic groups See also
String-list objects provide SaveToFile and LoadFromFile methods that let you store a string list in a text
file and load a text file into a string list. Each line in the text file corresponds to a string in the list. Using
these methods, you could, for example, create a simple text editor by loading a file into a memo
component, or save lists of items for combo boxes.
The following example loads a copy of the WIN.INI file into a memo field and makes a backup copy
called WIN.BAK.

procedure EditWinIni;
var
 FileName: string; { storage for file name }
begin
 FileName := 'C:\WINDOWS\WIN.INI';{ set the file name }
 with Form1.Memo1.Lines do
 begin
 LoadFromFile(FileName); { load from file }
 SaveToFile(ChangeFileExt(FileName, '.BAK')); { save into backup file }
 end;
end;

Creating a new string list
Topic groups See also
A string list is typically part of a component. There are times, however, when it is convenient to create
independent string lists, for example to store strings for a lookup table. The way you create and manage
a string list depends on whether the list is short-term (constructed, used, and destroyed in a single
routine) or long-term (available until the application shuts down). Whichever type of string list you create,
remember that you are responsible for freeing the list when you finish with it.

Short-term string lists
If you use a string list only for the duration of a single routine, you can create it, use it, and destroy it all
in one place. This is the safest way to work with string lists. Because the string-list object allocates
memory for itself and its strings, you should use a try...finally block to ensure that the memory is freed
even if an exception occurs.
1 Construct the string-list object.
2 In the try part of a try...finally block, use the string list.
3 In the finally part, free the string-list object.
The following event handler responds to a button click by constructing a string list, using it, and then
destroying it.

procedure TForm1.Button1Click(Sender: TObject);
var
 TempList: TStrings; { declare the list }
begin
 TempList := TStringList.Create; { construct the list object }
 try
 { use the string list }
 finally
 TempList.Free; { destroy the list object }
 end;
end;

Long-term string lists
If a string list must be available at any time while your application runs, construct the list at start-up and
destroy it before the application terminates.
1 In the unit file for your application’s main form, add a field of type TStrings to the form’s declaration.
2 Write an event handler for the main form’s OnCreate event. (OnCreate is the default event for a

form, so just double-click on the form to generate a skeleton event handler.) The OnCreate event
handler, which executes before the form appears, should create a string list and assign it to the
field you declared in the first step.

3 Write an event handler that frees the string list for the form’s OnDestroy event.
This example uses a long-term string list to record the user’s mouse clicks on the main form, then saves
the list to a file before the application terminates.

unit Unit1;
interface
uses Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs;
type
 TForm1 = class(TForm)
 procedure FormCreate(Sender: TObject);
 procedure FormDestroy(Sender: TObject);
 procedure FormMouseDown(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
 private
 { Private declarations }
 public
 { Public declarations }
 ClickList: TStrings; { declare the field }
 end;

var
 Form1: TForm1;
implementation
{$R *.DFM}
procedure TForm1.FormCreate(Sender: TObject);
begin
 ClickList := TStringList.Create; { construct the list }
end;
procedure TForm1.FormDestroy(Sender: TObject);
begin
 ClickList.SaveToFile(ChangeFileExt(Application.ExeName, '.LOG')); { save the list
}
 ClickList.Free; { destroy the list object }
end;
procedure TForm1.FormMouseDown(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 ClickList.Add(Format('Click at (%d, %d)', [X, Y])); { add a string to the list }
end;
end.

Manipulating strings in a list
Topic groups See also
Operations commonly performed on string lists include

Counting the strings in a list
Accessing a particular string
Finding the position of a string in the list
Iterating through strings in a list
Adding a string to a list
Moving a string within a list
Deleting a string from a list
Copying a complete string list

Counting the strings in a list
Topic groups See also
The read-only Count property returns the number of strings in the list. Since string lists use zero-based
indexes, Count is one more than the index of the last string.

Accessing a particular string
Topic groups See also
The array property Strings contains the strings in the list, referenced by a zero-based index. Since
Strings is the default property for string lists, you can omit the Strings identifier when accessing the list;
thus

StringList1.Strings[0] := 'This is the first string.';
is equivalent to

StringList1[0] := 'This is the first string.';

Finding the position of a string in the list
Topic groups See also
To locate a string in a string list, use the IndexOf method. IndexOf returns the index of the first string in
the list that matches the parameter passed to it, and returns –1 if the parameter string is not found.
IndexOf finds exact matches only; if you want to match partial strings, you must iterate through the string
list yourself.
For example, you could use IndexOf to determine whether a given file name is found among the Items
of a list box:

if FileListBox1.Items.IndexOf('WIN.INI') > -1 ...

Iterating through strings in a list
Topic groups See also
To iterate through the strings in a list, use a for loop that runs from zero to Count – 1.
This example converts each string in a list box to uppercase characters.

procedure TForm1.Button1Click(Sender: TObject);
var
 Index: Integer;
begin
 for Index := 0 to ListBox1.Items.Count - 1 do
 ListBox1.Items[Index] := UpperCase(ListBox1.Items[Index]);
end;

Adding a string to a list
Topic groups See also
To add a string to the end of a string list, call the Add method, passing the new string as the parameter.
To insert a string into the list, call the Insert method, passing two parameters: the string and the index of
the position where you want it placed. For example, to make the string “Three” the third string in a list,
you would use

Insert(2, 'Three');
To append the strings from one list onto another, call AddStrings:

StringList1.AddStrings(StringList2); { append the strings from StringList2 to
StringList1 }

Moving a string within a list
Topic groups See also
To move a string in a string list, call the Move method, passing two parameters: the current index of the
string and the index you want assigned to it. For example, to move the third string in a list to the fifth
position, you would use

Move(2, 4)

Deleting a string from a list
Topic groups See also
To delete a string from a string list, call the list’s Delete method, passing the index of the string you want
to delete. If you don’t know the index of the string you want to delete, use the IndexOf method to locate
it. To delete all the strings in a string list, use the Clear method.
This example uses IndexOf and Delete find and delete a string.

with ListBox1.Items do
begin
 BIndex:=IndexOf('bureaucracy');
 if BIndex > -1 then
 Delete(BIndex);
end;

Copying a complete string list
Topic groups See also
You can use the Assign method to copy strings from a source list to a destination list, overwriting the
contents of the destination list. To append strings without overwriting the destination list, use AddStrings.
For example,

Memo1.Lines.Assign(ComboBox1.Items); { overwrites original strings }
copies the lines from a combo box into a memo (overwriting the memo), while

Memo1.Lines.AddStrings(ComboBox1.Items); { appends strings to end }
appends the lines from the combo box to the memo.
When making local copies of a string list, use the Assign method. If you simply assign one string-list
variable to another—

StringList1 := StringList2;
—the original string-list object will be lost, often with unpredictable results.

Associating objects with a string list
Topic groups See also
In addition to the strings stored in its Strings property, a string list can maintain references to objects,
which it stores in its Objects property. Like Strings, Objects is an array with a zero-based index. The
most common use for Objects is to associate bitmaps with strings for owner-draw controls.
Use the AddObject or InsertObject method to add a string and an associated object to the list in a single
step. IndexOfObject returns the index of the first string in the list associated with a specified object.
Methods like Delete, Clear, and Move operate on both strings and objects; for example, deleting a string
removes the corresponding object (if there is one).
To associate an object with an existing string, assign the object to the Objects property at the same
index. You cannot add an object without adding a corresponding string.

The Windows registry and INI files
Topic groups See also
The Windows system registry is a hierarchical database where applications store configuration
information. The VCL object TRegistry supplies methods that read and write to the registry.
Until Windows 95, most applications stored configuration information in initialization files, usually named
with the extension .INI. The VCL provides objects that facilitate maintenance and migration of programs
that use INI files. Use

TRegistry to work with the registry.
TIniFile or TMemIniFile to work with Windows 3.x INI files.
TRegistryIniFile when you want to work with both the registry and INI files. TRegistryIniFile has

properties and methods similar to those of TIniFile, but it reads and writes to the system registry. By using
a variable of type TCustomIniFile (the common ancestor of TIniFile, TMemIniFile, and TRegistryIniFile),
you can write generic code that accesses either the registry or an INI file, depending on where it is called.

Using streams
Topic groups See also
Use specialized stream objects to read or write to storage media. Each descendant of TStream
implements methods for accessing a particular medium, such as disk files, dynamic memory, and so on.
TStream descendants include TFileStream, TStringStream, TMemoryStream, TBlobStream, and
TWinSocketStream. In addition to methods for reading and writing, these objects permit applications to
seek to an arbitrary position in the stream. Properties of TStream provide information about the stream,
such as size and current position.

Using data modules and remote data modules
Topic groups See also
A data module is like a special form that contains nonvisual components. All the components in a data
module could be placed on ordinary forms alongside visual controls. But if you plan on reusing groups of
database and system objects, or if you want to isolate the parts of your application that handle database
connectivity and business rules, then data modules provide a convenient organizational tool.
There are two types of data module: standard and remote. To create a single- or two-tiered application,
use a standard data module. If you have the Client/Server or Enterprise edition of Delphi and are
creating a multi-tiered application, you can add a remote data module to your application server; see
Adding a remote data module to an application server project.

Creating and editing data modules
Topic groups See also
To create a data module, choose File|New and double-click on Data Module. Delphi opens an empty
data module in the Data Module Designer, displays the unit file for the new module in the Code editor,
and adds the module to the current project. When you reopen an existing data module, Delphi displays
its components in the Data Module Designer.
The Data Module Designer is divided into two panes. The left pane displays a hierarchical tree view of
the components in the module. The right pane has two tabs: Components and Data Diagram. The
Components page shows the components as they would appear on a form. The Data Diagram page
shows a graphical representation of internal relationships among the components, such as master-detail
links and lookup fields.

A simple data module
You can add components to a data module by selecting them on the Component palette and clicking in
the Tree or Components view of the Data Module Designer. When a component is selected in the Data
Module Designer, you can edit its properties in the Object Inspector just as you would if the component
were on a form. For more information about the Data Module Designer, see About the Data Module
Designer.

Creating business rules in a data module
Topic groups See also
In a data module’s unit file, you can write methods, including event handlers for the components in the
module, as well as global routines that encapsulate business rules. For example, you might write a
procedure to perform month-, quarter-, or year-end bookkeeping; you could call such a procedure from
an event handler for a component in the module or from any unit that uses the module.

Accessing a data module from a form
Topic groups See also
To associate visual controls on a form with a data module, you must first add the data module to the
form’s uses clause. You can do this in several ways:

In the Code editor, open the form’s unit file and add the name of the data module to the uses
clause in the interface section.

Choose File|Use Unit, then enter the name of the module or pick it from the list box in the Use
Unit dialog.

Double-click on a TTable or TQuery component in the data module to open the Fields editor.
From the Fields editor, drag any fields onto your form. Delphi prompts you to confirm that you want to add
the module to the form’s uses clause, then creates controls (such as edit boxes) for the fields.

Adding a remote data module to an application server project
Topic groups See also
Some versions of Delphi allow you to add remote data modules to application server projects. A remote
data module has an interface that clients in a multi-tiered application can access across networks. To
add a remote data module to a project, choose File|New, select the Multitier page in the New Items
dialog box, and double-click the desired type of module (Remote Data Module, MTS Data Module, or
CORBA Data Module) to open the Remote Data Module wizard. Once you add a remote data module to
a project, you use it just like a standard data module.
For more information about multi-tiered database applications, see Creating multi-tiered applications.

Using the Object Repository
Topic groups See also
The Object Repository (Tools|Repository) makes it easy share forms, dialog boxes, frames, and data
modules. It also provides templates for new projects and wizards that guide the user through the
creation of forms and projects. The repository is maintained in DELPHI32.DRO (by default in the BIN
directory), a text file that contains references to the items that appear in the Repository and New Items
dialogs.

Sharing items within a project
Topic groups See also
You can share items within a project without adding them to the Object Repository. When you open the
New Items dialog box (File|New), you'll see a page tab with the name of the current project. This page
lists all the forms, dialog boxes, and data modules in the project. You can derive a new item from an
existing item and customize it as needed.

Adding items to the Object Repository
Topic groups See also
You can add your own projects, forms, frames, and data modules to those already available in the
Object Repository. To add an item to the Object Repository,
1 If the item is a project or is in a project, open the project.
2 For a project, choose Project|Add To Repository. For a form or data module, right-click the item and

choose Add To Repository.
3 Type a description, title, and author.
4 Decide which page you want the item to appear on in the New Items dialog box, then type the

name of the page or select it from the Page combo box. If you type the name of a page that doesn’t
exist, Delphi creates a new page.

5 Choose Browse to select an icon to represent the object in the Object Repository.
6 Choose OK.

Sharing objects in a team environment
Topic groups See also
You can share objects with your workgroup or development team by making a repository available over
a network. To use a shared repository, all team members must select the same Shared Repository
directory in the Environment Options dialog:
1 Choose Tools|Environment Options.
2 On the Preferences page, locate the Shared Repository panel. In the Directory edit box, enter the

directory where you want to locate the shared repository. Be sure to specify a directory that’s
accessible to all team members.

The first time an item is added to the repository, Delphi creates a DELPHI32.DRO file in the Shared
Repository directory if one doesn’t exist already.

Using an Object Repository item in a project
Topic groups See also
To access items in the Object Repository, choose File|New. The New Items dialog appears, showing all
the items available. Depending on the type of item you want to use, you have up to three options for
adding the item to your project:

Copy
Inherit
Use

Copying an item
Topic groups See also
Choose Copy to make an exact copy of the selected item and add the copy to your project. Future
changes made to the item in the Object Repository will not be reflected in your copy, and alterations
made to your copy will not affect the original Object Repository item.
Copy is the only option available for project templates.

Inheriting an item
Topic groups See also
Choose Inherit to derive a new class from the selected item in the Object Repository and add the new
class to your project. When you recompile your project, any changes that have been made to the item in
the Object Repository will be reflected in your derived class, in addition to changes you make to the item
in your project. Changes made to your derived class do not affect the shared item in the Object
Repository.
Inherit is available for forms, dialog boxes, and data modules, but not for project templates. It is the only
option available for reusing items within the same project.

Using an item
Topic groups See also
Choose Use when you want the selected item itself to become part of your project. Changes made to
the item in your project will appear in all other projects that have added the item with the Inherit or Use
option. Select this option with caution.
The Use option is available for forms, dialog boxes, and data modules.

Using project templates
Topic groups See also
Templates are predesigned projects that you can use as starting points for your own work. To create a
new project from a template,
1 Choose File|New to display the New Items dialog box.
2 Choose the Projects tab.
3 Select the project template you want and choose OK.
4 In the Select Directory dialog, specify a directory for the new project’s files.
Delphi copies the template files to the specified directory, where you can modify them. The original
project template is unaffected by your changes.

Modifying shared items
Topic groups See also
If you modify an item in the Object Repository, your changes will affect all future projects that use the
item as well as existing projects that have added the item with the Use or Inherit option. To avoid
propagating changes to other projects, you have several alternatives:

Copy the item and modify it in your current project only.
Copy the item to the current project, modify it, then add it to the Repository under a different

name.
Create a component, DLL, component template, or frame from the item. If you create a

component or DLL, you can share it with other developers.

Specifying a default project, new form, and main form
Topic groups See also
By default, when you choose File|New Application or File|New Form, Delphi displays a blank form. You
can change this behavior by reconfiguring the Repository:
1 Choose Tools|Repository
2 If you want to specify a default project, select the Projects page and choose an item under Objects.

Then select the New Project check box.
3 If you want to specify a default form, select a Repository page (such as Forms), them choose a

form under Objects. To specify the default new form (File|New Form), select the New Form check
box. To specify the default main form for new projects, select the Main Form check box.

4 Click OK.

Adding custom components to the IDE
Topic groups See also
You can install custom components—written by yourself or third parties—on the Component palette and
use them in your applications. To write a component, see Overview of component creation. To install an
existing component, see Installing component packages.

Creating applications
Topic groups See also
The main use of Delphi is designing and building Windows applications. There are three basic kinds of
Windows application:

Windows GUI applications
Console applications
Service applications

Windows applications
Topic groups See also
When you compile a project, an executable (.EXE) file is created. The executable usually provides the
basic functionality of your program, and simple programs often consist of only an EXE. You can extend
the application by calling DLLs, packages, and other support files from the executable.
Windows offers two application UI models:

Single document interface (SDI)
Multiple document interface (MDI)

In addition to the implementation model of your applications, the design-time behavior of your project
and the runtime behavior of your application can be manipulated by setting project options in the IDE.

User interface models
Topic groups See also
Any form can be implemented as a multiple document interface (MDI) or single document interface
(SDI) form. In an MDI application, more than one document or child window can be opened within a
single parent window. This is common in applications such as spreadsheets or word processors. An SDI
application, in contrast, normally contains a single document view. To make your form an SDI
application, set the FormStyle property of your Form object to fsNormal.
For more information on developing the UI for an application, see Developing the application user
interface.

SDI Applications
Topic groups See also
To create a new SDI application,
1 Select File|New to bring up the New Items dialog.
2 Click on the Projects page and select SDI Application.
3 Click OK.
By default, the FormStyle property of your Form object is set to fsNormal, so Delphi assumes that all
new applications are SDI applications.

MDI applications
Topic groups See also
To create a new MDI application,
1 Select File|New to bring up the New Items dialog.
2 Click on the Projects page and select MDI Application.
3 Click OK.
MDI applications require more planning and are somewhat more complex to design than SDI
applications. MDI applications spawn child windows that reside within the client window; the main form
contains child forms. Set the FormStyle property of the TForm object to specify whether a form is a child
(fsMDIForm) or main form (fsMDIChild). It is a good idea to define a base class for your child forms and
derive each child form from this class, to avoid having to reset the child form’s properties.

Setting IDE, project, and compilation options
Topic groups See also
Use Project|Project Options to specify various options for your project.

Setting default project options
To change the default options that apply to all future projects, set the options in the Project Options
dialog box and check the Default box at the bottom right of the window. All new projects will now have
the current options selected by default.

Programming templates
Topic groups
Programming templates are commonly used “skeleton“ structures that you can add to your source code
and then fill in. For example, if you want to use a for loop in your code, you could insert the following
template:

for := to do
begin
end;

To insert a code template in the Code editor, press Ctrl-j and select the template you want to use. You
can also add your own templates to this collection. To add a template:
1 Select Tools|Environment Options.
2 Click the Code Insight tab.
3 In the templates section click Add.
4 Choose a shortcut name and enter a brief description of the new template.
5 Add the template code to the Code text box.
6 Click OK.

Console applications
Topic groups See also
Console applications are 32-bit Windows programs that run without a graphical interface, usually in a
console window. These applications typically don’t require much user input and perform a limited set of
functions.
To create a new console application, choose File|New and select Console Wizard from the New Items
dialog box.

Service applications
Topic groups See also
Service applications take requests from client applications, process those requests, and return
information to the client applications. They typically run in the background, without much user input. A
web, FTP, or e-mail server is an example of a service application.
To create an application that implements a Win32 service, Choose File|New, and select Service
Application from the New Items page. This adds a global variable named Application to your project,
which is of type TServiceApplication.
Once you have created a service application, you will see a window in the designer that corresponds to
a service (TService). Implement the service by setting its properties and event handlers in the Object
Inspector. You can add additional services to your service application by choosing Service from the new
items dialog. Do not add services to an application that is not a service application. While a TService
object can be added, the application will not generate the requisite events or make the appropriate
Windows calls on behalf of the service.
Once your service application is built, you can install its services with the Service Control Manager
(SCM). Other applications can then launch your services by sending requests to the SCM.
To install your application’s services, run it using the /INSTALL option. The application installs its
services and exits, giving a confirmation message if the services are successfully installed. You can
suppress the confirmation message by running the service application using the /SILENT option.
To uninstall the services, run it from the command line using the /UNINTALL option. (You can also use
the /SILENT option to suppress the confirmation message when uninstalling).

Example:This service has a TServerSocket whose port is set to 80. This is the default port for Web
Browsers to make requests to Web Servers and for Web Servers to make responses to Web
Browsers. This particular example produces a text document in the C:\Temp directory called
WebLogxxx.log (where xxx is the ThreadID). There should be only one Server listening on any
given port, so if you have a web server, you should make sure that it is not listening (the service
is stopped).

To see the results: open up a web browser on the local machine and for the address, type 'localhost'
(with no quotes). The Browser will time out eventually, but you should now have a file called
weblogxxx.log in the C:\temp directory.
1 To create the example, choose File|New and select Service Application from the New Items dialog.

You will see a window appear named Service1. From the Internet page of the component palette,
add a ServerSocket component to the service window (Service1).

2 Next, add a private data member of type TMemoryStream to the TService1 class. The interface
section of your unit should now look like this:

interface
uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls, SvcMgr, Dialogs,
 ScktComp;
type
 TService1 = class(TService)
 ServerSocket1: TServerSocket;
 procedure ServerSocket1ClientRead(Sender: TObject;
 Socket: TCustomWinSocket);
 procedure Service1Execute(Sender: TService);
 private
 { Private declarations }
 Stream: TMemoryStream; // Add this line here
 public
 function GetServiceController: PServiceController; override;
 { Public declarations }
 end;
var
 Service1: TService1;

3 Next, select ServerSocket1, the component you added in step 1. In the Object Inspector, double
click the OnClientRead event and add the following event handler:

procedure TService1.ServerSocket1ClientRead(Sender: TObject;
 Socket: TCustomWinSocket);
var
 Buffer: PChar;
begin
 Buffer := nil;
while Socket.ReceiveLength > 0 do begin
 Buffer := AllocMem(Socket.ReceiveLength);
 try
 Socket.ReceiveBuf(Buffer^, Socket.ReceiveLength);
 Stream.Write(Buffer^, StrLen(Buffer));
 finally
 FreeMem(Buffer);
 end;
 Stream.Seek(0, soFromBeginning);
 Stream.SaveToFile('c:\Temp\Weblog' + IntToStr(ServiceThread.ThreadID) + '.log');
 end;
end;

4 Finally, select Service1 by clicking in the window’s client area (but not on the ServiceSocket). In the
Object Inspector, double click the OnExecute event and add the following event handler:

procedure TService1.Service1Execute(Sender: TService);
begin
 Stream := TMemoryStream.Create;
 try
 ServerSocket1.Port := 80; // WWW port
 ServerSocket1.Active := True;
 while not Terminated do begin
 ServiceThread.ProcessRequests(False);
 end;
 ServerSocket1.Active := False;
 finally
 Stream.Free;
 end;
end;

When writing your service application, you should be aware of:
Service threads
Service name properties
Debugging services

Service threads
Topic groups See also
Each service has its own thread (TServiceThread), so if your service application implements more than
one service you must ensure that the implementation of your services is thread-safe. TServiceThread is
designed so that you can implement the service in the TService OnExecute event handler. The service
thread has its own Execute method which contains a loop that calls the service’s OnStart and
OnExecute handlers before processing new requests. Because service requests can take a long time to
process and the service application can receive simultaneous requests from more than one client, it is
more efficient to spawn a new thread (derived from TThread, not TServiceThread) for each request and
move the implementation of that service to the new thread’s Execute method. This allows the service
thread’s Execute loop to process new requests continually without having to wait for the service’s
OnExecute handler to finish. The following example demonstrates.

Example:This service beeps every 500 milliseconds from within the standard thread. It handles pausing,
continuing, and stopping of the thread when the service is told to pause, continue, or stop.

1 Choose File|New and select Service Application from the New Items dialog. You will see a window
appear named Service1.

2 In the interface section of your unit, declare a new descendant of TThread named TSparkyThread.
This is the thread that does the work for your service. The declaration should appear as follows:

TSparkyThread = class(TThread)
 public
 procedure Execute; override;
 end;

3 Next, in the implementation section of your unit, create a global variable for a TSparkyThread
instance:

var
 SparkyThread: TSparkyThread;

4 Add the following code to the implementation section for the TSparkyThread Execute method (the
thread function):

procedure TSparkyThread.Execute;
begin
 while not Terminated do
 begin
 Beep;
 Sleep(500);
 end;
end;

5 Select the Service window (Service1), and double-click the OnStart event in the Object Inspector.
Add the following OnStart event handler:

procedure TService1.Service1Start(Sender: TService; var Started: Boolean);
begin
 SparkyThread := TSparkyThread.Create(False);
 Started := True;
end;

6 Double-click the OnContinue event in the Object Inspector. Add the following OnContinue event
handler:

procedure TService1.Service1Continue(Sender: TService; var Continued: Boolean);
begin
 SparkyThread.Resume;
 Continued := True;
end;

7 Double-click the OnPause event in the Object Inspector. Add the following OnPause event handler:
procedure TService1.Service1Pause(Sender: TService; var Paused: Boolean);
begin
 SparkyThread.Suspend;
 Paused := True;
end;

8 Finally, double-click the OnStop event in the Object Inspector and add the following OnStop event
handler:

procedure TService1.Service1Stop(Sender: TService; var Stopped: Boolean);
begin
 SparkyThread.Terminate;
 Stopped := True;
end;

When developing server applications, choosing to spawn a new thread depends on the nature of the
service being provided, the anticipated number of connections, and the expected number of processors
on the computer running the service.

Service name properties
Topic groups See also
The VCL provides classes for creating service applications. These include TService and TDependency.
When using these classes, the various name properties can be confusing. This section describes the
differences.
Services have user names (called Service start names) that are associated with passwords, display
names for display in manager and editor windows, and actual names (the name of the service).
Dependencies can be services or they can be load ordering groups. They also have names and display
names. And because service objects are derived from TComponent, they inherit the Name property. The
following sections summarize the name properties:

TDependency properties
The TDependency DisplayName is both a display name and the actual name of the service. It is nearly
always the same as the TDependency Name property.

TService name properties
The TService Name property is inherited from TComponent. It is the name of the component, and is
also the name of the service. For dependencies that are services, this property is the same as the
TDependency Name and DisplayName properties.
TService’s DisplayName is the name displayed in the Service Manager window. This often differs from
the actual service name (TService.Name, TDependency.DisplayName, TDependency.Name). Note that
the DisplayName for the Dependency and the DisplayName for the Service usually differ.
Service start names are distinct from both the service display names and the actual service names. A
ServiceStartName is the user name input on the Start dialog selected from the Service Control Manager.

Debugging services
Topic groups See also
Debugging service applications can be tricky, because it requires short time intervals:
1 First, launch the application in the debugger. Wait a few seconds until it has finished loading.
2 Quickly start the service from the control panel or from the command line:
net start MyServ

You must launch the service quickly (within 15-30 seconds of application startup) because the
application will terminate if no service is launched.
Another approach is to attach to the service application process when it is already running. (That is,
starting the service first, and then attaching to the debugger). To attach to the service application
process, choose Run|Attach To Process, and select the service application in the resulting dialog.
In some cases, this second approach may fail, due to insufficient rights. If that happens, you can use the
Service Control Manager to enable your service to work with the debugger:
1 First create a key called Image File Execution Options in the following registry location:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion

2 Create a subkey with the same name as your service (for example, MYSERV.EXE). To this subkey,
add a value of type REG_SZ, named Debugger. Use the full path to the debugger as the string
value.

3 In the Services control panel applet, select your service, click Startup and check Allow Service to
Interact with Desktop.

Creating packages and DLLs
Topic groups See also
Dynamic link libraries (DLLs) are modules of compiled code that work in conjunction with an executable
to provide functionality to an application.
Packages are special DLLs used by Delphi applications, the IDE, or both. There are two kinds of
packages: runtime packages and design-time packages. Runtime packages provide functionality to a
program while that program is running. Design-time packages extend the functionality of the IDE.
For more information on packages, see Working with packages and components.

When to use packages and DLLs
Topic groups
For most applications written in Delphi, packages provide greater flexibility and are easier to create than
DLLs. However, there are several situations where DLLs would be better suited to your projects than
packages:

Your code module will be called from non-Delphi applications.
You are extending the functionality of a web server.
You are creating a code module to be used by third-party developers.
Your project is an OLE container.

Writing database applications
Topic groups
One of Delphi’s strengths is its support for creating advanced database applications. Delphi includes
built-in tools that allow you to connect to Oracle, Sybase, Informix, dBASE, Paradox, or other servers
while providing transparent data sharing between applications. The Borland Database Engine (BDE)
supports scaling from desktop to client/server applications.
Tools, such as the Database Explorer, simplify the task of writing database applications. The Database
Explorer is a hierarchical browser for inspecting and modifying database server-specific schema objects
including tables, fields, stored procedure definitions, triggers, references, and index descriptions.
Through a persistent connection to a database, Database Explorer lets you

Create and maintain database aliases
View schema data in a database, such as tables, stored procedures, and triggers
View table objects, such as fields and indexes
Create, view, and modify data in tables
Enter SQL statements to directly query any database
Create and maintain data dictionaries to store attribute sets

Building distributed applications
Topic groups
Distributed applications are applications that are deployed to various machines and platforms and work
together, typically over a network, to perform a set of related functions. For instance, an application for
purchasing items and tracking those purchases for a nationwide company would require individual client
applications for all the outlets, a main server that would process the requests of those clients, and an
interface to a database that stores all the information regarding those transactions. By building a
distributed client application (for instance, a web-based application), maintaining and updating the
individual clients is vastly simplified.
Delphi provides several options for the implementation model of distributed applications:

TCP/IP applications
COM and DCOM applications
CORBA applications
Database applications

Distributing applications using TCP/IP
Topic groups See also
TCP/IP is a communication protocol that allows you to write applications that communicate over
networks. You can implement virtually any design in your applications. TCP/IP provides a transport layer,
but does not impose any particular architecture for creating your distributed application.
The growth of the Internet has created an environment where most computers already have some form
of TCP/IP access, which simplifies distributing and setting up the application.
Applications that use TCP/IP can be message-based distributed applications (such as Web server
applications that service HTTP request messages) or distributed object applications (such as distributed
database applications that communicate using Windows sockets).
The most basic method of adding TCP/IP functionality to your applications is to use client or server
sockets. Delphi also provides support for applications that extend Web servers by creating CGI scripts
or DLLs. In addition, Delphi provides support for TCP/IP-based database applications.

Using sockets in applications
Topic groups See also
Two VCL classes, TClientSocket and TServerSocket, allow you to create TCP/IP socket connections to
communicate with other remote applications. For more information on sockets, see Working with
sockets.

Creating Web server applications
Topic groups See also
To create a new Web server application, select File|New and select Web Server Application in the New
Items dialog box. Then select the Web server application type:

ISAPI and NSAPI
CGI stand-alone
Win-CGI stand-alone

CGI and Win-CGI applications use more system resources on the server, so complex applications are
better created as ISAPI or NSAPI applications.
For more information on building Web server applications, see Creating Internet server applications.

ISAPI and NSAPI Web server applications
Selecting this type of application sets up your project as a DLL. ISAPI or NSAPI Web server applications
are DLLs loaded by the Web server. Information is passed to the DLL, processed, and returned to the
client by the Web server.

CGI stand-alone Web server applications
CGI Web server applications are console applications that receive requests from clients on standard
input, processes those requests, and sends back the results to the server on standard output to be sent
to the client.

Win-CGI stand-alone Web server applications
Win-CGI Web server applications are Windows applications that receive requests from clients from an
INI file written by the server and writes the results to a file that the server sends to the client.

Distributing applications using COM and DCOM
Topic groups See also
COM is the Component Object Model, a Windows-based distributed object architecture designed to
provide object interoperability using predefined routines called interfaces. COM applications use objects
that are implemented by a different process or, if you use DCOM, on a separate machine.

COM and DCOM
Delphi has classes and wizards that make it easy to create the essential elements of a COM, OLE, or
ActiveX application. Using Delphi to create COM-based applications offers a wide range of possibilities,
from improving software design by using interfaces internally in an application, to creating objects that
can interact with other COM-based API objects on the system, such as the Win95 Shell extensions and
DirectX multimedia support.
For more information on COM and Active X controls, see Overview of COM technologies, Creating an
ActiveX control and Distributing a client application as an ActiveX control.
For more information on DCOM, see Using DCOM connections.

MTS
The Microsoft Transaction Server (MTS) is a an extension to DCOM that provides transaction services,
security, and resource pooling for distributed COM applications.
For more information on MTS, see Creating MTS objects and Using MTS.

Distributing applications using CORBA
Topic groups See also
Common Object Request Broker Architecture (CORBA) is a method of using distributed objects in
applications. The CORBA standard is used on many platforms, so writing CORBA applications allows
you to make use of programs that are not running on a Windows machine.
Like COM, CORBA is a distributed object architecture, meaning that client applications can make use of
objects that are implemented on a remote server.
For more information on CORBA, see Writing CORBA applications.
For instructions on distributing applications using CORBA, see Deploying CORBA applications.

Distributing database applications
Topic groups See also
Delphi provides support for creating distributed database applications using the MIDAS technology. This
powerful technology includes a coordinated set of components that allow you to build a wide variety of
multi-tiered database applications. Distributed database applications can be built on a variety of
communications protocols, including DCOM, CORBA, TCP/IP, and OLEnterprise.
For more information about building distributed database applications, see Creating multi-tiered
applications..
Distributing database applications often requires you to distribute the Borland Database Engine (BDE) in
addition to the application files. For information on deploying the BDE, see Deploying database
applications.

Common programming tasks
Topic groups
This section of the Help system discusses the fundamentals for some of the common programming
tasks in Delphi:

Handling exceptions
Using interfaces
Working with strings
Working with files
Defining new data types

Handling exceptions
Topic groups
Delphi provides a mechanism to ensure that applications are robust, meaning that they handle errors in
a consistent manner. Exception handling allows the application to recover from errors if possible and to
shut down if need be, without losing data or resources. Error conditions in Delphi are indicated by
exceptions. This topic describes the following tasks for using exceptions to create safe applications:

Protecting blocks of code
Protecting resource allocations
Handling RTL exceptions
Handling component exceptions
Using TApplication.HandleException
Silent exceptions
Defining your own exceptions

Protecting blocks of code
Topic groups
To make your applications robust, your code needs to recognize exceptions when they occur and
respond to them. If you don't specify a response, the application will present a message box describing
the error. Your job, then, is to recognize places where errors might happen, and define responses,
particularly in areas where errors could cause the loss of data or system resources.
When you create a response to an exception, you do so on blocks of code. When you have a series of
statements that all require the same kind of response to errors, you can group them into a block and
define error responses that apply to the whole block.
Blocks with specific responses to exceptions are called protected blocks because they can guard
against errors that might otherwise either terminate the application or damage data.
To protect blocks of code you need to understand

Responding to exceptions
Exceptions and the flow of control
Nesting exception responses

Responding to exceptions
Topic groups
When an error condition occurs, the application raises an exception, meaning it creates an exception
object. Once an exception is raised, your application can execute cleanup code, handle the exception,
or both.

Executing cleanup code: The simplest way to respond to an exception is to guarantee that
some cleanup code is executed. This kind of response doesn't correct the condition that caused the error
but lets you ensure that your application doesn't leave its environment in an unstable state. You typically
use this kind of response to ensure that the application frees allocated resources, regardless of whether
errors occur.

Handling an exception: This is a specific response to a specific kind of exception. Handling an
exception clears the error condition and destroys the exception object, which allows the application to
continue execution. You typically define exception handlers to allow your applications to recover from
errors and continue running. Types of exceptions you might handle include attempts to open files that
don't exist, writing to full disks, or calculations that exceed legal bounds. Some of these, such as “File not
found,” are easy to correct and retry, while others, such as running out of memory, might be more difficult
for the application or the user to correct.

Exceptions and the flow of control
Topic groups
Object Pascal makes it easy to incorporate error handling into your applications because exceptions
don't get in the way of the normal flow of your code. In fact, by moving error checking and error handling
out of the main flow of your algorithms, exceptions can simplify the code you write.
When you declare a protected block, you define specific responses to exceptions that might occur within
that block. When an exception occurs in that block, execution immediately jumps to the response you
defined, then leaves the block.

Example:The following code that includes a protected block. If any exception occurs in the protected
block, execution jumps to the exception-handling part, which beeps. Execution resumes outside
the block.

...
try { begin the protected block }
 Font.Name := 'Courier'; { if any exception occurs... }
 Font.Size := 24; { ...in any of these statements... }
 Color := clBlue;
except{ ...execution jumps to here }
 on Exception do MessageBeep(0); { this handles any exception by beeping }
end;
... { execution resumes here, outside the protected block}

Nesting exception responses
Topic groups
Your code defines responses to exceptions that occur within blocks. Because Pascal allows you to nest
blocks inside other blocks, you can customize responses even within blocks that already customize
responses.
In the simplest case, for example, you can protect a resource allocation, and within that protected block,
define blocks that allocate and protect other resources. Conceptually, that might look something like this:

You can also use nested blocks to define local handling for specific exceptions that overrides the handling
in the surrounding block. Conceptually, that looks something like this:

You can also mix different kinds of exception-response blocks, nesting resource protections within
exception handling blocks and vice versa.

Protecting resource allocations
Topic groups
One key to having a robust application is ensuring that if it allocates resources, it also releases them,
even if an exception occurs. For example, if your application allocates memory, you need to make sure it
eventually releases the memory, too. If it opens a file, you need to make sure it closes the file later.
Keep in mind that exceptions don't come just from your code. A call to an RTL routine, for example, or
another component in your application might raise an exception. Your code needs to ensure that if these
conditions occur, you release allocated resources.
To protect resources effectively, you need to understand the following:

What kind of resources need protection?
Creating a resource protection block

What kind of resources need protection?
Topic groups
Under normal circumstances, you can ensure that an application frees allocated resources by including
code for both allocating and freeing. When exceptions occur, however, you need to ensure that the
application still executes the resource-freeing code.
Some common resources that you should always be sure to release are:

Files
Memory
Windows resources
Objects

Example:The following event handler allocates memory, then generates an error, so it never executes the
code to free the memory:

procedure TForm1.Button1Click(Sender: TComponent);
var
 APointer: Pointer;
 AnInteger, ADividend: Integer;
begin
 ADividend := 0;
 GetMem(APointer, 1024); { allocate 1K of memory }
 AnInteger := 10 div ADividend; { this generates an error }
 FreeMem(APointer, 1024);{ it never gets here }
end;

Although most errors are not that obvious, the example illustrates an important point: When the division-
by-zero error occurs, execution jumps out of the block, so the FreeMem statement never gets to free the
memory.
In order to guarantee that the FreeMem gets to free the memory allocated by GetMem, you need to put
the code in a resource-protection block.

Creating a resource protection block
Topic groups
To ensure that you free allocated resources, even in case of an exception, you embed the resource-
using code in a protected block, with the resource-freeing code in a special part of the block. Here's an
outline of a typical protected resource allocation:

{ allocate the resource }
try
 { statements that use the resource }
finally
 { free the resource }
end;

The key to the try..finally block is that the application always executes any statements in the finally part
of the block, even if an exception occurs in the protected block. When any code in the try part of the
block (or any routine called by code in the try part) raises an exception, execution halts at that point.
Once an exception handler is found, execution jumps to the finally part, which is called the cleanup
code. After the finally part is executed, the exception handler is called. If no exception occurs, the
cleanup code is executed in the normal order, after all the statements in the try part.

Example:The following code illustrates an event handler that allocates memory and generates an error,
but still frees the allocated memory:

procedure TForm1.Button1Click(Sender: TComponent);
var
 APointer: Pointer;
 AnInteger, ADividend: Integer;
begin
 ADividend := 0;
 GetMem(APointer, 1024); { allocate 1K of memory }
 try
 AnInteger := 10 div ADividend; { this generates an error }
 finally
 FreeMem(APointer, 1024); { execution resumes here, despite the error }
 end;
end;

The statements in the termination code do not depend on an exception occurring. If no statement in the
try part raises an exception, execution continues through the termination code.

Handling RTL exceptions
Topic groups
When you write code that calls routines in the runtime library (RTL), such as mathematical functions or
file-handling procedures, the RTL reports errors back to your application in the form of exceptions. By
default, RTL exceptions generate a message that the application displays to the user. You can define
your own exception handlers to handle RTL exceptions in other ways.
There are also silent exceptions that do not, by default, display a message.
To handle RTL exceptions effectively, you need to understand the following:

What are the RTL exceptions?
Creating an exception handler
Exception handling statements
Using the exception instance
Scope of exception handlers
Providing default exception handlers
Handling classes of exceptions
Reraising the exception

What are the RTL exceptions?
Topic groups
The runtime library's exceptions are defined in the SysUtils unit, and they all descend from a generic
exception-object type called Exception. Exception provides the string for the message that RTL
exceptions display by default.
There are several kinds of exceptions raised by the RTL, as described in the following table.

Error type Cause Meaning
Input/output Error accessing a file

or I/O device
Most I/O exceptions are related to error codes
returned by Windows when accessing a file.

Heap Error using dynamic
memory

Heap errors can occur when there is
insufficient memory available, or when an
application disposes of a pointer that points
outside the heap.

Integer math Illegal operation on
integer-type
expressions

Errors include division by zero, numbers or
expressions out of range, and overflows.

Floating-point math Illegal operation on
real-type expressions

Floating-point errors can come from either a
hardware coprocessor or the software
emulator. Errors include invalid instructions,
division by zero, and overflow or underflow.

Typecast Invalid typecasting with
the as operator

Objects can only be typecast to compatible
types.

Conversion Invalid type conversion Type-conversion functions such as IntToStr,
StrToInt, and StrToFloat raise conversion
exceptions when the parameter cannot be
converted to the desired type.

Hardware System condition Hardware exceptions indicate that either the
processor or the user generated some kind of
error condition or interruption, such as an
access violation, stack overflow, or keyboard
interrupt.

Variant Illegal type coercion Errors can occur when referring to variants in
expressions where the variant cannot be
coerced into a compatible type.

For a list of the RTL exception types, see the SysUtils unit.

Creating an exception handler
Topic groups
An exception handler is code that handles a specific exception or exceptions that occur within a
protected block of code.
To define an exception handler, embed the code you want to protect in an exception-handling block and
specify the exception handling statements in the except part of the block. Here is an outline of a typical
exception-handling block:

try
 { statements you want to protect }
except
 { exception-handling statements }
end;

The application executes the statements in the except part only if an exception occurs during execution
of the statements in the try part. Execution of the try part statements includes routines called by code in
the try part. That is, if code in the try part calls a routine that doesn't define its own exception handler,
execution returns to the exception-handling block, which handles the exception.
When a statement in the try part raises an exception, execution immediately jumps to the except part,
where it steps through the specified exception-handling statements, or exception handlers, until it finds a
handler that applies to the current exception.
Once the application locates an exception handler that handles the exception, it executes the statement,
then automatically destroys the exception object. Execution continues at the end of the current block.

Exception handling statements
Topic groups
Each on statement in the except part of a try..except block defines code for handling a particular kind
of exception. The form of these exception-handling statements is as follows:

on <type of exception> do <statement>;
Example:You can define an exception handler for division by zero to provide a default result:

function GetAverage(Sum, NumberOfItems: Integer): Integer;
begin
 try
 Result := Sum div NumberOfItems; { handle the normal case }
 except
 on EDivByZero do Result := 0; { handle the exception only if needed }
 end;
end;

Note that this is clearer than having to test for zero every time you call the function. Here's an equivalent
function that doesn't take advantage of exceptions:

function GetAverage(Sum, NumberOfItems: Integer): Integer;
begin
 if NumberOfItems <> 0 then { always test }
 Result := Sum div NumberOfItems{ use normal calculation }
 else Result := 0; { handle exceptional case }
end;

The difference between these two functions really defines the difference between programming with
exceptions and programming without them. This example is quite simple, but you can imagine a more
complex calculation involving hundreds of steps, any one of which could fail if one of dozens of inputs
were invalid.
By using exceptions, you can spell out the “normal” expression of your algorithm, then provide for those
exceptional cases when it doesn't apply. Without exceptions, you have to test every single time to make
sure you're allowed to proceed with each step in the calculation.

Using the exception instance
Topic groups
Most of the time, an exception handler doesn't need any information about an exception other than its
type, so the statements following on..do are specific only to the type of exception. In some cases,
however, you might need some of the information contained in the exception instance.
To read specific information about an exception instance in an exception handler, you use a special
variation of on..do that gives you access to the exception instance. The special form requires that you
provide a temporary variable to hold the instance.

Example:If you create a new project that contains a single form, you can add a scroll bar and a command
button to the form. Double-click the button and add the following line to its click-event handler:

ScrollBar1.Max := ScrollBar1.Min - 1;
That line raises an exception because the maximum value of a scroll bar must always exceed the
minimum value. The default exception handler for the application opens a dialog box containing the
message in the exception object. You can override the exception handling in this handler and create
your own message box containing the exception's message string:

try
 ScrollBar1.Max := ScrollBar1.Min - 1;
except
 on E: EInvalidOperation do
 MessageDlg('Ignoring exception: ' + E.Message, mtInformation, [mbOK], 0);
end;

The temporary variable (E in this example) is of the type specified after the colon (EInvalidOperation in
this example). You can use the as operator to typecast the exception into a more specific type if needed.
Note:Never destroy the temporary exception object. Handling an exception automatically destroys the

exception object. If you destroy the object yourself, the application attempts to destroy the object
again, generating an access violation.

Scope of exception handlers
Topic groups
You do not need to provide handlers for every kind of exception in every block. In fact, you need to
provide handlers only for those exceptions that you want to handle specially within a particular block.
If a block does not handle a particular exception, execution leaves that block and returns to the block
that contains the block (or to the code that called the block), with the exception still raised. This process
repeats with increasingly broad scope until either execution reaches the outermost scope of the
application or a block at some level handles the exception.

Providing default exception handlers
Topic groups
You can provide a single default exception handler to handle any exceptions you haven't provided
specific handlers for. To do that, you add an else part to the except part of the exception-handling block:

try
 { statements }
except
 on ESomething do
 { specific exception-handling code };
 else
 { default exception-handling code };
end;

Adding default exception handling to a block guarantees that the block handles every exception in some
way, thereby overriding all handling from the containing block.

Caution: It is not advisable to use this all-encompassing default exception handler. The else clause
handles all exceptions, including those you know nothing about. In general, your code should
handle only exceptions you actually know how to handle. If you want to handle cleanup and
leave the exception handling to code that has more information about the exception and how to
handle it, then you can do so use an enclosing try..finally block:

try
 try
 { statements }
 except
 on ESomething do { specific exception-handling code };
 end;
finally
 {cleanup code };
end;

For another approach to augmenting exception handling, see Reraising the exception.

Handling classes of exceptions
Topic groups
Because exception objects are part of a hierarchy, you can specify handlers for entire parts of the
hierarchy by providing a handler for the exception class from which that part of the hierarchy descends.

Example:The following block outlines an example that handles all integer math exceptions specially:
try
 { statements that perform integer math operations }
except
 on EIntError do { special handling for integer math errors };
end;

You can still specify specific handlers for more specific exceptions, but you need to place those handlers
above the generic handler, because the application searches the handlers in the order they appear in,
and executes the first applicable handler it finds. For example, this block provides special handling for
range errors, and other handling for all other integer math errors:

try
 { statements performing integer math }
except
 on ERangeError do { out-of-range handling };
 on EIntError do { handling for other integer math errors };
end;

Note that if the handler for EIntError came before the handler for ERangeError, execution would never
reach the specific handler for ERangeError.

Reraising the exception
Topic groups
Sometimes when you handle an exception locally, you actually want to augment the handling in the
enclosing block, rather than replacing it. Of course, when your local handler finishes its handling, it
destroys the exception instance, so the enclosing block's handler never gets to act. You can, however,
prevent the handler from destroying the exception, giving the enclosing handler a chance to respond.

Example:When an exception occurs, you might want to display some sort of message to the user, then
proceed with the standard handling. To do that, you declare a local exception handler that
displays the message then calls the reserved word raise. This is called reraising the exception,
as shown in this example:

try
 { statements }
 try
 { special statements }
 except
 on ESomething do
 begin
 { handling for only the special statements }
 raise; { reraise the exception }
 end;
 end;
except
 on ESomething do ...; { handling you want in all cases }
end;

If code in the { statements } part raises an ESomething exception, only the handler in the outer except
part executes. However, if code in the { special statements } part raises ESomething, the handling in the
inner except part is executed, followed by the more general handling in the outer except part.
By reraising exceptions, you can easily provide special handling for exceptions in special cases without
losing (or duplicating) the existing handlers.

Handling component exceptions
Topic groups
Delphi's components raise exceptions to indicate error conditions. Most component exceptions indicate
programming errors that would otherwise generate a runtime error. The mechanics of handling
component exceptions are no different than handling RTL exceptions.

Example:A common source of errors in components is range errors in indexed properties. For example, if
a list box has three items in its list (0..2) and your application attempts to access item number 3,
the list box raises a “List index out of bounds” exception.

The following event handler contains an exception handler to notify the user of invalid index access in a
list box:

procedure TForm1.Button1Click(Sender: TObject);
begin
 ListBox1.Items.Add('a string'); { add a string to list box }
 ListBox1.Items.Add('another string'); { add another string... }
 ListBox1.Items.Add('still another string'); { ...and a third string }
 try
 Caption := ListBox1.Items[3]; { set form caption to fourth string in list
box }
 except
 on EStringListError do
 MessageDlg('List box contains fewer than four strings', mtWarning, [mbOK], 0);
 end;
end;

If you click the button once, the list box has only three strings, so accessing the fourth string (Items[3])
raises an exception. Clicking a second time adds more strings to the list, so it no longer causes the
exception.

Using TApplication.HandleException
Topic groups
HandleException provides default handling of exceptions for the application. If an exception passes
through all the try blocks in the application code, the application automatically calls the HandleException
method, which displays a dialog box indicating that an error has occurred. You can use HandleException
in this fashion:

 try
 { statements }
 except
 Application.HandleException(Self);
 end;

For all exceptions but EAbort, HandleException calls the OnException event handler, if one exists.
Therefore, if you want to both handle the exception, and provide this default behavior as the VCL does,
you can add a call to HandleException to your code:

 try
 { special statements }
 except
 on ESomething do
 begin
 { handling for only the special statements }
 Application.HandleException(Self); { call HandleException }
 end;
 end;

Note:Do not call HandleException from within a thread’s exception handling code.
For more information, search for exception handling routines in the Help index.

Silent exceptions
Topic groups
Delphi applications handle most exceptions that your code doesn't specifically handle by displaying a
message box that shows the message string from the exception object. You can also define “silent”
exceptions that do not, by default, cause the application to show the error message.
Silent exceptions are useful when you don't intend to handle an exception, but you want to abort an
operation. Aborting an operation is similar to using the Break or Exit procedures to break out of a block,
but can break out of several nested levels of blocks.
Silent exceptions all descend from the standard exception type EAbort. The default exception handler
for Delphi VCL applications displays the error-message dialog box for all exceptions that reach it except
those descended from EAbort.
Note:For console applications, an error-message dialog is displayed on any unhandled EAbort

exceptions.
There is a shortcut for raising silent exceptions. Instead of manually constructing the object, you can call
the Abort procedure. Abort automatically raises an EAbort exception, which will break out of the current
operation without displaying an error message.

Example:The following code shows a simple example of aborting an operation. On a form containing an
empty list box and a button, attach the following code to the button's OnClick event:

procedure TForm1.Button1Click(Sender: TObject);
var
 I: Integer;
begin
 for I := 1 to 10 do { loop ten times }
 begin
 ListBox1.Items.Add(IntToStr(I));{ add a numeral to the list }
 if I = 7 then Abort; { abort after the seventh one }
 end;
end;

Defining your own exceptions
Topic groups
In addition to protecting your code from exceptions generated by the runtime library and various
components, you can use the same mechanism to manage exceptional conditions in your own code.
To use exceptions in your code, you need to understand these steps:

Declaring an exception object type
Raising an exception

Declaring an exception object type
Topic groups
Because exceptions are objects, defining a new kind of exception is as simple as declaring a new object
type. Although you can raise any object instance as an exception, the standard exception handlers
handle only exceptions descended from Exception.
It's therefore a good idea to derive any new exception types from Exception or one of the other standard
exceptions. That way, if you raise your new exception in a block of code that isn't protected by a specific
exception handler for that exception, one of the standard handlers will handle it instead.

Example:For example, consider the following declaration:
type
 EMyException = class(Exception);

If you raise EMyException but don't provide a specific handler for EMyException, a handler for
Exception (or a default exception handler) will still handle it. Because the standard handling for
Exception displays the name of the exception raised, you can see that it is your new exception that is
raised.

Raising an exception
Topic groups
To indicate an error condition in an application, you can raise an exception which involves constructing
an instance of that type and calling the reserved word raise.
To raise an exception, call the reserved word raise, followed by an instance of an exception object.
When an exception handler actually handles the exception, it finishes by destroying the exception
instance, so you never need to do that yourself.
Setting the exception address is done through the ErrorAddr variable in the System unit. Raising an
exception sets this variable to the address where the application raised the exception. You can refer to
ErrorAddr in your exception handlers, for example, to notify the user of where the error occurred. You
can also specify a value for ErrorAddr when you raise an exception.

Warning: Do not assign a value to ErrorAddr yourself.
To specify an error address for an exception, add the reserved word at after the exception instance,
followed by an address expression such as an identifier.
For example, given the following declaration,

type
 EPasswordInvalid = class(Exception);

you can raise a “password invalid” exception at any time by calling raise with an instance of
EPasswordInvalid, like this:

if Password <> CorrectPassword then
 raise EPasswordInvalid.Create('Incorrect password entered');

Using interfaces
Topic groups
Delphi’s interface keyword allows you to create and use interfaces in your application. Interfaces are a
way extending the single-inheritance model of the VCL by allowing a single class to implement more
than one interface, and by allowing several classes descended from different bases to share the same
interface. Interfaces are useful when sets of operations, such as streaming, are used across a broad
range of objects. Interfaces are also a fundamental aspect of the COM (the Component Object Model)
and CORBA (Common Object Request Broker Architecture) distributed object models.

Interfaces as a language feature
Topic groups
An interface is like a class that contains only abstract methods and a clear definition of their functionality.
Strictly speaking, interface method definitions include the number and types of their parameters, their
return type, and their expected behavior. Interface methods are semantically or logically related to
indicate the purpose of the interface. It is the convention for interfaces to be named according to their
behavior and to be prefaced with a capital I. For example, an IMalloc interface would allocate, free, and
manage memory. Similarly, an IPersist interface could be used as a general base interface for
descendants, each of which defines specific method prototypes for loading and saving the state of an
object to a storage, stream, or file. A simple example of declaring an interface is:

type
IEdit = interface
 procedure Copy; stdcall;
 procedure Cut; stdcall;
 procedure Paste; stdcall;
 function Undo: Boolean; stdcall;
end;

Like abstract classes, interfaces themselves can never be instantiated. To use an interface, you need to
obtain it from an implementing class.
To implement an interface, you must define a class that declares the interface in its ancestor list,
indicating that it will implement all of the methods of that interface:

TEditor = class(TInterfacedObject, IEdit)
 procedure Copy; stdcall;
 procedure Cut; stdcall;
 procedure Paste; stdcall;
 function Undo: Boolean; stdcall;
end;

While interfaces define the behavior and signature of their methods, they do not define the
implementations. As long as the class’s implementation conforms to the interface definition, the interface
is fully polymorphic, meaning that accessing and using the interface is the same for any implementation
of it.

Sharing interfaces between classes
Topic groups
Using interfaces offers a design approach to separating the way a class is used from the way it is
implemented. Two classes can share the same interface without requiring that they descend from the
same base class. This polymorphic invocation of the same methods on unrelated objects is possible as
long as the objects implement the same interface. For example, consider the interface,

IPaint = interface
 procedure Paint;
end;

and the two classes,
TSquare = class(TPolygonObject, IPaint)
 procedure Paint;
end;
TCircle = class(TCustomShape, IPaint)
 procedure Paint;
end;

Whether or not the two classes share a common ancestor, they are still assignment compatible with a
variable of IPaint as in

var
 Painter: IPaint;
begin
 Painter := TSquare.Create;
 Painter.Paint;
 Painter := TCircle.Create;
 Painter.Paint;
end;

This could have been accomplished by having TCircle and TSquare descend from say, TFigure which
implemented a virtual method Paint. Both TCircle and TSquare would then have overridden the Paint
method. The above IPaint would be replaced by TFigure. However, consider the following interface:

IRotate = interface
 procedure Rotate(Degrees: Integer);
end;

which makes sense for the rectangle to support but not the circle. The classes would look like
TSquare = class(TRectangularObject, IPaint, IRotate)
 procedure Paint;
 procedure Rotate(Degrees: Integer);
end;
TCircle = class(TCustomShape, IPaint)
 procedure Paint;
end;

Later, you could create a class TFilledCircle that implements the IRotate interface to allow rotation of a
pattern used to fill the circle without having to add rotation to the simple circle.
Note:For these examples, the immediate base class or an ancestor class is assumed to have

implemented the methods of IUnknown that manage reference counting. For more information,
see Implementing IUnknown and Memory management of interface objects.

Using interfaces with procedures
Topic groups
Interfaces also allow you to write generic procedures that can handle objects without requiring the
objects to descend from a particular base class. Using the above IPaint and IRotate interfaces you can
write the following procedures,

procedure PaintObjects(Painters: array of IPaint);
var
 I: Integer;
begin
 for I := Low(Painters) to High(Painters) do
 Painters[I].Paint;
end;
procedure RotateObjects(Degrees: Integer; Rotaters: array of IRotate);
var
 I: Integer;
begin
 for I := Low(Rotaters) to High(Rotaters) do
 Rotaters[I].Rotate(Degrees);
end;

RotateObjects does not require that the objects know how to paint themselves and PaintObjects does
not require the objects know how to rotate. This allows the above objects to be used more often than if
they where written to only work against a TFigure class.
Form details about the syntax, language definitions and rules for interfaces, see the Object Pascal
Language Guide online Help section on Object interfaces.

Implementing IUnknown
Topic groups
All interfaces derive either directly or indirectly from the IUnknown interface. This interface provides the
essential functionality of an interface, that is, dynamic querying and lifetime management. This
functionality is established in the three IUnknown methods:

QueryInterface provides a method for dynamically querying a given object and obtaining interface
references for the interfaces the object supports.

AddRef is a reference counting method that increments the count each time the call to
QueryInterface succeeds. While the reference count is nonzero the object must remain in memory.

Release is used in conjunction with AddRef to enable an object to track its own lifetime and to
determine when it is safe to delete itself. Once the reference count reaches zero the interface
implementation releases the underlying object(s).
Every class that implements interfaces must implement the three IUnknown methods, as well as all of
the methods declared by any other ancestor interfaces, and all of the methods declared by the interface
itself. You can, however, inherit the implementations of methods of interfaces declared in your class.
By implementing these methods yourself, you can provide an alternative means of life-time
management, disabling reference-counting. This is a powerful technique that lets you decouple
interfaces from reference-counting.

TInterfacedObject
Topic groups
The VCL defines a simple class, TInterfacedObject, that serves as a convenient base because it
implements the methods of IUnknown. TInterfacedObject class is declared in the System unit as follows:

type
 TInterfacedObject = class(TObject, IUnknown)
 private
 FRefCount: Integer;
 protected
 function QueryInterface(const IID: TGUID; out Obj): Integer; stdcall;
 function _AddRef: Integer; stdcall;
 function _Release: Integer; stdcall;
 public
 property RefCount: Integer read FRefCount;
 end;

Deriving directly from TInterfacedObject is straightforward. In the following example declaration,
TDerived is a direct descendant of TInterfacedObject and implements a hypothetical IPaint interface.

type
 TDerived = class(TInterfacedObject, IPaint)
 ...
 end;

Because it implements the methods of IUnknown, TInterfacedObject automatically handles reference
counting and memory management of interfaced objects. For more information, see Memory
management of interface objects, which also discusses writing your own classes that implement
interfaces but that do not follow the reference-counting mechanism inherent in TInterfacedObject.

Using the as operator
Topic groups
Classes that implement interfaces can use the as operator for dynamic binding on the interface. In the
following example:

procedurePaintObjects(P: TInterfacedObject)
var
 X: IPaint;
begin
 X := P as IPaint;
{ statements }
end;

the variable P of type TInterfacedObject, can be assigned to the variable X, which is an IPaint interface
reference. Dynamic binding makes this assignment possible. For this assignment, the compiler
generates code to call the QueryInterface method of P’s IUnknown interface since the compiler cannot
tell from P’s declared type whether P’s instance actually supports IPaint. At runtime, P either resolves to
an IPaint reference or an exception is raised. In either case, assigning P to X will not generate a
compile-time error, as it would if P was of a class type that did not implement IUnknown.
When you use the as operator for dynamic binding on an interface, you should be aware of the following
requirements:

Explicitly declaring IUnknown: Although all interfaces derive from IUnknown, it is not sufficient, if
you want to use the as operator, for a class to simply implement the methods of IUnknown. This is true
even if it also implements the interfaces it explicitly declares. The class must explicitly declare IUnknown
in its ancestor list.

Using an IID: Interfaces can use an identifier that is based on a GUID (globally unique identifier).
GUIDs that are used to identify interfaces are referred to as interface identifiers (IIDs). If you are using the
as operator with an interface, it must have an associated IID. To create a new GUID in your source code
you can use the Ctrl+Shift+G editor shortcut key.

Reusing code and delegation
Topic groups
One approach to reusing code with interfaces is to have an object contain, or be contained by another.
The VCL uses properties that are object types as an approach to containment and code reuse. To
support this design for interfaces Delphi has a keyword implements, that makes if easy to write code to
delegate all or part of the implementation of an interface to a sub-object. Aggregation is another way of
reusing code through containment and delegation. In aggregation, an outer object contains an inner
object that implements interfaces which are exposed only by the outer object. The VCL has classes that
support aggregation.

Using implements for delegation
Topic groups
Many classes in the VCL have properties that are sub-objects. You can also use interfaces as property
types. When a property is of an interface type (or a class type that implements the methods of an
interface) you can use the keyword implements to specify that the methods of that interface are
delegated to the object or interface reference which is the property instance. The delegate only needs to
provide implementation for the methods, it does not have to declare the interface support. The class
containing the property must include the interface in its ancestor list. By default using the keyword
implements delegates all interface methods. However, you can use methods resolution clauses or
declare methods in your class that implement some of the interface methods as a way of overriding this
default behavior.
The following example uses the implements keyword in the design of a color adapter object that
converts an 8-bit RGB color value to a Color reference:

unit cadapt;
type
IRGB8bit = interface
 ['{1d76360a-f4f5-11d1-87d4-00c04fb17199}']
 function Red: Byte;
 function Green: Byte;
 function Blue: Byte;
 end;
IColorRef = interface
 ['{1d76360b-f4f5-11d1-87d4-00c04fb17199}']
 function Color: Integer;
 end;
{ TRGB8ColorRefAdapter map an IRGB8bit to an IColorRef }
 TRGB8ColorRefAdapter = class(TInterfacedObject, IRGB8bit, IColorRef)
 private
 FRGB8bit: IRGB8bit;
 FPalRelative: Boolean;
 public
 constructor Create(rgb: IRGB8bit);
 property RGB8Intf: IRGB8bit read FRGB8bit implements IRGB8bit;
 property PalRelative: Boolean read FPalRelative write FPalRelative;
 function Color: Integer;
 end;
implementation
constructor TRGB8ColorRefAdapter.Create(rgb: IRGB8bit);
begin
 FRGB8bit := rgb;
end;
function TRGB8ColorRefAdapter.Color: Integer;
begin
 if FPalRelative then
 Result := PaletteRGB(RGB8Intf.Red, RGB8Intf.Green, RGB8Intf.Blue)
 else
 Result := RGB(RGB8Intf.Red, RGB8Intf.Green, RGB8Intf.Blue);
end;
end.

For more information about the syntax, implementation details, and language rules of the implements
keyword, see the Object Pascal Language Guide online Help section on Object interfaces.

Aggregation
Topic groups
Aggregation offers a modular approach to code reuse through sub-objects that define the functionality of
a containing object, but that hide the implementation details from that object. In aggregation, an outer
object implements one or more interfaces. The only requirement is that it implement IUnknown. The
inner object, or objects, can implement one or more interfaces, however only the outer object exposes
the interfaces. These include both the interfaces it implements and the ones implemented by its
contained objects. Clients know nothing about inner objects. While the outer object provides access to
the inner object interfaces, their implementation is completely transparent. Therefore, the outer object
class can exchange the inner object class type for any class that implements the same interface.
Correspondingly, the code for the inner object classes can be shared by other classes that want to use
it.
The implementation model for aggregation defines explicit rules for implementing IUnknown using
delegation. The inner object must implement an IUnknown on itself, that controls the inner object’s
reference count. This implementation of IUnknown tracks the relationship between the outer and the
inner object. For example, when an object of its type (the inner object) is created, the creation succeeds
only for a requested interface of type IUnknown. The inner object also implements a second IUnknown
for all the interfaces it implements. These are the interfaces exposed by the outer object. This second
IUnknown delegates calls to QueryInterface, AddRef, and Release to the outer object. The outer
IUnknown is referred to as the “controlling Unknown.”
Refer to the MS online help for the rules about creating an aggregation. When writing your own
aggregation classes, you can also refer to the implementation details of IUnknown in TComObject.
TComObject is a COM class that supports aggregation. If you are writing COM applications, you can
also use TComObject directly as a base class.

Memory management of interface objects
Topic groups
One of the concepts behind the design of interfaces is ensuring the lifetime management of the objects
that implement them. The AddRef and Release methods of IUnknown provide a way of implementing
this functionality. Their defined behavior states that they will track the lifetime of an object by
incrementing the reference count on the object when an interface reference is passed to a client, and
will destroy the object when that reference count is zero.
If you are creating COM objects for distributed applications, then you should strictly adhere to the
reference counting rules. However, if you are using interfaces only internally in your application, then
you have a choice that depends upon the nature of your object and how you decide to use it.

Using reference counting
Topic groups See also
Delphi provides most of the IUnknown memory management for you by its implementation of interface
querying and reference counting. Therefore, if you have an object that lives and dies by its interfaces,
you can easily use reference counting by deriving from these classes. TInterfacedObject is the non-
CoClass that provides this behavior. If you decide to use reference counting, then you must be careful to
only hold the object as an interface reference, and to be consistent in your reference counting. For
example:

procedure beep(x: ITest);
function test_func()
var
y: ITest;

begin
y := TTest.Create; // because y is of type ITest, the reference count is one

beep(y); // the act of calling the beep function increments the reference count
// and then decrements it when it returns
y.something; // object is still here with a reference count of one

end;
This is the cleanest and safest approach to memory management; and if you use TInterfacedObject it is
handled automatically. If you do not follow this rule, your object can unexpectedly disappear, as
demonstrated in the following code:

function test_func()
var
x: TTest;

begin
x := TTest.Create; // no count on the object yet
beep(x as ITest); // count is incremented by the act of calling beep

// and decremented when it returns
x.something; // surprise, the object is gone

end;
Note: In the examples above, the beep procedure, as it is declared, will increment the reference count

(call AddRef) on the parameter, whereas either of the following declarations:
procedure beep(const x: ITest);

or
procedure beep(var x: ITest);

will not. These declarations generate smaller, faster code.
One case where you cannot use reference counting, because it cannot be consistently applied, is if your
object is a component or a control owned by another component. In that case, you can still use
interfaces, but you should not use reference counting because the lifetime of the object is not dictated
by its interfaces.

Not using reference counting
Topic groups See also
If your object is a VCL component or a control that is owned by another component, then your object is
part of a different memory management system that is based in TComponent. You should not mix the
object lifetime management approaches of VCL components and COM reference counting. If you want
to create a component that supports interfaces, you can implement the IUnknown AddRef and Release
methods as empty functions to bypass the COM reference counting mechanism:

function TMyObject.AddRef: Integer;
begin
Result := -1;
end;
function TMyObject.Release: Integer;
begin
Result := -1;
end;

You would still implement QueryInterface as usual to provide dynamic querying on your object.
Note that, because you do implement QueryInterface, you can still use the as operator for interfaces on
components, as long as you create an interface identifier (IID). You can also use aggregation. If the
outer object is a component, the inner object implements reference counting as usual, by delegating to
the “controlling Unknown.” It is at the level of the outer, component object that the decision is made to
circumvent the AddRef and Release methods, and to handle memory management via the VCL
approach. In fact, you can use TInterfacedObject as a base class for an inner object of an aggregation
that has a component as its containing outer object.
Note:The “controlling Unknown” is the IUnknown implemented by the outer object and the one for which

the reference count of the entire object is maintained. For more information distinguishing the
various implementations of the IUnknown interface by the inner and outer objects, see
Aggregation and the Microsoft online Help topics on the “controlling Unknown.”

Using interfaces in distributed applications
Topic groups
Interfaces are a fundamental element in the COM and CORBA distributed object models. Delphi
provides base classes for these technologies that extend the basic interface functionality in
TInterfacedObject, which simply implements the IUnknown interface methods.
COM classes add functionality for using class factories and class identifiers (CLSIDs). Class factories
are responsible for creating class instances via CLSIDs. The CLSIDs are used to register and
manipulate COM classes. COM classes that have class factories and class identifiers are called
CoClasses. CoClasses take advantage of the versioning capabilities of QueryInterface, so that when a
software module is updated QueryInterface can be invoked at runtime to query the current capabilities of
an object.
New versions of old interfaces, as well as any new interfaces or features of an object, can become
immediately available to new clients. At the same time, objects retain complete compatibility with
existing client code; no recompilation is necessary because interface implementations are hidden (while
the methods and parameters remain constant). In COM applications, developers can change the
implementation to improve performance, or for any internal reason, without breaking any client code that
relies on that interface. For more information about COM interfaces, see Overview of COM
technologies.
The other distributed application technology is CORBA. The use of interfaces in CORBA applications is
mediated by stub classes on the client and skeleton classes on the server. These stub and skeleton
classes handle the details of marshaling interface calls so that parameter values and return values can
be transmitted correctly. Applications must use either a stub or skeleton class, or employ the Dynamic
Invocation Interface (DII) which converts all parameters to special variants (so that they carry their own
type information.)
Although it is not a necessary feature of CORBA technology, Delphi implements CORBA using class
factories, similar to the way in which COM uses class factories and CoClasses. By unifying the two
distributed model architectures in this way, Delphi supports a combined COM/CORBA server that can
service both COM and CORBA clients simultaneously. For more information about using interfaces with
CORBA, see Writing CORBA applications.

Working with strings
Topic groups See also
Delphi has a number of different character and string types that have been introduced throughout the
development of the Object Pascal language. This section of the Help is an overview of these types, their
purpose, and usage. For language details, see String types..

Character types
Topic groups
Delphi has three character types: Char, AnsiChar, and WideChar.
The Char character type came from standard Pascal, and was used in Turbo Pascal and then in Object
Pascal. Later Object Pascal added AnsiChar and WideChar as specific character types that were used
to support standards for character representation on the Windows operating system. AnsiChar was
introduced to support an 8-bit character ANSI standard, and WideChar was introduced to support a 16-
bit Unicode standard. The name WideChar is used because Unicode characters are also known as wide
characters. Wide characters are two bytes instead of one, so that the character set can represent many
more different characters. When AnsiChar and WideChar were implemented, Char became the default
character type representing the currently recommended implementation. If you use Char in your
application, remember that its implementation is subject to change in future versions of Delphi.
The following table summarizes these character types:

Type Bytes Contents Purpose
Char 1 Holds a single ANSI character. Default character type.
AnsiChar 1 Holds a single ANSI character. 8-bit Ansi character standard on Windows.
WideChar 2 Holds a single Unicode character. 16-bit Unicode standard on Windows.

For more information about using these character types, see Character types. For more information
about Unicode characters, see About extended character sets.

String types
Topic groups
Delphi has three categories of types that you can use when working with strings. These are character
pointers, string types, and VCL string classes. This topic summarizes string types, and discusses using
them with character pointers. For information about using VCL string classes, see TStrings.
There are currently three string implementations in Delphi: short strings, long strings, and wide strings.
There are several different string types that represent these implementations. In addition, there is a
reserved word string that defaults to the currently recommended string implementation.

Short strings
Topic groups
String was the first string type used in Turbo Pascal. String was originally implemented as a short
string. Short strings are an allocation of between 1 and 256 bytes, of which the first byte contains the
length of the string and the remaining bytes contain the characters in the string:

S: string[0..n]// the original string type
When long strings were implemented, string was changed to a long string implementation by default
and ShortString was introduced as a backward compatibility type. ShortString is a predefined type for a
maximum length string:

S: string[255] // the ShortString type
The size of the memory allocated for a ShortString is static, meaning that it is determined at compile
time. However, the location of the memory for the ShortString can be dynamically allocated, for example
if you use a PShortString, which is a pointer to a ShortString. The number of bytes of storage occupied
by a short string type variable is the maximum length of the short string type plus one. For the
ShortString predefined type the size is 256 bytes.
Both short strings, declared using the syntax string[0..n], and the ShortString predefined type exist
primarily for backward compatibility with earlier versions of Delphi and Borland Pascal.
A compiler directive, $H, controls whether the reserved word string represents a short string or a long
string. In the default state, {$H+}, string represents a long string. You can change it to a ShortString by
using the {$H-} directive. The {$H-} state is mostly useful for using code from versions of Object Pascal
that used short strings by default. However, short strings can be useful in data structures where you
need a fixed-size component or in DLLs when you don’t want to use the ShareMem unit (see also
Memory Management). You can locally override the meaning of string-type definitions to ensure
generation of short strings. You can also change declarations of short string types to string[255] or
ShortString, which are unambiguous and independent of the $H setting.
For details about short strings and the ShortString type, see Short strings..

Long strings
Topic groups
Long strings are dynamically-allocated strings with a maximum length limited only by available memory.
Like short strings, long strings use 8-bit Ansi characters and have a length indicator. Unlike short strings,
long strings have no zeroth element that contains the dynamic string length. To find the length of a long
string you must use the Length standard function, and to set the length of a long string you must use the
SetLength standard procedure. Long strings are also reference-counted and, like PChars, long strings
are null-terminated. For details about the implementation of longs strings, see Long strings.
Long strings are denoted by the reserved word string and by the predefined identifier AnsiString. For
new applications, it is recommended that you use the long string type. All components in the Visual
Component Library are compiled in this state, typically using string. If you write components, they
should also use long strings, as should any code that receives data from VCL string-type properties. If
you want to write specific code that always uses a long string, then you should use AnsiString. If you
want to write flexible code that allows you to easily change the type as new string implementations
become standard, then you should use string.

WideString
Topic groups
The WideChar type allows wide character strings to be represented as arrays of WideChars. Wide
strings are strings composed of 16-bit Unicode characters. As with long strings, WideStrings are
dynamically allocated with a maximum length limited only by available memory. However, wide strings
are not reference counted. The dynamically allocated memory that contains the string is deallocated
when the wide string goes out of scope. In all other respects wide strings possess the same attributes
as long strings. The WideString type is denoted by the predefined identifier WideString.
Since the 32-bit version of OLE uses Unicode for all strings, strings must be of wide string type in any
OLE automated properties and method parameters. Also, most OLE API functions use null-terminated
wide strings.
For more information about WideStrings, see WideString.

PChar types
Topic groups
A PChar is a pointer to a null-terminated string of characters of the type Char. Each of the three
character types also has a built-in pointer type:

A PChar is a pointer to a null-terminated string of 8-bit characters.
A PAnsiChar is a pointer to a null-terminated string of 8-bit characters.
A PWideChar is a pointer to a null-terminated string of 16-bit characters.

PChars are, with short strings, one of the original Object Pascal string types. They were created
primarily as a C language and Windows API compatibility type.

OpenString
Topic groups
An OpenString is obsolete, but you may see it in older code. It is for 16-bit compatibility and is allowed
only in parameters. OpenString was used, before long strings were implemented, to allow a short string
of an unspecified length string to be passed as a parameter. For example, this declaration:

procedure a(v : openstring);
will allow any length string to be passed as a parameter, where normally the string length of the formal
and actual parameters must match exactly. You should not have to use OpenString in any new
applications you write.
Refer also to the {$P+/-} switch in Compiler directives for strings.

Runtime library string handling routines
Topic groups
The runtime library provides many specialized string handling routines specific to a string type. These
are routines for wide strings, longs strings, and null-terminated strings (meaning PChars). Routines that
deal with PChar types use the null-termination to determine the length of the string. For more details
about null-terminated strings, see Working with null-terminated strings.
The runtime library also includes a category of string formatting routines. There are no categories of
routines listed for ShortString types. However, some built-in compiler routines deal with the ShortString
type. These include, for example, the Low and High standard functions.
Because wide strings and long strings are the commonly used types, the remaining sections discuss
these routines.

Wide character routines
Topic groups
When working with strings you should make sure that the code in your application can handle the strings
it will encounter in the various target locales. Sometimes you will need to use wide characters and wide
strings. In fact, one approach to working with ideographic character sets is to convert all characters to a
wide character encoding scheme such as Unicode. The runtime library includes the following wide
character string functions for converting between standard single-byte character strings (or MBCS
strings) and Unicode strings:

StringToWideChar
WideCharLenToString
WideCharLenToStrVar
WideCharToString
WideCharToStrVar

Using a wide character encoding scheme has the advantage that you can make many of the usual
assumptions about strings that do not work for MBCS systems. There is a direct relationship between
the number of bytes in the string and the number of characters in the string. You do not need to worry
about cutting characters in half or mistaking the second half of a character for the start of a different
character.
A disadvantage of working with wide characters is that Windows 95 does not support wide character API
function calls. Because of this, the VCL components represent all string values as single byte or MBCS
strings. Translating between the wide character system and the MBCS system every time you set a
string property or read its value would require tremendous amounts of extra code and slow your
application down. However, you may want to translate into wide characters for some special string
processing algorithms that need to take advantage of the 1:1 mapping between characters and
WideChars.

Commonly used long string routines
Topic groups
The long string handling routines cover several functional areas. Within these areas, some are used for
the same purpose, the differences being whether or not they use a particular criteria in their calculations.
The following tables list these routines by these functional areas:

Comparison
Case conversion
Modification
Sub-string

Where appropriate, the tables also provide columns indicating whether or not a routine satisfies the
following criteria.

Uses case sensitivity: If the Windows locale is used, it determines the definition of case. If the
routine does not use the Windows locale, analysis are based upon the ordinal values of the characters. If
the routine is case-insensitive, there is a logical merging of upper and lower case characters that is
determined by a predefined pattern.

Uses the Windows locale: Windows locale enablement allows you to add extra features to your
application for specific locales. In particular, for Asian language environments. Most Windows locales
consider lowercase characters to be less than the corresponding uppercase characters. This is in contrast
to ASCII order, in which lowercase characters are greater than uppercase characters. Routines that use
the Windows locale are typically prefaced with Ansi (that is, AnsiXXX).

Supports the multi-byte character set (MBCS): MBCSs are used when writing code for far eastern
locales. Multi-byte characters are represented as a mix of one and two byte character codes, so the
length in bytes does not necessarily correspond to the length of the string. The routines that support
MBCS are written parse one- and two-byte characters. The ByteType and StrByteType determine whether
a particular byte is the lead byte of a two-byte character. Be careful when using multi-byte characters not
to truncate a string by cutting a two-byte character in half. Do not pass characters as a parameter to a
function or procedure, since the size of a character cannot be predetermined. Pass, instead, a pointer to a
to a character or string. For more information about MBCS, see Enabling application code.
TABLE comparison

Routine Case-sensitive Uses Windows locale Supports MBCS
AnsiCompareStr yes yes yes
AnsiCompareText no yes yes
AnsiCompareFileName no yes yes
CompareStr yes no no
CompareText no no no

TABLE Case conversion

Routine Uses Windows
locale

Supports MBCS

AnsiLowerCase yes yes
AnsiLowerCaseFileName yes yes
AnsiUpperCaseFileName yes yes
AnsiUpperCase yes yes
LowerCase no no
UpperCase no no

TABLE Modification

Routine Case-sensitive Supports MBCS
AdjustLineBreaks NA yes
AnsiQuotedStr NA yes
StringReplace optional by flag yes

Trim NA yes
TrimLeft NA yes
TrimRight NA yes
WrapText NA yes

TABLE Sub-string

Routine Case-sensitive Supports MBCS
AnsiExtractQuotedStr NA yes
AnsiPos yes yes
IsDelimiter yes yes
IsPathDelimiter yes yes
LastDelimiter yes yes
QuotedStr no no

The routines used for string filenames: AnsiCompareFileName, AnsiLowerCaseFileName, and
AnsiUpperCaseFileName all use the Windows locale. You should always use filenames that are
perfectly portable because the locale (character set) used for filenames can and might differ from the
default user interface.

Declaring and initializing strings
Topic groups
When you declare a long string:

S: string;
you do not need to initialize it. Long strings are automatically initialized to empty. To test a string for
empty you can either use the EmptyStr variable:

S = EmptyStr;
or test against an empty string:

S = '';
An empty string has no valid data. Therefore, trying to index an empty string is like trying to access nil
and will result in an access violation:

var
S: string;

begin
S[i]; // this will cause an access violation
// statements

end;
Similarly, if you cast an empty string to a PChar, the result is a nil pointer. So, if you are passing such a
PChar to a routine that needs to read or write to it, be sure that the routine can handle nil:

var
S: string; // empty string

begin
proc(PChar(S)); // be sure that proc can handle nil
// statements

end;
If it cannot, then you can either initialize the string:

S := 'No longer nil';
proc(PChar(S)); // proc does not need to handle nil now

or set the length, using the SetLength procedure:
SetLength(S, 100); //sets the dynamic length of S to 100
proc(PChar(S)); // proc does not need to handle nil now

When you use SetLength, existing characters in the string are preserved, but the contents of any newly
allocated space is undefined. Following a call to SetLength, S is guaranteed to reference a unique
string, that is a string with a reference count of one. To obtain the length of a string, use the Length
function.
Remember when declaring a string that:

S: string[n];
implicitly declares a short string, not a long string of n length. To declare a long string of specifically n
length, declare a variable of type string and use the SetLength procedure.

S: string;
SetLength(S, n);

Mixing and converting string types
Topic groups
Short strings, long strings and wide strings can be mixed in assignments and expressions, and the
compiler automatically generates code to perform the necessary string type conversions. However,
when assigning a string value to a short string variable, be aware that the string value is truncated if it is
longer than the declared maximum length of the short string variable.
Long strings are already dynamically allocated. If you use one of the built-in pointer types, such as
PAnsiString, PString, or PWideString, remember that you are introducing another level of indirection. Be
sure this is what you intend.

String to PChar conversions
Topic groups
Long string to PChar conversions are not automatic. Some of the differences between strings and
PChars can make conversions problematic:

Long strings are reference-counted, while PChars are not.
Assigning to a string copies the data, while a PChar is a pointer to memory.
Long strings are null-terminated and also contain the length of the string, while PChars are simply

null-terminated.
Situations in which these differences can cause subtle errors are discussed in this section.

String dependencies
Topic groups
Sometimes you will need convert a long string to a null-terminated string, for example, if you are using a
function that takes a PChar. However, because long strings are reference counted, typecasting a string
to a PChar increases the dependency on the string by one, without actually incrementing the reference
count. When the reference count hits zero, the string will be destroyed, even though there is an extra
dependency on it. The cast PChar will also disappear, while the routine you passed it to may still be
using it. If you must cast a string to a PChar, be aware that you are responsible for the lifetime of the
resulting PChar. For example:

procedure my_func(x: string);
begin
// do something with x
some_proc(PChar(x)); // cast the string to a PChar
// you now need to guarantee that the string remains
// as long as the some_proc procedure needs to use it

end;

Returning a PChar local variable
Topic groups
A common error when working with PChars is to store in a data structure, or return as a value, a local
variable. When your routine ends, the PChar will disappear because it is simply a pointer to memory,
and is not a reference counted copy of the string. For example:

function title(n: Integer): PChar;
var
s: string;

begin
s := Format('title - %d', [n]);
Result := PChar(s); // DON'T DO THIS

end;
This example returns a pointer to string data that is freed when the title function returns.

Passing a local variable as a PChar
Topic groups
Consider that you have a local string variable that you need to initialize by calling a function that takes a
PChar. One approach is to create a local array of char and pass it to the function, then assign that
variable to the string:

// assume MAXSIZE is a predefined constant
var
i: Integer;
buf: array[0..MAX_SIZE] of char;
S: string;

begin
i := GetModuleFilename(0, @buf, SizeOf(buf)); // treats @buf as a PChar
S := buf;
//statements

end;
This approach is useful if the size of the buffer is relatively small, since it is allocated on the stack. It is
also safe, since the conversion between an array of char and a string is automatic. When
GetModuleFilename returns, the Length of the string correctly indicates the number of bytes written to
buf.
To eliminate the overhead of copying the buffer, you can cast the string to a PChar (if you are certain
that the routine does not need the PChar to remain in memory). However, synchronizing the length of
the string does not happen automatically, as it does when you assign an array of char to a string. You
should reset the string Length so that it reflects the actual width of the string. If you are using a function
that returns the number of bytes copied, you can do this safely with one line of code:

var
S: string;

begin
SetLength(S, 100); // when casting to a PChar, be sure the string is not empty
SetLength(S, GetModuleFilename(0, PChar(S), Length(S)));
// statements

end;

Compiler directives for strings
Topic groups
The following compiler directives affect character and string types.

{$H+/-}: A compiler directive, $H, controls whether the reserved word string represents a short
string or a long string. In the default state, {$H+}, string represents a long string. You can change it to a
ShortString by using the {$H-} directive.

{$P+/-}: The $P directive is meaningful only for code compiled in the {$H-} state, and is provided
for backwards compatibility with earlier versions of Delphi and Borland Pascal. $P controls the meaning of
variable parameters declared using the string keyword in the {$H-} state. In the {$P-} state, variable
parameters declared using the string keyword are normal variable parameters, but in the {$P+} state, they
are open string parameters. Regardless of the setting of the $P directive, the OpenString identifier can
always be used to declare open string parameters. Make a link to the compiler directives, since this is a
direct quote.

{$V+/-}: The $V directive controls type checking on short strings passed as variable parameters.
In the {$V+} state, strict type checking is performed, requiring the formal and actual parameters to be of
identical string types. In the {$V-} (relaxed) state, any short string type variable is allowed as an actual
parameter, even if the declared maximum length is not the same as that of the formal parameter. Be
aware that this could lead to memory corruption. For example:

var S: string[3];
procedure Test(var T: string);
begin
T := '1234';

end;
begin
Test(S);

end.
{$X+/-}: The {$X+} compiler directive enables Delphi's support for null-terminated strings by

activating the special rules that apply to the built-in PChar type and zero-based character arrays. (These
rules allow zero-based arrays and character pointers to be used with Write, Writeln, Val, Assign, and
Rename from the System unit.)

Strings and characters: related topics
Topic groups
The following Object Pascal Language Guide topics discuss strings and character sets. Also see
Creating international applications.

"About extended character sets” (Discusses international character sets.)
"Working with null-terminated strings” (Contains information about character arrays.)
"Character strings”
"Character pointers”
"String operators.”

Working with files
Topic groups
This section describes working with files and distinguishes between manipulating files on disk, and
input/output operations such as reading and writing to files. The first topic discusses the runtime library
and Windows API routines you would use for common programming tasks that involve manipulating files
on disk. The next topic is an overview of file types used with file I/O. The last topic focuses on the
recommended approach to working with file I/O, which is to use file streams.
Note:Previous versions of the Object Pascal language performed operations on files themselves, rather

than on the filename parameters commonly used now. With these older file types you had to locate
a file and assign it to a file variable before you could, for example, rename the file.

Manipulating files
Topic groups
There are several common file operations built into Object Pascal's runtime library. The procedures and
functions for working with files operate at a high level. For most routines, you specify the name of the file
and the routine makes the necessary calls to the operating system for you. In some cases, you use file
handles instead. Object Pascal provides routines for most file manipulation. When it does not,
alternative routines are discussed.

Deleting a file
Topic groups
Deleting a file erases the file from the disk and removes the entry from the disk's directory. There is no
corresponding operation to restore a deleted file, so applications should generally allow users to confirm
deletions of files. To delete a file, pass the name of the file to the DeleteFile function:

DeleteFile(FileName);
DeleteFile returns True if it deleted the file and False if it did not (for example, if the file did not exist or if
it was read-only). DeleteFile erases the file named by FileName from the disk.

Finding a file
Topic groups
There are three routines used for finding a file: FindFirst, FindNext, and FindClose. FindFirst searches
for the first instance of a filename with a given set of attributes in a specified directory. FindNext returns
the next entry matching the name and attributes specified in a previous call to FindFirst. FindClose
releases memory allocated by FindFirst. In 32-bit Windows you should always use FindClose to
terminates a FindFirst/FindNext sequence. If you want to know if a file exists, there is a FileExists
function that returns True if the file exists, False otherwise.
The three file find routines take a TSearchRec as one of the parameters. TSearchRec defines the file
information searched for by FindFirst or FindNext. The declaration for TSearchRec is:

type
TFileName = string;
TSearchRec = record

Time: Integer; //Time contains the time stamp of the file.
Size: Integer; //Size contains the size of the file in bytes.
Attr: Integer; //Attr represents the file attributes of the file.
Name: TFileName; //Name contains the DOS filename and extension.
ExcludeAttr: Integer;
FindHandle: THandle;
FindData: TWin32FindData; //FindData contains additional information such as

//file creation time, last access time, long and short filenames.
end;

If a file is found, the fields of the TSearchRec type parameter are modified to specify the found file. You
can test Attr against the following attribute constants or values to determine if a file has a specific
attribute:

Constant Value Description
faReadOnly $00000001 Read-only files
faHidden $00000002 Hidden files
faSysFile $00000004 System files
faVolumeID $00000008 Volume ID files
faDirectory $00000010 Directory files
faArchive $00000020 Archive files
faAnyFile $0000003F Any file

To test for an attribute, combine the value of the Attr field with the attribute constant with the and
operator. If the file has that attribute, the result will be greater than 0. For example, if the found file is a
hidden file, the following expression will evaluate to True: (SearchRec.Attr and faHidden > 0). Attributes
can be combined by adding their constants or values. For example, to search for read-only and hidden
files in addition to normal files, pass (faReadOnly + faHidden) the Attr parameter.

Example:This example uses a label, a button named Search, and a button named Again on a form. When
the user clicks the Search button, the first file in the specified path is found, and the name and
the number of bytes in the file appear in the label's caption. Each time the user clicks the Again
button, the next matching filename and size is displayed in the label:

var
 SearchRec: TSearchRec;
procedure TForm1.SearchClick(Sender: TObject);
begin
 FindFirst('c:\Program Files\delphi5\bin*.*', faAnyFile, SearchRec);
 Label1.Caption := SearchRec.Name + ' is ' + IntToStr(SearchRec.Size) + ' bytes in
size';
end;
procedure TForm1.AgainClick(Sender: TObject);
begin
 if (FindNext(SearchRec) = 0)

 Label1.Caption := SearchRec.Name + ' is ' + IntToStr(SearchRec.Size) + '
bytes in size';
 else
 FindClose(SearchRec);
end;

Changing file attributes
Topic groups
Every file has various attributes stored by the operating system as bitmapped flags. File attributes
include such items as whether a file is read-only or a hidden file. Changing a file's attributes requires
three steps: reading, changing, and setting.
Reading file attributes: Operating systems store file attributes in various ways, generally as bitmapped
flags. To read a file's attributes, pass the filename to the FileGetAttr function, which returns the file
attributes of a file. The return value is a group of bitmapped file attributes, of type Word. The attributes
can be examined by AND-ing the attributes with the constants defined in TSearchRec. A return value of -
1 indicates that an error occurred.
Changing individual file attributes: Because Delphi represents file attributes in a set, you can use
normal logical operators to manipulate the individual attributes. Each attribute has a mnemonic name
defined in the SysUtils unit. For example, to set a file's read-only attribute, you would do the following:

Attributes := Attributes or faReadOnly;
You can also set or clear several attributes at once. For example, the clear both the system-file and
hidden attributes:

Attributes := Attributes and not (faSysFile or faHidden);
Setting file attributes: Delphi enables you to set the attributes for any file at any time. To set a file's
attributes, pass the name of the file and the attributes you want to the FileSetAttr function. FileSetAttr
sets the file attributes of a specified file.
You can use the reading and setting operations independently, if you only want to determine a file's
attributes, or if you want to set an attribute regardless of previous settings. To change attributes based
on their previous settings, however, you need to read the existing attributes, modify them, and write the
modified attributes.

Renaming a file
Topic groups
To change a filename, simply use the RenameFile function:

function RenameFile(const OldFileName, NewFileName: string): Boolean;
which changes a filename, identified by OldFileName, to the name specified by NewFileName. If the
operation succeeds, RenameFile returns True. If it cannot rename the file, for example, if a file called
NewFileName already exists, it returns False. For example:

if not RenameFile('OLDNAME.TXT','NEWNAME.TXT') then
 ErrorMsg('Error renaming file!');

You cannot rename (move) a file across drives using RenameFile. You would need to first copy the file
and then delete the old one.
Note:RenameFile is a wrapper around the Windows API MoveFile function, so MoveFile will not work

across drives either.

File date-time routines
Topic groups
The FileAge, FileGetDate, and FileSetDate routines operate on operating system date-time values.
FileAge returns the date-and-time stamp of a file, or -1 if the file does not exist. FileSetDate sets the
date-and-time stamp for a specified file, and returns zero on success or a Windows error code on
failure. FileGetDate returns a date-and-time stamp for the specified file or -1 if the handle is invalid.
As with most of the file manipulating routines, FileAge uses a string filename. FileGetDate and
FileSetDate, however, take a Windows Handle type as a parameter. To get access to a Windows file
Handle either

Call the Windows API CreateFile function. CreateFile is a 32-bit only function that creates or
opens a file and returns a Handle that can be used to access the file.

Instantiate TFileStream to create or open a file. Then use the Handle property as you would a
Windows’ file Handle. See Using file streams for more information.

Copying a file
Topic groups
The runtime library does not provide any routines for copying a file. However, you can directly call the
Windows API CopyFile function to copy a file. Like most of the Delphi runtime library file routines,
CopyFile takes a filename as a parameter, not a Window Handle. When copying a file, be aware that the
file attributes for the existing file are copied to the new file, but the security attributes are not. CopyFile is
also useful when moving files across drives because neither the Delphi RenameFile function nor the
Windows API MoveFile function can rename/move files across drives.

File types with file I/O
Topic groups
There are three file types you can use when working with file I/O: Old style Pascal files, Windows file
handles, and file stream objects. This section describes these types.
Old style Pascal files: These are the types used with the old file variables, usually of the format "F:
Text: or "F: File". There are three classes of these files: typed, text, and untyped and a number of Delphi
file-handling routines, such as AssignPrn and writeln, use them. These file types are obsolete and are
incompatible with Windows file handles. If you need to work with the old file types, see Untyped files and
File types.
Windows file handles: The Object Pascal file handles are wrappers for the Windows file handle type.
The runtime library file-handling routines that use Windows file Handles are typically wrappers around
Windows API functions. For example, the FileRead calls the Windows ReadFile function. Because the
Delphi functions use Object Pascal syntax, and occasionally provide default parameter values, they are
a convenient interface to the Windows API. Using these routines is straightforward, and if you are
familiar and comfortable with the Windows API file routines, you may want to use them when working
with file I/O.
File streams: File streams are object instances of the VCL TFileStream class used to access the
information in disk files. File streams are a portable and high level approach to file I/O. TFileStream has
a Handle property that gives you access to the Windows file handle. The Using file streams discusses
TFileStream.

Using file streams
Topic groups
TFileStream is a VCL class used for high level object representations of file streams. TFileStream offers
multiple functionality: persistence, interaction with other streams, and file I/O.

TFileStream is a descendant of the stream classes. As such, one advantage of using file streams
is that you automatically inherit support for persistence. The stream classes are enabled to work with the
TFiler classes, TReader and TWriter, to stream objects out to disk. Therefore, when you have a file
stream, you can use that same code for the VCL streaming mechanism. For more information about using
the VCL streaming system, see the VCL Reference online Help on the TStream, TFiler, TReader, TWriter,
and TComponent classes.

TFileStream can interact easily with other stream classes. For example, if you want to dump a
dynamic memory block to disk, you can do so using a TFileStream and a TMemoryStream.

TFileStream provides the basic methods and properties for file I/O. The following topics focus on
this aspect of file streams:

Creating and opening files
Using the file handle
Reading and writing to files
Reading and writing strings
File position and size
Seeking a file
Copying

Creating and opening files
Topic groups
To create or open a file and get access to a handle for the file, you simply instantiate a TFileStream.
This opens or creates a named file and provides methods to read from or write to it. If the file can not be
opened, TFileStream raises an exception.

constructor Create(const filename: string; Mode: Word);
The Mode parameter specifies how the file should be opened when creating the file stream. The Mode
parameter consists of an open mode and a share mode or’ed together. The open mode must be one of
the following values:

Value Meaning
fmCreate TFileStream a file with the given name. If a file with the given

name exists, open the file in write mode.
fmOpenRead Open the file for reading only.
fmOpenWrite Open the file for writing only. Writing to the file completely

replaces the current contents.
fmOpenReadWrite Open the file to modify the current contents rather than replace

them.
The share mode must be one of the following values:

Value Meaning
fmShareCompat Sharing is compatible with the way FCBs are opened.
fmShareExclusive Other applications can not open the file for any reason.
fmShareDenyWrite Other applications can open the file for reading but not for writing.
fmShareDenyRead Other applications can open the file for writing but not for reading.
fmShareDenyNone No attempt is made to prevent other applications from reading

from or writing to the file.
The file open and share mode constants are in the SysUtils unit.

Using the file handle
Topic groups See also
When you instantiate TFileStream you get access to the file handle. The file handle is contained in the
Handle property. Handle is read-only and indicates the mode in which the file was opened. If you want to
change the attributes of the file Handle, you must create a new file stream object.
Some file manipulation routines take a Window’s file handle as a parameter. Once you have a file
stream, you can use the Handle property in any situation in which you would use a Window’s file handle.
Be aware that, unlike handle streams, file streams close file handles when the object is destroyed.

Reading and writing to files
Topic groups See also
TFileStream has several different methods for reading from and writing to files. These are distinguished
by whether they perform the following:

Return the number of bytes read or written.
Require the number of bytes is known.
Raise an exception on error.

Read is a function that reads up to Count bytes from the file associated with the file stream, starting at
the current Position, into Buffer. Read then advances the current position in the file by the number of
bytes actually transferred. The prototype for Read is

function Read(var Buffer; Count: Longint): Longint; override;
Read is useful when the number of bytes in the file is not known. Read returns the number of bytes
actually transferred, which may be less than Count if the end of file marker is encountered.
Write is a function that writes Count bytes from the Buffer to the file associated with the file stream,
starting at the current Position. The prototype for Write is:

function Write(const Buffer; Count: Longint): Longint; override;
After writing to the file, Write advances the current position by the number bytes written, and returns the
number of bytes actually written, which may be less than Count if the end of the buffer is encountered.
The counterpart procedures are ReadBuffer and WriteBuffer which, unlike Read and Write, do not return
the number of bytes read or written. These procedures are useful in cases where the number of bytes is
known and required, for example when reading in structures. ReadBuffer and WriteBuffer raise an
exception on error (EReadError and EWriteError) while the Read and Write methods do not. The
prototypes for ReadBuffer and WriteBuffer are:

procedure ReadBuffer(var Buffer; Count: Longint);
procedure WriteBuffer(const Buffer; Count: Longint);

These methods call the Read and Write methods, to perform the actual reading and writing.

Reading and writing strings
Topic groups See also
If you are passing a string to a read or write function, you need to be aware of the correct syntax. The
Buffer parameters for the read and write routines are var and const types, respectively. These are
untyped parameters, so the routine takes the address of a variable.
The most commonly used type when working with strings is a long string. However, passing a long
string as the Buffer parameter does not produce the correct result. Long strings contain a size, a
reference count, and a pointer to the characters in the string. Consequently, dereferencing a long string
does not result in only the pointer element. What you need to do is first cast the string to a Pointer or
PChar, and then dereference it. For example:

procedure cast-string;
var
 fs: TFileStream;
 s: string = 'Hello';
begin
 fs := TFileStream.Create('Temp.txt', fmCreate or fmOpenWrite);
 fs.Write(s, Length(s)); // this will give you garbage
 fs.Write(PChar(s)^, Length(s)); // this is the correct way
end;

Seeking a file
Topic groups
Most typical file I/O mechanisms have a process of seeking a file in order to read from or write to a
particular location within it. For this purpose, TFileStream provides a Seek method. The prototype for
Seek is:

function Seek(Offset: Longint; Origin: Word): Longint; override;
The Origin parameter indicates how to interpret the Offset parameter. Origin should be one of the
following values:

Value Meaning
soFromBeginning Offset is from the beginning of the resource. Seek moves to the position

Offset. Offset must be >= 0.
soFromCurrent Offset is from the current position in the resource. Seek moves to Position +

Offset.
soFromEnd Offset is from the end of the resource. Offset must be <= 0 to indicate a

number of bytes before the end of the file.
Seek resets the current Position of the stream, moving it by the indicated offset. Seek returns the new
value of the Position property, the new current position in the resource.

File position and size
Topic groups
TFileStream has properties that hold the current position and size of the file. These are used by the
Seek, read, and write methods.
The Position property of TFileStream is used to indicate the current offset, in bytes, into the stream
(from the beginning of the streamed data). The declaration for Position is:

property Position: Longint;
The Size property indicates the size in bytes of the stream. It is used as an end of file marker to truncate
the file. The declaration for Size is:

property Size: Longint;
Size is used internally by routines that read and write to and from the stream.
Setting the Size property changes the size of the file. If the Size of the file can not be changed, an
exception is raised. For example, trying to changes the Size for a file that was opened in fmOpenRead
mode will raise an exception.

Copying
Topic groups
CopyFrom copies a specified number of bytes from one (file) stream to another.

function CopyFrom(Source: TStream; Count: Longint): Longint;
Using CopyFrom eliminates the need for the user to create, read into, write from, and free a buffer when
copying data.
CopyFrom copies Count bytes from Source into the stream. CopyFrom then moves the current position
by Count bytes, and returns the number of bytes copied. If Count is 0, CopyFrom sets Source position to
0 before reading and then copies the entire contents of Source into the stream. If Count is greater than
or less than 0, CopyFrom reads from the current position in Source.

Defining new data types
Topic groups
Object Pascal has many predefined data types. You can use these predefined types to create new types
that meet the specific needs of your application. For an overview of types, see About types. The syntax
for declaring new types is described in Declaring types.

Developing the application user interface: Overview
Topic groups
With Delphi, you create a user interface (UI) by selecting components from the Component palette and
dropping them onto forms.

Understanding TApplication, TScreen, and TForm
Topic groups See also
TApplication, TScreen, and TForm are VCL classes that form the backbone of all Delphi applications by
controlling the behavior of your project. The TApplication class forms the foundation of a Windows
application by providing properties and methods that encapsulate the behavior of a standard Windows
program. TScreen is used at runtime to keep track of forms and data modules that have been loaded as
well as system specific information such as screen resolution and what fonts are available for display.
Instances of the TForm class are the building blocks of your application’s user interface. The windows
and dialog boxes of your application are based on TForm.

Using the main form
Topic groups See also
TForm is the key class for creating Windows GUI applications.
The first form you create and save in a project becomes, by default, the project’s main form, which is the
first form created at runtime. As you add forms to your projects, you might decide to designate a
different form as your application’s main form. Also, specifying a form as the main form is an easy way to
test it at runtime, because unless you change the form creation order, the main form is the first form
displayed in the running application.
To change the project main form,
1 Choose Project|Options and select the Forms page.
2 In the Main Form combo box, select the form you want as the project main form and choose OK.
Now if you run the application, your new main form choice is displayed.

Adding additional forms
Topic groups See also
To add an additional form to your project, select File|New Form. You can see all your project’s forms and
their associated units listed in the Project Manager (View|Project Manager).

Linking forms
Topic groups See also
Adding a form to a project adds a reference to it in the project file, but not to any other units in the
project. Before you can write code that references the new form, you need to add a reference to it in the
referencing forms’ unit files. This is called form linking.
A common reason to link forms is to provide access to the components in that form. For example, you’ll
often use form linking to enable a form that contains data-aware components to connect to the data-
access components in a data module.
To link a form to another form,
1 Select the form that needs to refer to another.
2 Choose File|Use Unit.
3 Select the name of the form unit for the form to be referenced.
4 Choose OK.
Linking a form to another just means that the uses clauses of one form unit contains a reference to the
other’s form unit, meaning that the linked form and its components are now in scope for the linking form.

Avoiding circular unit references
Topic groups See also
When two forms must reference each other, it’s possible to cause a “Circular reference” error when you
compile your program. To avoid such an error, do one of the following:

Place both uses clauses, with the unit identifiers, in the implementation parts of the respective
unit files. (This is what the File|Use Unit command does.)

Place one uses clause in an interface part and the other in an implementation part. (You rarely
need to place another form’s unit identifier in this unit’s interface part.)
Do not place both uses clauses in the interface parts of their respective unit files. This will generate the
“Circular reference” error at compile time.

Working at the application level
Topic groups See also
The global variable Application, of type TApplication, is in every Delphi Windows application. Application
encapsulates your application as well as providing many functions that occur in the background of the
program. For instance, Application would handle how you would call a help file from the menu of your
program. Understanding how TApplication works is more important to a component writer than to
developers of stand-alone applications, but you should set the options that Application handles in the
Project|Options Application page when you create a project.
In addition, Application receives many events that apply to the application as a whole. For example, the
OnActivate event lets you perform actions when the application first starts up, the OnIdle event lets you
perform background processes when the application is not busy, the OnMessage event lets you
intercept Windows messages, and so on. Although you can’t use the IDE to examine the properties and
events of the global Application variable, another component, TApplicationEvents, intercepts the events
and lets you supply event-handlers using the IDE.

Handling the screen
Topic groups See also
An global variable of type TScreen called Screen is created when you create a project. Screen
encapsulates the state of the screen on which your application is running. Common tasks performed by
Screen include specifying the look of the cursor, the size of the window in which your application is
running, the list of fonts available to the screen device, and multiple screen behavior. If your application
runs on multiple monitors, Screen maintains a list of monitors and their dimensions so that you can
effectively manage the layout of your user interface.

Managing layout
Topic groups See also
At its simplest, you control the layout of your user interface by how you place controls in your forms. The
placement choices you make are reflected in the control’s Top, Left, Width, and Height properties. You
can change these values at runtime to change the position and size of the controls in your forms.
Controls have a number of other properties, however, that allow them to automatically adjust to their
contents or containers. This allows you to lay out your forms so that the pieces fit together into a unified
whole.
Two properties affect how a control is positioned and sized in relation to its parent. The Align property
lets you force a control to fit perfectly within its parent along a specific edge or filling up the entire client
area after any other controls have been aligned. When the parent is resized, the controls aligned to it
are automatically resized and remain positioned so that they fit against a particular edge.
If you want to keep a control positioned relative to a particular edge of its parent, but don’t want it to
necessarily touch that edge or be resized so that it always runs along the entire edge, you can use the
Anchors property.
If you want to ensure that a control does not grow too big or too small, you can use the Constraints
property. Constraints lets you specify the control’s maximum height, minimum height, maximum width,
and minimum width. Set these to limit the size (in pixels) of the control’s height and width. For example,
by setting the MinWidth and MinHeight of the constraints on a container object, you can ensure that
child objects are always visible.
The value of Constraints propagates through the parent/child hierarchy so that an object’s size can be
constrained because it contains aligned children that have size constraints. Constraints can also prevent
a control from being scaled in a particular dimension when its ChangeScale method is called.
TControl introduces a protected event, OnConstrainedResize, of type TConstrainedResizeEvent:

TConstrainedResizeEvent = procedure(Sender: TObject; var MinWidth, MinHeight,
MaxWidth, MaxHeight: Integer) of object;

This event allows you to override the size constraints when an attempt is made to resize the control. The
values of the constraints are passed as var parameters which can be changed inside the event handler.
OnConstrainedResize is published for container objects (TForm, TScrollBox, TControlBar, and TPanel).
In addition, component writers can use or publish this event for any descendant of TControl.
Controls that have contents that can change in size have an AutoSize property that causes the control
to adjust its size to its font or contained objects.

Working with messages
Topic groups See also
A message is a notification that some event has occurred that is sent by Windows to an application. The
message itself is a record passed to a control by Windows. For instance, when you click a mouse button
on a dialog box, Windows sends a message to the active control and the application containing that
control reacts to this new event. If the click occurs over a button, the OnClick event could be activated
upon receipt of the message. If the click occurs just in the form, the application can ignore the message.
The record type passed to the application by Windows is called a TMsg. Windows predefines a constant
for each message, and these values are stored in the message field of the TMsg record. Each of these
constants begin with the letters wm.
The VCL automatically handles messages unless you override the message handling system and create
your own message handlers. For more information on messages and message handling, see
Understanding the message-handling system, Changing message handling, and Creating new message
handlers.

More details on forms
Topic groups See also
When you create a form in Delphi from the IDE, Delphi automatically creates the form in memory by
including code in the WinMain() function. Usually, this is the desired behavior and you don’t have to do
anything to change it. That is, the main window persists through the duration of your program, so you
would likely not change the default Delphi behavior when creating the form for your main window.
However, you may not want all your application’s forms in memory for the duration of the program
execution. That is, if you do not want all your application’s dialogs in memory at once, you can create
the dialogs dynamically when you want them to appear.
Forms can be modal or modeless. Modal forms are forms with which the user must interact before
switching to another form (for example, a dialog box requiring user input). Modeless forms, though, are
windows that are displayed until they are either obscured by another window or until they are closed or
minimized by the user.

Controlling when forms reside in memory
Topic groups See also
By default, Delphi automatically creates the application’s main form in memory by including the following
code in the application’s project source unit:

Application.CreateForm(TForm1, Form1);
This function creates a global variable with the same name as the form. So, every form in an application
has an associated global variable. This variable is a pointer to an instance of the form’s class and is
used to reference the form while the application is running. Any unit that includes the form’s unit in its
uses clause can access the form via this variable.
All forms created in this way in the project unit appear when the program is invoked and exist in memory
for the duration of the application.

Displaying an auto-created form
Topic groups See also
If you choose to create a form at startup, and do not want it displayed until sometime later during
program execution, the form’s event handler uses the ShowModal method to display the form that is
already loaded in memory:

procedure TMainForm.Button1Click(Sender: TObject);
begin
ResultsForm.ShowModal;

end;
In this case, since the form is already in memory, there is no need to create another instance or destroy
that instance.

Creating forms dynamically
Topic groups See also
You may not always want all your application’s forms in memory at once. To reduce the amount of
memory required at load time, you may want to create some forms only when you need to use them. For
example, a dialog box needs to be in memory only during the time a user interacts with it.
To create a form at a different stage during execution using the IDE, you:
1 Select the File|New Form from the Component bar to display the new form.
2 Remove the form from the Auto-create forms list of the Project Options|Forms page.

This removes the form’s invocation at startup. As an alternative, you can manually remove the
following line from the project source:

Application.CreateForm(TResultsForm, ResultsForm);
3 Invoke the form when desired by using the form’s Show method, if the form is modeless, or

ShowModal method, if the form is modal.
An event handler for the main form must create an instance of the result form and destroy it. One way to
invoke the result form is to use the global variable as follows. Note that ResultsForm is a modal form so
the handler uses the ShowModal method.

procedure TMainForm.Button1Click(Sender: TObject);
begin
 ResultsForm:=TResultForm.Create(self)
 ResultsForm.ShowModal;
 ResultsForm.Free;
end;

The event handler in the example deletes the form after it is closed, so the form would need to be
recreated if you needed to use ResultsForm elsewhere in the application. If the form were displayed
using Show you could not delete the form within the event handler because Show returns while the form
is still open.
Note: If you create a form using its constructor, be sure to check that the form is not in the Auto-create

forms list on the Project Options|Forms page. Specifically, if you create the new form without
deleting the form of the same name from the list, Delphi creates the form at startup and this event-
handler creates a new instance of the form, overwriting the reference to the auto-created instance.
The auto-created instance still exists, but the application can no longer access it. After the event-
handler terminates, the global variable no longer points to a valid form. Any attempt to use the
global variable will likely crash the application.

Creating modeless forms such as windows
Topic groups See also
You must guarantee that reference variables for modeless forms exist for as long as the form is in use.
This means that these variables should have global scope. In most cases, you use the global reference
variable that was created when you made the form (the variable name that matches the name property
of the form). If your application requires additional instances of the form, declare separate global
variables for each instance.

Using a local variable to create a form instance
Topic groups See also
A safer way to create a unique instance of a modal form is to use a local variable in the event handler as
a reference to a new instance. If a local variable is used, it does not matter whether ResultsForm is
auto-created or not. The code in the event handler makes no reference to the global form variable. For
example:

procedure TMainForm.Button1Click(Sender: TObject);
var
 RF:TResultForm;
begin
 RF:=TResultForm.Create(self)
 RF.ShowModal;
 RF.Free;
end;

Notice how the global instance of the form is never used in this version of the event handler.
Typically, applications use the global instances of forms. However, if you need a new instance of a
modal form, and you use that form in a limited, discrete section of the application, such as a single
function, a local instance is usually the safest and most efficient way of working with the form.
Of course, you cannot use local variables in event handlers for modeless forms because they must have
global scope to ensure that the forms exist for as long as the form is in use. Show returns as soon as
the form opens, so if you used a local variable, the local variable would go out of scope immediately.

Passing additional arguments to forms
Topic groups See also
Typically, you create forms for your application from within the IDE. When created this way, the forms
have a constructor that takes one argument, Owner, which is the owner of the form being created. (The
owner is the calling application object or form object.) Owner can be nil.
To pass additional arguments to a form, create a separate constructor and instantiate the form using this
new constructor. The example form class below shows an additional constructor, with the extra
argument whichButton. This new constructor is added to the form class manually.

TResultsForm = class(TForm)
 ResultsLabel: TLabel;
 OKButton: TButton;
 procedure OKButtonClick(Sender: TObject);
private
public
 constructor CreateWithButton(whichButton: Integer; Owner: TComponent);
end;

Here’s the manually coded constructor that passes the additional argument, whichButton. This
constructor uses the whichButton parameter to set the Caption property of a Label control on the form.

constructor CreateWithButton(whichButton: Integer; Owner: TComponent);
begin
 case whichButton of
 1: ResultsLabel.Caption := 'You picked the first button.';
 2: ResultsLabel.Caption := 'You picked the second button.';
 3: ResultsLabel.Caption := 'You picked the third button.';
 end;
end;

When creating an instance of a form with multiple constructors, you can select the constructor that best
suits your purpose. For example, the following OnClick handler for a button on a form calls creates an
instance of TResultsForm that uses the extra parameter:

procedure TMainForm.SecondButtonClick(Sender: TObject);
var
 rf: TResultsForm;
begin
 rf := TResultsForm.CreateWithButton(2, self);
 rf.ShowModal;
 rf.Free;
end;

Retrieving data from forms
Topic groups See also
Most real-world applications consist of several forms. Often, information needs to be passed between
these forms. Information can be passed to a form by means of parameters to the receiving form’s
constructor, or by assigning values to the form’s properties. The way you get information from a form
depends on whether the form is modal or modeless.

Retrieving data from modeless forms
Topic groups See also
You can easily extract information from modeless forms by calling public member functions of the form
or by querying properties of the form. For example, assume an application contains a modeless form
called ColorForm that contains a listbox called ColorListBox with a list of colors (“Red”, “Green”, “Blue”,
and so on). The selected color name string in ColorListBox is automatically stored in a property called
CurrentColor each time a user selects a new color. The class declaration for the form is as follows:

TColorForm = class(TForm)
 ColorListBox:TListBox;
 procedure ColorListBoxClick(Sender: TObject);
private
 FColor:String;
public
 property CurColor:String read FColor write FColor;
end;

The OnClick event handler for the listbox, ColorListBoxClick, sets the value of the CurrentColor property
each time a new item in the listbox is selected. The event handler gets the string from the listbox
containing the color name and assigns it to CurrentColor. The CurrentColor property uses the setter
function, SetColor, to store the actual value for the property in the private data member FColor:

procedure TColorForm.ColorListBoxClick(Sender: TObject);
var
 Index: Integer;
begin
 Index := ColorListBox.ItemIndex;
 if Index >= 0 then
 CurrentColor := ColorListBox.Items[Index]
 else
 CurrentColor := '';
end;

Now suppose that another form within the application, called ResultsForm, needs to find out which color
is currently selected on ColorForm whenever a button (called UpdateButton) on ResultsForm is clicked.
The OnClick event handler for UpdateButton might look like this:

procedure TResultForm.UpdateButtonClick(Sender: TObject);
var
 MainColor: String;
begin
 if Assigned(ColorForm) then
 begin
 MainColor := ColorForm.CurrentColor;
 {do something with the string MainColor}
 end;
end;

The event handler first verifies that ColorForm exists using the Assigned function. It then gets the value
of ColorForm’s CurrentColor property.
Alternatively, if ColorForm had a public function named GetColor, another form could get the current
color without using the CurrentColor property (for example, MainColor := ColorForm.GetColor;). In fact,
there’s nothing to prevent another form from getting the ColorForm’s currently selected color by
checking the listbox selection directly:

with ColorForm.ColorListBox do
 MainColor := Items[ItemIndex];

However, using a property makes the interface to ColorForm very straightforward and simple. All a form
needs to know about ColorForm is to check the value of CurrentColor.

Retrieving data from modal forms
Topic groups See also
Just like modeless forms, modal forms often contain information needed by other forms. The most
common example is form A launches modal form B. When form B is closed, form A needs to know what
the user did with form B to decide how to proceed with the processing of form A. If form B is still in
memory, it can be queried through properties or member functions just as in the modeless forms
example above. But how do you handle situations where form B is deleted from memory upon closing?
Since a form does not have an explicit return value, you must preserve important information from the
form before it is destroyed.
To illustrate, consider a modified version of the ColorForm form that is designed to be a modal form. The
class declaration is as follows:

TColorForm = class(TForm)
 ColorListBox:TListBox;
 SelectButton: TButton;
 CancelButton: TButton;
 procedure CancelButtonClick(Sender: TObject);
 procedure SelectButtonClick(Sender: TObject);
private
 FColor: Pointer;
public
 constructor CreateWithColor(Value: Pointer; Owner: TComponent);
end;

The form has a listbox called ColorListBox with a list of names of colors. When pressed, the button
called SelectButton makes note of the currently selected color name in ColorListBox then closes the
form. CancelButton is a button that simply closes the form.
Note that a user-defined constructor was added to the class that takes a Pointer argument. Presumably,
this Pointer points to a string that the form launching ColorForm knows about. The implementation of
this constructor is as follows:

constructor TColorForm(Value: Pointer; Owner: TComponent);
begin
 FColor := Value;
 String(FColor^) := '';
end;

The constructor saves the pointer to a private data member FColor and initializes the string to an empty
string.
Note:To use the above user-defined constructor, the form must be explicitly created. It cannot be auto-

created when the application is started. For details, see Controlling when forms reside in memory.
In the application, the user selects a color from the listbox and presses SelectButton to save the choice
and close the form. The OnClick event handler for SelectButton might look like this:

procedure TColorForm.SelectButtonClick(Sender: TObject);
begin
 with ColorListBox do
 if ItemIndex >= 0 then
 String(FColor^) := ColorListBox.Items[ItemIndex];
 end;
 Close;
end;

Notice that the event handler stores the selected color name in the string referenced by the pointer that
was passed to the constructor.
To use ColorForm effectively, the calling form must pass the constructor a pointer to an existing string.
For example, assume ColorForm was instantiated by a form called ResultsForm in response to a button
called UpdateButton on ResultsForm being clicked. The event handler would look as follows:

procedure TResultsForm.UpdateButtonClick(Sender: TObject);
var
 MainColor: String;

begin
 GetColor(Addr(MainColor));
 if MainColor <> '' then
 {do something with the MainColor string}
 else
 {do something else because no color was picked}
end;
procedure GetColor(PColor: Pointer);
begin
 ColorForm := TColorForm.CreateWithColor(PColor, Self);
 ColorForm.ShowModal;
 ColorForm.Free;
end;

UpdateButtonClick creates a String called MainColor. The address of MainColor is passed to the
GetColor function which creates ColorForm, passing the pointer to MainColor as an argument to the
constructor. As soon as ColorForm is closed it is deleted, but the color name that was selected is still
preserved in MainColor, assuming that a color was selected. Otherwise, MainColor contains an empty
string which is a clear indication that the user exited ColorForm without selecting a color.
This example uses one string variable to hold information from the modal form. Of course, more
complex objects can be used depending on the need. Keep in mind that you should always provide a
way to let the calling form know if the modal form was closed without making any changes or selections
(such as having MainColor default to an empty string).

Reusing components and groups of components
Topic groups See also
Delphi offers several ways to save and reuse work you’ve done with VCL components:

Component templates provide a simple, quick way of configuring and saving groups of
components.

You can save forms, data modules, and projects in the Repository. This gives you a central
database of reusable elements and lets you use form inheritance to propagate changes.

You can save frames on the Component palette or in the repository. Frames use form inheritance
and can be embedded into forms or other frames.

Creating a custom component is the most complicated way of reusing code, but it offers the
greatest flexibility.

Creating and using component templates
Topic groups See also
You can create templates that are made up of one or more components. After arranging components on
a form, setting their properties, and writing code for them, save them as a component template. Later, by
selecting the template from the Component palette, you can place the preconfigured components on a
form in a single step; all associated properties and event-handling code are added to your project at the
same time.
Once you place a template on a form, you can reposition the components independently, reset their
properties, and create or modify event handlers for them just as if you had placed each component in a
separate operation.
To create a component template,
1 Place and arrange components on a form. In the Object Inspector, set their properties and events

as desired.
2 Select the components. The easiest way to select several components is to drag the mouse over all

of them. Gray handles appear at the corners of each selected component.
3 Choose Component|Create Component Template.
4 Specify a name for the component template in the Component Name edit box. The default proposal

is the component type of the first component selected in step 2 followed by the word "Template".
For example, if you select a label and then an edit box, the proposed name will be
"TLabelTemplate". You can change this name, but be careful not to duplicate existing component
names.

5 In the Palette Page edit box, specify the Component palette page where you want the template to
reside. If you specify a page that does not exist, a new page is created when you save the
template.

6 Under Palette Icon, select a bitmap to represent the template on the palette. The default proposal
will be the bitmap used by the component type of the first component selected in step 2. To browse
for other bitmaps, click Change. The bitmap you choose must be no larger than 24 pixels by 24
pixels.

7 Click OK.
To remove templates from the Component palette, choose Component|Configure Palette.

Working with frames
Topic groups See also
A frame (TFrame), like a form, is a container for other components. It uses the same ownership
mechanism as forms for automatic instantiation and destruction of the components on it, and the same
parent-child relationships for synchronization of component properties. In some ways, however, a frame
is more like a customized component than a form. Frames can be saved on the Component palette for
easy reuse, and they can be nested within forms, other frames, or other container objects. After a frame
is created and saved, it continues to function as a unit and to inherit changes from the components
(including other frames) it contains. When a frame is embedded in another frame or form, it continues to
inherit changes made to the frame from which it derives.
Creating frames
Using and modifying frames
Sharing frames

Creating frames
Topic groups See also
To create an empty frame, choose File|New Frame, or choose File|New and double-click on Frame. You
can now drop components (including other frames) onto your new frame.
It is usually best—though not necessary—to save frames as part of a project. If you want to create a
project that contains only frames and no forms, choose File|New Application, close the new form and
unit without saving them, then choose File|New Frame and save the project.
Note:When you save frames, avoid using the default names Unit1, Project1, and so forth, since these

are likely to cause conflicts when you try to use the frames later.
At design time, you can display any frame included in the current project by choosing View|Forms and
selecting a frame. As with forms and data modules, you can toggle between the Form Designer and the
frame’s .DFM file by right-clicking and choosing View as Form or View as Text.

Adding frames to the Component palette
Frames are added to the Component palette as component templates. To add a frame to the
Component palette, open the frame in the Form Designer (you cannot use a frame embedded in another
component for this purpose), right-click on the frame, and choose Add to Palette. When the Component
Template Information dialog opens, select a name, palette page, and icon for the new template.

Using and modifying frames
Topic groups See also
To use a frame in an application, you must place it, directly or indirectly, on a form. You can add frames
directly to forms, to other frames, or to other container objects such as panels and scroll boxes.
The Form Designer provides two ways to add a frame to an application:

Select a frame from the Component palette and drop it onto a form, another frame, or another
container object. If necessary, the Form Designer asks for permission to include the frame’s unit file in
your project.

Select Frames from the Standard page of the Component palette and click on a form or another
frame. A dialog appears with a list of frames that are already included in your project; select one and click
OK.
When you drop a frame onto a form or other container, Delphi declares a new class that descends from
the frame you selected. (Similarly, when you add a new form to a project, Delphi declares a new class
that descends from TForm.) This means that changes made later to the original (ancestor) frame
propagate to the embedded frame, but changes to the embedded frame do not propagate backward to
the ancestor.
Suppose, for example, that you wanted to assemble a group of data-access components and data-
aware controls for repeated use, perhaps in more than one application. One way to accomplish this
would be to collect the components into a component template; but if you started to use the template
and later changed your mind about the arrangement of the controls, you would have to go back and
manually alter each project where the template was placed. If, on the other hand, you put your database
components into a frame, later changes would need to be made in only one place; changes to an
original frame automatically propagate to its embedded descendants when your projects are recompiled.
At the same time, you are free to modify any embedded frame without affecting the original frame or
other embedded descendants of it. The only limitation on modifying embedded frames is that you cannot
add components to them.

A Frame with data-aware controls and a data source component
In addition to simplifying maintenance, frames can help you to use resources more efficiently. For
example, to use a bitmap or other graphic in an application, you might load the graphic into the Picture
property of a TImage control. If, however, you use the same graphic repeatedly in one application, each
Image object you place on a form will result in another copy of the graphic being added to the form’s
resource file. (This is true even if you set TImage.Picture once and save the Image control as a
component template.) A better solution is to drop the Image object onto a frame, load your graphic into it,
then use the frame where you want the graphic to appear. This results in smaller form files and has the
added advantage of letting you change the graphic everywhere it occurs simply by modifying the Image
on the original frame.

Sharing frames
Topic groups See also
You can share a frame with other developers in two ways:

Add the frame to the Object Repository.
Distribute the frame’s unit (.PAS) and form (.DFM) files.

To add a frame to the Repository, open any project that includes the frame, right-click in the Form
Designer, and choose Add to Repository. For more information, see Using the Object Repository.
If you send a frame’s unit and form files to other developers, they can open them and add them to the
Component palette. If the frame has other frames embedded in it, they will have to open it as part of a
project.

Creating and managing menus
Topic groups See also
Menus provide an easy way for your users to execute logically grouped commands. The Menu Designer
enables you to easily add a menu—either predesigned or custom tailored—to your form. You simply add
a menu component to the form, open the Menu Designer, and type menu items directly into the Menu
Designer window. You can add or delete menu items, or drag and drop them to rearrange them during
design time.
You don't even need to run your program to see the results—your design is immediately visible in the
form, appearing just as it will during runtime. Your code can also change menus at runtime, to provide
more information or options to the user.
This section explains how to use the Menu Designer to design menu bars and pop-up (local) menus. It
discusses the following ways to work with menus at design time and runtime:

Opening the Menu Designer
Building menus
Editing menu items in the Object Inspector
Using the Menu Designer context menu
Using menu templates
Saving a menu as a template
Adding images to menu items

For information about hooking up menu items to the code that executes when they are selected, see
Associating menu events with event handlers.

Opening the Menu Designer
Topic groups See also
To start using the Menu Designer, first add either a MainMenu or PopupMenu component to your form.
Both menu components are located on the Standard page of the Component palette.

A MainMenu component creates a menu that’s attached to the form’s title bar. A PopupMenu component
creates a menu that appears when the user right-clicks in the form. Pop-up menus do not have a menu
bar.
To open the Menu Designer, select a menu component on the form, and then choose from one of the
following methods:

Double-click the menu component.
From the Properties page of the Object Inspector, select the Items property, and then either

double-click [Menu] in the Value column, or click the ellipsis (...) button.
The Menu Designer appears, with the first (blank) menu item highlighted in the Designer, and the
Caption property highlighted in the Object Inspector.

Building menus
Topic groups See also
You add a menu component to your form, or forms, for every menu you want to include in your
application. You can build each menu structure entirely from scratch, or you can start from one of the
predesigned menu templates.
This section discusses the basics of creating a menu at design time.For more information about menu
templates, see Using menu templates.

Naming menus
Topic groups See also
As with all components, when you add a menu component to the form, Delphi gives it a default name;
for example, MainMenu1. You can give the menu a more meaningful name that follows Object Pascal
naming conventions.
Delphi adds the menu name to the form’s type declaration, and the menu name then appears in the
Component list.

Naming the menu items
Topic groups See also
In contrast to the menu component itself, you need to explicitly name menu items as you add them to
the form. You can do this in one of two ways:

Directly type in the value for the Name property.
Type in the value for the Caption property first, and let Delphi derive the Name property from the

caption.
For example, if you give a menu item a Caption property value of File, Delphi assigns the menu item
a Name property of File1. If you fill in the Name property before filling in the Caption property, Delphi
leaves the Caption property blank until you type in a value.

Note: If you enter characters in the Caption property that are not valid for Object Pascal identifiers,
Delphi modifies the Name property accordingly. For example, if you want the caption to start with a
number, Delphi precedes the number with a character to derive the Name property.

The following table demonstrates some examples of this, assuming all menu items shown appear in
the same menu bar.

Component caption Derived name Explanation
&File File1 Removes ampersand
&File (2nd occurrence) File2 Numerically orders duplicate items
1234 N12341 Adds a preceding letter and numerical order
1234 (2nd occurrence) N12342 Adds a number to disambiguate the derived

name
$@@@# N1 Removes all non-standard characters, adding

preceding letter and numerical order
- (hyphen) N2 Numerical ordering of second occurrence of

caption with no standard characters
As with the menu component, Delphi adds any menu item names to the form’s type declaration, and
those names then appear in the Component list.

Adding, inserting, and deleting menu items
Topic groups See also
The following procedures describe how to perform the basic tasks involved in building your menu
structure. Each procedure assumes you have the Menu Designer window open.
To add menu items at design time,
1 Select the position where you want to create the menu item.

If you’ve just opened the Menu Designer, the first position on the menu bar is already selected.
2 Begin typing to enter the caption. Or enter the Name property first by specifically placing your

cursor in the Object Inspector and entering a value. In this case, you then need to reselect the
Caption property and enter a value.

3 Press Enter.
The next placeholder for a menu item is selected.
If you entered the Caption property first, use the arrow keys to return to the menu item you just
entered. You’ll see that Delphi has filled in the Name property based on the value you entered for the
caption. (See Naming the menu items.)

4 Continue entering values for the Name and Caption properties for each new item you want to
create, or press Esc to return to the menu bar.
Use the arrow keys to move from the menu bar into the menu, and to then move between items in
the list; press Enter to complete an action. To return to the menu bar, press Esc.

To insert a new, blank menu item,
1 Place the cursor on a menu item.
2 Press Ins.

Menu items are inserted to the left of the selected item on the menu bar, and above the selected
item in the menu list.

To delete a menu item or command,
1 Place the cursor on the menu item you want to delete.
2 Press Del.
Note:You cannot delete the default placeholder that appears below the item last entered in a menu list,

or next to the last item on the menu bar. This placeholder does not appear in your menu at
runtime.

Adding separator bars
Topic groups See also
Separator bars insert a line between menu items. You can use separator bars to indicate groupings
within the menu list, or simply to provide a visual break in a list.
To make the menu item a separator bar, type a hyphen (-) for the caption.

Specifying accelerator keys and keyboard shortcuts
Topic groups See also
Accelerator keys enable the user to access a menu command from the keyboard by pressing Alt+ the
appropriate letter, indicated in your code by the preceding ampersand. The letter after the ampersand
appears underlined in the menu.
Delphi automatically checks for duplicate accelerators and adjusts them at runtime. This ensures that
menus built dynamically at runtime contain no duplicate accelerators and that all menu items have an
accelerator. You can turn off this automatic checking by setting the AutoHotkeys property of a menu item
to maManual.
To specify an accelerator,

Add an ampersand in front of the appropriate letter.
For example, to add a Save menu command with the S as an accelerator key, type &Save.

Keyboard shortcuts enable the user to perform the action without accessing the menu directly, by typing
in the shortcut key combination.
To specify a keyboard shortcut,

Use the Object Inspector to enter a value for the ShortCut property, or select a key combination
from the drop-down list.

This list is only a subset of the valid combinations you can type in.
When you add a shortcut, it appears next to the menu item caption.

Caution: Keyboard shortcuts, unlike accelerator keys, are not checked automatically for duplicates. You
must ensure uniqueness yourself.

Creating submenus
Topic groups See also
Many application menus contain drop-down lists that appear next to a menu item to provide additional,
related commands. Such lists are indicated by an arrow to the right of the menu item. Delphi supports as
many levels of such submenus as you want to build into your menu.
Organizing your menu structure this way can save vertical screen space. However, for optimal design
purposes you probably want to use no more than two or three menu levels in your interface design. (For
pop-up menus, you might want to use only one submenu, if any.)
To create a submenu,
1 Select the menu item under which you want to create a submenu.
2 Press Ctrl® to create the first placeholder, or right-click and choose Create Submenu.
3 Type a name for the submenu item, or drag an existing menu item into this placeholder.
4 Press Enter, or ¯, to create the next placeholder.
5 Repeat steps 3 and 4 for each item you want to create in the submenu.
6 Press Esc to return to the previous menu level.

Creating submenus by demoting existing menus
Topic groups See also
You can create a submenu by inserting a menu item from the menu bar (or a menu template) between
menu items in a list. When you move a menu into an existing menu structure, all its associated items
move with it, creating a fully intact submenu. This pertains to submenus as well—moving a menu item
into an existing submenu just creates one more level of nesting.

Moving menu items
Topic groups See also
During design time, you can move menu items simply by dragging and dropping. You can move menu
items along the menu bar, or to a different place in the menu list, or into a different menu entirely.
The only exception to this is hierarchical: you cannot demote a menu item from the menu bar into its
own menu; nor can you move a menu item into its own submenu. However, you can move any item into
a different menu, no matter what its original position is.
While you are dragging, the cursor changes shape to indicate whether you can release the menu item at
the new location. When you move a menu item, any items beneath it move as well.
To move a menu item along the menu bar,
1 Drag the menu item along the menu bar until the arrow tip of the drag cursor points to the new

location.
2 Release the mouse button to drop the menu item at the new location.
To move a menu item into a menu list,
1 Drag the menu item along the menu bar until the arrow tip of the drag cursor points to the new

menu.
This causes the menu to open, enabling you to drag the item to its new location.

2 Drag the menu item into the list, releasing the mouse button to drop the menu item at the new
location.

Adding images to menu items
Topic groups See also
Images can help users navigate in menus by matching glyphs and images to menu item action, similar
to toolbar images. To add an image to a menu item:
1 Drop a TMainMenu or TPopupMenu object on a form.
2 Drop a TImageList object on the form.
3 Open the ImageList editor by double clicking on the TImageList object.
4 Click Add to select the bitmap or bitmap group you want to use in the menu. Click OK.
5 Set the TMainMenu or TPopupMenu object’s Images property to the ImageList you just created.
6 Create your menu items and submenu items as described in this topic group.
7 Select the menu item you want to have an image in the Object Inspector and set the ImageIndex

property to the corresponding number of the image in the ImageList (the default value for
ImageIndex is -1, which doesn’t display an image).

Note:Use images that are 16 by 16 pixels for proper display in the menu. Although you can use other
sizes for the menu images, alignment and consistency problems may result when using images
greater than or smaller than 16 by 16 pixels.

Viewing the menu
Topic groups See also
You can view your menu in the form at design time without first running your program code. (Pop-up
menu components are visible in the form at design time, but the pop-up menus themselves are not. Use
the Menu Designer to view a pop-up menu at design time.)
To view the menu,
1 If the form is visible, click the form, or from the View menu, choose the form whose menu you want

to view.
2 If the form has more than one menu, select the menu you want to view from the form’s Menu

property drop-down list.
The menu appears in the form exactly as it will when you run the program.

Editing menu items in the Object Inspector
Topic groups See also
This section has discussed how to set several properties for menu items—for example, the Name and
Caption properties—by using the Menu Designer.
The section has also described how to set menu item properties, such as the ShortCut property, directly
in the Object Inspector, just as you would for any component selected in the form.
When you edit a menu item by using the Menu Designer, its properties are still displayed in the Object
Inspector. You can switch focus to the Object Inspector and continue editing the menu item properties
there. Or you can select the menu item from the Component list in the Object Inspector and edit its
properties without ever opening the Menu Designer.
To close the Menu Designer window and continue editing menu items,
1 Switch focus from the Menu Designer window to the Object Inspector by clicking the properties

page of the Object Inspector.
2 Close the Menu Designer as you normally would.

The focus remains in the Object Inspector, where you can continue editing properties for the
selected menu item. To edit another menu item, select it from the Component list.

For information about assigning event handlers to menus, see Associating menu events with event
handlers“Associating menu events with event handlers” on page 2-26.

Using the Menu Designer context menu
Topic groups See also
The Menu Designer context menu provides quick access to the most common Menu Designer
commands, and to the menu template options. (For more information about menu templates, refer to
Using menu templates.)
To display the context menu, right-click the Menu Designer window, or press Alt+F10 when the cursor is
in the Menu Designer window.

Commands on the context menu
Topic groups See also
The following table summarizes the commands on the Menu Designer context menu.

Menu command Action
 Insert Inserts a placeholder above or to the left of the cursor.
Delete Deletes the selected menu item (and all its sub-items, if any).
Create Submenu Creates a placeholder at a nested level and adds an arrow to the

right of the selected menu item.
Select Menu Opens a list of menus in the current form. Double-clicking a menu

name opens the designer window for the menu.
Save As Template Opens the Save Template dialog box, where you can save a menu

for future reuse.
Insert From Template Opens the Insert Template dialog box, where you can select a

template to reuse.
Delete Templates Opens the Delete Templates dialog box, where you can choose to

delete any existing templates.
Insert From Resource Opens the Insert Menu from Resource file dialog box, where you

can choose an .MNU file to open in the current form.

Switching between menus at design time
Topic groups See also
If you’re designing several menus for your form, you can use the Menu Designer context menu or the
Object Inspector to easily select and move among them.
To use the context menu to switch between menus in a form,
1 Right-click in the Menu Designer and choose Select Menu.

The Select Menu dialog box appears.
This dialog box lists all the menus associated with the form whose menu is currently open in the
Menu Designer.

2 From the list in the Select Menu dialog box, choose the menu you want to view or edit.
To use the Object Inspector to switch between menus in a form,
1 Give focus to the form whose menus you want to choose from.
2 From the Component list, select the menu you want to edit.
3 On the Properties page of the Object Inspector, select the Items property for this menu, and then

either click the ellipsis button, or double-click [Menu].

Using menu templates
Topic groups See also
Delphi provides several predesigned menus, or menu templates, that contain frequently used
commands. You can use these menus in your applications without modifying them (except to write
code), or you can use them as a starting point, customizing them as you would a menu you originally
designed yourself. Menu templates do not contain any event handler code.
The menu templates shipped with Delphi are stored in the BIN subdirectory in a default installation.
These files have a .DMT (Delphi menu template) extension.
You can also save as a template any menu that you design using the Menu Designer. After saving a
menu as a template, you can use it as you would any predesigned menu. If you decide you no longer
want a particular menu template, you can delete it from the list.
To add a menu template to your application,
1 Right-click the Menu Designer and choose Insert From Template.

(If there are no templates, the Insert From Template option appears dimmed in the context menu.)
The Insert Template dialog box opens, displaying a list of available menu templates.

2 Select the menu template you want to insert, then press Enter or choose OK.
This inserts the menu into your form at the cursor’s location. For example, if your cursor is on a
menu item in a list, the menu template is inserted above the selected item. If your cursor is on the
menu bar, the menu template is inserted to the left of the cursor.

To delete a menu template,
1 Right-click the Menu Designer and choose Delete Templates.

(If there are no templates, the Delete Templates option appears dimmed in the context menu.)
The Delete Templates dialog box opens, displaying a list of available templates.

2 Select the menu template you want to delete, and press Del.
Delphi deletes the template from the templates list and from your hard disk.

Saving a menu as a template
Topic groups See also
Any menu you design can be saved as a template so you can use it again. You can use menu templates
to provide a consistent look to your applications, or use them as a starting point which you then further
customize.
The menu templates you save are stored in your BIN subdirectory as .DMT files.
To save a menu as a template,
1 Design the menu you want to be able to reuse.

This menu can contain as many items, commands, and submenus as you like; everything in the
active Menu Designer window will be saved as one reusable menu.

2 Right-click in the Menu Designer and choose Save As Template.
The Save Template dialog box appears.

3 In the Template Description edit box, type a brief description for this menu, and then choose OK.
The Save Template dialog box closes, saving your menu design and returning you to the Menu
Designer window.

Note:The description you enter is displayed only in the Save Template, Insert Template, and Delete
Templates dialog boxes. It is not related to the Name or Caption property for the menu.

Naming conventions for template menu items and event handlers
Topic groups See also
When you save a menu as a template, Delphi does not save its Name property, since every menu must
have a unique name within the scope of its owner (the form). However, when you insert the menu as a
template into a new form by using the Menu Designer, Delphi then generates new names for it and all of
its items.
For example, suppose you save a File menu as a template. In the original menu, you name it MyFile. If
you insert it as a template into a new menu, Delphi names it File1. If you insert it into a menu with an
existing menu item named File1, Delphi names it File2.
Delphi also does not save any OnClick event handlers associated with a menu saved as a template,
since there is no way to test whether the code would be applicable in the new form. When you generate
a new event handler for the menu template item, Delphi still generates the event handler name.
You can easily associate items in the menu template with existing OnClick event handlers in the form.
For more information, see Associating an event with an existing event handler.

Manipulating menu items at runtime
Topic groups See also
Sometimes you want to add menu items to an existing menu structure while the application is running,
to provide more information or options to the user. You can insert a menu item by using the menu item’s
Add or Insert method, or you can alternately hide and show the items in a menu by changing their
Visible property. The Visible property determines whether the menu item is displayed in the menu. To
dim a menu item without hiding it, use the Enabled property.
For examples that use the menu item’s Visible and Enabled properties, see Disabling menu items.
In multiple document interface (MDI) and Object Linking and Embedding (OLE) applications, you can
also merge menu items into an existing menu bar. See Merging menus for more information.

Merging menus
Topic groups See also
For MDI applications, such as the text editor sample application, and for OLE client applications, your
application’s main menu needs to be able to receive menu items either from another form or from the
OLE server object. This is often called merging menus.
You prepare menus for merging by specifying values for two properties:

Menu, a property of the form
GroupIndex, a property of menu items in the menu

Specifying the active menu: Menu property
Topic groups See also
The Menu property specifies the active menu for the form. Menu-merging operations apply only to the
active menu. If the form contains more than one menu component, you can change the active menu at
runtime by setting the Menu property in code. For example,

Form1.Menu := SecondMenu;

Determining the order of merged menu items: GroupIndex property
Topic groups See also
The GroupIndex property determines the order in which the merging menu items appear in the shared
menu bar. Merging menu items can replace those on the main menu bar, or can be inserted.
The default value for GroupIndex is 0. Several rules apply when specifying a value for GroupIndex:

Lower numbers appear first (farther left) in the menu.
For instance, set the GroupIndex property to 0 (zero) for a menu that you always want to appear
leftmost, such as a File menu. Similarly, specify a high number (it needn’t be in sequence) for a
menu that you always want to appear rightmost, such as a Help menu.

To replace items in the main menu, give items on the child menu the same GroupIndex value.
This can apply to groupings or to single items. For example, if your main form has an Edit menu item
with a GroupIndex value of 1, you can replace it with one or more items from the child form's menu
by giving them a GroupIndex value of 1 as well.
Giving multiple items in the child menu the same GroupIndex value keeps their order intact when
they merge into the main menu.

To insert items without replacing items in the main menu, leave room in the numeric range of the
main menu’s items and “plug in” numbers from the child form.

For example, number the items in the main menu 0 and 5, and insert items from the child menu by
numbering them 1, 2, 3 and 4.

Importing resource files
Topic groups See also
Delphi supports menus built with other applications, so long as they are in the standard Windows
resource (.RC) file format. You can import such menus directly into your Delphi project, saving you the
time and effort of rebuilding menus that you created elsewhere.
To load existing .RC menu files,
1 In the Menu Designer, place your cursor where you want the menu to appear.

The imported menu can be part of a menu you are designing, or an entire menu in itself.
2 Right-click and choose Insert From Resource.

The Insert Menu From Resource dialog box appears.
3 In the dialog box, select the resource file you want to load, and choose OK.

The menu appears in the Menu Designer window.
Note: If your resource file contains more than one menu, you first need to save each menu as a separate

resource file before importing it.

Designing toolbars and cool bars
Topic groups See also
A toolbar is a panel, usually across the top of a form (under the menu bar), that holds buttons and other
controls. A cool bar (also called a rebar) is a kind of toolbar that displays controls on movable, resizable
bands. If you have multiple panels aligned to the top of the form, they stack vertically in the order added.
You can put controls of any sort on a toolbar. In addition to buttons, you may want to put use color grids,
scroll bars, labels, and so on.
There are several ways to add a toolbar to a form:

Place a panel (TPanel) on the form and add controls (typically speed buttons) to it.
Use a toolbar component (TToolBar) instead of TPanel, and add controls to it. TToolBar manages

buttons and other controls, arranging them in rows and automatically adjusting their sizes and positions. If
you use tool button (TToolButton) controls on the toolbar, TToolBar makes it easy to group the buttons
functionally and provides other display options.

Use a cool bar (TCoolBar) component and add controls to it. The cool bar displays controls on
independently movable and resizable bands.
How you implement your toolbar depends on your application. The advantage of using the Panel
component is that you have total control over the look and feel of the toolbar.
By using the toolbar and cool bar components, you are ensuring that your application has the look and
feel of a Windows application because you are using the native Windows controls. If these operating
system controls change in the future, your application could change as well. Also, since the toolbar and
cool bar rely on common components in Windows, your application requires the COMCTL32.DLL.
Toolbars and cool bars are not supported in WinNT 3.51 applications.
The following sections describe how to

Adding a toolbar using a panel component
Adding a toolbar using the toolbar component
Adding a cool bar component
Responding to clicks
Adding hidden toolbars
Hiding and showing toolbars

Adding a toolbar using a panel component
Topic groups See also
To add a toolbar to a form using the panel component,
1 Add a panel component to the form (from the Standard page of the Component palette).
2 Set the panel’s Align property to alTop. When aligned to the top of the form, the panel maintains its

height, but matches its width to the full width of the form’s client area, even if the window changes
size.

3 Add speed buttons or other controls to the panel.
Speed buttons are designed to work on toolbar panels. A speed button usually has no caption, only a
small graphic (called a glyph), which represents the button’s function.
Speed buttons have three possible modes of operation. They can

Act like regular pushbuttons
Toggle on and off when clicked
Act like a set of radio buttons

To implement speed buttons on toolbars, do the following:
Adding a speed button to a panel
Assigning a speed button’s glyph
Setting the initial condition of a speed button
Creating a group of speed buttons
Allowing toggle buttons

Adding a speed button to a panel
Topic groups See also
To add a speed button to a toolbar panel, place the speed button component (from the Additional page
of the Component palette) on the panel.
The panel, rather than the form, “owns” the speed button, so moving or hiding the panel also moves or
hides the speed button.
The default height of the panel is 41, and the default height of speed buttons is 25. If you set the Top
property of each button to 8, they’ll be vertically centered. The default grid setting snaps the speed
button to that vertical position for you.

Assigning a speed button’s glyph
Topic groups See also
Each speed button needs a graphic image called a glyph to indicate to the user what the button does. If
you supply the speed button only one image, the button manipulates that image to indicate whether the
button is pressed, unpressed, selected, or disabled. You can also supply separate, specific images for
each state if you prefer.
You normally assign glyphs to speed buttons at design time, although you can assign different glyphs at
runtime.
To assign a glyph to a speed button at design time,
1 Select the speed button.
2 In the Object Inspector, select the Glyph property.
3 Double-click the Value column beside Glyph to open the Picture Editor and select the desired

bitmap.

Setting the initial condition of a speed button
Topic groups See also
Speed buttons use their appearance to give the user clues as to their state and purpose. Because they
have no caption, it’s important that you use the right visual cues to assist users.
The table below lists some actions you can set to change a speed button’s appearance:

To make a speed button: Set the toolbar’s:
Appear pressed GroupIndex property to a value other than zero and

its Down property to True.
Appear disabled Enabled property to False.
Have a left margin Indent property to a value greater than 0.

If your application has a default drawing tool, ensure that its button on the toolbar is pressed when the
application starts. To do so, set its GroupIndex property to a value other than zero and its Down property
to True.

Creating a group of speed buttons
Topic groups See also
A series of speed buttons often represents a set of mutually exclusive choices. In that case, you need to
associate the buttons into a group, so that clicking any button in the group causes the others in the
group to pop up.
To associate any number of speed buttons into a group, assign the same number to each speed
button’s GroupIndex property.
The easiest way to do this is to select all the buttons you want in the group, and, with the whole group
selected, set GroupIndex to a unique value.

Allowing toggle buttons
Topic groups See also
Sometimes you want to be able to click a button in a group that’s already pressed and have it pop up,
leaving no button in the group pressed. Such a button is called a toggle. Use AllowAllUp to create a
grouped button that acts as a toggle: click it once, it’s down; click it again, it pops up.
To make a grouped speed button a toggle, set its AllowAllUp property to True.
Setting AllowAllUp to True for any speed button in a group automatically sets the same property value
for all buttons in the group. This enables the group to act as a normal group, with only one button
pressed at a time, but also allows every button to be up at the same time.

Adding a toolbar using the toolbar component
Topic groups See also
The toolbar component (TToolBar) offers button management and display features that panel
components do not. To add a toolbar to a form using the toolbar component,
1 Add a toolbar component to the form (from the Win32 page of the Component palette). The toolbar

automatically aligns to the top of the form.
2 Add tool buttons or other controls to the bar.
Tool buttons are designed to work on toolbar components. Like speed buttons, tool buttons can

Act like regular pushbuttons
Toggle on and off when clicked
Act like a set of radio buttons

To implement tool buttons on a toolbar, do the following:
Adding a tool button
Assigning images to tool buttons
Setting tool button appearance and initial conditions
Creating groups of tool buttons
Allowing toggled tool buttons

Adding a tool button
Topic groups See also
To add a tool button to a toolbar, right-click on the toolbar and choose New Button.
The toolbar “owns” the tool button, so moving or hiding the toolbar also moves or hides the button. In
addition, all tool buttons on the toolbar automatically maintain the same height and width. You can drop
other controls from the Component palette onto the toolbar, and they will automatically maintain a
uniform height. Controls will also wrap around and start a new row when they do not fit horizontally on
the toolbar.

Assigning images to tool buttons
Topic groups See also
Each tool button has an ImageIndex property that determines what image appears on it at runtime. If
you supply the tool button only one image, the button manipulates that image to indicate whether the
button is disabled. To assign images to tool buttons at design time,
1 Select the toolbar on which the buttons appear.
2 In the Object Inspector, assign a TImageList object to the toolbar’s Images property. An image list is

a collection of same-sized icons or bitmaps.
3 Select a tool button.
4 In the Object Inspector, assign an integer to the tool button’s ImageIndex property that corresponds

to the image in the image list that you want to assign to the button.
You can also specify separate images to appear on the tool buttons when they are disabled and when
they are under the mouse pointer. To do so, assign separate image lists to the toolbar’s DisabledImages
and HotImages properties.

Setting tool button appearance and initial conditions
Topic groups See also
The table below lists some actions you can set to change a tool button’s appearance:

To make a tool button: Set the toolbar’s:
Appear pressed GroupIndex property to a nonzero value and its

Down property to True.
Appear disabled Enabled property to False.
Have a left margin Indent property to a value greater than 0.
Appear to have “pop-up” borders,
thus making the toolbar appear
transparent

Flat property to True.

Note:Using the Flat property of TToolBar requires version 4.70 or later of COMCTL32.DLL.
To force a new row of controls after a specific tool button, Select the tool button that you want to appear
last in the row and set its Wrap property to True.
To turn off the auto-wrap feature of the toolbar, set the toolbar’s Wrapable property to False.

Creating groups of tool buttons
Topic groups See also
To create a group of tool buttons, select the buttons you want to associate and set their Style property to
tbsCheck; then set their Grouped property to True. Selecting a grouped tool button causes other buttons
in the group to pop up, which is helpful to represent a set of mutually exclusive choices.
Any unbroken sequence of adjacent tool buttons with Style set to tbsCheck and Grouped set to True
forms a single group. To break up a group of tool buttons, separate the buttons with any of the following:

A tool button whose Grouped property is False.
A tool button whose Style property is not set to tbsCheck. To create spaces or dividers on the

toolbar, add a tool button whose Style is tbsSeparator or tbsDivider.
Another control besides a tool button.

Allowing toggled tool buttons
Topic groups See also
Use AllowAllUp to create a grouped tool button that acts as a toggle: click it once, it is down; click it
again, it pops up. To make a grouped tool button a toggle, set its AllowAllUp property to True.
As with speed buttons, setting AllowAllUp to True for any tool button in a group automatically sets the
same property value for all buttons in the group.

Adding a cool bar component
Topic groups See also
The cool bar component—also called a rebar—displays windowed controls on independently movable,
resizable bands. The user can position the bands by dragging the resizing grips on the left side of each
band.
To add a cool bar to a form,
1 Add a cool bar component to the form (from the Win32 page of the Component palette). The cool

bar automatically aligns to the top of the form.
2 Add windowed controls from the Component palette to the bar.
Only components that descend from TWinControl are windowed controls. You can add graphic controls
—such as labels or speed buttons—to the cool bar, but they will not appear on separate bands.
Note:The cool bar component requires version 4.70 or later of COMCTL.DLL.

Setting the appearance of the cool bar
Topic groups
The cool bar component offers several useful configuration options. The table below lists some actions
you can set to change a tool button’s appearance:

To make the cool bar: Set the toolbar’s:
Resize automatically to accommodate
the bands it contains

AutoSize property to True.

Bands maintain a uniform height FixedSize property to True.
Reorient to vertical rather than horizontal Vertical property to True. This changes the effect of the

FixedSize property.
Prevent the Text properties of the bands
from displaying at runtime

ShowText property to False. Each band in a cool bar has
its own Text property.

Remove the border around the bar BandBorderStyle to bsNone.
Keep users from changing the bands’
order at runtime. (The user can still move
and resize the bands.)

FixedOrder to True.

Create a background image for the cool
bar

Bitmap property to TBitmap object.

Choose a list of images to appear on the
left of any band

Images property to TImageList object.

To assign images to individual bands, select the cool bar and double-click on the Bands property in the
Object Inspector. Then select a band and assign a value to its ImageIndex property.

Responding to clicks
Topic groups See also
When the user clicks a control, such as a button on a toolbar, the application generates an OnClick
event which you can respond to with an event handler. Since OnClick is the default event for buttons,
you can generate a skeleton handler for the event by double-clicking the button at design time. For more
information, see Working with events and event handlers and Generating a handler for a component’s
default event.

Assigning a menu to a tool button
Topic groups See also
If you are using a toolbar (TToolBar) with tool buttons (TToolButton), you can associate menu with a
specific button:
1 Select the tool button.
2 In the Object Inspector, assign a pop-up menu (TPopupMenu) to the tool button’s DropDownMenu

property.
If the menu’s AutoPopup property is set to True, it will appear automatically when the button is pressed.

Adding hidden toolbars
Topic groups See also
Toolbars do not have to be visible all the time. In fact, it is often convenient to have a number of toolbars
available, but show them only when the user wants to use them. Often you create a form that has
several toolbars, but hide some or all of them.
To create a hidden toolbar,
1 Add a toolbar, cool bar, or panel component to the form.
2 Set the component’s Visible property to False.
Although the toolbar remains visible at design time so you can modify it, it remains hidden at runtime
until the application specifically makes it visible.

Hiding and showing toolbars
Topic groups See also
Often, you want an application to have multiple toolbars, but you do not want to clutter the form with
them all at once. Or you may want to let users decide whether to display toolbars. As with all
components, toolbars can be shown or hidden at runtime as needed.
To hide or show a toolbar at runtime, set its Visible property to False or True, respectively. Usually you
do this in response to particular user events or changes in the operating mode of the application. To do
this, you typically have a close button on each toolbar. When the user clicks that button, the application
hides the corresponding toolbar.
You can also provide a means of toggling the toolbar. In the following example, a toolbar of pens is
toggled from a button on the main toolbar. Since each click presses or releases the button, an OnClick
event handler can show or hide the Pen toolbar depending on whether the button is up or down.

procedure TForm1.PenButtonClick(Sender: TObject);
begin
 PenBar.Visible := PenButton.Down;
end;

Using action lists
Topic groups See also
Action lists let you centralize the response to user commands (actions) for objects such as menus and
buttons that respond to those commands. This section is an overview of actions and action lists,
describing how to use them and how they interact with their clients and targets.
The following help topics are discussed in this section:

Action objects
Using Actions
Pre-defined action classes
Writing action components
Demo programs

Action objects
Topic groups See also
Actions are user commands that operate on target objects. You create actions in the action list
component editor. These actions are later connected to client controls via their action links. Following
are descriptions of each type of component in the action/action list mechanism:

An action (TAction) is the implementation of an action, such as copying highlighted text, on a
target, such as an edit control. An action is triggered by a client in response to a user command (such as
a mouse click). Clients are typically menu items or buttons. The StdActns unit contains classes derived
from TAction that implement the basic Edit and Window menu commands (actions) found in most Window
applications.

An action list (TActionList) is a component that maintains a list of actions (TAction). Action lists are
the design-time user interface for working with actions.

An action link (TActionLink) is an object that maintains the connection between actions and
clients. Action links determine whether an action, or which action, is currently applicable for a given client.

A client of an action is typically a menu item or a button (TToolButton, TSpeedButton, TMenuItem,
TButton, TCheckBox, TRadioButton, and so on). An action is initiated by a corresponding command in the
client. Typically a client Click is associated with an action Execute.

An action target is usually a control, such as a rich edit, a memo, or a data control. The DBActns
unit, for example, contains classes that implement actions specific to data set controls. Component
writers can create their own actions specific to the needs of the controls they design and use, and then
package those units to create more modular applications.
The following figure shows the relationship of these objects. In this diagram, Cut1 is the action,
ActionList1 is the action list containing Cut1, SpeedButton1 is the client of Cut1, and Memo1 is the
target. Unlike actions, action lists, action clients, and action targets, action links are non-visual objects.
The action link in this diagram is therefore indicated by a white rectangle. The action link associates the
SpeedButton1 client to the Cut1 action contained in ActionList1.

The VCL includes TAction, TActionList, and TActionLink type classes for working with Action lists. By unit,
these are

ActnList.pas: TAction, TActionLink, TActionList, TContainedAction, TCustomAction, and
TCustomActionList

Classes.pas: TBasicAction and TBasicActionLink
Controls.pas: TControlActionLink and TWinControlActionLink
ComCtrls.pas: TToolButtonActionLink
Menus.pas: TMenuActionLink
StdCtrls.pas: TButtonActionLink

There are also two units, StdActns and DBActns, that contain auxiliary classes that implement specific,
commonly used standard Windows and data set actions. These are described in Pre-defined action
classes.. Many of the VCL controls include properties (such as Action) and methods (such as
ExecuteAction) that enable them to be used as action clients and targets.

Using Actions
Topic groups See also
You can add an action list to your forms or data modules from the standard page of the Component
Palette. Double-click the action list to display the Action List editor, which lets you add, delete, and
rearrange actions in much the same way you use the collection editor.
In the Object Inspector, set the properties for each action. The Name property identifies the action, and
the other properties and events (Caption, Checked, Enabled, HelpContext, Hint, ImageIndex, ShortCut,
and Visible) correspond to the properties of client controls. These are typically, but not necessarily, the
same name as the client property. For example, an action’s Checked property corresponds to a
TToolButton’s Down property.
How to use actions is discussed in the following help topics:

Centralizing code
Linking properties
Executing actions
Updating actions

Centralizing code
Topic groups See also
A number of controls such as TToolButton, TSpeedButton, TMenuItem, and TButton have a published
property called Action. When you set the Action property to one of the actions in your action list, the
values of the corresponding properties in the action are copied to those of the control. All properties and
events in common with the action object (except Name and Tag) are dynamically linked to the control.
Thus, for example, instead of duplicating the code that disables buttons and menu items, you can
centralize this code in an action object, and when the action is disabled, all corresponding buttons and
menu items are disabled.

Linking properties
Topic groups See also
The client’s action link is the mechanism through which its properties are associated with (linked to) the
properties of an action. When an action changes, the action link is responsible for updating the client’s
properties. For details about which properties a particular action link class handles, refer to the individual
action link classes in the VCL reference.
You can selectively override the values of the properties controlled by an associated action object by
setting the property’s value in the client component or control. This does not change the property in the
action, so only the client is affected.

Executing actions
Topic groups See also
When a client component or control is clicked, the OnExecute event occurs for it’s associated action.
For example, the following code illustrates the OnExecute event handler for an action that toggles the
visibility of a toolbar when the action is executed:

procedure TForm1.Action1Execute(Sender: TObject);
begin
{ Toggle Toolbar1's visibility }
ToolBar1.Visible := not ToolBar1.Visible;

end;
Note: If you are using a tool button or a menu item, you must manually set the Images property of the

corresponding toolbar or menu component to the Images property of the action list. This is true
even though the ImageIndex property is dynamically linked to the client.

For general information about events and event handlers, see Working with events and event handlers.
The following figure illustrates the dispatching sequence for the execution cycle of an action called Cut1.
This diagram assumes the relationship of the components in the figure in Action objects, meaning that
the Speedbutton1 client is linked to the Cut1 action via its action link. Speedbutton1’s Action property is
therefore Cut1. Consequently, Speedbutton1’s Click method invokes Cut1’s Execute method.

Note: In the description of this sequence, one method invoking another does not necessarily mean that
the invocation is explicit in the code for that method.

Clicking on Speedbutton1 initiates the following execution cycle:
Speedbutton1’s Click method invokes Cut1.Execute.
The Cut1 action defers to its action list (ActionList1) for the processing of its Execute. This is

done by calling the Action list’s ExecuteAction method, passing itself as a parameter.
ActionList1 calls its event handler (OnExecute) for ExecuteAction. (An action list’s ExecuteAction

method applies to all actions contained by the action list.) This handler has a parameter Handled, that
returns False by default. If the handler is assigned and handles the event, it should return True, and the
processing sequence ends here. For example:

procedure TForm1.ActionList1ExecuteAction(Action: TBasicAction; var Handled:
Boolean);
begin
 { Prevent execution of actions contained by ActionList1 }
 Handled := True;
end;

If execution is not handled, at this point, in the action list event handler, then processing continues:
The Cut1 action is routed to the Application object’s ExecuteAction method, which invokes the

OnActionExecute event handler. (The application’s ExecuteAction method applies to all of the actions in
that application.) The sequence is the same as for the action list ExecuteAction: The handler has a
parameter Handled that returns False by default. If the handler is assigned and handles the event, it
should return True, and the processing sequence ends here. For example:

procedure TForm1.ApplicationExecuteAction(Action: TBasicAction; var Handled:
Boolean);
begin
 { Prevent execution of all actions in Application }
 Handled := True;
end;

If execution is not handled in the application’s event handler, then Cut1 send the
CM_ACTIONEXECUTE message to the application’s WndProc, passing itself as a parameter. The
application then tries to find a target on which to execute the action (see the figure "Action targets”).

Updating actions
Topic groups See also
When the application is idle, the OnUpdate event occurs for every action that is linked to a visible control
or menu item that is showing. This provides an opportunity for applications to execute centralized code
for enabling and disabling, checking and unchecking, and so on. For example, the following code
illustrates the OnUpdate event handler for an action that is “checked” when the toolbar is visible:

procedure TForm1.Action1Update(Sender: TObject);
begin
{ Indicate whether ToolBar1 is currently visible }
(Sender as TAction).Checked := ToolBar1.Visible;

end;
See also the RichEdit demo(Demos\RichEdit).
The dispatching cycle for updating actions follows the same sequence as the execution cycle in The
figure in Executing actions.
Note:Do not add time-intensive code to the OnUpdate event handler. This executes whenever the

application is idle. If the event handler takes too much time, it will adversely affect performance of
the entire application.

Pre-defined action classes
Topic groups See also
Component writers can use the classes in the StdActns and DBActns units as examples for deriving
their own action classes that implement behaviors specific to certain controls or components. The base
classes for these specialized actions (TEditAction, TWindowAction) generally override HandlesTarget,
UpdateTarget, and other methods to limit the target for the action to a specific class of objects. The
descendant classes typically override ExecuteTarget to perform a specialized task.
The pre-defined action classes are grouped into the following categories:

Standard edit actions
Standard Window actions
Standard Help actions
DataSet actions

Standard edit actions
Topic groups See also
The standard edit actions are designed to be used with an edit control target. TEditAction is the base
class for descendants that each override the ExecuteTarget method to implement copy, cut, and paste
tasks by using the Windows Clipboard.

TEditAction ensures that the target control is a TCustomEdit class (or descendant).
TEditCopy copies highlighted text to the Clipboard.
TEditCut cuts highlighted text from the target to the Clipboard.
TEditPaste pastes text from the Clipboard to the target and ensures that the Clipboard is enabled

for the text format.
TEditDelete deletes the highlighted text.
TEditSelectAll selects all the text in the target edit control.
TEditUndo undoes the last edit made to the target edit control.

Standard Window actions
Topic groups See also
The standard Window actions are designed to be used with forms as targets in an MDI application.
TWindowAction is the base class for descendants that each override the ExecuteTarget method to
implement arranging, cascading, closing, tiling, and minimizing MDI child forms.

TWindowAction ensures that the target control is a TForm class and checks whether the form has
MDI child forms.

TWindowArrange arranges the icons of minimized MDI child forms.
TWindowCascade cascades the MDI child forms.
TWindowClose closes the active MDI child form.
TWindowMinimizeAll minimizes all of the MDI child forms.
TWindowTileHorizontal arranges MDI child forms so that they are all the same size, tiled

horizontally.
TWindowTileVertical arranges MDI child forms so that they are all the same size, tiled vertically.

Standard Help actions
Topic groups See also
The standard Help actions are designed to be used with any target. THelpAction is the base class for
descendants that each override the ExecuteTarget method to pass the command on to WinHelp.

THelpAction ensures that the global Application variable is available, so that commands can be
handled using its HelpCommand method.

THelpContents brings up the Help Topics dialog on the tab (Contents, Index or Find) that was last
used.

THelpTopicSearch brings up the Help Topics dialog on the Index tab.
THelpOnHelp brings up the Microsoft help file on how to use Help. Note that this file is an HTML

help file on recent versions of Windows, and does not describe the WinHelp system.

DataSet actions
Topic groups See also
The standard dataset actions are designed to be used with a dataset component target. TDataSetAction
is the base class for descendants that each override the ExecuteTarget and UpdateTarget methods to
implement navigation and editing of the target.

The TDataSetAction introduces a DataSource property which ensures actions are performed on
that dataset. If DataSource is nil, the currently focused data-aware control is used. TDataSetAction
ensures that the target is a TDataSource class and has an associated data set.

TDataSetCancel cancels the edits to the current record, restores the record display to its
condition prior to editing, and turns off Insert and Edit states if they are active.

TDataSetDelete deletes the current record and makes the next record the current record.
TDataSetEdit puts the dataset into Edit state so that the current record can be modified.
TDataSetFirst sets the current record to the first record in the dataset.
TDataSetInsert inserts a new record before the current record, and sets the dataset into Insert

and Edit states.
TDataSetLast sets the current record to the last record in the dataset.
TDataSetNext sets the current record to the next record.
TDataSetPost writes changes in the current record to the dataset.
TDataSetPrior sets the current record to the previous record.
TDataSetRefresh refreshes the buffered data in the associated dataset.

Writing action components
Topic groups See also
The pre-defined actions are examples of extending the VCL action classes. The following topics are
useful if you are writing your own action classes:

How actions find their targets
Registering actions
Writing action list editors

How actions find their targets
Topic groups See also
The figure in Executing actions illustrates the execution cycle for the standard VCL action classes. If
execution is not handled by the action list, the application, or the default action event handlers, then the
CM_ACTIONEXECUTE message is sent to the application’s WndProc. The following figure continues
the execution sequence at this point. The pre-defined action classes as well as any action class that you
create, use this path of execution:

Upon receiving the CM_ACTIONEXECUTE message the application first dispatches it to the
Screen’s ActiveForm. If there is no active form, the application sends the message to it’s MainForm.

Form1 (in this example, the active form) first looks for the active control (Memo1) and calls that
control’s ExecuteAction method passing Cut1 as a parameter.

Memo1 calls Cut1’s HandlesTarget method, passing itself to determine whether it is an
appropriate target for the action. If Memo1 is not an appropriate target, HandlesTarget returns False and
Memo1’s ExecuteAction handler returns False.

In this case, Memo1 is an appropriate target for Cut1, so HandlesTarget returns True. Memo1
then calls Cut1.ExecuteTarget passing itself as a parameter. Finally, since Cut1 is an instance of a
TEditCut action, the action calls Memo1’s CutToClipoard method:

procedure TEditCut.ExecuteTarget(Target: TObject);
begin
 GetControl(Target).CutToClipboard;
end;

If the control were not an appropriate target, processing would continue as follows:
Form1 calls its ExecuteAction method. If Form1 is an appropriate target (for example, a form

would be a target for the TWindowCascade action) then it calls Cut1’sExecuteTarget method, passing
itself as a parameter.

If Form1 is not an appropriate target, it invokes ExecuteAction on every visible control it owns
until a target is found.
Note: If the action involved is a TCustomAction type, then the action is automatically disabled for you if,

the action is not handled and, its DisableIfNoHandler property is True.

Registering actions
Topic groups See also
You can register and unregister your own actions with the IDE by using the global routines in the
ActnList unit:

procedure RegisterActions(const CategoryName: string; const AClasses: array of
TBasicActionClass; Resource: TComponentClass);
procedure UnRegisterActions(const AClasses: array of TBasicActionClass);

Use these routines the same way you would when registering components RegisterComponents). For
example, the following code registers the standard actions with the IDE:

{ Standard action registration }
RegisterActions('', [TAction], nil);
RegisterActions('Edit', [TEditCut, TEditCopy, TEditPaste], TStandardActions);
RegisterActions('Window', [TWindowClose, TWindowCascade, TWindowTileHorizontal,
TWindowTileVertical, TWindowMinimizeAll, TWindowArrange], TStandardActions);

Writing action list editors
Topic groups See also
You may want to write your own component editor for action lists. If you do, you can assign your own
procedures to the four global procedure variables in the ActnList unit:

CreateActionProc: function (AOwner: TComponent; ActionClass: TBasicActionClass):
TBasicAction = nil;
EnumRegisteredActionsProc: procedure(Proc: TEnumActionProc; Info: Pointer) = nil;
RegisterActionsProc:procedure (const CategoryName: string; const AClasses: array of
TBasicActionClass; Resource: TComponentClass) = nil;
UnRegisterActionsProc: procedure (const AClasses: array of TBasicActionClass) = nil;

You only need to reassign these if you want to manage the registration, unregistration, creation, and
enumeration procedures of actions differently from the default behavior. If you do, write your own
handlers and assign them to these variables within the initialization section of your design-time unit.

Demo programs
Topic groups See also
For examples of programs that use actions and action lists, refer to Demos\RichEdit. In addition, the
Application wizard (File|New Project page) demos, MDI Application, SDI Application, and Win95 Logo
Application can use the action and action list objects.

Implementing drag-and-drop in controls
Topic groups See also
Drag-and-drop is often a convenient way for users to manipulate objects. You can let users drag an
entire control, or let them drag items from one control—such as a list box or tree view—into another.

Starting a drag operation
Accepting dragged items
Dropping items
Ending a drag operation
Customizing drag and drop with a drag object
Changing the drag mouse pointer

Starting a drag operation
See also
Every control has a property called DragMode that determines how drag operations are initiated. If
DragMode is dmAutomatic, dragging begins automatically when the user presses a mouse button with
the cursor on the control. Because dmAutomatic can interfere with normal mouse activity, you may want
to set DragMode to dmManual (the default) and start the dragging by handling mouse-down events.
To start dragging a control manually, call the control’s BeginDrag method. BeginDrag takes a Boolean
parameter called Immediate. If you pass True, dragging begins immediately. If you pass False, dragging
does not begin until the user moves the mouse a short distance. Calling BeginDrag(False) allows the
control to accept mouse clicks without beginning a drag operation.
You can place other conditions on whether to begin dragging, such as checking which mouse button the
user pressed, by testing the parameters of the mouse-down event before calling BeginDrag. The
following code, for example, handles a mouse-down event in a file list box by initiating a drag operation
only if the left mouse button was pressed.

procedure TFMForm.FileListBox1MouseDown(Sender: TObject;
 Button: TMouseButton; Shift: TShiftState; X, Y: Integer);
begin
 if Button = mbLeft then { drag only if left button pressed }
 with Sender as TFileListBox do { treat Sender as TFileListBox }
 begin
 if ItemAtPos(Point(X, Y), True) >= 0 then { is there an item here? }
 BeginDrag(False); { if so, drag it }
 end;
end;

Accepting dragged items
See also
When the user drags something over a control, that control receives an OnDragOver event, at which
time it must indicate whether it can accept the item if the user drops it there. The drag cursor changes to
indicate whether the control can accept the dragged item. To accept items dragged over a control,
attach an event handler to the control’s OnDragOver event.
The drag-over event has a parameter called Accept that the event handler can set to True if it will accept
the item. If Accept is True, the application sends a drag-drop event to the control.
The drag-over event has other parameters, including the source of the dragging and the current location
of the mouse cursor, that the event handler can use to determine whether to accept the drop. In the
following example, a directory tree view accepts dragged items only if they come from a file list box.

procedure TFMForm.DirectoryOutline1DragOver(Sender, Source: TObject; X,
 Y: Integer; State: TDragState; var Accept: Boolean);
begin
 if Source is TFileListBox then
 Accept := True;
 else
 Accept := False;
end;

Dropping items
See also
If a control indicates that it can accept a dragged item, it needs to handle the item should it be dropped.
To handle dropped items, attach an event handler to the OnDragDrop event of the control accepting the
drop. Like the drag-over event, the drag-drop event indicates the source of the dragged item and the
coordinates of the mouse cursor over the accepting control. The latter parameter allows you to monitor
the path an item takes while being dragged; you might, for example, want to use this information to
change the color of components as they are passed over.
In the following example, a directory tree view, accepting items dragged from a file list box, responds by
moving files to the directory on which they are dropped.

procedure TFMForm.DirectoryOutline1DragDrop(Sender, Source: TObject; X,
 Y: Integer);
begin
 if Source is TFileListBox then
 with DirectoryOutline1 do
 ConfirmChange('Move', FileList.FileName, Items[GetItem(X, Y)].FullPath);
end;

Ending a drag operation
Topic groups See also
A drag operation ends when the item is either successfully dropped or released over a control that
cannot accept it. At this point an end-drag event is sent to the control from which the item was dragged.
To enable a control to respond when items have been dragged from it, attach an event handler to the
control’s OnEndDrag event.
The most important parameter in an OnEndDrag event is called Target, which indicates which control, if
any, accepts the drop. If Target is nil, it means no control accepts the dragged item. The OnEndDrag
event also includes the coordinates on the receiving control.
In this example, a file list box handles an end-drag event by refreshing its file list.

procedure TFMForm.FileList1EndDrag(Sender, Target: TObject; X, Y: Integer);
begin
 if Target <> nil then FileList1.Update;
end;

Customizing drag and drop with a drag object
See also
You can use a TDragObject descendant to customize an object’s drag-and-drop behavior. The standard
drag-over and drag-drop events indicate the source of the dragged item and the coordinates of the
mouse cursor over the accepting control. To get additional state information, derive a custom drag object
from TDragObject and override its virtual methods. Create the custom drag object in the OnStartDrag
event.
Normally, the source parameter of the drag-over and drag-drop events is the control that starts the drag
operation. If different kinds of control can start an operation involving the same kind of data, the source
needs to support each kind of control. When you use a descendant of TDragObject, however, the
source is the drag object itself; if each control creates the same kind of drag object in its OnStartDrag
event, the target needs to handle only one kind of object. The drag-over and drag-drop events can tell if
the source is a drag object, as opposed to the control, by calling the IsDragObject function.
Drag objects let you drag items between a form implemented in the application’s main EXE file and a
form implemented in a DLL, or between forms that are implemented in different DLLs.

Changing the drag mouse pointer
See also
You can customize the appearance of the mouse pointer during drag operations by setting the source
component’s DragCursor property.

Implementing drag-and-dock in controls
Topic groups See also
Descendants of TWinControl can act as docking sites and descendants of TControl can act as child
windows that are docked into docking sites. For example, to provide a docking site at the left edge of a
form window, align a panel to the left edge of the form and make the panel a docking site. When
dockable controls are dragged to the panel and released, they become child controls of the panel.

Making a windowed control a docking site
Making a control a dockable child
Controlling how child controls are docked
Controlling how child controls are undocked
Controlling how child controls respond to drag-and-dock operations

Making a windowed control a docking site
Topic groups See also
To make a windowed control a docking site,
1 Set the DockSite property to True.
2 If the dock site object should not appear except when it contains a docked client, set its AutoSize

property to True. When AutoSize is True, the dock site is sized to 0 until it accepts a child control for
docking. Then it resizes to fit around the child control.

Making a control a dockable child
Topic groups See also
To make a control a dockable child,
1 Set its DragKind property to dkDock. When DragKind is dkDock, dragging the control moves the

control to a new docking site or undocks the control so that it becomes a floating window. When
DragKind is dkDrag (the default), dragging the control starts a drag-and-drop operation which must
be implemented using the OnDragOver, OnEndDrag, and OnDragDrop events.

2 Set its DragMode to dmAutomatic. When DragMode is dmAutomatic, dragging (for drag-and-drop
or docking, depending on DragKind) is initiated automatically when the user starts dragging the
control with the mouse. When DragMode is dmManual, you can still begin a drag-and-dock (or
drag-and-drop) operation by calling the BeginDrag method.

3 Set its FloatingDockSiteClass property to indicate the TWinControl descendant that should host the
control when it is undocked and left as a floating window. When the control is released and not over
a docking site, a windowed control of this class is created dynamically, and becomes the parent of
the dockable child. If the dockable child control is a descendant of TWinControl, it is not necessary
to create a separate floating dock site to host the control, although you may want to specify a form
in order to get a border and title bar. To omit a dynamic container window, set
FloatingDockSiteClass to the same class as the control, and it will become a floating window with
no parent.

Controlling how child controls are docked
Topic groups See also
A docking site automatically accepts child controls when they are released over the docking site. For
most controls, the first child is docked to fill the client area, the second splits that into separate regions,
and so on. Page controls dock children into new tab sheets (or merge in the tab sheets if the child is
another page control).
Three events allow docking sites to further constrain how child controls are docked:

property OnGetSiteInfo: TGetSiteInfoEvent;
TGetSiteInfoEvent = procedure(Sender: TObject; DockClient: TControl; var
InfluenceRect: TRect; var CanDock: Boolean) of object;

OnGetSiteInfo occurs on the docking site when the user drags a dockable child over the control. It
allows the site to indicate whether it will accept the control specified by the DockClient parameter as a
child, and if so, where the child must be to be considered for docking. When OnGetSiteInfo occurs,
InfluenceRect is initialized to the screen coordinates of the docking site, and CanDock is intialized to
True. A more limited docking region can be created by changing InfluenceRect and the child can be
rejected by setting CanDock to False.

property OnDockOver: TDockOverEvent;
TDockOverEvent = procedure(Sender: TObject; Source: TDragDockObject; X, Y: Integer;
State: TDragState; var Accept: Boolean) of object;

OnDockOver occurs on the docking site when the user drags a dockable child over the control. It is
analogous to the OnDragOver event in a drag-and-drop operation. Use it to signal that the child can be
released for docking, by setting the Accept parameter. If the dockable control is rejected by the
OnGetSiteInfo event handler (perhaps because it is the wrong type of control), OnDockOver does not
occur.

property OnDockDrop: TDockDropEvent;
TDockDropEvent = procedure(Sender: TObject; Source: TDragDockObject; X, Y: Integer)
of object;

OnDockDrop occurs on the docking site when the user releases the dockable child over the control. It is
analogous to the OnDragDrop event in a normal drag-and-drop operation. Use this event to perform any
necessary accommodations to accepting the control as a child control. Access to the child control can
be obtained using the Control property of the TDockObject specified by the Source parameter.

Controlling how child controls are undocked
Topic groups See also
A docking site automatically allows child controls to be undocked when they are dragged and have a
DragMode property of dmAutomatic. Docking sites can respond when child controls are dragged off,
and even prevent the undocking, in an OnUnDock event handler:

property OnUnDock: TUnDockEvent;
TUnDockEvent = procedure(Sender: TObject; Client: TControl; var Allow: Boolean) of
object;

The Client parameter indicates the child control that is trying to undock, and the Allow parameter lets the
docking site (Sender) reject the undocking. When implementing an OnUnDock event handler, it can be
useful to know what other children (if any) are currently docked. This information is available in the read-
only DockClients property, which is an indexed array of TControl. The number of dock clients is given by
the read-only DockClientCount property.

Controlling how child controls respond to drag-and-dock operations
Topic groups See also
Dockable child controls have two events that occur during drag-and-dock operations: OnStartDock,
analogous to the OnStartDrag event of a drag-and-drop operation, allows the dockable child control to
create a custom drag object. OnEndDock, like OnEndDrag, occurs when the dragging terminates.

Working with text in controls
Topic groups
The following topics how to use various features of rich edit and memo controls. Some of these features
work with edit controls as well.

Setting text alignment
Adding scrollbars at runtime
Adding the Clipboard object
Selecting text
Selecting all text
Cutting, copying, and pasting text
Deleting selected text
Disabling menu items
Providing a pop-up menu
Handling the OnPopup event

Setting text alignment
Topic groups See also
In a rich edit or memo component, text can be left- or right-aligned or centered. To change text
alignment, set the edit component’s Alignment property. Alignment takes effect only if the WordWrap
property is True; if word wrapping is turned off, there is no margin to align to.
For example, the following code attaches an OnClick event handler to the Character|Left menu item,
then attaches the same event handler to both the Right and Center menu items on the Character menu.

procedure TEditForm.AlignClick(Sender: TObject);
begin
 Left1.Checked := False; { clear all three checks }
 Right1.Checked := False;
 Center1.Checked := False;
 with Sender as TMenuItem do Checked := True; { check the item clicked }
 with Editor do { then set Alignment to match }
 if Left1.Checked then
 Alignment := taLeftJustify
 else if Right1.Checked then
 Alignment := taRightJustify
 else if Center1.Checked then
 Alignment := taCenter;
end;

Adding scroll bars at runtime
Topic groups See also
Rich edit and memo components can contain horizontal or vertical scroll bars, or both, as needed. When
word-wrapping is enabled, the component needs only a vertical scroll bar. If the user turns off word-
wrapping, the component might also need a horizontal scroll bar, since text is not limited by the right
side of the editor.
To add scroll bars at runtime,
1 Determine whether the text might exceed the right margin. In most cases, this means checking

whether word wrapping is enabled. You might also check whether any text lines actually exceed the
width of the control.

2 Set the rich edit or memo component’s ScrollBars property to include or exclude scroll bars.
The following example attaches an OnClick event handler to a Character|WordWrap menu item.

procedure TEditForm.WordWrap1Click(Sender: TObject);
begin
 with Editor do
 begin
 WordWrap := not WordWrap; { toggle word-wrapping }
 if WordWrap then
 ScrollBars := ssVertical { wrapped requires only vertical }
 else
 ScrollBars := ssBoth; { unwrapped might need both }
 WordWrap1.Checked := WordWrap; { check menu item to match property }
 end;
end;

The rich edit and memo components handle their scroll bars in a slightly different way. The rich edit
component can hide its scroll bars if the text fits inside the bounds of the component. The memo always
shows scroll bars if they are enabled.

Adding the Clipboard object
Topic groups See also
Most text-handling applications provide users with a way to move selected text between documents,
including documents in different applications. The Clipboard object in Delphi encapsulates the Windows
Clipboard and includes methods for cutting, copying, and pasting text (and other formats, including
graphics). The Clipboard object is declared in the Clipbrd unit.
To add the Clipboard object to an application,
1 Select the unit that will use the Clipboard.
2 Search for the implementation reserved word.
3 Add Clipbrd to the uses clause below implementation.

If there is already a uses clause in the implementation part, add Clipbrd to the end of it.
If there is not already a uses clause, add one that says

 uses Clipbrd;
For example, in an application with a child window, the uses clause in the unit's implementation part
might look like this:

uses
 MDIFrame, Clipbrd;

Selecting text
Topic groups See also
Before you can send any text to the Clipboard, that text must be selected. Highlighting of selected text is
built into the edit components. When the user selects text, it appears highlighted.
The table below lists properties commonly used to handle selected text.

Property Description
SelText Contains a string representing the selected text in the

component.
SelLength Contains the length of a selected string.
SelStart Contains the starting position of a string.

Selecting all text
Topic groups
The SelectAll method selects the entire contents of the rich edit or memo component. This is especially
useful when the component’s contents exceed the visible area of the component. In most other cases,
users select text with either keystrokes or mouse dragging.
To select the entire contents of a rich edit or memo control, call the RichEdit1 control’s SelectAll method.
For example,

procedure TMainForm.SelectAll(Sender: TObject);
begin
 RichEdit1.SelectAll; { select all text in RichEdit }
end;

Cutting, copying, and pasting text
Topic groups See also
Applications that use the Clipbrd unit can cut, copy, and paste text, graphics, and objects through the
Windows Clipboard. The edit components that encapsulate the standard Windows text-handling controls
all have methods built into them for interacting with the Clipboard.
To cut, copy, or paste text with the Clipboard, call the edit component’s CutToClipboard,
CopyToClipboard, and PasteFromClipboard methods, respectively.
For example, the following code attaches event handlers to the OnClick events of the Edit|Cut, Edit|
Copy, and Edit|Paste commands, respectively:

procedure TEditForm.CutToClipboard(Sender: TObject);
begin
 Editor.CutToClipboard;
end;
procedure TEditForm.CopyToClipboard(Sender: TObject);
begin
 Editor.CopyToClipboard;
end;
procedure TEditForm.PasteFromClipboard(Sender: TObject);
begin
 Editor.PasteFromClipboard;
end;

Deleting selected text
Topic groups
You can delete the selected text in an edit component without cutting it to the Clipboard. To do so, call
the ClearSelection method. For example, if you have a Delete item on the Edit menu, your code could
look like this:

procedure TEditForm.Delete(Sender: TObject);
begin
 RichEdit1.ClearSelection;
end;

Disabling menu items
Topic groups See also
It is often useful to disable menu commands without removing them from the menu. For example, in a
text editor, if there is no text currently selected, the Cut, Copy, and Delete commands are inapplicable.
An appropriate time to enable or disable menu items is when the user selects the menu. To disable a
menu item, set its Enabled property to False.
In the following example, an event handler is attached to the OnClick event for the Edit item on a child
form’s menu bar. It sets Enabled for the Cut, Copy, and Delete menu items on the Edit menu based on
whether RichEdit1 has selected text. The Paste command is enabled or disabled based on whether any
text exists on the Clipboard.

procedure TEditForm.Edit1Click(Sender: TObject);
var
 HasSelection: Boolean; { declare a temporary variable }
begin
 Paste1.Enabled := Clipboard.HasFormat(CF_TEXT); {enable or disable the Paste
menu item}
 HasSelection := Editor.SelLength > 0; { True if text is selected }
 Cut1.Enabled := HasSelection; { enable menu items if HasSelection is True }
 Copy1.Enabled := HasSelection;
 Delete1.Enabled := HasSelection;
end;

The HasFormat method of the Clipboard returns a Boolean value based on whether the Clipboard
contains objects, text, or images of a particular format. By calling HasFormat with the parameter
CF_TEXT, you can determine whether the Clipboard contains any text, and enable or disable the Paste
item as appropriate.

Providing a pop-up menu
Topic groups See also
Pop-up, or local, menus are a common ease-of-use feature for any application. They enable users to
minimize mouse movement by clicking the right mouse button in the application workspace to access a
list of frequently used commands.
In a text editor application, for example, you can add a pop-up menu that repeats the Cut, Copy, and
Paste editing commands. These pop-up menu items can use the same event handlers as the
corresponding items on the Edit menu. You don’t need to create accelerator or shortcut keys for pop-up
menus because the corresponding regular menu items generally already have shortcuts.
A form’s PopupMenu property specifies what pop-up menu to display when a user right-clicks any item
on the form. Individual controls also have PopupMenu properties that can override the form’s property,
allowing customized menus for particular controls.
To add a pop-up menu to a form,
1 Place a pop-up menu component on the form.
2 Use the Menu Designer to define the items for the pop-up menu.
3 Set the PopupMenu property of the form or control that displays the menu to the name of the pop-

up menu component.
4 Attach handlers to the OnClick events of the pop-up menu items.

Handling the OnPopup event
Topic groups See also
You may want to adjust pop-up menu items before displaying the menu, just as you may want to enable
or disable items on a regular menu. With a regular menu, you can handle the OnClick event for the item
at the top of the menu.
With a pop-up menu, however, there is no top-level menu bar, so to prepare the pop-up menu
commands, you handle the event in the menu component itself. The pop-up menu component provides
an event just for this purpose, called OnPopup.
To adjust menu items on a pop-up menu before displaying them,
1 Select the pop-up menu component.
2 Attach an event handler to its OnPopup event.
3 Write code in the event handler to enable, disable, hide, or show menu items.
In the following code, the EditEditClick event handler described previously in Disabling menu items is
attached to the pop-up menu component’s OnPopup event. A line of code is added to EditEditClick for
each item in the pop-up menu.

procedure TEditForm.Edit1Click(Sender: TObject);
var
 HasSelection: Boolean;
begin
 Paste1.Enabled := Clipboard.HasFormat(CF_TEXT);
 Paste2.Enabled := Paste1.Enabled;{Add this line}
 HasSelection := Editor.SelLength <> 0;
 Cut1.Enabled := HasSelection;
 Cut2.Enabled := HasSelection; {Add this line}
 Copy1.Enabled := HasSelection;
 Copy2.Enabled := HasSelection; {Add this line}
 Delete1.Enabled := HasSelection;
end;

Adding graphics to controls
Topic groups See also
Windows list-box, combo-box, and menu controls have a style available called “owner draw,” which
means that instead of using Windows’ standard method of drawing text for each item in the control, the
control’s owner (generally, the form) draws each item at runtime. The most common use for owner-draw
controls is to provide graphics instead of, or in addition to, text for items. For information on using
owner-draw to add images to menus, see .Adding images to menu items.
All owner-draw controls contain lists of items. By default, those lists are lists of strings, which Windows
displays as text. You can associate an object with each item in a list to make it easy to use that object
when drawing items.
In general, creating an owner-draw control in Delphi involves these steps:
1 Setting the owner-draw style
2 Adding graphical objects to a string list
3 Drawing owner-drawn items

Setting the owner-draw style
Topic groups
Both list boxes and combo boxes have a property called Style. Style determines whether the control
uses the default drawing (called the “standard” style) or owner drawing. Grids use a property called
DefaultDrawing to enable or disable the default drawing.
List boxes and combo boxes have additional owner-draw styles, called fixed and variable, as the
following table describes. Owner-draw grids are always fixed: although the size of each row and column
might vary, the size of each cell is determined before drawing the grid.

Owner-draw style Meaning Examples
Fixed Each item is the same height, with that height

determined by the ItemHeight property.
lbOwnerDrawFixed,
csOwnerDrawFixed

Variable Each item might have a different height,
determined by the data at runtime.

lbOwnerDrawVariable,
csOwnerDrawVariable

Adding graphical objects to a string list
Topic groups See also
Every string list has the ability to hold a list of objects in addition to its list of strings.
For example, in a file manager application, you may want to add bitmaps indicating the type of drive
along with the letter of the drive. To do that, you need to add the bitmap images to the application, then
copy those images into the proper places in the string list as described in the following sections.

Adding images to an application
Topic groups See also
An image control is a nonvisual control that contains a graphical image, such as a bitmap. You use
image controls to display graphical images on a form. You can also use them to hold hidden images that
you’ll use in your application. For example, you can store bitmaps for owner-draw controls in hidden
image controls, like this:
1 Add image controls to the main form.
2 Set their Name properties.
3 Set the Visible property for each image control to False.
4 Set the Picture property of each image to the desired bitmap using the Picture editor from the

Object Inspector.
The image controls are invisible when you run the application.

Adding images to a string list
Topic groups See also
Once you have graphical images in an application, you can associate them with the strings in a string
list. You can either add the objects at the same time as the strings, or associate objects with existing
strings. The preferred method is to add objects and strings at the same time, if all the needed data is
available.
The following example shows how you might want to add images to a string list. This is part of a file
manager application where, along with a letter for each valid drive, it adds a bitmap indicating each
drive’s type. The OnCreate event handler looks like this:

procedure TFMForm.FormCreate(Sender: TObject);
var
 Drive: Char;
 AddedIndex: Integer;
begin
 for Drive := 'A' to 'Z' do { iterate through all possible drives }
 begin
 case GetDriveType(Drive + ':/') of { positive values mean valid drives }
 DRIVE_REMOVABLE: { add a tab }
 AddedIndex := DriveTabSet.Tabs.AddObject(Drive, Floppy.Picture.Graphic);
 DRIVE_FIXED: { add a tab }
 AddedIndex := DriveTabSet.Tabs.AddObject(Drive, Fixed.Picture.Graphic);
 DRIVE_REMOTE: { add a tab }
 AddedIndex := DriveTabSet.Tabs.AddObject(Drive, Network.Picture.Graphic);
 end;
 if UpCase(Drive) = UpCase(DirectoryOutline.Drive) then { current drive? }
 DriveTabSet.TabIndex := AddedIndex; { then make that current tab }
 end;
end;

Drawing owner-drawn items
Topic groups
When you set a control’s style to owner draw, Windows no longer draws the control on the screen.
Instead, it generates events for each visible item in the control. Your application handles the events to
draw the items.
To draw the items in an owner-draw control, do the following for each visible item in the control. Use a
single event handler for all items.
1 Size the item, if needed.

Items of the same size (for example, with a list box style of lsOwnerDrawFixed), do not require
sizing.

2 Draw the item.

Sizing owner-draw items
Topic groups
Before giving your application the chance to draw each item in a variable owner-draw control, Windows
generates a measure-item event. The measure-item event tells the application where the item appears
on the control.
Windows determines the size the item (generally, it is just large enough to display the item’s text in the
current font). Your application can handle the event and change the rectangle Windows chose. For
example, if you plan to substitute a bitmap for the item’s text, change the rectangle to be the size of the
bitmap. If you want a bitmap and text, adjust the rectangle to be big enough for both.
To change the size of an owner-draw item, attach an event handler to the measure-item event in the
owner-draw control. Depending on the control, the name of the event can vary. List boxes and combo
boxes use OnMeasureItem. Grids have no measure-item event.
The sizing event has two important parameters: the index number of the item and the size of that item.
The size is variable: the application can make it either smaller or larger. The positions of subsequent
items depend on the size of preceding items.
For example, in a variable owner-draw list box, if the application sets the height of the first item to five
pixels, the second item starts at the sixth pixel down from the top, and so on. In list boxes and combo
boxes, the only aspect of the item the application can alter is the height of the item. The width of the
item is always the width of the control.
Owner-draw grids cannot change the sizes of their cells as they draw. The size of each row and column
is set before drawing by the ColWidths and RowHeights properties.
The following code, attached to the OnMeasureItem event of an owner-draw list box, increases the
height of each list item to accommodate its associated bitmap.

procedure TFMForm.DriveTabSetMeasureTab(Sender: TObject; Index: Integer;
 var TabWidth: Integer); { note that TabWidth is a var parameter}
var
 BitmapWidth: Integer;
begin
 BitmapWidth := TBitmap(DriveTabSet.Tabs.Objects[Index]).Width;
 { increase tab width by the width of the associated bitmap plus two }
 Inc(TabWidth, 2 + BitmapWidth);
end;

Note:You must typecast the items from the Objects property in the string list. Objects is a property of
type TObject so that it can hold any kind of object. When you retrieve objects from the array, you
need to typecast them back to the actual type of the items.

Drawing each owner-draw item
Topic groups
When an application needs to draw or redraw an owner-draw control, Windows generates draw-item
events for each visible item in the control.
To draw each item in an owner-draw control, attach an event handler to the draw-item event for that
control.
The names of events for owner drawing always start with OnDraw, such as OnDrawItem or OnDrawCell.
The draw-item event contains parameters indicating the index of the item to draw, the rectangle in which
to draw, and usually some information about the state of the item (such as whether the item has focus).
The application handles each event by rendering the appropriate item in the given rectangle.
For example, the following code shows how to draw items in a list box that has bitmaps associated with
each string. It attaches this handler to the OnDrawItem event for the list box:

procedure TFMForm.DriveTabSetDrawTab(Sender: TObject; TabCanvas: TCanvas;
 R: TRect; Index: Integer; Selected: Boolean);
var
 Bitmap: TBitmap;
begin
 Bitmap := TBitmap(DriveTabSet.Tabs.Objects[Index]);
 with TabCanvas do
 begin
 Draw(R.Left, R.Top + 4, Bitmap); { draw bitmap }
 TextOut(R.Left + 2 + Bitmap.Width, { position text }
 R.Top + 2, DriveTabSet.Tabs[Index]); { and draw it to the right of the
bitmap }
 end;
end;

Working with graphics and multimedia
Topic groups
Graphics and multimedia elements can add polish to your applications. Delphi offers a variety of ways to
introduce these features into your application. To add graphical elements, you can insert pre-drawn
pictures at design time, create them using graphical controls at design time, or draw them dynamically at
runtime. To add multimedia capabilities, Delphi includes special components that can play audio and
video clips.
This following topics describe how to enhance your applications by introducing graphics or multimedia
elements:

Overview of graphics programming
Working with multimedia

Overview of graphics programming
Topic groups See also
The VCL graphics components encapsulate the Windows Graphics Device Interface (GDI), making it
very easy to add graphics to your Windows programming.
To draw graphics in a Delphi application, you draw on an object’s canvas, rather than directly on the
object. The canvas is a property of the object, and is itself an object. A main advantage of the canvas
object is that it handles resources effectively and it takes care of device context, so your programs can
use the same methods regardless of whether you are drawing on the screen, to a printer, or on bitmaps
or metafiles. Canvases are available only at runtime, so you do all your work with canvases by writing
code.
Note:Since TCanvas is a wrapper resource manager around the Windows device context, you can also

use all Windows GDI functions on the canvas. The Handle property of the canvas is the device
context Handle.

How graphic images appear in your application depends on the type of object whose canvas you draw
on. If you are drawing directly onto the canvas of a control, the picture is displayed immediately.
However, if you draw on an offscreen image such as a TBitmap canvas, the image is not displayed until
a control copies from the bitmap onto the control’s canvas. That is, when drawing bitmaps and assigning
them to an image control, the image appears only when the control has an opportunity to process its
OnPaint message.
When working with graphics, you often encounter the terms drawing and painting:

Drawing is the creation of a single, specific graphic element, such as a line or a shape, with code.
In your code, you tell an object to draw a specific graphic in a specific place on its canvas by calling a
drawing method of the canvas.

Painting is the creation of the entire appearance of an object. Painting usually involves drawing.
That is, in response to OnPaint events, an object generally draws some graphics. An edit box, for
example, paints itself by drawing a rectangle and then drawing some text inside. A shape control, on the
other hand, paints itself by drawing a single graphic.
The following topics describe how to use the VCL graphics components to simplify your coding.

Refreshing the screen
Types of graphic objects
Common properties and methods of canvases
Handling multiple drawing objects in an application
Drawing on a bitmap
Loading and saving graphics files
Using the Clipboard with graphics
Rubber banding example

Refreshing the screen
Topic groups See also
At certain times, Windows determines that objects onscreen need to refresh their appearance, so it
generates WM_PAINT messages, which the VCL routes to OnPaint events. The VCL calls any OnPaint
event handler that you have written for that object when you use the Refresh method. The default name
generated for the OnPaint event handler in a form is FormPaint. You may want to use the Refresh
method at times to refresh a component or form. For example, you might call Refresh in the form’s
OnResize event handler to redisplay any graphics or if you want to paint a background on a form.
While some operating systems automatically handle the redrawing of the client area of a window that
has been invalidated, Windows does not. In the Windows operating system anything drawn on the
screen is permanent. When a form or control is temporarily obscured, for example during window
dragging, the form or control must repaint the obscured area when it is re-exposed. For more
information about the WM_PAINT message, see the Windows online Help.
If you use the TImage control, the painting and refreshing of the graphic contained in the TImage is
handled automatically by the VCL. Drawing on a TImage creates a persistent image. Consequently, you
do not need to do anything to redraw the contained image. In contrast, TPaintBox’s canvas maps
directly onto the screen device, so that anything drawn to the PaintBox’s canvas is transitory. This is true
of nearly all controls, including the form itself. Therefore, if you draw or paint on a TPaintBox in its
constructor, you will need to add that code to your OnPaint event handler in order for image to be
repainted each time the client area is invalidated.

Types of graphic objects
Topic groups See also
The VCL provides the following graphic objects. These objects have methods to draw on the canvas,
which are described in Using Canvas methods to draw graphic objects and to load and save to graphics
files, as described in Loading and saving graphics files

Object Description
Picture Used to hold any graphic image. To add additional graphic file

formats, use the Picture Register method. Use this to handle
arbitrary files such as displaying images in an image control.

Bitmap A powerful graphics object used to create, manipulate (scale,
scroll, rotate, and paint), and store images as files on a disk.
Creating copies of a bitmap is fast since the handle is copied,
not the image.

Clipboard Represents the container for any text or graphics that are cut,
copied, or pasted from or to an application. With the clipboard,
you can get and retrieve data according to the appropriate
format; handle reference counting, and opening and closing
the Clipboard; manage and manipulate formats for objects in
the Clipboard.

Icon Represents the value loaded from a Windows icon file (::ICO
file).

Metafile Contains a metafile, which records the operations required to
construct an image, rather than contain the actual bitmap
pixels of the image. Metafiles are extremely scalable without
the loss of image detail and often require much less memory
than bitmaps, particularly for high-resolution devices, such as
printers. However, metafiles do not draw as fast as bitmaps.
Use a metafile when versatility or precision is more important
than performance.

Common Properties and Methods of Canvas
Topic groups See also
The following table lists the commonly used properties of the Canvas object.

Properties Descriptions
Font Specifies the font to use when writing text on the image.

Set the properties of the TFont object to specify the font
face, color, size, and style of the font.

Brush Determines the color and pattern the canvas uses for filling
graphical shapes and backgrounds. Set the properties of
the TBrush object to specify the color and pattern or bitmap
to use when filling in spaces on the canvas.

Pen Specifies the kind of pen the canvas uses for drawing lines
and outlining shapes. Set the properties of the TPen object
to specify the color, style, width, and mode of the pen.

PenPos Specifies the current drawing position of the pen.
Pixels Specifies the color of the area of pixels within the current

ClipRect.
These properties are described in more detail in Using the properties of the Canvas object.
Here is a list of several methods you can use:

Method Descriptions
 Arc Draws an arc on the image along the perimeter of the

ellipse bounded by the specified rectangle.
Chord Draws a closed figure represented by the intersection of a

line and an ellipse.
CopyRect Copies part of an image from another canvas into the

canvas.
Draw Renders the graphic object specified by the Graphic

parameter on the canvas at the location given by the
coordinates (X, Y).

Ellipse Draws the ellipse defined by a bounding rectangle on the
canvas.

FillRect Fills the specified rectangle on the canvas using the current
brush.

FloodFill Fills an area of the canvas using the current brush.
FrameRect Draws a rectangle using the Brush of the canvas to draw

the border.
LineTo Draws a line on the canvas from PenPos to the point

specified by X and Y, and sets the pen position to (X, Y).
MoveTo Changes the current drawing position to the point (X,Y).
Pie Draws a pie-shaped the section of the ellipse bounded by

the rectangle (X1, Y1) and (X2, Y2) on the canvas.
Polygon Draws a series of lines on the canvas connecting the points

passed in and closing the shape by drawing a line from the
last point to the first point.

PolyLine Draws a series of lines on the canvas with the current pen,
connecting each of the points passed to it in Points.

Rectangle Draws a rectangle on the canvas with its upper left corner
at the point (X1, Y1) and its lower right corner at the point
(X2, Y2). Use Rectangle to draw a box using Pen and fill it
using Brush.

RoundRect Draws a rectangle with rounded corners on the canvas.
StretchDraw Draws a graphic on the canvas so that the image fits in the

specified rectangle. The graphic image may need to
change its magnitude or aspect ratio to fit.

TextHeight, TextWidth Returns the height and width, respectively, of a string in the
current font. Height includes leading between lines.

TextOut Writes a string on the canvas, starting at the point (X,Y),
and then updates the PenPos to the end of the string.

TextRect Writes a string inside a region; any portions of the string
that fall outside the region do not appear.

These methods are described in more detail in Using Canvas methods to draw graphic objects.

Using the properties of the Canvas object
Topic groups See also
With the Canvas object, you can set the properties of a pen for drawing lines, a brush for filling shapes,
a font for writing text, and an array of pixels to represent the image.
This section describes

Using pens
Using brushes
Reading and setting pixels

Using pens
Topic groups See also
The Pen property of a canvas controls the way lines appear, including lines drawn as the outlines of
shapes. Drawing a straight line is really just changing a group of pixels that lie between two points.
The pen itself has four properties you can change: Color, Width, Style, and Mode.

Color property: Changes the pen color
Width property: Changes the pen width
Style property: Changes the pen style
Mode property: Changes the pen mode

The values of these properties determine how the pen changes the pixels in the line. By default, every
pen starts out black, with a width of 1 pixel, a solid style, and a mode called copy that overwrites
anything already on the canvas.

Changing the pen color
Topic groups See also
You can set the color of a pen as you would any other Color property at runtime. A pen’s color
determines the color of the lines the pen draws, including lines drawn as the boundaries of shapes, as
well as other lines and polylines. To change the pen color, assign a value to the Color property of the
pen.
To let the user choose a new color for the pen, put a color grid on the pen’s toolbar. A color grid can set
both foreground and background colors. For a non-grid pen style, you must consider the background
color, which is drawn in the gaps between line segments. Background color comes from the Brush color
property.
Since the user chooses a new color by clicking the grid, this code changes the pen’s color in response
to the OnClick event:

procedure TForm1.PenColorClick(Sender: TObject);
begin
 Canvas.Pen.Color := PenColor.ForegroundColor;
end;

Changing the pen width
Topic groups See also
A pen’s width determines the thickness, in pixels, of the lines it draws.
Note:When the thickness is greater than 1, Windows 95 always draw solid lines, no matter what the

value of the pen’s Style property.
To change the pen width, assign a numeric value to the pen’s Width property.
Suppose you have a scroll bar on the pen’s toolbar to set width values for the pen. And suppose you
want to update the label next to the scroll bar to provide feedback to the user. Using the scroll bar’s
position to determine the pen width, you update the pen width every time the position changes.
This is how to handle the scroll bar’s OnChange event:

procedure TForm1.PenWidthChange(Sender: TObject);
begin
 Canvas.Pen.Width := PenWidth.Position; { set the pen width directly }
 PenSize.Caption := IntToStr(PenWidth.Position); { convert to string for caption }
end;

Changing the pen style
Topic groups See also
A pen’s Style property allows you to set solid lines, dashed lines, dotted lines, and so on.
Note:Windows 95 does not support dashed or dotted line styles for pens wider than one pixel and

makes all larger pens solid, no matter what style you specify.
The task of setting the properties of pen is an ideal case for having different controls share same event
handler to handle events. To determine which control actually got the event, you check the Sender
parameter.
To create one click-event handler for six pen-style buttons on a pen’s toolbar, do the following:
1 Select all six pen-style buttons and select the Object Inspector|Events|OnClick event and in the

Handler column, type SetPenStyle.
Delphi generates an empty click-event handler called SetPenStyle and attaches it to the OnClick
events of all six buttons.

2 Fill in the click-event handler by setting the pen’s style depending on the value of Sender, which is
the control that sent the click event:

procedure TForm1.SetPenStyle(Sender: TObject);
begin
 with Canvas.Pen do
 begin
 if Sender = SolidPen then Style := psSolid
 else if Sender = DashPen then Style := psDash
 else if Sender = DotPen then Style := psDot
 else if Sender = DashDotPen then Style := psDashDot
 else if Sender = DashDotDotPen then Style := psDashDotDot
 else if Sender = ClearPen then Style := psClear;
 end;
end;

Changing the pen mode
Topic groups See also
A pen’s Mode property lets you specify various ways to combine the pen’s color with the color on the
canvas. For example, the pen could always be black, be an inverse of the canvas background color,
inverse of the pen color, and so on.

Getting the pen position
Topic groups See also
The current drawing position—the position from which the pen begins drawing its next line—is called the
pen position. The canvas stores its pen position in its PenPos property . Pen position affects the drawing
of lines only; for shapes and text, you specify all the coordinates you need.
To set the pen position, call the MoveTo method of the canvas. For example, the following code moves
the pen position to the upper left corner of the canvas:

Canvas.MoveTo(0, 0);
Note:Drawing a line with the LineTo method also moves the current position to the endpoint of the line.

Using brushes
Topic groups See also
The Brush property of a canvas controls the way you fill areas, including the interior of shapes. Filling an
area with a brush is a way of changing a large number of adjacent pixels in a specified way.
The brush has three properties you can manipulate:

Color property: Changes the fill color
Style property: Changes the brush style
Bitmap property: Uses a bitmap as a brush pattern

The values of these properties determine the way the canvas fills shapes or other areas. By default,
every brush starts out white, with a solid style and no pattern bitmap.

Changing the brush color
Topic groups See also
A brush’s color determines what color the canvas uses to fill shapes. To change the fill color, assign a
value to the brush’s Color property. Brush is used for background color in text and line drawing so you
typically set the background color property.
You can set the brush color just as you do the pen color, in response to a click on a color grid on the
brush’s toolbar :

procedure TForm1.BrushColorClick(Sender: TObject);
begin
 Canvas.Brush.Color := BrushColor.ForegroundColor;
end;

Changing the brush style
Topic groups See also
A brush style determines what pattern the canvas uses to fill shapes. It lets you specify various ways to
combine the brush’s color with any colors already on the canvas. The predefined styles include solid
color, no color, and various line and hatch patterns.
To change the style of a brush, set its Style property to one of the predefined values: bsSolid, bsClear,
bsHorizontal, bsVertical, bsFDiagonal, bsBDiagonal, bsCross, or bsDiagCross.
This example sets brush styles by sharing a click-event handler for a set of eight brush-style buttons. All
eight buttons are selected, the Object Inspector|Events|OnClick is set, and the OnClick handler is
named SetBrushStyle. Here is the handler code:

procedure TForm1.SetBrushStyle(Sender: TObject);
begin
 with Canvas.Brush do
 begin
 if Sender = SolidBrush then Style := bsSolid
 else if Sender = ClearBrush then Style := bsClear
 else if Sender = HorizontalBrush then Style := bsHorizontal
 else if Sender = VerticalBrush then Style := bsVertical
 else if Sender = FDiagonalBrush then Style := bsFDiagonal
 else if Sender = BDiagonalBrush then Style := bsBDiagonal
 else if Sender = CrossBrush then Style := bsCross
 else if Sender = DiagCrossBrush then Style := bsDiagCross;
 end;
end;

Setting the Brush Bitmap property
Topic groups See also
A brush’s Bitmap property lets you specify a bitmap image for the brush to use as a pattern for filling
shapes and other areas.
The following example loads a bitmap from a file and assigns it to the Brush of the Canvas of Form1:

var
 Bitmap: TBitmap;
begin
 Bitmap := TBitmap.Create;
 try
 Bitmap.LoadFromFile('MyBitmap.bmp');
 Form1.Canvas.Brush.Bitmap := Bitmap;
 Form1.Canvas.FillRect(Rect(0,0,100,100));
 finally
 Form1.Canvas.Brush.Bitmap := nil;
 Bitmap.Free;
 end;
end;

Note:The brush does not assume ownership of a bitmap object assigned to its Bitmap property. You
must ensure that the Bitmap object remain valid for the lifetime of the Brush, and you must free the
Bitmap object yourself afterwards.

Reading and setting pixels
Topic groups See also
You will notice that every canvas has an indexed Pixels property that represents the individual colored
points that make up the image on the canvas. You rarely need to access Pixels directly, it is available
only for convenience to perform small actions such as finding or setting a pixel’s color.
Note:Setting and getting individual pixels is thousands of times slower than performing graphics

operations on regions. Do not use the Pixel array property to access the image pixels of a general
array. For high-performance access to image pixels, see the TBitmap.ScanLine property .

Using Canvas methods to draw graphic objects
Topic groups See also
This section shows how to use some common methods to draw graphic objects. It covers:

Drawing lines and polylines
Drawing shapes
Drawing rounded rectangles
Drawing polygons

Drawing lines and polylines
Topic groups See also
A canvas can draw straight lines and polylines. A straight line is just a line of pixels connecting two
points. A polyline is a series of straight lines, connected end-to-end. The canvas draws all lines using its
pen.

Drawing lines
Topic groups See also
To draw a straight line on a canvas, use the LineTo method of the canvas.
LineTo draws a line from the current pen position to the point you specify and makes the endpoint of the
line the current position. The canvas draws the line using its pen.
For example, the following method draws crossed diagonal lines across a form whenever the form is
painted:

procedure TForm1.FormPaint(Sender: TObject);
begin
 with Canvas do
 begin
 MoveTo(0, 0);
 LineTo(ClientWidth, ClientHeight);
 MoveTo(0, ClientHeight);
 LineTo(ClientWidth, 0);
 end;
end;

Drawing polylines
Topic groups See also Example
In addition to individual lines, the canvas can also draw polylines, which are groups of any number of
connected line segments.
To draw a polyline on a canvas, call the Polyline method of the canvas.
The parameter passed to the PolyLine method is an array of points. You can think of a polyline as
performing a MoveTo on the first point and LineTo on each successive point. For drawing multiple lines,
Polyline is faster than using the MoveTo method and the LineTo method because it eliminates a lot of
call overhead.

Example: Drawing polylines
The following method draws a rhombus in a form:

procedure TForm1.FormPaint(Sender: TObject);
begin
 with Canvas do
 PolyLine([Point(0, 0), Point(50, 0), Point(75, 50), Point(25, 50), Point(0, 0)]);
end;

This example takes advantage of Delphi's ability to create an open-array parameter on-the-fly. You can
pass any array of points, but an easy way to construct an array quickly is to put its elements in brackets
and pass the whole thing as a parameter.

Drawing shapes
Topic groups See also
Canvases have methods for drawing different kinds of shapes. The canvas draws the outline of a shape
with its pen, then fills the interior with its brush. The line that forms the border for the shape is controlled
by the current Pen object.
This section covers:

Drawing rectangles and ellipses
Drawing rounded rectangles
Drawing polygons

Drawing rectangles and ellipses
Topic groups See also Example
To draw a rectangle or ellipse on a canvas, call the canvas’s Rectangle method or Ellipse method ,
passing the coordinates of a bounding rectangle.
The Rectangle method draws the bounding rectangle; Ellipse draws an ellipse that touches all sides of
the rectangle.

Example: Drawing rectangles and ellipses
The following method draws a rectangle filling a form’s upper left quadrant, then draws an ellipse in the
same area:

procedure TForm1.FormPaint(Sender: TObject);
begin
 Canvas.Rectangle(0, 0, ClientWidth div 2, ClientHeight div 2);
 Canvas.Ellipse(0, 0, ClientWidth div 2, ClientHeight div 2);
end;

Drawing rounded rectangles
Topic groups See also Example
To draw a rounded rectangle on a canvas, call the canvas’s RoundRect method .
The first four parameters passed to RoundRect are a bounding rectangle, just as for the Rectangle
method or the Ellipse method . RoundRect takes two more parameters that indicate how to draw the
rounded corners.

Example: Drawing rounded rectangles
The following method draws a rounded rectangle in a form’s upper left quadrant, rounding the corners
as sections of a circle with a diameter of 10 pixels:

procedure TForm1.FormPaint(Sender: TObject);
begin
 Canvas.RoundRect(0, 0, ClientWidth div 2, ClientHeight div 2, 10, 10);
end;

Drawing polygons
Topic groups See also
To draw a polygon with any number of sides on a canvas, call the Polygon method of the canvas.
Polygon takes an array of points as its only parameter and connects the points with the pen, then
connects the last point to the first to close the polygon. After drawing the lines, Polygon uses the brush
to fill the area inside the polygon.

Example: Drawing polygons
The following code draws a right triangle in the lower left half of a form:

procedure TForm1.FormPaint(Sender: TObject);
begin
 Canvas.Polygon([Point(0, 0), Point(0, ClientHeight),
 Point(ClientWidth, ClientHeight)]);
end;

Handling multiple drawing objects in your application
Topic groups See also
Various drawing methods (rectangle, shape, line, and so on) are typically available on the toolbar and
button panel. Applications can respond to clicks on speed buttons to set the desired drawing objects.
This section describes how to:

Keep track of which drawing tool to use
Changing the tool with speed buttons
Using drawing tools

Keeping track of which drawing tool to use
Topic groups See also
A graphics program needs to keep track of what kind of drawing tool (such as a line, rectangle, ellipse,
or rounded rectangle) a user might want to use at any given time. You could assign numbers to each
kind of tool, but then you would have to remember what each number stands for. You can do that more
easily by assigning mnemonic constant names to each number, but your code won't be able to
distinguish which numbers are in the proper range and of the right type. Fortunately, Object Pascal
provides a means to handle both of these shortcomings. You can declare an enumerated type.
An enumerated type is really just a shorthand way of assigning sequential values to constants. Since it's
also a type declaration, you can use Object Pascal's type-checking to ensure that you assign only those
specific values.
To declare an enumerated type, use the reserved work type, followed by an identifier for the type, then
an equal sign, and the identifiers for the values in the type in parentheses, separated by commas.
For example, the following code declares an enumerated type for each drawing tool available in a
graphics application:

type
 TDrawingTool = (dtLine, dtRectangle, dtEllipse, dtRoundRect);

By convention, type identifiers begin with the letter T, and groups of similar constants (such as those
making up an enumerated type) begin with a 2-letter prefix (such as dt for “drawing tool”).
The declaration of the TDrawingTool type is equivalent to declaring a group of constants:

const
 dtLine = 0;
 dtRectangle = 1;
 dtEllipse = 2;
 dtRoundRect = 3;

The main difference is that by declaring the enumerated type, you give the constants not just a value,
but also a type, which enables you to use Object Pascal's type-checking to prevent many errors. A
variable of type TDrawingTool can be assigned only one of the constants dtLine..dtRoundRect.
Attempting to assign some other number (even one in the range 0..3) generates a compile-time error.
In the following code, a field added to a form keeps track of the form’s drawing tool:

type
 TDrawingTool = (dtLine, dtRectangle, dtEllipse, dtRoundRect);
 TForm1 = class(TForm)
 ... { method declarations }
 public
 Drawing: Boolean;
 Origin, MovePt: TPoint;
 DrawingTool: TDrawingTool; { field to hold current tool }
 end;

Changing the tool with speed buttons
Topic groups See also
Each drawing tool needs an associated OnClick event handler. Suppose your application had a toolbar
button for each of four drawing tools: line, rectangle, ellipse, and rounded rectangle. You would attach
the following event handlers to the OnClick events of the four drawing-tool buttons, setting DrawingTool
to the appropriate value for each:

procedure TForm1.LineButtonClick(Sender: TObject); { LineButton }
begin
 DrawingTool := dtLine;
end;
procedure TForm1.RectangleButtonClick(Sender: TObject);{ RectangleButton }
begin
 DrawingTool := dtRectangle;
end;
procedure TForm1.EllipseButtonClick(Sender: TObject); { EllipseButton }
begin
 DrawingTool := dtEllipse;
end;
procedure TForm1.RoundedRectButtonClick(Sender: TObject); { RoundRectButton }
begin
 DrawingTool := dtRoundRect;
end;

Using drawing tools
Topic groups See also
Now that you can tell what tool to use, you must indicate how to draw the different shapes. The only
methods that perform any drawing are the mouse-move and mouse-up handlers, and the only drawing
code draws lines, no matter what tool is selected.
To use different drawing tools, your code needs to specify how to draw, based on the selected tool. You
add this instruction to each tool’s event handler.
This section describes

Drawing shapes
Sharing code among event handlers

Drawing shapes
Topic groups See also
Drawing shapes is just as easy as drawing lines: Each one takes a single statement; you just need the
coordinates.
Here’s a rewrite of the OnMouseUp event handler that draws shapes for all four tools:

procedure TForm1.FormMouseUp(Sender: TObject);
begin
 case DrawingTool of
 dtLine:
 begin
 Canvas.MoveTo(Origin.X, Origin.Y);
 Canvas.LineTo(X, Y)
 end;
 dtRectangle: Canvas.Rectangle(Origin.X, Origin.Y, X, Y);
 dtEllipse: Canvas.Ellipse(Origin.X, Origin.Y, X, Y);
 dtRoundRect: Canvas.RoundRect(Origin.X, Origin.Y, X, Y,
 (Origin.X - X) div 2, (Origin.Y - Y) div 2);
 end;
 Drawing := False;
end;

Of course, you also need to update the OnMouseMove handler to draw shapes:
procedure TForm1.FormMouseMove(Sender: TObject; Shift: TShiftState; X, Y: Integer);
begin
 if Drawing then
 begin
 Canvas.Pen.Mode := pmNotXor;
 case DrawingTool of
 dtLine: begin
 Canvas.MoveTo(Origin.X, Origin.Y);
 Canvas.LineTo(MovePt.X, MovePt.Y);
 Canvas.MoveTo(Origin.X, Origin.Y);
 Canvas.LineTo(X, Y);
 end;
 dtRectangle: begin
 Canvas.Rectangle(Origin.X, Origin.Y, MovePt.X, MovePt.Y);
 Canvas.Rectangle(Origin.X, Origin.Y, X, Y);
 end;
 dtEllipse: begin
 Canvas.Ellipse(Origin.X, Origin.Y, X, Y);
 Canvas.Ellipse(Origin.X, Origin.Y, X, Y);
 end;
 dtRoundRect: begin
 Canvas.RoundRect(Origin.X, Origin.Y, X, Y,
 (Origin.X - X) div 2, (Origin.Y - Y) div 2);
 Canvas.RoundRect(Origin.X, Origin.Y, X, Y,
 (Origin.X - X) div 2, (Origin.Y - Y) div 2);
 end;
 end;
 MovePt := Point(X, Y);
 end;
 Canvas.Pen.Mode := pmCopy;
end;

Typically, all the repetitious code that is in the above example would be in a separate routine. The next
section shows all the shape-drawing code in a single routine that all mouse-event handlers can call.

Sharing code among event handlers
Topic groups See also Example
Any time you find that many your event handlers use the same code, you can make your application
more efficient by moving the repeated code into a routine that all event handlers can share.
To add a method to a form,
1 Add the method declaration to the form object.

You can add the declaration in either the public or private parts at the end of the form object’s
declaration. If the code is just sharing the details of handling some events, it’s probably safest to
make the shared method private.

2 Write the method implementation in the implementation part of the form unit.
The header for the method implementation must match the declaration exactly, with the same
parameters in the same order.

Example: Sharing code among event handlers
The following code adds a method to the form called DrawShape and calls it from each of the handlers.
First, the declaration of DrawShape is added to the form object’s declaration:

type
 TForm1 = class(TForm)
 ... { fields and methods declared here}
 public
 { Public declarations }
 procedure DrawShape(TopLeft, BottomRight: TPoint; AMode: TPenMode);
 end;

Then, the implementation of DrawShape is written in the implementation part of the unit:
implementation
{$R *.FRM}
... { other method implementations omitted for brevity }
procedure TForm1.DrawShape(TopLeft, BottomRight: TPoint; AMode: TPenMode);
begin
 with Canvas do
 begin
 Pen.Mode := AMode;
 case DrawingTool of
 dtLine:
 begin
 MoveTo(TopLeft.X, TopLeft.Y);
 LineTo(BottomRight.X, BottomRight.Y);
 end;
 dtRectangle: Rectangle(TopLeft.X, TopLeft.Y, BottomRight.X, BottomRight.Y);
 dtEllipse: Ellipse(TopLeft.X, TopLeft.Y, BottomRight.X, BottomRight.Y);
 dtRoundRect: RoundRect(TopLeft.X, TopLeft.Y, BottomRight.X, BottomRight.Y,
 (TopLeft.X - BottomRight.X) div 2, (TopLeft.Y - BottomRight.Y) div 2);
 end;
 end;
end;

The other event handlers are modified to call DrawShape.
procedure TForm1.FormMouseUp(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 DrawShape(Origin, Point(X, Y), pmCopy); { draw the final shape }
 Drawing := False;
end;
procedure TForm1.FormMouseMove(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 if Drawing then
 begin
 DrawShape(Origin, MovePt, pmNotXor); { erase the previous shape }
 MovePt := Point(X, Y); { record the current point }
 DrawShape(Origin, MovePt, pmNotXor); { draw the current shape }
 end;
end;

Drawing on a graphic
Topic groups See also
You don’t need any components to manipulate your application’s graphic objects. You can construct,
draw on, save, and destroy graphic objects without ever drawing anything on screen. In fact, your
applications rarely draw directly on a form. More often, an application operates on graphics and then
uses a VCL image control component to display the graphic on a form.
Once you move the application’s drawing to the graphic in the image control, it is easy to add printing,
Clipboard, and loading and saving operations for any graphic objects. graphic objects can be bitmap
files, metafiles, icons or whatever other graphics classes that have been installed such as JPEG
graphics.
Note:Because you are drawing on an offscreen image such as a TBitmap canvas, the image is not

displayed until a control copies from a bitmap onto the control’s canvas. That is, when drawing
bitmaps and assigning them to an image control, the image appears only when the control has an
opportunity to process its paint message. But if you are drawing directly onto the canvas property
of a control, the picture object is displayed immediately.

Making scrollable graphics
Topic groups See also
The graphic need not be the same size as the form: it can be either smaller or larger. By adding a scroll
box control to the form and placing the graphic image inside it, you can display graphics that are much
larger than the form or even larger than the screen. To add a scrollable graphic first you add a
TScrollBox component and then you add the image control.

Adding an image control
Topic groups See also
An image control is a container component that allows you to display your bitmap objects. You use an
image control to hold a bitmap that is not necessarily displayed all the time, or which an application
needs to use to generate other pictures.
Note:Adding graphics to controls shows how to use graphics in controls.

Placing the control
Topic groups See also
You can place an image control anywhere on a form. If you take advantage of the image control’s ability
to size itself to its picture, you need to set the top left corner only. If the image control is a nonvisible
holder for a bitmap, you can place it anywhere, just as you would a nonvisual component.
If you drop the image control on a scroll box already aligned to the form’s client area, this assures that
the scroll box adds any scroll bars necessary to access offscreen portions of the image’s picture. Then
set the image control’s properties.

Setting the initial bitmap size
Topic groups See also
When you place an image control, it is simply a container. However, you can set the image control’s
Picture property at design time to contain a static graphic. The control can also load its picture from a file
at runtime, as described in .
To create a blank bitmap when the application starts,
1 Attach a handler to the OnCreate event for the form that contains the image.
2 Create a bitmap object, and assign it to the image control’s Picture.Graphic property.
In this example, the image is in the application’s main form, Form1, so the code attaches a handler to
Form1’s OnCreate event:

procedure TForm1.FormCreate(Sender: TObject);
var
 Bitmap: TBitmap; { temporary variable to hold the bitmap }
begin
 Bitmap := TBitmap.Create; { construct the bitmap object }
 Bitmap.Width := 200; { assign the initial width... }
 Bitmap.Height := 200; { ...and the initial height }
 Image.Picture.Graphic := Bitmap; { assign the bitmap to the image control }
end;

Assigning the bitmap to the picture’s Graphic property gives ownership of the bitmap to the picture
object. The picture object destroys the bitmap when it finishes with it, so you should not destroy the
bitmap object. You can assign a different bitmap to the picture at which point the picture disposes of the
old bitmap and assumes ownership of the new one.
If you run the application now, you see that client area of the form has a white region, representing the
bitmap. If you size the window so that the client area cannot display the entire image, you’ll see that the
scroll box automatically shows scroll bars to allow display of the rest of the image. But if you try to draw
on the image, you don’t get any graphics, because the application is still drawing on the form, which is
now behind the image and the scroll box.

Drawing on the bitmap
Topic groups See also
To draw on a bitmap, use the image control’s canvas and attach the mouse-event handlers to the
appropriate events in the image control. Typically you would use region operations (fills, rectangles,
polylines, and so on). These are fast and efficient methods of drawing.
An efficient way to draw images when you need to access individual pixels is to use the bitmap
ScanLine property. For general-purpose usage, you can set up the bitmap pixel format to 24 bits and
then treat the pointer returned from ScanLine as an array of RGB. Otherwise, you will need to know the
native format of the ScanLine property. This example shows how to use ScanLine to get pixels one line
at a time.

procedure TForm1.Button1Click(Sender: TObject);
// This example shows drawing directly to the Bitmap
var
 x,y : integer;
 Bitmap : TBitmap;
 P : PByteArray;
begin
 Bitmap := TBitmap.create;
 try
 Bitmap.LoadFromFile('C:\Program Files\Borland\Delphi 4\Images\Splash\256color\
factory.bmp');
 for y := 0 to Bitmap.height -1 do
 begin
 P := Bitmap.ScanLine[y];
 for x := 0 to Bitmap.width -1 do
 P[x] := y;
 end;
 canvas.draw(0,0,Bitmap);
 finally
 Bitmap.free;
 end;
end;

Loading and saving graphics files
Topic groups See also
Graphic images that exist only for the duration of one running of an application are of very limited value.
Often, you either want to use the same picture every time, or you want to save a created picture for later
use. The VCL’s image control makes it easy to load pictures from a file and save them again.
The VCL components you use to load, save, and replace graphic images support many graphic formats
including bitmap files, metafiles, glyphs, and so on. They also support installable graphic classes.
The way to load and save graphics files is the similar to any other files and is described in these topics:

Loading a picture from a file
Saving a picture to a file
Replacing the picture

Loading a picture from a file
Topic groups See also
Your application should provide the ability to load a picture from a file if your application needs to modify
the picture or if you want to store the picture outside the application so a person or another application
can modify the picture.
To load a graphics file into an image control, call the LoadFromFile method of the image control’s
Picture object.
The following code gets a file name from an open-file dialog box, and then loads that file into an image
control named Image:

procedure TForm1.Open1Click(Sender: TObject);
begin
 if OpenDialog1.Execute then
 begin
 CurrentFile := OpenDialog1.FileName;
 Image.Picture.LoadFromFile(CurrentFile);
 end;
end;

Saving a picture to a file
Topic groups See also
The VCL picture object can load and save graphics in several formats, and you can create and register
your own graphic-file formats so that picture objects can load and store them as well.
To save the contents of an image control in a file, call the SaveToFile method of the image control’s
Picture object.
The SaveToFile method requires the name of a file in which to save. If the picture is newly created, it
might not have a file name, or a user might want to save an existing picture in a different file. In either
case, the application needs to get a file name from the user before saving, as shown in the next section.
The following pair of event handlers, attached to the File|Save and File|Save As menu items,
respectively, handle the resaving of named files, saving of unnamed files, and saving existing files under
new names.

procedure TForm1.Save1Click(Sender: TObject);
begin
 if CurrentFile <> '' then
 Image.Picture.SaveToFile(CurrentFile) { save if already named }
 else SaveAs1Click(Sender); { otherwise get a name }
end;
procedure TForm1.Saveas1Click(Sender: TObject);
begin
 if SaveDialog1.Execute then { get a file name }
 begin
 CurrentFile := SaveDialog1.FileName; { save the user-specified name }
 Save1Click(Sender); { then save normally }
 end;
end;

Replacing the picture
Topic groups See also
You can replace the picture in an image control at any time. If you assign a new graphic to a picture that
already has a graphic, the new graphic replaces the existing one.
To replace the picture in an image control, assign a new graphic to the image control’s Picture object.
Creating the new graphic is the same process you used to create the initial graphic , but you should also
provide a way for the user to choose a size other than the default size used for the initial graphic. An
easy way to provide that option is to present a dialog box.
With such a dialog box in your project, add it to the uses clause in the unit for your main form. You can
then attach an event handler to the File|New menu item’s OnClick event. Here’s an example:

procedure TForm1.New1Click(Sender: TObject);
var
 Bitmap: TBitmap; { temporary variable for the new bitmap }
begin
 with NewBMPForm do
 begin
 ActiveControl := WidthEdit; { make sure focus is on width field }
 WidthEdit.Text := IntToStr(Image.Picture.Graphic.Width); { use current
dimensions... }
 HeightEdit.Text := IntToStr(Image.Picture.Graphic.Height); { ...as default }
 if ShowModal <> idCancel then { continue if user doesn't cancel dialog box }
 begin
 Bitmap := TBitmap.Create; { create fresh bitmap object }
 Bitmap.Width := StrToInt(WidthEdit.Text);{ use specified width }
 Bitmap.Height := StrToInt(HeightEdit.Text); { use specified height }
 Image.Picture.Graphic := Bitmap; { replace graphic with new bitmap }
 CurrentFile := ''; { indicate unnamed file }
 end;
 end;
end;

Note:Assigning a new bitmap to the picture object’s Graphic property causes the picture object to
destroy the existing bitmap and take ownership of the new one. The VCL handles the details of
freeing the resources associated with the previous bitmap automatically.

Using the Clipboard with graphics
Topic groups See also
You can use the Windows Clipboard to copy and paste graphics within your applications or to exchange
graphics with other applications. The VCL’s Clipboard object makes it easy to handle different kinds of
information, including graphics.
Before you can use the Clipboard object in your application, you must add the Clipbrd unit to the uses
clause of any unit that needs to access Clipboard data.

Copying graphics to the Clipboard
Topic groups See also
You can copy any picture, including the contents of image controls, to the Clipboard. Once on the
Clipboard, the picture is available to all Windows applications.
To copy a picture to the Clipboard, assign the picture to the Clipboard object using the Assign method.
This code shows how to copy the picture from an image control named Image to the Clipboard in
response to a click on an Edit|Copy menu item:

procedure TForm1.Copy1Click(Sender: TObject);
begin
 Clipboard.Assign(Image.Picture)
end.

Cutting graphics to the Clipboard
Topic groups See also
Cutting a graphic to the Clipboard is exactly like copying it, but you also erase the graphic from the
source.
To cut a graphic from a picture to the Clipboard, first copy it to the Clipboard, then erase the original.
In most cases, the only issue with cutting is how to show that the original image is erased. Setting the
area to white is a common solution, as shown in the following code that attaches an event handler to the
OnClick event of the Edit|Cut menu item:

procedure TForm1.Cut1Click(Sender: TObject);
var
 ARect: TRect;
begin
 Copy1Click(Sender); { copy picture to Clipboard }
 with Image.Canvas do
 begin
 CopyMode := cmWhiteness; { copy everything as white }
 ARect := Rect(0, 0, Image.Width, Image.Height); { get bitmap rectangle }
 CopyRect(ARect, Image.Canvas, ARect); { copy bitmap over itself }
 CopyMode := cmSrcCopy; { restore normal mode }
 end;
end;

Pasting graphics from the Clipboard
Topic groups See also
If the Windows Clipboard contains a bitmapped graphic, you can paste it into any image object,
including image controls and the surface of a form.
To paste a graphic from the Clipboard,
1 Call the Clipboard’s HasFormat method to see whether the Clipboard contains a graphic.

HasFormat is a Boolean function. It returns True if the Clipboard contains an item of the type
specified in the parameter. To test for graphics, you pass CF_BITMAP.

2 Assign the Clipboard to the destination.
This code shows how to paste a picture from the Clipboard into an image control in response to a click
on an Edit|Paste menu item:

procedure TForm1.PasteButtonClick(Sender: TObject);
var
 Bitmap: TBitmap;
begin
 if Clipboard.HasFormat(CF_BITMAP) then { is there a bitmap on the Clipboard?)
 begin
 Image.Picture.Bitmap.Assign(Clipboard);
 end;
end;

The graphic on the Clipboard could come from this application, or it could have been copied from
another application, such as Windows Paintbrush. You do not need to check the clipboard format in this
case because the paste menu should be disabled when the clipboard does not contain a supported
format.

Rubber banding example
Topic groups See also
This section walks you through the details of implementing the “rubber banding” effect in an graphics
application that tracks mouse movements as the user draws a graphic at runtime. The example code in
this section is taken from a sample application located in the EXAMPLES\DOC\GRAPHEX directory.
The application draws lines and shapes on a window’s canvas in response to clicks and drags: pressing
a mouse button starts drawing, and releasing the button ends the drawing.
To start with, the example code shows how to draw on the surface of the main form. Later examples
demonstrate drawing on a bitmap.
This section covers:

Responding to the mouse
Adding a field to a form object to track mouse actions
Refining line drawing

Responding to the mouse
Topic groups See also
Your application can respond to the mouse actions: mouse-button down, mouse moved, and mouse-
button up. It can also respond to a click (a complete press-and-release, all in one place) that can be
generated by some kinds of keystrokes (such as pressing Enter in a modal dialog box).
This section covers:

What’s in a mouse event
Responding to a mouse-down action
Responding to a mouse-up action
Responding to a mouse move

What’s in a mouse event
Topic groups See also
The VCL has three mouse events: OnMouseDown event , OnMouseMove event , and OnMouseUp
event.
When a VCL application detects a mouse action, it calls whatever event handler you’ve defined for the
corresponding event, passing five parameters. Use the information in those parameters to customize
your responses to the events. The five parameters are as follows:

Parameter Meaning
Sender The object that detected the mouse action
Button Indicates which mouse button was involved: mbLeft, mbMiddle, or mbRight
Shift Indicates the state of the Alt, Ctrl, and Shift keys at the time of the mouse

action
X, Y The coordinates where the event occurred

Most of the time, you need the coordinates returned in a mouse-event handler, but sometimes you also
need to check Button to determine which mouse button caused the event.
Note:Delphi uses the same criteria as Microsoft Windows in determining which mouse button has been

pressed. Thus, if you have switched the default “primary” and “secondary” mouse buttons (so that
the right mouse button is now the primary button), clicking the primary (right) button will record
mbLeft as the value of the Button parameter.

Responding to a mouse-down action
Topic groups See also Example
Whenever the user presses a button on the mouse, an OnMouseDown event goes to the object the
pointer is over. The object can then respond to the event.
To respond to a mouse-down action, attach an event handler to the OnMouseDown event.
The VCL generates an empty handler for a mouse-down event on the form:

procedure TForm1.FormMouseDown(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
end;

Here’s code that displays some text at the point where the mouse button is pressed. It uses the X and Y
parameters sent to the method, and calls the TextOut method of the canvas to display text there:

Example: Responding to a mouse-down action
The following code displays the string 'Here!' at the location on a form clicked with the mouse:

procedure TForm1.FormMouseDown(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 Canvas.TextOut(X, Y, 'Here!'); { write text at (X, Y) }
end;

When the application runs, you can press the mouse button down with the mouse cursor on the form
and have the string, “Here!” appear at the point clicked. This code sets the current drawing position to
the coordinates where the user presses the button:

procedure TForm1.FormMouseDown(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 Canvas.MoveTo(X, Y); { set pen position }
end;

Pressing the mouse button now sets the pen position, setting the line’s starting point. To draw a line to
the point where the user releases the button, you need to respond to a mouse-up event.

Responding to a mouse-up action
Topic groups See also Example
An OnMouseUp event occurs whenever the user releases a mouse button. The event usually goes to
the object the mouse cursor is over when the user presses the button, which is not necessarily the same
object the cursor is over when the button is released. This enables you, for example, to draw a line as if
it extended beyond the border of the form.
To respond to mouse-up actions, define a handler for the OnMouseUp event.

Example: Responding to a mouse-up action
Here’s a simple OnMouseUp event handler that draws a line to the point of the mouse-button release:

procedure TForm1.FormMouseUp(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 Canvas.LineTo(X, Y); { draw line from PenPos to (X, Y) }
end;

This code lets a user draw lines by clicking, dragging, and releasing. In this case, the user cannot see
the line until the mouse button is released.

Responding to a mouse move
Topic groups See also
An OnMouseMove event occurs periodically when the user moves the mouse. The event goes to the
object that was under the mouse pointer when the user pressed the button. This allows you to give the
user some intermediate feedback by drawing temporary lines while the mouse moves.
To respond to mouse movements, define an event handler for the OnMouseMove event. This example
uses mouse-move events to draw intermediate shapes on a form while the user holds down the mouse
button, thus providing some feedback to the user. The OnMouseMove event handler draws a line on a
form to the location of the OnMouseMove event:

procedure TForm1.FormMouseMove(Sender: TObject;Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 Canvas.LineTo(X, Y); { draw line to current position }
end;

With this code, moving the mouse over the form causes drawing to follow the mouse, even before the
mouse button is pressed.
Mouse-move events occur even when you haven’t pressed the mouse button.
If you want to track whether there is a mouse button pressed, you need to add an object field to the form
object.

Adding a field to a form object to track mouse actions
Topic groups See also Example
To track whether a mouse button was pressed, you must add an object field to the form object. When
you add a component to a form, Delphi adds a field that represents that component to the form object,
so that you can refer to the component by the name of its field. You can also add your own fields to
forms by editing the type declaration in the form unit’s header file.
In the following example, the form needs to track whether the user has pressed a mouse button. To do
that, it adds a Boolean field and sets its value when the user presses the mouse button.
To add a field to an object, edit the object’s type definition, specifying the field identifier and type after
the public directive at the bottom of the declaration.
Delphi “owns” any declarations before the public directive: that’s where it puts the fields that represent
controls and the methods that respond to events.

Example: Adding a field to a form object to track mouse actions
The following code gives a form a field called Drawing of type Boolean, in the form object’s declaration.
It also adds two fields to store points Origin and MovePt of typeTPoint.

type
 TForm1 = class(TForm)
 procedure FormMouseDown(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
 procedure FormMouseUp(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
 procedure FormMouseMove(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
 public
 Drawing: Boolean; { field to track whether button was pressed }
 Origin, MovePt: TPoint; { fields to store points }
 end;

When you have a Drawing field to track whether to draw, set it to True when the user presses the mouse
button, and False when the user releases it:

procedure TForm1.FormMouseDown(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 Drawing := True; { set the Drawing flag }
 Canvas.MoveTo(X, Y);
end;
procedure TForm1.FormMouseUp(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 Canvas.LineTo(X, Y);
 Drawing := False; { clear the Drawing flag }
end;

Then you can modify the OnMouseMove event handler to draw only when Drawing is True:
procedure TForm1.FormMouseMove(Sender: TObject;Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 if Drawing then { only draw if Drawing flag is set }
 Canvas.LineTo(X, Y);
end;

This results in drawing only between the mouse-down and mouse-up events, but you still get a scribbled
line that tracks the mouse movements instead of a straight line.
The problem is that each time you move the mouse, the mouse-move event handler calls LineTo, which
moves the pen position, so by the time you release the button, you’ve lost the point where the straight
line was supposed to start.

Refining line drawing
Topic groups See also
With fields in place to track various points, you can refine an application’s line drawing.

Tracking the origin point
Topic groups See also
When drawing lines, track the point where the line starts with the Origin field.
Origin must be set to the point where the mouse-down event occurs, so the mouse-up event handler
can use Origin to place the beginning of the line, as in this code:

procedure TForm1.FormMouseDown(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 Drawing := True;
 Canvas.MoveTo(X, Y);
 Origin := Point(X, Y); { record where the line starts }
end;
procedure TForm1.FormMouseUp(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 Canvas.MoveTo(Origin.X, Origin.Y); { move pen to starting point }
 Canvas.LineTo(X, Y);
 Drawing := False;
end;

Those changes get the application to draw the final line again, but they do not draw any intermediate
actions--the application does not yet support “rubber banding.”

Tracking movement
Topic groups See also
The problem with this example as the OnMouseMove event handler is currently written is that it draws
the line to the current mouse position from the last mouse position, not from the original position. You
can correct this by moving the drawing position to the origin point, then drawing to the current point:

procedure TForm1.FormMouseMove(Sender: TObject;Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 if Drawing then
 begin
 Canvas.MoveTo(Origin.X, Origin.Y); { move pen to starting point }
 Canvas.LineTo(X, Y);
 end;
end;

The above tracks the current mouse position, but the intermediate lines do not go away, so you can
hardly see the final line. The example needs to erase each line before drawing the next one, by keeping
track of where the previous one was. The MovePt field allows you to do this.
MovePt must be set to the endpoint of each intermediate line, so you can use MovePt and Origin to
erase that line the next time a line is drawn:

procedure TForm1.FormMouseDown(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 Drawing := True;
 Canvas.MoveTo(X, Y);
 Origin := Point(X, Y);
 MovePt := Point(X, Y); { keep track of where this move was }
end;
procedure TForm1.FormMouseMove(Sender: TObject;Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 if Drawing then
 begin
 Canvas.Pen.Mode := pmNotXor; { use XOR mode to draw/erase }
 Canvas.MoveTo(Origin.X, Origin.Y); { move pen back to origin }
 Canvas.LineTo(MovePt.X, MovePt.Y); { erase the old line }
 Canvas.MoveTo(Origin.X, Origin.Y); { start at origin again }
 Canvas.LineTo(X, Y); { draw the new line }
 end;
 MovePt := Point(X, Y); { record point for next move }
 Canvas.Pen.Mode := pmCopy;
end;

Now you get a “rubber band” effect when you draw the line. By changing the pen’s mode to pmNotXor,
you have it combine your line with the background pixels. When you go to erase the line, you’re actually
setting the pixels back to the way they were. By changing the pen mode back to pmCopy (its default
value) after drawing the lines, you ensure that the pen is ready to do its final drawing when you release
the mouse button.

Working with multimedia
Topic groups See also
Delphi allows you to add multimedia components to your applications. To do this, you can use either the
TAnimate component on the Win32 page or the TMediaPlayer component on the System page of the
Component palette. Use the animate component when you want to add silent video clips to your
application. Use the media player component when you want to add audio and/or video clips to an
application.

The following topics are discussed in this section:

Adding silent video clips to an application
Adding audio and/or video clips to an application

Adding silent video clips to an application
Topic groups See also
The animation control in Delphi allows you to add silent video clips to your application.
To add a silent video clip to an application:
1 Double-click the animate icon on the Win32 page of the Component palette. This automatically puts

an animation control on the form window in which you want to display the video clip.
2 Using the Object Inspector, select the Name property and enter a newname for your animation

control. You will use this name when you call the animation control. (Follow the standard rules for
naming Delphi identifiers).
Always work directly with the Object Inspector when setting design time properties and creating
event handlers.

3 Do one of the following:
 Select the Common AVI property and choose one of the AVIs available from the drop down list;

or
Select the FileName property and click the ellipsis (...) button, choose an AVI file from any

available local or network directories and click Open in the Open AVI dialog; or
Select the resource of an AVI using the ResName or ResID properties. Use ResHandle to

indicate the module that contains the resource identified by ResName or ResID.
This loads the AVI file into memory. If you want to display the first frame of the AVI clip on-screen
until it is played using the Active property or the Play method, then set the Open property to True.

4 Set the Repetitions property to the number of times you want to the AVI clip to play. If this value is
0, then the sequence is repeated until the Stop method is called.

5 Make any other changes to the animation control settings. For example, if you want to change the
first frame displayed when animation control opens, then set the StartFrameproperty to the desired
frame value.

6 Set the Active property to True using the drop down list or write an event handler to run the AVI clip
when a specific event takes place at runtime. For example, to activate the AVI clip when a button
object is clicked, write the button’s OnClick event specifying that. You may also call the Play
method to specify when to play the AVI.

Note: If you make any changes to the form or any of the components on the form after setting Active to
True, the Active property becomes False and you have to reset it to True. Do this either just before
runtime or at runtime.

For more information on using the animation control, see the topic called Example of adding silent video
clips.

Example of adding silent video clips
Topic groups See also
Suppose you want to display an animated logo as the first screen that appears when your application
starts. After the logo finishes playing the screen disappears.
To run this example, create a new project and save the Unit1.pas file as Frmlogo.pas and save the
Project1.dpr file as Logo.dpr. Then:
1 Double-click the animate icon from the Win32 page of the Component palette.
2 Using the Object Inspector, set its Name property to Logo1.
3 Select its FileName property, click the ellipsis (...) button, choose the cool.avi file from your ..\

Demos\Coolstuf directory. Then click Open in the Open AVI dialog.
This loads the cool.avi file into memory.

4 Position the animation control box on the form by clicking and dragging it to the top right hand side
of the form.

5 Set its Repetitions property to 5.
6 Click the form to bring focus to it and set its Name property to LogoForm1 and its Caption property

to Logo Window. Now decrease the height of the form to right- center the animation control on it.
7 Double-click the form’s OnActivate event and write the following code to run the AVI clip when the

form is in focus at runtime:
Logo1.Active := True;

8 Double-click the Label icon on the Standard page of the Component palette. Select its Caption
property and enter Welcome to Cool Images 4.0. Now select its Font property, click the ellipsis (...)
button and choose Font Style: Bold, Size: 18, Color: Navy from the Font dialog and click OK. Click
and drag the label control to center it on the form.

9 Click the animation control to bring focus back to it. Double-click its OnStop event and write the
following code to close the form when the AVI file stops:

LogoForm1.Close;
10 Select Run|Run to execute the animated logo window.

Adding audio and/or video clips to an application
Topic groups See also
The media player component in Delphi allows you to add audio and/or video clips to your application. It
opens a media device and plays, stops, pauses, records, etc., the audio and/or video clips used by the
media device. The media device may be hardware or software.
 To add an audio and/or video clip to an application:
1 Double-click the media player icon on the System page of the Component palette. This

automatically put a media player control on the form window in which you want the media feature.
2 Using the Object Inspector, select the Name property and enter a new name for your media player

control. You will use this when you call the media player control. (Follow the standard rules for
naming Delphi identifiers.)
Always work directly with the Object Inspector when setting design time properties and creating
event handlers.

3 Select the DeviceType property and choose the appropriate device type to open using the
AutoOpen property or the Open method. (If DeviceType is dtAutoSelect the device type is selected
based on the file extension of the media file specified by the FileName property.) For more
information on device types and their functions, see the table below.

4 If the device stores its media in a file, specify the name of the media file using the FileName
property. Select the FileName property, click the ellipsis (...) button, and choose a media file from
any available local or network directories and click Open in the Open dialog. Otherwise, insert the
hardware the media is stored in (disk, cassette, and so on) for the selected media device, at
runtime.

5 Set the AutoOpen property to True. This way the media player automatically opens the specified
device when the form containing the media player control is created at runtime. If AutoOpen is
False, the device must be opened with a call to the Open method.

6 Set the AutoEnable property to True to automatically enable or disable the media player buttons as
required at runtime; or, double-click the EnabledButtons property to set each button to True or
False depending on which ones you want to enable or disable.
The multimedia device is played, paused, stopped, and so on when the user clicks the
corresponding button on the media player component. The device can also be controlled by the
methods that correspond to the buttons (Play, Pause, Stop, Next, Previous, and so on).

7 Position the media player control bar on the form by either clicking and dragging it to the
appropriate place on the form or by selecting the Align property and choosing the appropriate align
position from the drop down list.
If you want the media player to be invisible at runtime, set the Visible property to False and control
the device by calling the appropriate methods (Play, Pause, Stop, Next, Previous, Step, Back, Start
Recording, Eject).

8 Make any other changes to the media player control settings. For example, if the media requires a
display window, set the Display property to the control that displays the media. If the device uses
multiple tracks, set the Tracks property to the desired track.

Device Type Software/Hardware used Plays Uses Tracks

dtAVIVideo AVI Video Player for Windows AVI Video files No
dtCDAudio CD Audio Player for Windows or a

CD Audio Player
CD Audio Disks Yes

dtDAT Digital Audio Tape Player Digital Audio Tapes Yes
dtDigitalVideo Digital Video Player for Windows AVI, MPG, MOV files No
dtMMMovie MM Movie Player MM film No
dtOverlay Overlay device Analog Video No
dtScanner Image Scanner N/A for Play (scans images

on Record)
No

dtSequencer MIDI Sequencer for Windows MIDI files Yes
dtVCR Video Cassette Recorder Video Cassettes No
dtWaveAudio Wave Audio Player for Windows WAV files No

For more information on using the media player control, see the topic called Example of adding audio
and/or video clips.

Example of adding audio and/or video clips
Topic groups See also
This example runs an AVI video clip of a multimedia advertisement for Delphi. To run this example,
create a new project and save the Unit1.pas file to FrmAd.pas and save the Project1.dpr file to
DelphiAd.dpr. Then:
1 Double-click the media player icon on the System page of the Component palette.
2 Using the Object Inspector, set the Name property of the media player to VideoPlayer1.
3 Select its DeviceType property and choose dtAVIVideo from the drop down list.
4 Select its FileName property, click the ellipsis (...) button, choose the speedis.avi file from your ..\

Demos\Coolstuf directory. Click Open in the Open dialog.
5 Set its AutoOpen property to True and its Visible property to False.
6 Double-click the Animate icon from the Win32 page of the Component palette. Set its AutoSize

property to False, its Height property to 175 and Width property to 200. Click and drag the
animation control to the top left corner of the form.

7 Click the media player to bring back focus to it. Select its Display property and choose Animate1
from the drop down list.

8 Click the form to bring focus to it and select its Name property and enter Delphi_Ad. Now resize the
form to the size of the animation control.

9 Double-click the form’s OnActivate event and write the following code to run the AVI video when the
form is in focus:

Videoplayer1.Play;
10 Choose Run|Run to execute the AVI video.

Using threads
Topic groups See also
The VCL provides several objects that make writing multi-threaded applications easier. Multi-threaded
applications are applications that include several simultaneous paths of execution. While using multiple
threads requires careful thought, it can enhance your programs by

Avoiding bottlenecks. With only one thread, a program must stop all execution when waiting for
slow processes such as accessing files on disk, communicating with other machines, or displaying
multimedia content. The CPU sits idle until the process completes. With multiple threads, your application
can continue execution in separate threads while one thread waits for the results of a slow process.

Organizing program behavior. Often, a program’s behavior can be organized into several
parallel processes that function independently. Use threads to launch a single section of code
simultaneously for each of these parallel cases. Use threads to assign priorities to various program tasks
so that you can give more CPU time to more critical tasks.

Multiprocessing. If the system running your program has multiple processors, you can improve
performance by dividing the work into several threads and letting them run simultaneously on separate
processors.
Note:Not all operating systems implement true multi-processing, even when it is supported by the

underlying hardware. For example Windows 95 only simulates multiprocessing, even if the
underlying hardware supports it.

The following topics discuss support for threads in Delphi:
Defining thread objects
Coordinating threads
Executing thread objects
Using threads in distributed applications
Debugging multi-threaded applications

Defining thread objects
Topic groups See also
For most applications, you can use a thread object to represent an execution thread in your application.
Thread objects simplify writing multi-threaded applications by encapsulating the most commonly needed
uses of threads.
Note:Thread objects do not allow you to control the security attributes or stack size of your threads. If

you need to control these, you must use the BeginThread function. Even when using BeginThread,
you can still benefit from some of the thread synchronization objects and methods described in
Coordinating threads.

To use a thread object in your application, you must create a new descendant of TThread. To create a
descendant of TThread, choose File|New from the main menu. In the new objects dialog box, select
Thread Object. You are prompted to provide a class name for your new thread object. After you provide
the name, Delphi creates a new unit file to implement the thread.
Note:Unlike most dialog boxes in the IDE that require a class name, the New Thread Object dialog does

not automatically prepend a ‘T’ to the front of the class name you provide.
The automatically generated file contains the skeleton code for your new thread object. If you named
your thread TMyThread, it would look like the following:

unit Unit2;
interface
uses
 Classes;
type
 TMyThread = class(TThread)
 private
 { Private declarations }
 protected
 procedure Execute; override;
 end;
implementation
{ TMyThread }
procedure TMyThread.Execute;
begin
 { Place thread code here }
end;
end.

In the automatically generated unit file, you
Optionally, Initialize the thread.
Write the thread function by filling in the Execute method.
Optionally, Write clean-up code

Initializing the thread
Topic groups See also
If you want to write initialization code for your new thread class, you must override the Create method.
Add a new constructor to the declaration of your thread class and write the initialization code as its
implementation. This is where you can assign a default priority for your thread and indicate whether it
should be freed automatically when it finishes executing.

Assigning a default priority
Priority indicates how much preference the thread gets when the operating system schedules CPU time
among all the threads in your application. Use a high priority thread to handle time critical tasks, and a
low priority thread to perform other tasks. To indicate the priority of your thread object, set the! Priority
property. Priority values fall along a seven point scale, as described in the following table:

Value Priority
tpIdle The thread executes only when the system is idle. Windows won't

interrupt other threads to execute a thread with tpIdle priority.
tpLowest The thread's priority is two points below normal.
tpLower The thread's priority is one point below normal.
tpNormal The thread has normal priority.
tpHigher The thread's priority is one point above normal.
tpHighest The thread's priority is two points above normal.
tpTimeCritical The thread gets highest priority.
Warning: Boosting the thread priority of a CPU intensive operation may "starve" other threads in the

application. Only apply priority boosts to threads that spend most of their time waiting for
external events.

The following code shows the constructor of a low-priority thread that performs background tasks which
should not interfere with the rest of the application’s performance:

constructor TMyThread.Create(CreateSuspended: Boolean);
{
inheritedCreate(CreateSuspended);
 Priority := tpIdle;
}

Indicating when threads are freed
Usually, when threads finish their operation, they can simply be freed. In this case, it is easiest to let the
thread object free itself. To do this, set the FreeOnTerminate property to True.
There are times, however, when the termination of a thread must be coordinated with other threads. For
example, you may be waiting for one thread to return a value before performing an action in another
thread. To do this, you do not want to free the first thread until the second has received the return value.
You can handle this situation by setting FreeOnTerminate to False and then explicitly freeing the first
thread from the second.

Writing the thread function
Topic groups See also
The Execute method is your thread function. You can think of it as a program that is launched by your
application, except that it shares the same process space. Writing the thread function is a little trickier
than writing a separate program because you must make sure that you don’t overwrite memory that is
used by other threads in your application. On the other hand, because the thread shares the same
process space with other threads, you can use the shared memory to communicate between threads.
When implementing the Execute method, you can manage these issues by

Using the main VCL thread.
Using thread-local variables.
Avoiding simultaneous access.
Waiting for other threads.
Checking for termination by other threads.

Using the main VCL thread
Topic groups See also
When you use objects from the VCL object hierarchy, their properties and methods are not guaranteed
to be thread-safe. That is, accessing properties or executing methods may perform some actions that
use memory which is not protected from the actions of other threads. Because of this, a main VCL
thread is set aside for access of VCL objects. This is the thread that handles all Windows messages
received by components in your application.
If all objects access their properties and execute their methods within this single thread, you need not
worry about your objects interfering with each other. To use the main VCL thread, create a separate
routine that performs the required actions. Call this separate routine from within your thread’s
Synchronize method. For example:

procedure TMyThread.PushTheButton;
begin
 Button1.Click;
end;
procedure TMyThread.Execute;
begin
 ...
 Synchronize(PushTheButton);
 ...
end;

Synchronize waits for the main VCL thread to enter the message loop and then executes the passed
method.
Note:Because Synchronize uses the message loop, it does not work in console applications. You must

use other mechanisms, such as critical sections, to protect access to VCL objects in console
applications.

You do not always need to use the main VCL thread. Some objects are thread-aware. Omitting the use
of the Synchronize method when you know an object’s methods are thread-safe will improve
performance because you don’t need to wait for the VCL thread to enter its message loop. You do not
need to use the Synchronize method in the following situations:

Data access components are thread-safe as long as each thread has its own database session
component. The one exception to this is when you are using Access drivers. Access drivers are built
using the Microsoft ADO library, which is not thread-safe.

When using data access components, you must still wrap all calls that involve data-aware controls in
the Synchronize method. Thus, for example, you need to synchronize calls that link a data control to
a dataset by setting the DataSet property of the data source object, but you don’t need to
synchronize to access the data in a field of the dataset.
For more information about using database sessions with threads, see Managing multiple sessions.

Graphics objects are thread-safe. You do not need to use the main VCL thread to access TFont,
TPen, TBrush, TBitmap, TMetafile, or TIcon. Canvas objects can be used outside the Synchronize
method by locking them.

While list objects are not thread-safe, you can use a thread-safe version, TThreadList, instead of
TList.

Using thread-local variables
Topic groups See also
 The thread function and any of the routines it calls have their own local variables, just like any other
Object Pascal routines. These routines also can access any global variables. In fact, global variables
provide a powerful mechanism for communicating between threads.
Sometimes, however, you may want to use variables that are global to all the routines running in your
thread, but not shared with other instances of the same thread class. You can do this by declaring
thread-local variables. Make a variable thread-local by declaring it in a threadvar section. For example,

threadvar
 x : integer;

declares an integer type variable that is private to each thread in the application, but global within each
thread.
The threadvar section can only be used for global variables. Pointer and Function variables can’t be
thread variables. Types that use copy-on-write semantics, such as long strings don’t work as thread
variables either.

Checking for termination by other threads
Topic groups See also
Your thread object begins running when the Execute method is called (see Executing thread objects)
and continues until Execute finishes. This reflects the model that the thread performs a specific task,
and then stops when it is finished. Sometimes, however, an application needs a thread to execute until
some external criterion is satisfied.
You can allow other threads to signal that it is time for your thread to finish executing by checking the
Terminated property. When another thread tries to terminate your thread, it calls the Terminate method.
Terminate sets your thread’s Terminated property to True. It is up to your Execute method to implement
the Terminate method by checking and responding to the Terminated property. The following example
shows one way to do this:

procedure TMyThread.Execute;
begin
 while not Terminated do
 PerformSomeTask;
end;

Writing clean-up code
Topic groups See also
You can centralize the code that cleans up when your thread finishes executing. Just before a thread
shuts down, an OnTerminate event occurs. Put any clean-up code in the OnTerminate event handler to
ensure that it is always executed, no matter what execution path the Execute method follows.
The OnTerminate event handler is not run as part of your thread. Instead, it is run in the context of the
main VCL thread of your application. This has two implications:

You can’t use any thread-local variables in an OnTerminate event handler (unless you want the
main VCL thread values).

You can safely access any components and VCL objects from the OnTerminate event handler
without worrying about clashing with other threads.

Coordinating threads
Topic groups See also
When writing the code that runs when your thread is executed, you must consider the behavior of other
threads that may be executing simultaneously. In particular, care must be taken to avoid two threads
trying to use the same global object or variable at the same time. In addition, the code in one thread can
depend on the results of tasks performed by other threads.
Whether using thread objects or generating threads using BeginThread, the following topics describe
techniques for coordinating threads:

Avoiding simultaneous access.
Waiting for other threads.
Using the main VCL thread.

When global memory does not need to be shared by multiple threads, consider using thread-local
variables instead of global variables. By using thread-local variables, your thread does not need to wait
for or lock out any other threads.

Avoiding simultaneous access
Topic groups See also
To avoid clashing with other threads when accessing global objects or variables, you may need to block
the execution of other threads until your thread code has finished an operation. Be careful not to block
other execution threads unnecessarily. Doing so can cause performance to degrade seriously and
negate most of the advantages of using multiple threads.
The VCL includes support for three techniques that prevent other threads from accessing the same
memory as your thread:

Locking objects.
Using critical sections.
Using a multi-read exclusive-write synchronizer.

Locking objects
Topic groups See also
Some objects have built-in locking that prevents the execution of other threads from using that object
instance.
For example, canvas objects (TCanvas and descendants) have a Lock method that prevents other
threads from accessing the canvas until the Unlock method is called.
The VCL also includes a thread-safe list object, TThreadList. Calling TThreadList.LockList returns the
list object while also blocking other execution threads from using the list until the UnlockList method is
called. Calls to TCanvas.Lock or TThreadList.LockList can be safely nested. The lock is not released
until the last locking call is matched with a corresponding unlock call in the same thread.

Using critical sections
Topic groups See also
If objects do not provide built-in locking, you can use a critical section. Critical sections work like gates
that allow only a single thread to enter at a time. To use a critical section, create a global instance of
TCriticalSection. TCriticalSection has two methods, Acquire(which blocks other threads from executing
the section) and Release(which removes the block).
Each critical section is associated with the global memory you want to protect. Every thread that
accesses that global memory should first use the Acquire method to ensure that no other thread is using
it. When finished, threads call the Release method so that other threads can access the global memory
by calling Acquire.

Warning: Critical sections only work if every thread uses them to access the associated global memory.
Threads that ignore the critical section and access the global memory without calling Acquire
can introduce problems of simultaneous access.

For example, consider an application that has a global critical section variable, LockXY, that blocks
access to global variables X and Y. Any thread that uses X or Y must surround that use with calls to the
critical section such as the following:

LockXY.Acquire; { lock out other threads }
try
 Y := sin(X);
finally
 LockXY.Release;
end;

Using the multi-read exclusive-write synchronizer
Topic groups See also
When you use critical sections to protect global memory, only one thread can use the memory at a time.
This can be more protection than you need, especially if you have an object or variable that must be
read often but to which you very seldom write. There is no danger in multiple threads reading the same
memory simultaneously, as long as no thread is writing to it.
When you have some global memory that is read often, but to which threads occasionally write, you can
protect it using TMultiReadExclusiveWriteSynchronizer. This object acts like a critical section, but one
which allows multiple threads to read the memory it protects as long as no thread is writing to it. Threads
must have exclusive access to write to memory protected by TMultiReadExclusiveWriteSynchronizer.
To use a multi-read exclusive-write synchronizer, create a global instance of
TMultiReadExclusiveWriteSynchronizer that is associated with the global memory you want to protect.
Every thread that reads from this memory must first call the BeginRead method. BeginRead ensures
that no other thread is currently writing to the memory. When a thread finishes reading the protected
memory, it calls the EndRead method. Any thread that writes to the protected memory must call
BeginWrite first. BeginWrite ensures that no other thread is currently reading or writing to the memory.
When a thread finishes writing to the protected memory, it calls the EndWrite method, so that threads
waiting to read the memory can begin.

Warning: Like critical sections, the multi-read exclusive-write synchronizer only works if every thread uses
it to access the associated global memory. Threads that ignore the synchronizer and access the
global memory without calling BeginRead or BeginWrite introduce problems of simultaneous
access.

Waiting for other threads
Topic groups See also
If your thread must wait for another thread to finish some task, you can tell your thread to temporarily
suspend execution. You can either

Wait for another thread to completely finish executing, or
Wait for a task to be completed.

Waiting for a thread to finish executing
Topic groups See also
To wait for another thread to finish executing, use the WaitFor method of that other thread. WaitFor
doesn’t return until the other thread terminates, either by finishing its own Execute method or by
terminating due to an exception. For example, the following code waits until another thread fills a thread
list object before accessing the objects in the list:

if ListFillingThread.WaitFor then
begin
 with ThreadList1.LockList do
 begin
 for I := 0 to Count - 1 do
 ProcessItem(Items[I]);
 end;
 ThreadList1.UnlockList;
end;

In the previous example, the list items were only accessed when the WaitFor method indicated that the
list was successfully filled. This return value must be assigned by the Execute method of the thread that
was waited for. However, because threads that call WaitFor want to know the result of thread execution,
not code that calls Execute, the Execute method does not return any value. Instead, the Execute
method sets the ReturnValue property. ReturnValue is then returned by the WaitFor method when it is
called by other threads. Return values are integers. Your application determines their meaning.

Waiting for a task to be completed
Topic groups See also
Sometimes, you need to wait for a thread to finish some operation rather than waiting for a particular
thread to complete execution. To do this, use an event object. Event objects (TEvent) should be created
with global scope so that they can act like signals that are visible to all threads.
When a thread completes an operation that other threads depend on, it calls TEvent.SetEvent. SetEvent
turns on the signal, so any other thread that checks will know that the operation has completed. To turn
off the signal, use the ResetEvent method.
For example, consider a situation where you must wait for several threads to complete their execution
rather than a single thread. Because you don’t know which thread will finish last, you can’t simply use
the WaitFor method of one of the threads. Instead, you can have each thread increment a counter when
it is finished, and have the last thread signal that they are all done by setting an event.
The following code shows the end of the OnTerminate event handler for all of the threads that must
complete. CounterGuard is a global critical section object that prevents multiple threads from using the
counter at the same time. Counter is a global variable that counts the number of threads that have
completed.

procedure TDataModule.TaskThreadTerminate(Sender: TObject);
begin
 ...
 CounterGuard.Acquire; { obtain a lock on the counter }
 Dec(Counter); { decrement the global counter variable }
 if Counter = 0 then
 Event1.SetEvent; { signal if this is the last thread }
 CounterGuard.Release; { release the lock on the counter }
 ...
end;

The main thread initializes the Counter variable, launches the task threads, and waits for the signal that
they are all done by calling the WaitFor method. WaitFor waits for a specified time period for the signal
to be set, and returns one of the values from the following table:

Value Meaning
wrSignaled The signal of the event was set.
wrTimeout The specified time elapsed without the signal being set.
wrAbandoned The event object was destroyed before the timeout period elapsed.
wrError An error occurred while waiting.

The following shows how the main thread launches the task threads and then resumes when they have
all completed:

Event1.ResetEvent; { clear the event before launching the threads }
for i := 1 to Counter do
 TaskThread.Create(False); { create and launch task threads }
if Event1.WaitFor(20000) != wrSignaled then
 raise Exception;
{ now continue with the main thread. All task threads have finished }

Note: If you do not want to stop waiting for an event after a specified time period, pass the WaitFor
method a parameter value of INFINITE. Be careful when using INFINITE, because your thread will
hang if the anticipated signal is never received.

Executing thread objects
Topic groups See also
Once you have implemented a thread class by giving it an Execute method, you can use it in your
application to launch the code in the Execute method. To use a thread, first create an instance of the
thread class. You can create a thread instance that starts running immediately, or you can create your
thread in a suspended state so that it only begins when you call the Resume method. To create a thread
so that it starts up immediately, set the constructor’s CreateSuspended parameter to False. For
example, the following line creates a thread and starts its execution:

SecondProcess := TMyThread.Create(false); {create and run the thread }
Warning: Do not create too many threads in your application. The overhead in managing multiple threads

can impact performance. The recommended limit is 16 threads per process on single processor
systems. This limit assumes that most of those threads are waiting for external events. If all
threads are active, you will want to use fewer.

You can create multiple instances of the same thread type to execute parallel code. For example, you
can launch a new instance of a thread in response to some user action, allowing each thread to perform
the expected response.
The following topics discuss how to use the threads in your application:

Overriding the default priority.
Starting and stopping threads

Overriding the default priority
Topic groups See also
When the amount of CPU time the thread should receive is implicit in the thread’s task, its priority is set
in the constructor. This is described in Initializing the thread. However, if the thread priority varies
depending on when the thread is executed, create the thread in a suspended state, set the priority, and
then start the thread running:

SecondProcess := TMyThread.Create(True); { create but don't run }
SecondProcess.Priority := tpLower; { set the priority lower than normal }
SecondProcess.Resume; { now run the thread }

Starting and stopping threads
Topic groups See also
A thread can be started and stopped any number of times before it finishes executing. To stop a thread
temporarily, call its Suspend method. When it is safe for the thread to resume, call its Resume method.
Suspend increases an internal counter, so you can nest calls to Suspend and Resume. The thread does
not resume execution until all suspensions have been matched by a call to Resume.
You can request that a thread end execution prematurely by calling the Terminate method. Terminate
sets the thread’s Terminated property to True. If you have implemented the Execute method properly, it
checks the Terminated property periodically, and stops execution when Terminated is True.

Using threads in distributed applications
Topic groups See also
Distributed applications introduce additional challenges for writing multi-threaded applications. When
considering how to coordinate threads, you must also keep in mind how other processes affect the
threads in your application.
Usually, handling distributed threading issues is the responsibility of the server application. When writing
servers, you must consider how requests from clients are serviced.
If each client request has its own thread, you must ensure that different client threads do not interfere
with each other. In addition to the usual issues that arise when coordinating multiple threads, you may
need to ensure that each client has a consistent view of your application. For example, you can’t use
thread variables to store information that must persist over multiple client requests if each time the client
calls your application it uses a different thread. When clients change the values of object properties or
global variables, they are influencing not only their own view of that object or variable, but the view of
any other clients.
The following topics describe some of the issues for using threads with

Message-based servers.
Distributed objects.

Using threads in message-based servers
Topic groups See also
Message-based servers receive client request messages, perform some action in response to that
message, and return messages to the client. Examples include internet server applications and simple
services that you can write using sockets.
Usually, when writing message-based servers, each client message gets its own thread. When client
messages are received, the application spawns a thread to handle the message. This thread runs until it
sends a response to the client, and then terminates. You must be careful when using global objects and
variables, but it is fairly easy to control how threads are created and run because client messages are all
received and dispatched by the main application thread.

Using threads with distributed objects
Topic groups See also
When writing servers for distributed objects, the threading issues are complicated. Unlike message-
based servers, where there is a point in the code where messages are received and dispatched, clients
call into server objects by calling any of their methods or by accessing any of their properties. Because
of this, there is no easy way for server applications to spawn separate threads for each client request.

Writing applications (.EXEs)
When writing an .EXE that implements an object or objects for remote clients, client requests come in as
threads. How this works depends on whether clients access your object using COM or CORBA.

Under COM, client requests come in as part of the application’s message loop. This means that
any code which executes after the application’s main message loop starts up must be prepared to protect
access to objects and global memory from other threads. When running in an environment that supports
DCOM, Delphi ensures that no client requests occur until all code in the initialization part of your units has
executed. If you are not running in an environment that supports DCOM, you must ensure that any code
in the initialization part of your units is thread-safe.

Under CORBA, you can choose a threading model in the wizard that starts a new CORBA
server. You can choose either single-threading or multi-threading. Under both models, each client
connection has its own thread. You can use thread variables for information that persists across client
calls because all calls for a given client use the same thread. With single-threading, only one client thread
has access to an object instance at a time. While you must protect access to global memory, you are
assured of no conflicts when accessing the object’s instance data (such as property values). With multi-
threading, multiple clients may access your application at the same time. If you are sharing object
instances over clients, you must protect both global data and instance data.

Writing libraries
When an Active Library implements the distributed object, threading is usually controlled by the
technology (COM, DCOM, or MTS) that supports distributed object calls. When you first create your
server library with the appropriate wizard, you are prompted to specify a threading model that dictates
how client requests are assigned threads. These models include the following:

Single-threaded model. Client requests are serialized by the calling mechanism. Your .DLL does
not need to be concerned with threading issues because it receives one client request at a time.

Single-threaded apartment model. (Also called Apartment model.) Each object instantiated by a
client is accessed by one thread at a time. You must protect against multiple threads accessing global
memory, but instance data (such as object properties) is thread-safe. Further, each client always
accesses the object instance using the same thread, so that you can use thread variables.

Activity model. (Called both Apartment-threaded and Free-threaded under MTS.) Each object
instance is accessed by one thread at a time, but clients do not always use the same thread for every call.
Instance data is safe, but you must guard global memory, and thread variables will not be consistent
across client calls.

Multi-threaded apartment model. (Also called Free-threading.) Each object instance may be
called by multiple threads simultaneously. You must protect instance data as well as global memory.
Thread variables are not consistent across client calls.

Single/Multi-threaded apartment model. (Also called Both.) This is the same as the Multi-
threaded apartment model, except that all callbacks supplied by clients are guaranteed to execute in the
same thread. This means you do not need protect values supplied as parameters to callback functions.
Note:Typically, a wizard assigns a threading model to your object. When you add multiple COM objects

to an EXE, the application initializes COM with the highest level of thread support indicated (where
single-threaded is the lowest and Both is highest). You can manually override the way your
application initializes COM threading support by changing the global CoInitFlags variable in the
program’s main source file before the call to Application.Intitialize.

COM-based systems use the application’s message loop to synchronize threads in all but the Multi-
threaded apartment model (which is only available under DCOM). Because of this, you must ensure that
any lengthy call made through a COM interface calls the application object’s ProcessMessages method.

Failure to do so prevents other clients from gaining access to your application, effectively making your
library single-threaded.

Debugging multi-threaded applications
Topic groups See also
When debugging multi-threaded applications, it can be confusing trying to keep track of the status of all
the threads that are executing simultaneously, or even to determine which thread is executing when you
stop at a breakpoint. You can use the Thread Status box to help you keep track of and manipulate all the
threads in your application. To display the Thread status box, choose View|Threads from the main
menu.
When a debug event occurs (breakpoint, exception, paused), the thread status view indicates the status
of each thread. Right-click the Thread Status box to access commands that locate the corresponding
source location or make a different thread current. When a thread is marked as current, the next step or
run operation is relative to that thread.
The Thread Status box lists all your application’s execution threads by their thread ID. If you are using
thread objects, the thread ID is the value of the ThreadID property. If you are not using thread objects,
the thread ID for each thread is returned by the call to BeginThread.

About packages
Topic groups See also
A package is a special dynamic-link library used by Delphi applications, the IDE, or both. Runtime
packages provide functionality when a user runs an application. Design-time packages are used to
install components in the IDE and to create special property editors for custom components. A single
package can function at both design time and runtime, and design-time packages frequently work by
calling runtime packages. To distinguish them from other DLLs, package libraries are stored in files that
end with the .BPL (Borland package library) extension.
Like other runtime libraries, packages contain code that can be shared among applications. For
example, the most frequently used Delphi components reside in a package called VCL50. Each time
you create an application, you can specify that it uses VCL50. When you compile an application created
this way, the application’s executable image contains only the code and data unique to it; the common
code is in VCL50.BPL. A computer with several package-enabled applications installed on it needs only
a single copy of VCL50.BPL, which is shared by all the applications and the IDE itself.
Delphi ships with several precompiled runtime packages, including VCL50, that encapsulate VCL
components. Delphi also uses design-time packages to manipulate components in the IDE.
You can build applications with or without packages. However, if you want to add custom components to
the IDE, you must install them as design-time packages.
You can create your own runtime packages to share among applications. If you write Delphi
components, you can compile your components into design-time packages before installing them.
Package topics:

Why use packages?
Packages and standard DLLs
Runtime packages
Using runtime packages in an application
Deciding which runtime packages to use
Custom packages
Design-time packages
Installing component packages
Creating and editing packages
Creating a package
Editing an existing package
Editing package source files manually
Understanding the structure of a package
 Naming packages
 The Requires clause
 Avoiding circular package references
 Handling duplicate package references
 The Contains clause
 Avoiding redundant source code uses
Compiling packages
 Package-specific compiler directives
 Weak packaging
 Using the command-line compiler and linker
 Package files created by a successful compilation
Deploying packages
Deploying applications that use packages
Distributing packages to other developers
Package collection files

Why use packages?
Topic groups See also
Design-time packages simplify the tasks of distributing and installing custom components. Runtime
packages, which are optional, offer several advantages over conventional programming. By compiling
reused code into a runtime library, you can share it among applications. For example, all of your
applications—including Delphi itself—can access standard components through packages. Since the
applications don’t have separate copies of the component library bound into their executables, the
executables are much smaller—saving both system resources and hard disk storage. Moreover,
packages allow faster compilation because only code unique to the application is compiled with each
build.
Packages and standard DLLs

Packages and standard DLLs
Topic groups See also
Create a package when you want to make a custom component that’s available through the IDE. Create
a standard DLL when you want to build a library that can be called from any Windows application,
regardless of the development tool used to build the application.
The following table lists the file types associated with packages

File extension Contents
.DPK The source file listing the units contained in the package.
DCP A binary image containing a package header and the concatenation of

all DCU files in the package, including all symbol information required by
the compiler. A single DCP file is created for each package. The base
name for the DCP is the base name of the DPK source file. You must
have a .DCP file to build an application with packages.

DCU A binary image for a unit file contained in a package. One DCU is
created, when necessary, for each unit file.

BPL The runtime package. This file is a Windows DLL with special Delphi-
specific features. The base name for the BPL is the base name of the
DPK source file.

Note:Packages share their global data with other modules in an application.

Runtime packages
Topic groups See also
Runtime packages are deployed with Delphi applications. They provide functionality when a user runs
the application.
To run an application that uses packages, a computer must have both the application’s .EXE file and all
the packages (.BPL files) that the application uses. The .BPL files must be on the system path for an
application to use them. When you deploy an application, you must make sure that users have correct
versions of any required .BPLs.

Using runtime packages in an application
Deciding which runtime packages to use
Custom packages

Using runtime packages in an application
Topic groups See also
To use packages in an application,
1 Load or create a project in the IDE.
2 Choose Project|Options.
3 Choose the Packages tab.
4 Select the “Build with Runtime Packages” check box, and enter one or more package names in the

edit box underneath. (Runtime packages associated with installed design-time packages are
already listed in the edit box.) To add a package to an existing list, click the Add button and enter
the name of the new package in the Add Runtime Package dialog. To browse from a list of available
packages, click the Add button, then click the Browse button next to the Package Name edit box in
the Add Runtime Package dialog.
If you edit the Search Path edit box in the Add Runtime Package dialog, you will be changing
Delphi’s global Library Path.
You do not need to include file extensions with package names. If you type directly into the Runtime
Packages edit box, be sure to separate multiple names with semicolons. For example:

VCL50;VCLDB50;VCLDBX50
Packages listed in the Runtime Packages edit box are automatically linked to your application when you
compile. Duplicate package names are ignored, and if the edit box is empty the application is compiled
without packages.
Runtime packages are selected for the current project only. To make the current choices into automatic
defaults for new projects, select the “Defaults” check box at the bottom of the dialog.
Note:When you create an application with packages, you still need to include the names of the original

Delphi units in the uses clause of your source files. For example, the source file for your main form
might begin like this:

unit MainForm;
interface
uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs;

Each of the units referenced in this example is contained in the VCL50 package. Nonetheless, you must
keep these references in the uses clause, even if you use VCL50 in your application, or you will get
compiler errors. In generated source files, Delphi adds these units to the uses clause automatically.

Deciding which runtime packages to use

Dynamically loading packages
Topic groups See also
To load a package at runtime, call the LoadPackage function. For example, the following code could be
executed when a file is chosen in a file-selection dialog.

with OpenDialog1 do
 if Execute then
 with PackageList.Items do
 AddObject(FileName, Pointer(LoadPackage(Filename)));

To unload a package dynamically, call UnloadPackage. Be careful to destroy any instances of classes
defined in the package and to unregister classes that were registered by it.

Deciding which runtime packages to use
Topic groups See also
Delphi ships with several precompiled runtime packages, including VCL50, which supply basic language
and component support.
The VCL50 package contains the most commonly used components, system functions, and Windows
interface elements. It does not include database or Windows 3.1 components, which are available in
separate packages. The following table lists some runtime packages shipped with Delphi and the units
they contain.

Package Units
VCL50.BPL Ax, Buttons, Classes, Clipbrd, Comctrls, Commctrl, Commdlg,

Comobj, Comstrs, Consts, Controls, Ddeml, Dialogs, Dlgs, Dsgnintf,
Dsgnwnds, Editintf, Exptintf, Extctrls, Extdlgs, Fileintf, Forms,
Graphics, Grids, Imm, IniFiles, Isapi, Isapi2, Istreams, Libhelp,
Libintf, Lzexpand, Mapi, Mask, Math, Menu, Messages, Mmsystem,
Nsapi, Ole2I, Oleconst, Olectnrs, Olectrls, Oledlg, Penwin, Printers,
Proxies, Registry, Regstr, Richedit, Shellapi, Shlobj, Stdctrls, Stdvcl,
Sysutils, Tlhelp32, Toolintf, Toolwin, Typinfo, Vclcom, Virtintf,
Windows, Wininet, Winsock, Winspool, Winsvc

VCLX50.BPL Checklst, Colorgrd, Ddeman, Filectrl, Mplayer, Outline, Tabnotbk,
Tabs

VCLDB50.BPL Bde, Bdeconst, Bdeprov, Db, Dbcgrids, Dbclient, Dbcommon,
Dbconsts, Dbctrls, Dbgrids, Dbinpreq, Dblogdlg, Dbpwdlg, Dbtables,
Dsintf, Provider, SMintf

VCLDBX50.BPL Dblookup, Report
DSS50.BPL Mxarrays, Mxbutton, Mxcommon, Mxconsts, Mxdb, Mxdcube,

Mxdssqry, Mxgraph, Mxgrid, Mxpivsrc, Mxqedcom, Mxqparse,
Mxqryedt, Mxstore, Mxtables, Mxqvb

QRPT50.BPL Qr2const, Qrabout, Qralias, Qrctrls, Qrdatasu, Qrexpbld, Qrextra,
Qrprev, Qrprgres, Qrprntr, Qrqred32, Quickrpt

TEE50.BPL Arrowcha, Bubblech, Chart, Ganttch, Series, Teeconst, Teefunci,
Teengine, Teeprocs, Teeshape

TEEDB50.BPL Dbchart, Qrtee
TEEUI50.BPL Areaedit, Arrowedi, Axisincr, Axmaxmin, Baredit, Brushdlg, Bubbledi,

Custedit, Dbeditch, Editchar, Flineedi, Ganttedi, Ieditcha, Pendlg,
Pieedit, Shapeedi, Teeabout, Teegally, Teelisb, Teeprevi, Teexport

VCLSMP50.BPL Sampreg, Smpconst
To create a client/server database application that uses packages, you need at least two runtime
packages: VCL50 and VCLDB50. If you want to use Outline components in your application, you also
need VCLX50. To use these packages, choose Project|Options, select the Packages tab, and enter the
following list in the Runtime Packages edit box.

VCL50;VCLDB50;VCLX50
Actually, you don’t have to include VCL50, because VCL50 is referenced in the Requires clause of
VCLDB50. Your application will compile just the same whether or not VCL50 is included in the Runtime
Packages edit box.

Custom packages
Topic groups See also
A custom package is either a BPL you code and compile yourself, or a precompiled package from a
third-party vendor. To use a custom runtime package with an application, choose Project|Options and
add the name of the package to the Runtime Packages edit box on the Packages page. For example,
suppose you have a statistical package called STATS.BPL. To use it in an application, the line you enter
in the Runtime Packages edit box might look like this:

VCL50;VCLDB50;STATS
If you create your own packages, you can add them to the list as needed.

Design-time packages
Topic groups See also
Design-time packages are used to install components on the IDE’s Component palette and to create
special property editors for custom components.
Delphi ships with the following design-time component packages preinstalled in the IDE.

Package Component palette pages
DCLSTD50.BPL Standard, Additional, System, Win32, Dialogs
DCLTEE50.BPL Additional (TChart component)
DCLDB50.BPL Data Access, Data Controls
DCLMID50.BPL Data Access (MIDAS)
DCL31W50.BPL Win 3.1
DCLNET50.BPL
NMFAST50.BPL

Internet

DCLSMP50.BPL Samples
DCLOCX50.BPL ActiveX
DCLQRT50.BPL QReport
DCLDSS50.BPL Decision Cube
IBSMP50.BPL Samples (IBEventAlerter component)
DCLINT50.BPL (International Tools—Resource DLL wizard)
RCEXPERT.BPL (Resource Expert)
DBWEBXPRT.BPL (Web Wizard)

These design-time packages work by calling runtime packages, which they reference in their Requires
clause. For example, DCLSTD50 references VCL50. DCLSTD50 itself contains additional functionality
that makes most of the standard components available on the Component palette.
In addition to preinstalled packages, you can install your own component packages, or component
packages from third-party developers, in the IDE. The DCLUSR50 design-time package is provided as a
default container for new components.

Installing component packages

Installing component packages
Topic groups See also
All components are installed in the IDE as packages. If you’ve written your own components, create and
compile a package that contains them. Your component source code must follow the model described in
Overview of component creation.
To install or uninstall your own components, or components from a third-party vendor, follow these
steps:
1 If you are installing a new package, copy or move the package files to a local directory. If the

package is shipped with .BPL, .DCP, and .DCU files be sure to copy all of them.
The directory where you store the .DCP file—and the .DCU files, if they are included with the
distribution—must be in the Delphi Library Path.
If the package is shipped as a .DPC (package collection) file, only the one file need be copied;
the .DPC file contains the other files. (For more information about package collection files, see
Package collection files.)

2 Choose Component|Install Packages from the IDE menu, or choose Project|Options and click the
Packages tab.

3 A list of available packages appears under “Design packages”.
To install a package in the IDE, select the check box next to it.
To uninstall a package, deselect its check box.
To see a list of components included in an installed package, select the package and click

Components.
To add a package to the list, click Add and browse in the Open Package dialog box for the

directory where the .BPL or .DPC file resides (see step 1). Select the .BPL or .DPC file and click Open. If
you select a .DPC file, a new dialog box appears to handle the extraction of the .BPL and other files from
the package collection.

To remove a package from the list, select the package and click Remove.
4 Click OK.
The components in the package are installed on the Component palette pages specified in the
components’ RegisterComponents procedure, with the names they were assigned in the same
procedure.
New projects are created with all available packages installed, unless you change the default settings.
To make the current installation choices into the automatic default for new projects, check the Default
check box at the bottom of the dialog box.
To remove components from the Component palette without uninstalling a package, select Component|
Configure Palette, or select Tools|Environment Options and click the Palette tab. The Palette options tab
lists each installed component along with the name of the Component palette page where it appears.
Selecting any component and clicking Hide removes the component from the palette.

Creating and editing packages
Topic groups See also
Creating a package involves specifying

A name for the package.
A list of other packages to be required by, or linked to, the new package.
A list of unit files to be contained by, or bound into, the package when it is compiled. The package

is essentially a wrapper for these source-code units, which contain the functionality of the compiled .BPL.
The Contains clause is where you put the source-code units for custom components that you want to
compile into a package.
Package source files, which end with the .DPK extension, are generated by the Package editor.

Creating a package
Editing an existing package
Editing package source files manually
Understanding the structure of a package
Compiling packages

Creating a package
Topic groups See also
To create a package, follow the procedure below. Refer to Understanding the structure of a package for
more information about the steps outlined here.
1 Choose File|New, select the Package icon, and click OK.
2 The generated package is displayed in the Package editor.
3 The Package editor shows a Requires node and a Contains node for the new package.
4 To add a unit to the contains clause, click the Add to package speed button. In the Add unit page,

type a .PAS file name in the Unit file name edit box, or click Browse to browse for the file, and then
click OK. The unit you’ve selected appears under the Contains node in the Package editor. You can
add additional units by repeating this step.

5 To add a package to the requires clause, click the Add to package speed button. In the Requires
page, type a .DCP file name in the Package name edit box, or click Browse to browse for the file,
and then click OK. The package you’ve selected appears under the Requires node in the Package
editor. You can add additional packages by repeating this step.

6 Click the Options speed button, and decide what kind of package you want to build.
To create a design-time–only package (a package that cannot be used at runtime), select the

Designtime only radio button. (Or add the {$DESIGNONLY} compiler directive to the DPK file.)
To create a runtime-only package (a package that cannot be installed), select the Runtime only

radio button. (Or add the {$RUNONLY} compiler directive to the DPK file.)
To create a package that is available at both design time and runtime, select the Designtime and

runtime radio button.
7 In the Package editor, click the Compile package speed button to compile your package.

Editing an existing package
Topic groups See also
There are several ways to open an existing package for editing.

Choose File|Open (or File|Reopen) and select a DPK file.
Choose Component|Install Packages, select a package from the Design Packages list, and click

the Edit button.
When the Package editor is open, select one of the packages in the Requires node, right-click,

and choose Open.
To edit a package’s description or set usage options, click the Options speed button in the Package
editor and select the Description tab.
The Project Options dialog has a Default check box in the lower left corner. If you click OK when this box
is checked, the options you’ve chosen are saved as default settings for new projects. To restore the
original defaults, delete or rename the DEFPROJ.DOF file.

Editing Package source files manually
Topic groups See also
Package source files, like project files, are generated by Delphi from information you supply. Like project
files, they can also be edited manually. A package source file should be saved with the .DPK (Delphi
package) extension to avoid confusion with other files containing Object Pascal source code.
To open a package source file in the Code editor,
1 Open the package in the Package editor.
2 Right-click in the Package editor and select View Source.

The package heading specifies the name for the package.
The requires clause lists other, external packages used by the current package. If a package

does not contain any units that use units in another package, then it doesn’t need a requires clause.
The contains clause identifies the unit files to be compiled and bound into the package. All units

used by contained units which do not exist in required packages will also be bound into the package,
although they won’t be listed in the contains clause (the compiler will give a warning).

For example, the following code declares the VCLDB50 package.
package VCLDB50;
requires VCL50;
contains Db, Dbcgrids, Dbctrls, Dbgrids, Dbinpreq, Dblogdlg, Dbpwdlg, Dbtables,

mycomponent in 'C:\components\mycomponent.pas';
end.

Understanding the structure of a package
Topic groups See also

Naming packages
Package names must be unique within a project. If you name a package STATS, the Package editor
generates a source file for it called STATS.DPK; the compiler generates an executable and a binary
image called STATS.BPL and STATS.DCP, respectively. Use STATS to refer to the package in the
requires clause of another package, or when using the package in an application.

The Requires clause
The requires clause specifies other, external packages that are used by the current package. An
external package included in the requires clause is automatically linked at compile time into any
application that uses both the current package and one of the units contained in the external package.
If the unit files contained in your package make references to other packaged units, the other packages
should appear in your package’s requires clause or you should add them. If the other packages are
omitted from the requires clause, the compiler will import them into your package ‘implicitly contained
units’.
Note:Most packages that you create will require VCL50. Any package that depends on VCL units

(including SysUtils) must list VCL50, or another package that requires VCL50, in its requires
clause.

Avoiding circular package references
Packages cannot contain circular references in their requires clause. This means that

A package cannot reference itself in its own requires clause.
A chain of references must terminate without rereferencing any package in the chain. If package

A requires package B, then package B cannot require package A; if package A requires package B and
package B requires package C, then package C cannot require package A.

Handling duplicate package references
Duplicate references in a package’s requires clause—or in the Runtime Packages edit box—are
ignored by the compiler. For programming clarity and readability, however, you should catch and remove
duplicate package references.

The Contains clause
The contains clause identifies the unit files to be bound into the package. If you are writing your own
package, put your source code in PAS files and include them in the contains clause.

Avoiding redundant source code uses
A package cannot appear in the contains clause of another package.
All units included directly in a package’s contains clause, or included indirectly in any of those units, are
bound into the package at compile time.
A unit cannot be contained (directly or indirectly) in more than one package used by the same
application, including the Delphi IDE. This means that if you create a package that contains one of the
units in VCL50, you won’t be able to install your package in the IDE. To use an already-packaged unit
file in another package, put the first package in the second package’s requires clause.

Compiling packages
Topic groups See also
You can compile a package from the IDE or from the command line. To recompile a package by itself
from the IDE,
1 Choose File|Open.
2 Select Delphi Package Source (*.DPK) from the Files Of Type drop-down list.
3 Select a .DPK file in the dialog.
4 When the Package editor opens, click the Compile speed button.
You can insert compiler directives into your package source code. For more information, see “Package-
specific compiler directives”, below.
If you compile from the command line, several package-specific switches are available. For more
information, see “Using the command-line compiler and linker” on page 9-21.

Package-specific compiler directives
Weak packaging
Using the command-line compiler and linker
Package files created by a successful compilation

Package-specific compiler directives
Topic groups See also
The following table lists package-specific compiler directives that you can insert into your source code.

Directive Purpose
{$IMPLICITBUILD OFF} Prevents a package from being implicitly recompiled

later. Use in .DPK files when compiling packages that
provide low-level functionality, that change infrequently
between builds, or whose source code will not be
distributed.

{$G-} or {IMPORTEDDATA OFF} Disables creation of imported data references. This
directive increases memory-access efficiency, but
prevents the unit where it occurs from referencing
variables in other packages.

{$WEAKPACKAGEUNIT ON} Packages unit “weakly.” See Weak packaging.
{$DENYPACKAGEUNIT ON} Prevents unit from being placed in a package.
{$DESIGNONLY ON} Compiles the package for installation in the IDE. (Put

in .DPK file.)
{$RUNONLY ON} Compiles the package as runtime only. (Put in .DPK

file.)
Note: Including {$DENYPACKAGEUNIT ON} in your source code prevents the unit file from being

packaged. Including {$G-} or {IMPORTEDDATA OFF} may prevent a package from being used in
the same application with other packages. Packages compiled with the {$DESIGNONLY ON}
directive should not ordinarily be used in applications, since they contain extra code required by
the IDE. Other compiler directives may be included, if appropriate, in package source code. See
Compiler directives for information on compiler directives not discussed here.

Weak packaging
Topic groups See also
The $WEAKPACKAGEUNIT directive affects the way a .DCU file is stored in a package’s .DCP
and .BPL files. (For information about files generated by the compiler, see Package files created by a
successful compilation .) If {$WEAKPACKAGEUNIT ON} appears in a unit file, the compiler omits the
unit from BPLs when possible, and creates a non-packaged local copy of the unit when it is required by
another application or package. A unit compiled with this directive is said to be “weakly packaged.”
For example, suppose you’ve created a package called PACK that contains only one unit, UNIT1.
Suppose UNIT1 does not use any further units, but it makes calls to RARE.DLL. If you put
{$WEAKPACKAGEUNIT ON} in UNIT1.PAS when you compile your package, UNIT1 will not be
included in PACK.BPL; you will not have to distribute copies of RARE.DLL with PACK. However, UNIT1
will still be included in PACK.DCP. If UNIT1 is referenced by another package or application that uses
PACK, it will be copied from PACK.DCP and compiled directly into the project.
Now suppose you add a second unit, UNIT2, to PACK. Suppose that UNIT2 uses UNIT1. This time,
even if you compile PACK with {$WEAKPACKAGEUNIT ON} in UNIT1.PAS, the compiler will include
UNIT1 in PACK.BPL. But other packages or applications that reference UNIT1 will use the (non-
packaged) copy taken from PACK.DCP.
Note:Unit files containing the {$WEAKPACKAGEUNIT ON} directive must not have global variables,

initialization sections, or finalization sections.
The $WEAKPACKAGEUNIT directive is an advanced feature intended for developers who distribute
their BPLs to other Delphi programmers. It can help you to avoid distribution of infrequently used DLLs,
and to eliminate conflicts among packages that may depend on the same external library.
For example, Delphi’s PenWin unit references PENWIN.DLL. Most projects don’t use PenWin, and most
computers don’t have PENWIN.DLL installed on them. For this reason, the PenWin unit is weakly
packaged in VCL50. When you compile a project that uses PenWin and the VCL50 package, PenWin is
copied from VCL50.DCP and bound directly into your project; the resulting executable is statically linked
to PENWIN.DLL.
If PenWin were not weakly packaged, two problems would arise. First, VCL50 itself would be statically
linked to PENWIN.DLL, and so you could not load it on any computer which didn’t have PENWIN.DLL
installed. Second, if you tried to create a package that contained PenWin, a compiler error would result
because the PenWin unit would be contained in both VCL50 and your package. Thus, without weak
packaging, PenWin could not be included in standard distributions of VCL50.

Using the command-line compiler and linker
Topic groups See also
When you compile from the command line, you can use the package-specific switches listed in the
following table.

Switch Purpose
-$G- Disables creation of imported data references. Using this switch increases

memory-access efficiency, but prevents packages compiled with it from
referencing variables in other packages.

-LEpath Specifies the directory where the package BPL file will be placed.
-LNpath Specifies the directory where the package DCP file will be placed.
-LUpackage Use packages.
-Z Prevents a package from being implicitly recompiled later. Use when

compiling packages that provide low-level functionality, that change
infrequently between builds, or whose source code will not be distributed.

Note:Using the -$G- switch may prevent a package from being used in the same application with other
packages. Other command-line options may be used, if appropriate, when compiling packages.
See The Command-line compiler for information on command-line options not discussed here.

Package files created by a successful compilation
Topic groups See also
To create a package, you compile a source file that has a .DPK extension. The base name of the .DPK
file becomes the base name of the files generated by the compiler. For example, if you compile a
package source file called TRAYPAK.DPK, the compiler creates a package called TRAYPAK.BPL.
The following table lists the files produced by the successful compilation of a package.

File extension Contents
DCP A binary image containing a package header and the concatenation of all DCU

files in the package. A single DCP file is created for each package. The base
name for the DCP is the base name of the DPK source file.

DCU A binary image for a unit file contained in a package. One DCU is created,
when necessary, for each unit file.

BPL The runtime package. This file is a Windows DLL with special Delphi-specific
features. The base name for the BPL is the base name of the DPK source file.

Deploying packages
Topic groups See also

Deploying applications that use packages
When distributing an application that uses runtime packages, make sure that your users have the
application’s .EXE file as well as all the library (.BPL or .DLL) files that the application calls. If the library
files are in a different directory from the .EXE file, they must be accessible through the user’s Path. You
may want to follow the convention of putting library files in the Windows\System directory. If you use
InstallShield Express, your installation script can check the user’s system for any packages it requires
before blindly reinstalling them.

Distributing packages to other developers
If you distribute runtime or design-time packages to other Delphi developers, be sure to supply
both .DCP and .BPL files. You will probably want to include .DCU files as well.

Package collection files
Topic groups See also
Package collections (.DPC files) offer a convenient way to distribute packages to other developers.
Each package collection contains one or more packages, including BPLs and any additional files you
want to distribute with them. When a package collection is selected for IDE installation, its constituent
files are automatically extracted from their .PCE container; the Installation dialog box offers a choice of
installing all packages in the collection or installing packages selectively.
To create a package collection,
1 Choose Tools|Package Collection Editor to open the Package Collection editor.
2 Click the Add Package speed button, then select a BPL in the Select Package dialog and click

Open. To add more BPLs to the collection, click the Add Package speed button again. A tree
diagram on the left side of the Package editor displays the BPLs as you add them. To remove a
package, select it and click the Remove Package speed button.

3 Select the Collection node at the top of the tree diagram. On the right side of the Package
Collection editor, two fields will appear:

In the Author/Vendor Name edit box, you can enter optional information about your package
collection that will appear in the Installation dialog when users install packages.

Under Directory List, list the default directories where you want the files in your package
collection to be installed. Use the Add, Edit, and Delete buttons to edit this list. For example, suppose you
want all source code files to be copied to the same directory. In this case, you might enter Source as a
Directory Name with C:\MyPackage\Source as the Suggested Path. The Installation dialog box will
display C:\MyPackage\Source as the suggested path for the directory.

4 In addition to BPLs, your package collection can contain .DCP, .DCU, and .PAS (unit) files,
documentation, and any other files you want to include with the distribution. Ancillary files are
placed in file groups associated with specific packages (BPLs); the files in a group are installed
only when their associated BPL is installed. To place ancillary files in your package collection,
select a BPL in the tree diagram and click the Add File Group speed button; type a name for the file
group. Add more file groups, if desired, in the same way. When you select a file group, new fields
will appear on the right in the Package Collection editor,

In the Install Directory list box, select the directory where you want files in this group to be
installed. The drop-down list includes the directories you entered under Directory List in step 3, above.

Check the Optional Group check box if you want installation of the files in this group to be
optional.

Under Include Files, list the files you want to include in this group. Use the Add, Delete, and Auto
buttons to edit the list. The Auto button allows you to select all files with specified extensions that are
listed in the contains clause of the package; the Package Collection editor uses Delphi’s global Library
Path to search for these files.

5 You can select installation directories for the packages listed in the requires clause of any package
in your collection. When you select a BPL in the tree diagram, four new fields appear on the right
side of the Package Collection editor:

In the Required Executables list box, select the directory where you want the .BPL files for
packages listed in the requires clause to be installed. (The drop-down list includes the directories you
entered under Directory List in step 3, above.) The Package Collection Editor searches for these files
using Delphi’s global Library Path and lists them under Required Executable Files.

In the Required Libraries list box, select the directory where you want the .DCP files for packages
listed in the requires clause to be installed. (The drop-down list includes the directories you entered
under Directory List in step 3, above.) The Package Collection Editor searches for these files using
Delphi’s global Library Path and lists them under Required Library Files.

6 To save your package collection source file, choose File|Save. Package collection source files
should be saved with the .PCE extension.

7 To build your package collection, click the Compile speed button. The Package Collection editor
generates a .DPC file with the same name as your source (.PCE) file. If you have not yet saved the
source file, the editor queries you for a file name before compiling.

To edit or recompile an existing .PCE file, select File|Open in the Package Collection editor.

Creating international applications
Topic groups See also
This topic discusses guidelines for writing applications that you plan to distribute to an international
market. By planning ahead, you can reduce the amount of time and code necessary to make your
application function in its foreign market as well as in its domestic market.
The following topics are discussed in this section:

Internationalization and localization
Internationalizing applications
Localizing applications

Internationalization and localization
Topic groups See also
To create an application that you can distribute to foreign markets, there are two major steps that need
to be performed:

Internationalization
Localization

Internationalization
Topic groups See also
Internationalization is the process of enabling your program to work in multiple locales. A locale is the
user’s environment, which includes the cultural conventions of the target country as well as the
language. Windows supports a large set of locales, each of which is described by a language and
country pair.

Localization
Topic groups See also
Localization is the process of translating an application to function in a specific locale. In addition to
translating the user interface, localization may include functionality customization. For example, a
financial application may be modified to be aware of the different tax laws in different countries.

Internationalizing applications
Topic groups See also
It is not difficult to create internationalized applications. You need to complete the following steps:
1 You must enable your code to handle strings from international character sets.
2 You need to design your user interface so that it can accommodate the changes that result from

localization.
3 You need to isolate all resources that need to be localized.

Enabling application code
Topic groups See also
You must make sure that the code in your application can handle the strings it will encounter in the
various target locales. To do this, you must consider the following:

Character sets
OEM and ANSI character sets
Double byte character sets
Wide characters
Locale-specific features

Character sets
Topic groups See also
The United States edition of Windows uses the ANSI Latin-1 (1252) character set. However, other
editions of Windows use different character sets. For example, the Japanese version of Windows uses
the Shift-Jis character set (code page 932), which represents Japanese characters as 1- or 2-byte
character codes.

OEM and ANSI character sets
Topic groups See also
It is sometimes necessary to convert between the Windows character set (ANSI) and the character set
specified by the code page of the user’s machine (called the OEM character set).

Double byte character sets
Topic groups See also
The ideographic character sets used in Asia cannot use the simple 1:1 mapping between characters in
the language and the one byte (8-bit) char type. These languages have too many characters to be
represented using the 1-byte char. Instead, characters are represented by a mix of 1- and 2-byte
character codes.
The first byte of every 2-byte character code is taken from a reserved range that depends on the specific
character set. The second byte can sometimes be the same as the character code for a separate 1-byte
character, or it can fall in the range reserved for the first byte of 2-byte characters. Thus, the only way to
tell whether a particular byte in a string represents a single character or part of a 2-byte character is to
read the string, starting at the beginning, parsing it into 2-byte characters when a lead byte from the
reserved range is encountered.
When writing code for Asian locales, you must be sure to handle all string manipulation using functions
that are enabled to parse strings into 1- and 2-byte characters. Delphi provides you with a number of
runtime library functions that allow you to do this. These functions are as follows:

AdjustLineBreaks AnsiStrLower ExtractFileDir
AnsiCompareFileName AnsiStrPos ExtractFileExt
AnsiExtractQuotedStr AnsiStrRScan ExtractFileName
AnsiLastChar AnsiStrScan ExtractFilePath
AnsiLowerCase AnsiStrUpper ExtractRelativePath
AnsiLowerCaseFileName AnsiUpperCase FileSearch
AnsiPos AnsiUpperCaseFileName IsDelimiter
AnsiQuotedStr ByteToCharIndex IsPathDelimiter
AnsiStrComp ByteToCharLen LastDelimiter
AnsiStrIComp ByteType StrByteType
AnsiStrLastChar ChangeFileExt StringReplace
AnsiStrLComp CharToByteIndex WrapText
AnsiStrLIComp CharToByteLen

Remember that the length of the strings in bytes does not necessarily correspond to the length of the
string in characters. Be careful not to truncate strings by cutting a 2-byte character in half. Do not pass
characters as a parameter to a function or procedure, since the size of a character can’t be known up
front. Instead, always pass a pointer to a character or a string.

Wide characters
Topic groups See also
One approach to working with ideographic character sets is to convert all characters to a wide character
encoding scheme such as Unicode. Wide characters are two bytes instead of one, so that the character
set can represent many more different characters.
Using a wide character encoding scheme has the advantage that you can make many of the usual
assumptions about strings that do not work for MBCS systems. There is a direct relationship between
the number of bytes in the string and the number of characters in the string. You do not need to worry
about cutting characters in half or mistaking the second half of a character for the start of a different
character.
The biggest disadvantage of working with wide characters is that Windows 95 only supports a few wide
character API function calls. Because of this, the VCL components represent all string values as single
byte or MBCS strings. Translating between the wide character system and the MBCS system every time
you set a string property or read its value would require tremendous amounts of extra code and slow
your application down. However, you may want to translate into wide characters for some special string
processing algorithms that need to take advantage of the 1:1 mapping between characters and
WideChars.

Including bi-directional functionality in applications
Topic groups See also
Some languages do not follow the left to right reading order commonly found in western languages, but
rather read words right to left and numbers left to right. These languages are termed bi-directional (BiDi)
because of this separation. The most common bi-directional languages are Arabic and Hebrew, although
other Middle East languages are also bi-directional.
TApplication has two properties, BiDiKeyboard and NonBiDiKeyboard, that allow you to specify the
keyboard layout. In addition, the VCL supports bi-directional localization through the BiDiMode and
ParentBiDiMode properties. The following table lists VCL objects that have these properties:

Component palette page VCL object
Standard TButton
 TCheckBox
 TComboBox
 TEdit
 TGroupBox
 TLabel
 TListBox
 TMainMenu
 TMemo
 TPanel
 TPopupMenu
 TRadioButton
 TRadioGroup
 TScrollBar
Additional TBitBtn
 TCheckListBox
 TDrawGrid
 TMaskEdit
 TScrollBox
 TSpeedButton
 TStaticLabel
 TStringGrid
Win32 TDateTimePicker
 THeaderControl
 TListView
 TMonthCalendar
 TPageControl
 TRichEdit
 TStatusBar
 TTabControl
Data Controls TDBCheckBox
 TDBComboBox
 TDBEdit
 TDBGrid
 TDBListBox
 TDBLookupComboBox
 TDBLookupListBox
 TDBMemo

 TDBRadioGroup
 TDBRichEdit
 TDBText
QReport TQRDBText
 TQRExpr
 TQRLabel
 TQRMemo
 TQRSysData
Other classes TApplication (has no ParentBiDiMode)
 TForm
 THintWindow (has no ParentBiDiMode)
 TStatusPanel
 THeaderSection
Notes: THintWindow picks up the BiDiMode of the control that activated the hint.

Bi-directional properties
Topic groups See also
TApplication‘s BiDiKeyboard and NonBiDiKeyboard, support bi-directional localization.
The property BiDiMode is a new enumerated type, TBiDiMode, with four states: bdLeftToRight,
bdRightToLeft, bdRightToLeftNoAlign, and bdRightToLeftReadingOnly.

bdLeftToRight
bdLeftToRight draws text using left to right reading order, and the alignment and scroll bars are not
changed. For instance, when entering right to left text, such as Arabic or Hebrew, the cursor goes into
push mode and the text is entered right to left. Latin text, such as English or French, is entered left to
right. bdLeftToRight is the default value.

bdRightToLeft
bdRightToLeft draws text using right to let reading order, the alignment is changed and the scroll bar is
moved. Text is entered as normal for right-to-left languages such as Arabic or Hebrew. When the
keyboard is changed to a Latin language, the cursor goes into push mode and the text is entered left-to-
right.

bdRightToLeftNoAlign
bdRightToLeftNoAlign draws text using right to left reading order, the alignment is not changed, and the
scroll bar is moved.

bdRightToLeftReadingOnly
bdRightToLeftReadingOnly draws text using right to left reading order, and the alignment and scroll bars
are not changed.

ParentBiDiMode property
Topic groups See also
ParentBiDiMode is a Boolean property. When True (the default) the control looks to its parent to
determine what BiDiMode to use. If the control is a TForm object, the form uses the BiDiMode setting
from Application. If all the ParentBiDiMode properties are True, when you change Application’s
BiDiMode property, all forms and controls in the project are updated with the new setting.

FlipChildren method
Topic groups See also
The FlipChildren method allows you to flip the position of a container control’s children. Container
controls are controls that can accept other controls, such as TForm, TPanel, and TGroupbox.
FlipChildren has a single boolean parameter, AllLevels. When False, only the immediate children of the
container control are flipped. When True, all the levels of children in the container control are flipped.
Delphi flips the controls by changing the Left property and the alignment of the control. If a control’s left
side is five pixels from the left edge of its parent control, after it is flipped the edit control’s right side is
five pixels from the right edge of the parent control. If the edit control is left aligned, calling FlipChildren
will make the control right aligned.
To flip a control at design-time select Edit|Flip Children and select either All or Selected, depending on
whether you want to flip all the controls, or just the children of the selected control. You can also flip a
control by selecting the control on the form, right-clicking, and selecting Flip Children from the context
menu.
Note:Selecting an edit control and issuing a Flip Children|Selected command does nothing. This is

because edit controls are not containers.

Additional methods
Topic groups See also
There are several other methods useful for developing applications for bi-directional users.

Method Description
OkToChangeFieldAlignment Used with database controls. Checks to see if the

alignment of a control can be changed.
DBUseRightToLeftAlignment A wrapper for database controls for checking

alignment.
ChangeBiDiModeAlignment Changes the alignment parameter passed to it. No

check is done for BiDiMode setting, it just converts
left alignment into right alignment and vice versa,
leaving center-aligned controls alone.

IsRightToLeft Returns True if any of the right to left options are
selected. If it returns False the control is in left to
right mode.

UseRightToLeftReading Returns True if the control is using right to left
reading.

UseRightToLeftAlignment Returns True if the control is using right to left
alignment. It can be overriden for customization.

UseRightToLeftScrollBar Returns True if the control is using a left scroll bar.
DrawTextBiDiModeFlags Returns the correct draw text flags for the BiDiMode

of the control.
DrawTextBiDiModeFlagsReadingOnl
y

Returns the correct draw text flags for the BiDiMode
of the control, limiting the flag to its reading order.

AddBiDiModeExStyle Adds the appropriate ExStyle flags to the control
that is being created.

Locale-specific features
Topic groups See also
You can add extra features to your application for specific locales. In particular, for Asian language
environments, you may want your application to control the input method editor (IME) that is used to
convert the keystrokes typed by the user into character strings.
VCL components offer you support in programming the IME. Most windowed controls that work directly
with text input have an ImeName property that allows you to specify a particular IME that should be
used when the control has input focus. They also provide an ImeMode property that specifies how the
IME should convert keyboard input. ImeName introduces several protected methods that you can use to
control the IME from classes you define. In addition, the global Screen variable provides information
about the IMEs available on the user’s system.
The global Screen variable also provides information about the keyboard mapping installed on the
user’s system. You can use this to obtain locale-specific information about the environment in which
your application is running.

Designing the user interface
Topic groups See also
When creating an application for several foreign markets, it is important to design your user interface so
that it can accommodate the changes that occur during translation.
The following topics are discussed in this section:

Text
Graphic images
Formats and sort order
Keyboard mappings

Text
Topic groups See also
All text that appears in the user interface must be translated. English text is almost always shorter than
its translations. Design the elements of your user interface that display text so that there is room for the
text strings to grow. Create dialogs, menus, status bars, and other user interface elements that display
text so that they can easily display longer strings. Avoid abbreviations—they do not exist in languages
that use ideographic characters.
Short strings tend to grow in translation more than long phrases. The following table provides a rough
estimate of how much expansion you should plan for given the length of your English strings:

Length of English string (in characters) Expected increase
1-5 100%
6-12 80%
13-20 60%
21-30 40%
31-50 20%
over 50 10%

Graphic images
Topic groups See also
Ideally, you will want to use images that do not require translation. Most obviously, this means that
graphic images should not include text, which will always require translation. If you must include text in
your images, it is a good idea to use a label object with a transparent background over an image rather
than including the text as part of the image.
There are other considerations when creating graphic images. Try to avoid images that are specific to a
particular culture. For example, mailboxes in different countries look very different from each other.
Religious symbols are not appropriate if your application is intended for countries that have different
dominant religions. Even color can have different symbolic connotations in different cultures.

Formats and sort order
Topic groups See also
The date, time, number, and currency formats used in your application should be localized for the target
locale. If you use only the Windows formats, there is no need to translate formats, as these are taken
from the user’s Windows Registry. However, if you specify any of your own format strings, be sure to
declare them as resourced constants so that they can be localized.
The order in which strings are sorted also varies from country to country. Many European languages
include diacritical marks that are sorted differently, depending on the locale. In addition, in some
countries, 2-character combinations are treated as a single character in the sort order. For example, in
Spanish, the combination ch is sorted like a single unique letter between c and d. Sometimes a single
character is sorted as if it were two separate characters, such as the German eszett.

Keyboard mappings
Topic groups See also
Be careful with key-combinations shortcut assignments. Not all the characters available on the US
keyboard are easily reproduced on all international keyboards. Where possible, use number keys and
function keys for shortcuts, as these are available on virtually all keyboards.

Isolating resources
Topic groups See also
The most obvious task in localizing an application is translating the strings that appear in the user
interface. To create an application that can be translated without altering code everywhere, the strings in
the user interface should be isolated into a single module. Delphi automatically creates a .DFM file that
contains the resources for your menus, dialogs, and bitmaps.
In addition to these obvious user interface elements, you will need to isolate any strings, such as error
messages, that you present to the user. String resources are not included in the .DFM file. You can
isolate them by declaring constants for them using the resourcestring keyword. For more information
about resource string constants, see the Object Pascal Language Guide. It is best to include all
resource strings in a single, separate unit.
For information on using resource DLLs in your applications see "Creating resource DLLs” and "Using
resource DLLs.”

Creating resource DLLs
Topic groups See also
Isolating resources simplifies the translation process. The next level of resource separation is the
creation of a resource DLL. A resource DLL contains all the resources and only the resources for a
program. Resource DLLs allow you to create a program that supports many translations simply by
swapping the resource DLL.
Use the Resource DLL wizard to create a resource DLL for your program. The Resource DLL wizard
requires an open, saved, compiled project. It will create an RC file that contains the string tables from
used RC files and resourcestring strings of the project, and generate a project for a resource only DLL
that contains the relevant forms and the created RES file. The RES file is compiled from the new RC file.
You should create a resource DLL for each translation you want to support. Each resource DLL should
have a file name extension specific to the target locale. The first two characters indicate the target
language, and the third character indicates the country of the locale. If you use the Resource DLL
wizard, this is handled for you. Otherwise, use the following code obtain the locale code for the target
translation:

unit locales;
interface
uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
 StdCtrls;
type
 TForm1 = class(TForm)
 Button1: TButton;
 LocaleList: TListBox;
 procedure Button1Click(Sender: TObject);
 private
 { Private declarations }
 public
 { Public declarations }
 end;
var
 Form1: TForm1;
implementation
{$R *.DFM}
function GetLocaleData(ID: LCID; Flag: DWORD): string;
var
 BufSize: Integer;
begin
 BufSize := GetLocaleInfo(ID, Flag, nil, 0);
 SetLength(Result, BufSize);
 GetLocaleinfo(ID, Flag, PChar(Result), BufSize);
 SetLength(Result, BufSize - 1);
end;
{ Called for each supported locale. }
function LocalesCallback(Name: PChar): Bool; stdcall;
var
 LCID: Integer;
begin
 LCID := StrToInt('$' + Copy(Name, 5, 4));
 Form1.LocaleList.Items.Add(GetLocaleData(LCID, LOCALE_SLANGUAGE));
 Result := Bool(1);
end;
procedure TForm1.Button1Click(Sender: TObject);
begin
 EnumSystemLocales(@LocalesCallback, LCID_SUPPORTED);
end;
end.

Using resource DLLs
Topic groups See also
The executable, DLLs, and packages that make up your application contain all the necessary resources.
However, to replace those resources by localized versions, you need only ship your application with
localized resource DLLs that have the same name as your EXE, DLL, or BPL files.
When your application starts up, it checks the locale of the local system. If it finds any resource DLLs
with the same name as the EXE, DLL, or BPL files it is using, it checks the extension on those DLLs. If
the extension of the resource module matches the language and country of the system locale, your
application will use the resources in that resource module instead of the resources in the executable,
DLL, or package. If there is not a resource module that matches both the language and the country, your
application will try to locate a resource module that matches just the language. If there is no resource
module that matches the language, your application will use the resources compiled with the
executable, DLL, or package.
If you want your application to use a different resource module than the one that matches the locale of
the local system, you can set a locale override entry in the Windows registry. Under the
HKEY_CURRENT_USER\Software\Borland\Locales key, add your application’s path and file name as a
string value and set the data value to the extension of your resource DLLs. At startup, the application will
look for resource DLLs with this extension before trying the system locale. Setting this registry entry
allows you to test localized versions of your application without changing the locale on your system.
For example, the following procedure can be used in an install or setup program to set the registry key
value that indicates the locale to use when loading Delphi applications:

procedure SetLocalOverrides(FileName: string, LocaleOverride: string);
var
 Reg: TRegistry;
begin
 Reg := TRegistry.Create;
 try
 if Reg.OpenKey('Software\Borland\Locales', True) then
 Reg.WriteString(LocalOverride, FileName);
 finally
 Reg.Free;
end;

Within your application, use the global FindResourceHInstance function to obtain the handle of the
current resource module. For example:

LoadStr(FindResourceHInstance(HInstance), IDS_AmountDueName, szQuery,
SizeOf(szQuery));

You can ship a single application that adapts itself automatically to the locale of the system it is running
on, simply by providing the appropriate resource DLLs.

Dynamic switching of resource DLLs
Topic groups See also
In addition to locating a resource DLL at application startup, it is possible to switch resource DLLs
dynamically at runtime. To add this functionality to your own applications, you need to include the ReInit
unit in your uses statement. (ReInit is located in the Richedit sample in the Demos directory.) To switch
languages, you should call LoadResourceModule, passing the LCID for the new language, and then call
ReinitializeForms.
For example, the following code switches the interface language to French:

const
 FRENCH = (SUBLANG_FRENCH shl 10) or LANG_FRENCH;
if LoadNewResourceModule(FRENCH) <> 0 then
 ReinitializeForms;

The advantage of this technique is that the current instance of the application and all of its forms are
used. It is not necessary to update the registry settings and restart the application or reacquire
resources required by the application, such as logging in to database servers.
When you switch resource DLLs the properties specified in the new DLL overwrite the properties in the
running instances of the forms.
Note:Any changes made to the form properties at runtime will be lost. Once the new DLL is loaded,

default values are not reset. Avoid code that assumes that the form objects are reinitialized to the
their startup state, apart from differences due to localization.

Localizing applications
Topic groups See also
Once your application is internationalized, you can create localized versions for the different foreign
markets in which you want to distribute it.
Ideally, your resources have been isolated into a resource DLL that contains DFM files and a RES file.
You can open your forms in the IDE and translate the relevant properties.
Note: In a resource DLL project, you cannot add or delete components. It is possible, however, to

change properties in ways that could cause runtime errors, so be careful to modify only those
properties that require translation. To avoid mistakes, you can configure the Object Inspector to
display only localizable properties; to do so, right-click in the Object Inspector and use the View
menu to filter out unwanted property categories.

You can open the RC file and translate relevant strings. Use the StringTable editor by opening the RC
file from the Project Manager.
If your version of Delphi includes the Integrated Translation Environment, you can use the ITE to
manage localization. For more information, see the online Help for the ITE.

Deploying applications
Topic groups See also
Once your Delphi application is up and running, you can deploy it. That is, you can make it available for
others to run. A number of steps must be taken to deploy an application to another computer so that the
application is completely functional. The steps required by a given application vary, depending on the
type of application. The following sections describe those steps for deploying applications:

Deploying general applications
Deploying database applications
Deploying Web applications
Programming for varying host environments
Software license requirements

Deploying general applications
Topic groups See also
Beyond the executable file, an application may require a number of supporting files, such as DLLs,
package files, and helper applications. In addition, the Windows registry may need to contain entries for
an application, from specifying the location of supporting files to simple program settings. The process of
copying an application’s files to a computer and making any needed registry settings can be automated
by an installation program, such as InstallShield Express. These are the main deployment concerns
common to nearly all types of applications:

Using installation programs
Identifying application files
Helper applications
Dll locations

Delphi applications that access databases and those that run across the Web require additional
installation steps beyond those that apply to general applications.For additional information on installing
database applications, see Deploying database applications. For more information on installing Web
applications, see Deploying Web applications. For more information on installing ActiveX controls, see
Deploying an ActiveX control on the Web. For information on deploying CORBA applications, see
Deploying CORBA applications.

Using installation programs
Topic groups See also
Simple Delphi applications that consist of only an executable file are easy to install on a target computer.
Just copy the executable file onto the computer. However, more complex applications that comprise
multiple files require more extensive installation procedures. These applications require dedicated
installation programs.
Setup toolkits automate the process of creating installation programs, often without needing to write any
code. Installation programs created with Setup toolkits perform various tasks inherent to installing Delphi
applications, including: copying the executable and supporting files to the host computer, making
Windows registry entries, and installing the Borland Database Engine for database applications.
InstallShield Express is a setup toolkit that is bundled with Delphi. InstallShield Express is certified for
use with Delphi and the Borland Database Engine. InstallShield Express is not automatically installed
when Delphi is installed, and must be manually installed to be used to create installation programs. Run
the installation program from the Delphi CD to install InstallShield Express. For more information on
using InstallShield Express to create installation programs, see the InstallShield Express online help.
Other setup toolkits are available, however, you should only use those certified to deploy the Borland
Database Engine.

Identifying application files
Topic groups See also
Besides the executable file, a number of other files may need to be distributed with an application.

Application files, listed by file name extension
Package files
ActiveX controls

Application files, listed by file name extension
Topic groups See also
The following types of files may need to be distributed with an application.

Type File name extension
Program files .EXE and .DLL
Package files .BPL and .DCP
Help files .HLP, .CNT, and .TOC (if used)
ActiveX files .OCX (sometimes supported by a DLL)
Local table files .DBF, .MDX, .DBT, .NDX, .DB, .PX, .Y*, .X*, .MB, .VAL, .

QBE

Package files
Topic groups See also
If the application uses runtime packages, those package files need to be distributed with the application.
InstallShield Express handles the installation of package files the same as DLLs, copying the files and
making necessary entries in the Windows registry. Borland recommends installing the runtime package
files supplied by Borland in the Windows\System directory. This serves as a common location so that
multiple applications would have access to a single instance of the files. For packages you created, it is
recommended that you install them in the same directory as the application. Only the .BPL files need to
be distributed.
If you are distributing packages to other developers, supply both the .BPL and the .DCP files.

ActiveX controls
Topic groups See also
Certain components bundled with Delphi are ActiveX controls. The component wrapper is linked into the
application’s executable file (or a runtime package), but the .OCX file for the component also needs to
be deployed with the application. These components include

Chart FX, copyright SoftwareFX Inc.
VisualSpeller Control, copyright Visual Components, Inc.
Formula One (spreadsheet), copyright Visual Components, Inc.
First Impression (VtChart), copyright Visual Components, Inc.
Graph Custom Control, copyright Bits Per Second Ltd.

ActiveX controls of your own creation need to be registered on the deployment computer before use.
Installation programs such as InstallShield Express automate this registration process. To manually
register an ActiveX control, use the TRegSvr demo application or the Microsoft utility REGSRV32.EXE
(not included with all Windows versions).
DLLs that support an ActiveX control also need to be distributed with an application.

Helper applications
Topic groups See also
Helper applications are separate programs without which your Delphi application would be partially or
completely unable to function. Helper applications may be those supplied with Windows, by Borland, or
they might be third-party products. An example of a helper application is the InterBase utility program
Server Manager, which administers InterBase databases, users, and security.
If an application depends on a helper program, be sure to deploy it with your application, where
possible. Distribution of helper programs may be governed by redistribution license agreements. Consult
the documentation for the helper for specific information.

DLL locations
Topic groups See also
You can install .DLL files used only by a single application in the same directory as the application. DLLs
that will be used by a number of applications should be installed in a location accessible to all of those
applications. A common convention for locating such community DLLs is to place them either in the
Windows or the Windows\System directory. A better way is to create a dedicated directory for the
common .DLL files, similar to the way the Borland Database Engine is installed.

Deploying database applications
Topic groups See also
Applications that access databases involve special installation considerations beyond copying the
application’s executable file onto the host computer. Database access is most often handled by a
separate database engine, the files of which cannot be linked into the application’s executable file. The
data files, when not created beforehand, must be made available to the application. Multi-tier database
applications require even more specialized handling on installation, because the files that make up the
application are typically located on multiple computers. Two ways of including database access are

Providing the database engine
Multi-tiered Distributed Application Services (MIDAS)

Providing the database engine
Topic groups See also
Database access for an application is provided by various database engines. An application can use the
Borland Database Engine or a third-party database engine. SQL Links is provided (not available in all
versions) to enable native access to SQL database systems. The following sections describe installation
of the database access elements of an application:

Borland Database Engine
Third-party database engines
SQL Links

Borland Database Engine
Topic groups See also
For standard Delphi data components to have database access, the Borland Database Engine (BDE)
must be present and accessible. See BDEDEPLOY.TXT for specific rights and limitations on
redistributing the BDE.
Borland recommends use of InstallShield Express (or other certified installation program) for installing
the BDE. InstallShield Express will create the necessary registry entries and define any aliases the
application may require. Using a certified installation program to deploy the BDE files and subsets is
important because:

Improper installation of the BDE or BDE subsets can cause other applications using the BDE to
fail. Such applications include not only Borland products, but many third-party programs that use the BDE.

Under Windows 95 and Windows NT, BDE configuration information is stored in the Windows
registry instead of .INI files, as was the case under 16-bit Windows. Making the correct entries and
deletions for install and uninstall is a complex task.
It is possible to install only as much of the BDE as an application actually needs. For instance, if an
application only uses Paradox tables, it is only necessary to install that portion of the BDE required to
access Paradox tables. This reduces the disk space needed for an application. Certified installation
programs, like InstallShield Express, are capable of performing partial BDE installations. Be sure to
leave BDE system files that are not used by the deployed application, but that are needed by other
programs.

Third-party database engines
Topic groups See also
You can use third-party database engines to provide database access for Delphi applications. Consult
the documentation or vendor for the database engine regarding redistribution rights, installation, and
configuration.

SQL Links
Topic groups See also
SQL Links provides the drivers that connect an application (through the Borland Database Engine) with
the client software for an SQL database. See DEPLOY.TXT for specific rights and limitations on
redistributing SQL Links. As is the case with the Borland Database Engine (BDE), SQL Links must be
deployed using InstallShield Express (or other certified installation program).
Note:SQL Links only connects the BDE to the client software, not to the SQL database itself. It is still

necessary to install the client software for the SQL database system used. See the documentation
for the SQL database system or consult the vendor that supplies it for more information on
installing and configuring client software.

The following table shows the names of the driver and configuration files SQL Links uses to connect to
the different SQL database systems. These files come with SQL Links and are redistributable in
accordance with the Delphi license agreement.

Vendor Redistributable files
Oracle 7 SQLORA32.DLL and

SQL_ORA.CNF
Oracle8 SQLORA8.DLL and

SQL_ORA8.CNF
Sybase Db-Lib SQLSYB32.DLL and SQL_SYB.CNF
Sybase Ct-Lib SQLSSC32.DLL and

SQL_SSC.CNF
Microsoft SQL Server SQLMSS32.DLL and

SQL_MSS.CNF
Informix 7 SQLINF32.DLL and SQL_INF.CNF
Informix 9 SQLINF9.DLL and SQL_INF9.CNF
DB/2 SQLDB232.DLL and SQL_DB2.CNF
InterBase SQLINT32.DLL and SQL_INT.CNF

Install SQL Links using InstallShield Express or other certified installation program. For specific
information concerning the installation and configuration of SQL Links, see the help file SQLLNK32.HLP,
by default installed into the main BDE directory.

Multi-tiered Distributed Application Services (MIDAS)
Topic groups See also
Multi-tiered Distributed Application Services (MIDAS) consists of the Business Object Broker,
OLEnterprise, the Remote DataBroker, and the ConstraintBroker Manager (SQL Explorer). MIDAS
provides multi-tier database capability to Delphi applications.
Handle the installation of the executable and related files for a multi-tier application the same as for
general applications. Some of the files that comprise MIDAS may need to be installed on the client
computer and others on the server computer.For general application installation information, see
Deploying general applications. See the text file LICENSE.TXT on the MIDAS CD and the Delphi file
DEPLOY.TXT for specific information regarding licensing and redistribution rights for MIDAS.
MIDAS.DLL must be installed onto the client computer and registered with Windows. On the server
computer, the files MIDAS.DLL and STDVCL40.DLL must be installed and registered for the Remote
DataBroker and DBEXPLOR.EXE for the ConstraintBroker. Installation programs such as InstallShield
Express automate the process of registering these DLLs. To manually register the DLLs, use the
TRegSvr demo application or the Microsoft utility REGSRV32.EXE (not included with all Windows
versions).
The MIDAS deployment CD provides install programs for the client and server portions of OLEnterprise
and the Business ObjectBroker. Use only the Setup Launcher on the MIDAS CD to install OLEnterprise.
Following is a list of the minimum required files to be installed onto the server machine.

UNINSTALL.EXE OBJFACT.ICO W32PTHD.DLL NBASE.IDL
LICENSE.TXT ODEBKN40.DLL RPMARN40.DLL OBJX.EXE
README.TXT ODECTN40.DLL RPMAWN40.DLL OLECFG.EXE
OLENTER.HLP RPMEGN40.DLL RPMCBN40.DLL OLEWAN40.CAB
OLENTER.CNT ODEDIN40.DLL RPMCPN40.DLL OLENTEXP.EXE
FILELIST.TXT ODEEGN40.DLL BROKER.EXE OLENTEXP.HLP
SETLOG.TXT ODELTN40.DLL RPMFEN40.DLL OLENTEXP.CNT
SETLOG.EXE LIBAVEMI.DLL RPMUTN40.DLL BRKCP.EXE
OBJPING.EXE OLEAAN40.DLL RPMFE.CAT BROKER.ICO
OBJFACT.EXE OLERAN40.DLL EXPERR.CAT

Following is a list of the required files to be installed onto the client machine.
NBASE.IDL ODEN40.DLL RPMFEN40.DLL OLENTEXP.EXE
ODECTN40.DLL RPMARN40.DLL RPMUTN40.DLL SETLOG.EXE
ODEDIN40.DLL RPMAWN40.DLL OLERAN40.DLL OLECFG.EXE
ODEEGN40.DLL RPMCBN40.DLL OLEAAN40.DLL W32PTHD.DLL
ODELTN40.DLL RPMCPN40.DLL OLEWAN40.CAB
ODEMSG.DLL RPMEGN40.DLL OBJX.EXE

Deploying Web applications
Topic groups See also
Some Delphi applications are designed to be run over the World Wide Web, such as those in the form of
Server-side Extension (ISAPI) DLLs, CGI applications, and ActiveForms.
The steps for installing Web applications are the same as those for general applications, except the
application’s files are deployed on the Web server. For information on installing general applications, see
Deploying general applications.
Here are some special considerations for deploying Web applications:

For database applications, the Borland Database Engine (or alternate database engine) is
installed along with the application files on the Web server.

Security for the directories must not be so high that access to application files, the BDE, or
database files is not possible.

The directory containing an application must have read and execute attributes.
The application should not use hard-coded paths for accessing database or other files.
The location of an ActiveX control is indicated by the CODEBASE parameter of the <OBJECT>

HTML tag.

Programming for varying host environments
Topic groups See also
Due to the nature of the Windows environment, there are a number of factors that vary with user
preference or configuration. The following factors can affect an application deployed to another
computer:

Screen resolutions and color depths
Fonts
Windows versions

Screen resolutions and color depths
Topic groups See also
The size of the Windows desktop and number of available colors on a computer is configurable and
dependent on the hardware installed. These attributes are also likely to differ on the deployment
computer compared to those on the development computer.
An application’s appearance (window, object, and font sizes) on computers configured for different
screen resolutions can be handled in various ways:

Design the application for the lowest resolution users will have (typically, 640x480). Take no
special actions to dynamically resize objects to make them proportional to the host computer’s screen
display. Visually, objects will appear smaller the higher the resolution is set.

Design using any screen resolution on the development computer and, at runtime, dynamically
resize all forms and objects proportional to the difference between the screen resolutions for the
development and deployment computers (a screen resolution difference ratio).

Design using any screen resolution on the development computer and, at runtime, dynamically
resize only the application’s forms. Depending on the location of visual controls on the forms, this may
require the forms be scrollable for the user to be able to access all controls on the forms.
The following topics are discussed in this section:

Considerations when not dynamically resizing
Considerations when dynamically resizing forms and controls
Accommodating varying color depths

Considerations when not dynamically resizing
Topic groups See also
If the forms and visual controls that make up an application are not dynamically resized at runtime,
design the application’s elements for the lowest resolution. Otherwise, the forms of an application run on
a computer configured for a lower screen resolution than the development computer may overlap the
boundaries of the screen.
For example, if the development computer is set up for a screen resolution of 1024x768 and a form is
designed with a width of 700 pixels, not all of that form will be visible within the Windows desktop on a
computer configured for a 640x480 screen resolution.

Considerations when dynamically resizing forms and controls
Topic groups See also
If the forms and visual controls for an application are dynamically resized, accommodate all aspects of
the resizing process to ensure optimal appearance of the application under all possible screen
resolutions. Here are some factors to consider when dynamically resizing the visual elements of an
application:

The resizing of forms and visual controls is done at a ratio calculated by comparing the screen
resolution of the development computer to that of the computer onto which the application installed. Use a
constant to represent one dimension of the screen resolution on the development computer: either the
height or the width, in pixels. Retrieve the same dimension for the user’s computer at runtime using the
TScreen.Height Screen object’s Height or TScreen.Width Width property. Divide the value for the
development computer by the value for the user’s computer to derive the difference ratio between the two
computers’ screen resolutions.

Resize the visual elements of the application (forms and controls) by reducing or increasing the
size of the elements and their positions on forms. This resizing is proportional to the difference between
the screen resolutions on the development and user computers. Resize and reposition visual controls on
forms automatically by setting the CustomForm.Scaled form’s Scaled property to True and calling
TWincontrol.ScaleBy its ScaleBy method. The ScaleBy method does not change the form’s height and
width, though. Do this manually by multiplying the current values for the Height and Width properties by
the screen resolution difference ratio.

The controls on a form can be resized manually, instead of automatically with the
TWincontrol.ScaleBy method, by referencing each visual control in a loop and setting its dimensions and
position. The Height and Width property values for visual controls are multiplied by the screen resolution
difference ratio. Reposition visual controls proportional to screen resolution differences by multiplying the
Top and Left property values by the same ratio.

If an application is designed on a computer configured for a higher screen resolution than that on
the user’s computer, font sizes will be reduced in the process of proportionally resizing visual controls. If
the size of the font at design time is too small, the font as resized at runtime may be unreadable. For
example, the default font size for a form is 8. If the development computer has a screen resolution of
1024x768 and the user’s computer 640x480, visual control dimensions will be reduced by a factor of
0.625 (640 / 1024 = 0.625). The original font size of 8 is reduced to 5 (8 * 0.625 = 5). Text in the
application appears jagged and unreadable as Windows displays it in the reduced font size.

Some visual controls, such as TLabel and TEdit, dynamically resize when the size of the font for
the control changes. This can affect deployed applications when forms and controls are dynamically
resized. The resizing of the control due to font size changes are in addition to size changes due to
proportional resizing for screen resolutions. This effect is offset by setting the AutoSize property of these
controls to False.

Avoid making use of explicit pixel coordinates, such as when drawing directly to a canvas.
Instead, modify the coordinates by a ratio proportionate to the screen resolution difference ratio between
the development and user computers. For example, if the application draws a rectangle to a canvas ten
pixels high by twenty wide, instead multiply the ten and twenty by the screen resolution difference ratio.
This ensures that the rectangle visually appears the same size under different screen resolutions.

Accommodating varying color depths
Topic groups See also
To account for all deployment computers not being configured with the same color availability, the safest
way is to use graphics with the least possible number of colors. This is especially true for control glyphs,
which should typically use 16-color graphics. For displaying pictures, either provide multiple copies of
the images in different resolutions and color depths or explain in the application the minimum resolution
and color requirements for the application.

Fonts
Topic groups See also
Windows comes with a standard set of TrueType and raster fonts. When designing an application to be
deployed on other computers, realize that not all computers will have fonts outside the standard
Windows set.
Text components used in the application should all use fonts that are likely to be available on all
deployment computers.
When use of a nonstandard font is absolutely necessary in an application, you need to distribute that
font with the application. Either the installation program or the application itself must install the font on
the deployment computer. Distribution of third-party fonts may be subject to limitations imposed by the
font creator.
Windows has a safety measure to account for attempts to use a font that does not exist on the
computer. It substitutes another, existing font that it considers the closest match. While this may
circumvent errors concerning missing fonts, the end result may be a degradation of the visual
appearance of the application. It is better to prepare for this eventuality at design time.
To make a nonstandard font available to an application, use the Windows API functions
AddFontResource and DeleteFontResource. Deploy the .FOT file for the nonstandard font with the
application.

Windows versions
Topic groups See also
When using Windows API functions or accessing areas of the Windows operating system from an
application, there is the possibility that the function, operation, or area may not be available on
computers with different versions of Windows. For example, Services are only pertinent to the Windows
NT operating system. If an application is to act as a Service or interact with one, this would fail if the
application is installed under Windows 95.
To account for this possibility, you have a few options:

Specify in the application’s system requirements the versions of Windows on which the
application can run. It is the user’s responsibility to install and use the application only under compatible
Windows versions.

Check the version of Windows as the application is installed. If an incompatible version of
Windows is present, either halt the installation process or at least warn the installer of the problem.

Check the Windows version at runtime, just prior to executing an operation not applicable to all
versions. If an incompatible version of Windows is present, abort the process and alert the user.
Alternately, provide different code to run dependent on different versions of Windows. Some operations
are performed differently in Windows 95 than in Windows NT. Use the Windows API function
GetVersionEx to determine the Windows version.

Software license requirements
Topic groups See also
The distribution of some files associated with Delphi applications is subject to limitations or cannot be
redistributed at all. The following documents describe the legal stipulations regarding the distribution of
these files where limitations exist:

DEPLOY.TXT
DEPLOY.TXT covers the some of the legal aspects of distributing of various components and
utilities, and other product areas that can be part of or associated with your application.
DEPLOY.TXT is a text file installed in the main directory. The topics covered include, but are not
limited to

.EXE, .DLL, and .BPL files
Components and design-time packages
Borland Database Engine (BDE)
ActiveX controls
Sample Images
Multi-tiered Distributed Application Services (MIDAS)
SQL Links
README.TXT

README.TXT contains last minute information about Delphi possibly including information that
could affect the redistribution rights for components, or utilities, or other product areas.
README.TXT is a Windows help file installed into the main Delphi directory.

No-nonsense license agreement
The Delphi no-nonsense license agreement, a printed document, covers other legal rights and
obligations concerning Delphi.

Third-party product documentation
Redistribution rights for third-party components, utilities, helper applications, database engines, and
other products are governed by the vendor supplying the product. Consult the documentation for the
product or the vendor for information regarding the redistribution of the product with Delphi
applications prior to distribution.

Related topic groups
Building applications with Delphi
· Using Object Pascal with the VCL
· Building applications, components, and libraries
· Common programming tasks
· Developing the application user interface
· Working with controls
· Working with graphics
· Working with multimedia
· Writing multi-threaded applications
· Working with packages and components
· Creating international applications
· Deploying applications

Using Object Pascal with the VCL
Related topic groups
· Using Object Pascal with the VCL: Overview
· Using the object model
· What is an object?
· Examining a Delphi object
· Changing the name of a component
· Inheriting data and code from an object
· Objects, components, and controls
· Scope and qualifiers
· Private, protected, public, and published declarations
· Using object variables
· Creating, instantiating, and destroying objects
· Components and ownership
· Using components
· Delphi's standard components
· Properties common to visual components
· Position and size properties
· Display properties
· Parent properties
· Navigation properties
· Drag-and-drop properties
· Drag-and-dock properties
· Text controls
· Properties common to all text controls
· Properties shared by memo and rich text controls
· Rich text controls
· Specialized input controls
· Scroll bars
· Track bars
· Up-down controls
· Hot key controls
· Splitter control
· Buttons and similar controls
· Button controls
· Bitmap buttons
· Speed buttons
· Check boxes
· Radio buttons
· Toolbars
· Cool bars
· Handling lists
· List boxes and check-list boxes

· Combo boxes
· Tree views
· List views
· Date-time pickers and month calendars
· Grouping components
· Group boxes and radio groups
· Panels
· Header controls
· Header controls
· Page controls
· Header controls
· Visual feedback
· Labels and static-text components
· Status bars
· Progress bars
· Help and hint properties
· Grids
· Draw grids
· String grids
· Graphic display
· Images
· Shapes
· Bevels
· Paint boxes
· Animation control
· Windows common dialog boxes
· Setting component properties
· Using the Object Inspector
· Using property editors
· Setting properties at runtime
· Calling methods
· Working with events and event handlers
· Generating a new event handler
· Generating a handler for a component's default event
· Locating event handlers
· Associating an event with an existing event handler
· Using the Sender parameter
· Displaying and coding shared events
· Associating menu events with event handlers
· Deleting event handlers
· Using helper objects
· Working with lists
· Working with string lists

· Loading and saving string lists
· Creating a new string list
· Manipulating strings in a list
· Counting the strings in a list
· Accessing a particular string
· Finding the position of a string in the list
· Iterating through strings in a list
· Adding a string to a list
· Deleting a string from a list
· Copying a complete string list
· Associating objects with a string list
· Windows registry and INI files
· Using streams
· Using data modules and remote data modules
· Creating and editing data modules
· Creating business rules in a data module
· Accessing a data module from a form
· Adding a remote data module to an application server project
· Using the Object Repository
· Sharing items within a project
· Adding items to the Object Repository
· Sharing objects in a team environment
· Using an Object Repository item in a project
· Copying an item
· Inheriting an item
· Using an item
· Using project templates
· Modifying shared items
· Specifying a default project, new form, and main form
· Adding custom components to the IDE

Building applications, components, and libraries
Related topic groups
· Creating applications
· Windows applications
· User interface models
· SDI Applications
· MDI applications
· Setting IDE, project, and compilation options
· Programming templates
· Console applications
· Service applications
· Service threads
· Service name properties
· Debugging services
· Creating packages and DLLs
· When to use packages and DLLs
· Writing database applications
· Building distributed applications
· Distributing applications using TCP/IP
· Using sockets in applications
· Creating Web server applications
· Distributing applications using COM and DCOM
· Distributing applications using CORBA
· Distributing database applications

Common programming tasks
Related topic groups
· Common programming tasks
· Handling exceptions
· Protecting blocks of code
· Responding to exceptions
· Exceptions and the flow of control
· Nesting exception responses
· Protecting resource allocations
· What kind of resources need protection?
· Creating a resource protection block
· Handling RTL exceptions
· What are the RTL exceptions?
· Creating an exception handler
· Exception handling statements
· Using the exception instance
· Scope of exception handlers
· Providing default exception handlers
· Handling classes of exceptions
· Reraising the exception
· Handling component exceptions
· Using TApplication.HandleException
· Silent exceptions
· Defining your own exceptions
· Declaring an exception object type
· Raising an exception
· Using interfaces
· Interfaces as a language feature
· Sharing interfaces between classes
· Using interfaces with procedures
· Implementing IUnknown
· TInterfacedObject
· Using the as operator
· Reusing code and delegation
· Using implements for delegation
· Aggregation
· Memory management of interface objects
· Using reference counting
· Not using reference counting
· Using interfaces in distributed applications
· Working with strings
· Character types
· String types

· Short strings
· Long strings
· WideString
· PChar types
· OpenString
· Runtime library string handling routines
· Wide character routines
· Commonly used long string routines
· Declaring and initializing strings
· Mixing and converting string types
· String to PChar conversions
· String dependencies
· Returning a PChar local variable
· Passing a local variable as a PChar
· Compiler directives for strings
· Strings and characters: related topics
· Working with files
· Manipulating files
· Deleting a file
· Finding a file
· Changing file attributes
· Renaming a file
· File date-time routines
· Copying a file
· File types with file I/O
· Using file streams
· Creating and opening files
· Using the file handle
· Reading and writing to files
· Reading and writing strings
· Seeking a file
· File position and size
· Copying
· Defining new data types

Developing the application user interface
Related topic groups
· Developing the application user interface: Overview
· Understanding TApplication, TScreen, and TForm
· Using the main form
· Adding additional forms
· Linking forms
· Avoiding circular unit references
· Working at the application level
· Handling the screen
· Managing layout
· Working with messages
· More details on forms
· Controlling when forms reside in memory
· Displaying an auto-created form
· Creating forms dynamically
· Creating modeless forms such as windows
· Using a local variable to create a form instance
· Passing additional arguments to forms
· Retrieving data from forms
· Retrieving data from modeless forms
· Retrieving data from modal forms
· Reusing components and groups of components
· Creating and using component templates
· Working with frames
· Creating frames
· Using and modifying frames
· Creating frames
· Creating and managing menus
· Opening the Menu Designer
· Building menus
· Naming menus
· Naming the menu items
· Adding, inserting, and deleting menu items
· Adding separator bars
· Specifying accelerator keys and keyboard shortcuts
· Creating submenus
· Creating submenus by demoting existing menus
· Moving menu items
· Adding images to menu items
· Viewing the menu
· Editing menu items in the Object Inspector
· Using the Menu Designer context menu

· Commands on the context menu
· Switching between menus at design time
· Using menu templates
· Saving a menu as a template
· Naming conventions for template menu items and event handlers
· Manipulating menu items at runtime
· Merging menus
· Specifying the active menu: Menu property
· Determining the order of merged menu items: GroupIndex property
· Importing resource files
· Designing toolbars and cool bars
· Adding a toolbar using a panel component
· Adding a speed button to a panel
· Assigning a speed button's glyph
· Setting the initial condition of a speed button
· Creating a group of speed buttons
· Allowing toggle buttons
· Adding a toolbar using the toolbar component
· Adding a tool button
· Assigning images to tool buttons
· Setting tool button appearance and initial conditions
· Creating groups of tool buttons
· Allowing toggled tool buttons
· Adding a cool bar component
· Setting the appearance of the cool bar
· Responding to clicks
· Assigning a menu to a tool button
· Adding hidden toolbars
· Hiding and showing toolbars
· Using action lists
· Action objects
· Using Actions
· Centralizing code
· Linking properties
· Executing actions
· Updating actions
· Pre-defined action classes
· Standard edit actions
· Standard Window actions
· Standard Help actions
· DataSet actions
· Writing action components
· How actions find their targets

· Registering actions
· Writing action list editors
· Demo programs

Working with controls
Related topic groups
· Implementing drag-and-drop in controls
· Ending a drag operation
· Implementing drag-and-dock in controls
· Making a windowed control a docking site
· Making a control a dockable child
· Controlling how child controls are docked
· Controlling how child controls are undocked
· Controlling how child controls respond to drag-and-dock operations
· Working with text in controls
· Setting text alignment
· Adding scroll bars at runtime
· Adding the Clipboard object
· Selecting text
· Selecting all text
· Cutting, copying, and pasting text
· Deleting selected text
· Disabling menu items
· Providing a pop-up menu
· Handling the OnPopup event
· Adding graphics to controls
· Setting the owner-draw style
· Adding graphical objects to a string list
· Adding images to an application
· Adding images to a string list
· Drawing owner-drawn items
· Sizing owner-draw items
· Drawing each owner-draw item

Working with graphics
Related topic groups
· Working with graphics and multimedia
· Overview of graphics programming
· Refreshing the screen
· Types of graphic objects
· Common properties and methods of Canvas
· Using the properties of the Canvas object
· Using pens
· Changing the pen color
· Changing the pen width
· Changing the pen style
· Changing the pen mode
· Getting the pen position
· Using brushes
· Changing the brush color
· Changing the brush style
· Setting the Brush Bitmap property
· Reading and setting pixels
· Using Canvas methods to draw graphic objects
· Drawing lines and polylines
· Drawing lines
· Drawing polylines
· Drawing shapes
· Drawing rectangles and ellipses
· Drawing rounded rectangles
· Drawing polygons
· Handling multiple drawing objects in your application
· Keeping track of which drawing tool to use
· Changing the tool with speed buttons
· Using drawing tools
· Drawing shapes
· Sharing code among event handlers
· Drawing on a graphic
· Making scrollable graphics
· Adding an image control
· Placing the control
· Setting the initial bitmap size
· Drawing on the bitmap
· Loading and saving graphics files
· Loading a picture from a file
· Saving a picture to a file
· Replacing the picture

· Using the Clipboard with graphics
· Copying graphics to the Clipboard
· Cutting graphics to the Clipboard
· Pasting graphics from the Clipboard
· Rubber banding example
· Responding to the mouse
· What's in a mouse event
· Responding to a mouse-down action
· Responding to a mouse-up action
· Responding to a mouse move
· Adding a field to a form object to track mouse actions
· Refining line drawing
· Tracking the origin point
· Tracking movement
· Working with multimedia

Working with multimedia
Related topic groups
· Adding silent video clips to an application
· Example of adding silent video clips
· Adding audio and/or video clips to an application
· Example of adding audio and/or video clips

Writing multi-threaded applications
Related topic groups
· Using threads: Overview
· Defining thread objects
· Initializing the thread
· Writing the thread function
· Using the main VCL thread
· Using thread-local variables
· Checking for termination by other threads
· Writing clean-up code
· CoordinatingThreads
· Avoiding simultaneous access
· Locking objects
· Using critical sections
· Using the multi-read exclusive-write synchronizer
· Waiting for other threads
· Waiting for a thread to finish executing
· Waiting for a task to be completed
· Executing thread objects
· Overriding the default priority
· Starting and stopping threads
· Using threads in distributed applications
· Using threads in message-based servers
· Using threads with distributed objects
· Debugging multi-threaded applications

Working with packages and components
Related topic groups
· Working with packages and components: Overview
· Why use packages?
· Packages and standard DLLs
· Runtime packages
· Using packages in an application
· Dynamically loading packages
· Deciding which runtime packages to use
· Custom packages
· Design-time packages
· Installing component packages
· Creating and editing packages
· Creating a package
· Editing an existing package
· Editing package source files manually
· Understanding the structure of a package
· Compiling packages
· Package-specific compiler directives
· Weak packaging
· Using the command-line compiler and linker
· Package files created by a successful compilation
· Deploying packages
· Package collection files

Creating international applications
Related topic groups
· Creating international applications: Overview
· Internationalization and localization
· Internationalization
· Localization
· Internationalizing applications
· Enabling application code
· Character sets
· OEM and ANSI character sets
· Double byte character sets
· Wide characters
· Including bi-directional functionality in applications
· Bi-directional properties
· ParentBiDiMode property
· FlipChildren method
· Additional methods
· Locale-specific features
· Designing the user interface
· Text
· Graphic images
· Formats and sort order
· Keyboard mappings
· Isolating resources
· Creating resource DLLs
· Using resource DLLs
· Dynamic switching of resource DLLs
· Localizing applications

Deploying applications
Related topic groups
· Deploying applications: Overview
· Deploying general applications
· Using installation programs
· Identifying application files
· Application files, listed by file name extension
· Package files
· ActiveX controls
· Helper applications
· DLL locations
· Deploying database applications
· Providing the database engine
· Borland Database Engine
· Third-party database engines
· SQL Links
· Multi-tiered Distributed Application Services (MIDAS)
· Deploying Web applications
· Programming for varying host environments
· Screen resolutions and color depths
· Considerations when not dynamically resizing
· Considerations when dynamically resizing forms and controls
· Accommodating varying color depths
· Fonts
· Windows versions
· Software license requirements

Link not found
The topic you requested is either not available or not linked to this Help system. This can occur if you
launched this Help file from a system on which Delphi has not yet been installed, or if the subject matter
you are requesting is not available in your edition of Delphi.

The topic you requested is now loading. If it does not appear within a few seconds, the topic is either not
available or not linked to this Help system. This can occur if you launched this Help file from a system on
which Delphi has not yet been installed, or if the subject matter you are requesting is not available in
your edition of Delphi.

