
TAppServerStub
Hierarchy Properties Methods See also

TAppServerStub is the stub class for a CORBA data module.

Unit
corbastd

Description
The CORBA Data Module Wizard adds code to define and register a descendant of TAppServerStub
that can marshal code to a CORBA data module.
Applications do not instantiate stub objects directly. Instead, the CORBA connection component creates
a stub object for the data module and assigns its interface to the AppServer property.

TAppServerStub properties
TAppServerStub Alphabetically Legend

Derived from TInterfacedObject
RefCount

TAppServerStub properties
TAppServerStub By object Legend

RefCount

TAppServerStub methods
TAppServerStub Alphabetically

In TAppServerStub
AS_ApplyUpdates
AS_DataRequest
AS_Execute
AS_GetParams
AS_GetProviderNames
AS_GetRecords
AS_RowRequest

Derived from TCorbaStub
Create
Destroy

Derived from TInterfacedObject
BeforeDestruction

Derived from TObject
AfterConstruction
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
SafeCallException

TAppServerStub methods
TAppServerStub By object

AfterConstruction
AS_ApplyUpdates
AS_DataRequest
AS_Execute
AS_GetParams
AS_GetProviderNames
AS_GetRecords
AS_RowRequest
BeforeDestruction
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
Create
DefaultHandler
Destroy
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
SafeCallException

TAppServerStub.AS_ApplyUpdates
TAppServerStub See also

Applies updates received from a client dataset using a specified provider.
function AS_ApplyUpdates (const ProviderName: (*VT_8:0*)WideString; Delta:
(*VT_12:0*)OleVariant; MaxErrors: (*VT_3:0*)Integer; out ErrorCount:
(*VT_3:0*)Integer; var OwnerData: (*VT_12:0*)OleVariant):
(*VT_12:0*)OleVariant; safecall;

Description
AS_ApplyUpdates marshals IAppserver’s AS_Updates method.
ProviderName specifies the name of the provider component that manages the update operation. Delta
is a Variant containing the updated, inserted, and deleted records to write to the database. MaxErrors
indicates the maximum number of errors to permit before stopping the update operation; ErrorCount
indicates the actual number of errors encountered during the update operation. OwnerData is
information supplied by the client application in a BeforeApplyUpdates event handler and returned to the
client application in an AfterApplyUpdates event handler. It is passed to the provider’s
BeforeApplyUpdates event handler and returned from the provider’s AfterApplyUpdates event handler.
AS_ApplyUpdates returns a Variant that is a data packet containing all records that could not be applied
to the database.

TAppServerStub.AS_DataRequest
TAppServerStub See also

Generates an OnDataRequest event on the specified provider component.
function AS_DataRequest (const ProviderName: (*VT_8:0*)WideString; Data:
(*VT_12:0*)OleVariant): (*VT_12:0*)OleVariant; safecall;

Description
AS_DataRequest marshals IAppServer’s AS_DataRequest method. This method allows application
developers to customize the communication between a client application and a provider component.
There is no predefined meaning for the Data parameter or the return value.

TAppServerStub.AS_Execute
TAppServerStub See also

Executes the query or stored procedure bound to a specified provider.
procedure AS_Execute (const ProviderName: (*VT_8:0*)WideString; const
CommandText: (*VT_8:0*)WideString; var Params: (*VT_12:0*)OleVariant; var
OwnerData: (*VT_12:0*)OleVariant); safecall;

Description
AS_Execute marshals IAppserver’s AS_Execute method. AS_Execute calls the Execute method of the
specified provider after assigning any parameters. Output parameters that result from executing a query
or stored procedure are returned in the Params parameter.

The ProviderName parameter specifies the name of the provider component associated with the query or
stored procedure.
The CommandText parameter includes any SQL statement that overrides the query or stored procedure
that would otherwise be executed. This statement is executed only if the specified provider includes
poAllowCommandText in its Options property.
The Params parameter encodes any parameters expected by the query or stored procedure and returns
any output parameters.
The OwnerData parameter contains custom information that appears as an argument to the provider’s
BeforeExecute and AfterExecute event handlers. This information originates in a client dataset’s
BeforeExecute event handler. The value returned in OwnerData is passed to the client dataset’s
AfterExecute event handler.

TAppServerStub.AS_GetParams
TAppServerStub See also

Fetches current parameter values from the dataset bound to a specified provider.

function AS_GetParams (const ProviderName: (*VT_8:0*)WideString; var OwnerData:
(*VT_12:0*)OleVariant): (*VT_12:0*)OleVariant; safecall;Description
AS_GetParams marshals IAppServer’s AS_GetParams method.

The ProviderName parameter specifies the name of the provider component whose dataset has the
parameters. The OwnerData represents custom information that originates in a client dataset’s
BeforeGetParams event handler and returns information that is passed tot he client dataset’s
AfterGetParams event handler.
AS_GetParams returns the parameters, encoded as a Variant array. If the dataset has no parameters, or
if the provider does not support parameter fetching, AS_GetParams returns a Null Variant.
AS_GetParams should not be used to retrieve output parameters from stateless application servers,
because parameter values may be changed by other applications. When writing a stateless application
server, obtain output parameters using the AS_Execute method handler instead.

TAppServerStub.AS_GetProviderNames
TAppServerStub See also

Returns a list of all the available providers on the remote data module.
function AS_GetProviderNames : (*VT_12:0*)OleVariant; safecall;
Description
AS_GetProviderNames marshals IAppServer’s AS_GetProviderNames method. It returns a list of all
providers available from a remote data module. These values indicate the possible values for the
ProviderName property of a client dataset that connects to the remote data module. When calling any of
the AS_XXXX methods, pass one of these names to indicate the provider that is the target of the
method call.
AS_GetProviderNames returns the names of the providers in a Variant array. Client datasets are
associated with a provider by setting their ProviderName property to one of these names.
Warning: AS_GetProviderNames returns a list that can include providers that are not exported. If a

provider in the list has its Exported property set to False, trying to use that provider over an
IAppServer interface results in an exception.

TAppServerStub.AS_GetRecords
TAppServerStub See also

Returns a data packet that contains the specified data.

function AS_GetRecords (const ProviderName: (*VT_8:0*)WideString; Count: (*VT_3:0*)Integer;
out RecsOut: (*VT_3:0*)Integer; Options: (*VT_3:0*)Integer; const CommandText:
(*VT_8:0*)WideString; var Params: (*VT_12:0*)OleVariant; var OwnerData: (*VT_12:0*)OleVariant):
(*VT_12:0*)OleVariant; safecall;Description
AS_GetRecords marshals IAppServer’s AS_GetRecords method. It returns the requested records,
starting with the current record of the provider’s dataset. When working with a stateless remote data
module, you may need to reposition the cursor or re-execute a query or stored procedure in the
provider’s BeforeGetRecords event handler.
ProviderName gives the name of the provider component that provides the records.
Count indicates the number or type of records to retrieve. If Count is -1, all records are retrieved. If
Count is 0, only metadata is retrieved. If Count is greater than 0, only Count records are retrieved.
RecsOut returns the actual number of records retrieved.
Options indicates what information should be added to the data packet in addition to data. It is an
integer version of the TGetRecordOptions type. To convert the TGetRecordOptions value to the
appropriate integer, use the Ord function. For example:
Ord(grMetaData) + Ord(grXML)

CommandText is an SQL statement that overrides the provider’s default method for obtaining data. The
provider’s dataset generates its records using CommandText instead of its default mechanism. This
allows clients to override the SQL statement of a query or stored procedure on the server.
CommandText is only used if the provider’s options include poAllowCommandText.
Params is a Variant containing any parameters that should be passed to the provider’s dataset before it
executes to generate the requested data. It returns any output parameters.
OwnerData contains custom information that is supplied by a client dataset’s BeforeGetRecords event
handler. This information is passed to the provider’s BeforeGetRecords event handler. OwnerData
returns information supplied by the provider’s AfterGetRecords event handler.
Records are returned as a data packet in a Variant.

TAppServerStub.AS_RowRequest
TAppServerStub See also

Returns information from a specified record of the provider’s dataset.

function AS_RowRequest (const ProviderName: (*VT_8:0*)WideString; Row:
(*VT_12:0*)OleVariant; RequestType: (*VT_3:0*)Integer; var OwnerData: (*VT_12:0*)OleVariant):
(*VT_12:0*)OleVariant; safecall;Description
AS_RowRequest marshals IAppServer’s AS_RowRequest method.
The ProviderName parameter indicates the provider associated with the dataset from which information
should be fetched.
The Row parameter is an OleVariant that describes the current record on the client dataset.
The RequestType parameter indicates the type of information required. It is an integer version of the
TFetchOptions type. (An integer because the value must be compatible with a COM interface). To
convert the TFetchOptions value to the appropriate integer, use the Ord function. For example:
Ord(foBlobs) + Ord(foDetails);
OwnerData contains custom information that is supplied by a client dataset’s BeforeRowRequest event
handler. This information is passed to the provider’s BeforeRowRequest event handler. OwnerData
returns custom information supplied by the provider’s AfterRowRequest event handler.
The requested data is returned as a delta packet.

Accessibility
Read-only

Hierarchy

TObject

TInterfacedObject

TCorbaStub

TCorbaDispatchStub

TAppServerSkeleton
Hierarchy Properties Methods See also

TAppServerSkeleton is the skeleton class for a CORBA data module.

Unit
corbastd

Description
The CORBA Data Module Wizard adds code to define and register a descendant of
TAppServerSkeleton. The data broker skeleton receives incoming interface calls, unmarshals
parameters, forwards the call to a CORBA data module, and then marshals any return values.
Applications do not instantiate skeleton objects directly. A CORBA factory object creates the skeleton
when it is needed.

TAppServerSkeleton properties
TAppServerSkeleton Alphabetically Legend

Derived from TInterfacedObject
RefCount

TAppServerSkeleton properties
TAppServerSkeleton By object Legend

RefCount

TAppServerSkeleton methods
TAppServerSkeleton Alphabetically Legend

In TAppServerSkeleton
Create
GetImplementation

Derived from TCorbaSkeleton
Destroy

Derived from TInterfacedObject
BeforeDestruction

Derived from TObject
AfterConstruction
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
SafeCallException

TAppServerSkeleton methods
TAppServerSkeleton By object Legend

AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
Create
DefaultHandler
Destroy
Dispatch
FieldAddress
Free
FreeInstance
GetImplementation
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
SafeCallException

TAppServerSkeleton.Create
TAppServerSkeleton See also

Creates an instance of TAppServerSkeleton to represent a CORBA data module.
constructor Create(const InstanceName: string; const Impl: IUnknown);
override;

Description
Do not directly instantiate TAppServerSkeleton objects. They are created by the associated CORBA
factory.
The InstanceName parameter specifies an optional name for the CORBA skeleton instance. The Impl
parameter is the interface of an instance of a TCorbaDataModule descendant.
The data broker skeleton passes interface calls on to the Impl interface after unmarshaling parameters
and then marshals any return values.

TAppServerSkeleton.GetImplementation
TAppServerSkeleton See also

Returns an interface for the associated CORBA data module.
type IObject = System.IUnknown;
procedure GetImplementation(out Impl: IObject); override; stdcall;
Description
Use GetImplementation to obtain an interface for the CORBA data module instance that actually
handles interface calls marshaled by this TAppServerSkeleton.

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TInterfacedObject

TCorbaSkeleton

TBOA
Hierarchy Methods See also

TBOA represents the CORBA Basic Object Adaptor.

Unit
corbaobj

Description
TBOA is the type of the global BOA variable. Applications do not instantiate TBOA objects. Instead, they
use the global BOA variable to communicate with CORBA using the Basic Object Adaptor.
TBOA introduces methods to indicate when clients can call the CORBA server application and to fetch
principal data sent to the server from client applications.

TBOA methods
TBOA Alphabetically

In TBOA
Deactivate
GetPrincipal
ImplIsReady
Initialize
ObjIsReady

Derived from TObject
AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
Create
DefaultHandler
Destroy
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
SafeCallException

TBOA methods
TBOA By object

AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
Create
Deactivate
DefaultHandler
Destroy
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
GetPrincipal
ImplIsReady
InheritsFrom
Initialize
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
ObjIsReady
SafeCallException

TBOA.Deactivate
TBOA See also

Makes an object instance unavailable to CORBA clients.
procedure Deactivate(const Obj: IObject);
Description
Call Deactivate to deactivate an object that was made available using the ObjIsReady method. Calling
Deactivate removes the object from the Smart Agent’s list of objects offered by the application.
The Obj parameter is the interface of the skeleton object that is deactivated.

TBOA.GetPrincipal
TBOA See also

Returns a TCorbaPrincipal value for an object.
type TCorbaPrincipal = array of Byte;
function GetPrincipal(const Obj: IObject): TCorbaPrincipal;
Description
A TCorbaPrincipal represents information about client applications that are making operation requests
on an object implementation. Client applications set this value using the CORBA stub’s SetPrincipal
method. Use GetPrincipal in the server application to read this information.
The Obj parameter is the interface of the CORBA server object to which the Principal was written. This
is the object represented by the stub object whose SetPrincipal method wrote the information.

TBOA.ImplIsReady
TBOA See also

Allows the server application to begin receiving messages.
procedure ImplIsReady;
Description
Call ImplIsReady when the CORBA console application is ready to receive messages from clients.
When a CORBA server application starts up, it instantiates the objects that receive messages from
clients, calling ObjIsReady for each object when it is instantiated. When the BOA is informed about all
objects that are instantiated at startup, console applications must call ImplIsReady to allow the
application to receive messages.
Windows applications should not call ImplIsReady because the windows message loop serves the same
purpose.

TBOA.Initialize
TBOA

Sends startup options to the CORBA Basic Object Adaptor.
type
 TArgv = array of string;
 TCommandLine = TArgv;
class procedure Initialize(const CommandLine: TCommandLine);
Description
CORBA server applications call Initialize to indicate options such as the desired thread policy or the
TCP/IP port number to be used. Appropriate values are sent automatically when the CORBA application
is created using a CORBA Wizard.
To create a set of options to send to the BOA, treat the CommandLine parameter like a dynamic array.
Use code such as the following to set options:
SetLength(CommandLine, 2);
CommandLine[0] := '-OAconnectionMax 100';
CommandLine[1] := '-OAid TSession';
The following table summarizes the possible options:

Option Purpose
OAConnectionMax The maximum number of connections (only applies when -OAid TSession is

selected.)
OAconnectionMaxIdle The time (in seconds) which a connection can be idle without any trafic.

Connections that idle beyond this time are shut down by VisiBroker.
OAid The thread policy for multithreaded servers. This value is TSession (where each

client has a dedicated thread), or TPool (where a single client can use multiple
threads and clients can reuse threads after other clients have finished with them.)

OAipAddr The host name or IP address of the BOA. Use this option if the server machine
has multiple network interfaces and the BOA is associated with only one.

OALocalIPC The inter-process communication method. When this value is 1, clients on the
same host as the server application use the same shared memory space. When
this value is 0, sockets are always used.

OAPort The port number which the BOA uses to listen for new connections.
OArcvbufsize The size of the buffer (in bytes) used to receive messages.
OAsendbufsize The size of the buffer (in bytes) used to send messages.
OAtcpNoDelay The policy on sending requests. If this value is 1, sockets immediately send

requests. If this value is 0, sockets send requests in batches as buffers fill.
OAThreadMax The maximum number of threads. (only applies when -OAid TPool is selected.)
OAThreadMaxIdle The time (in seconds) which a thread can exist without servicing any requests.
OAThreadStackSize The maximum thread stack size (in bytes). (only applies when -OAid TPool is

selected.)

TBOA.ObjIsReady
TBOA See also

Informs the Basic Object Adaptor when an object is instantiated.
procedure ObjIsReady(const Obj: IObject);
Description
When a CORBA server application starts up, it instantiates the objects that receive messages from
clients, calling ObjIsReady after each object is instantiated.
The Obj parameter is an interface to the skeleton class for the object that receives client messages.
Note: In CORBA applications created by the CORBA Wizards, ObjIsReady is called automatically for

the CORBA factory objects.

Hierarchy

TObject

TCorbaComObjectFactory
Hierarchy Properties Methods See also

TCorbaComObjectFactory creates a COM object in response to a request from a CORBA client.

Unit
comcorba

Description
When a developer right-clicks an Automation server and selects Expose As Corba Object, a
TCorbaComObjectFactory is automatically added to the server application. This acts like a
TCorbaObjectFactory object, except that it creates an instance of a COM object as the CORBA
implementation object.
By using a CORBA COM object Factory, the server can respond to requests by CORBA clients as well
as COM clients.

TCorbaComObjectFactory properties
TCorbaComObjectFactory Alphabetically Legend

In TCorbaComObjectFactory
ImplementationClass

Derived from TCorbaFactory
InstanceName

Instancing
InterfaceName
RepositoryID
ThreadModel

Derived from TInterfacedObject
RefCount

TCorbaComObjectFactory properties
TCorbaComObjectFactory By object Legend

ImplementationClass
InstanceName
Instancing
InterfaceName
RefCount
RepositoryID
ThreadModel

TCorbaComObjectFactory.ImplementationClass
TCorbaComObjectFactory Methods See also

Indicates the class of the object which implements the associated interface.
type TComClass = class of TComObject;
property ImplementationClass: TComClass;
Description
ImplementationClass specifies the class that implements the Interface for which the factory creates
objects. This is the COM object, not the corresponding skeleton.

TCorbaComObjectFactory methods
TCorbaComObjectFactory Alphabetically

In TCorbaComObjectFactory
Create

Derived from TCorbaFactory
Destroy

Derived from TInterfacedObject
BeforeDestruction

Derived from TObject
AfterConstruction
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
SafeCallException

TCorbaComObjectFactory methods
TCorbaComObjectFactory By object

AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
Create
DefaultHandler
Destroy
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
SafeCallException

TCorbaComObjectFactory.Create
TCorbaComObjectFactory Methods See also

Creates an instance of TCorbaComObjectFactory associated with a specified server interface.
type
 TComClass = class of TComObject;
 TCORBAInstancing = (iSingleInstance, iMultiInstance);
 TCorbaThreadModel = (tmMultiThreaded, tmSingleThread);
constructor Create(const InterfaceName, InstanceName, RepositoryId: string;
const ImplGUID: TGUID; ImplementationClass: TComClass; Instancing:
TCorbaInstancing = iMultiInstance; ThreadModel: TCorbaThreadModel =
tmSingleThread);

Description
A call to the constructor for TCorbaComObjectFactory is automatically added to server applications
when the developer exposes a COM automation server as a CORBA object.
The InterfaceName parameter specifies the name of the factory’s interface (not the name of the
interface for which the factory creates objects).
The InstanceName parameter specifies an instance identifier that is used by client applications to locate
a specific factory instance.
The RepositoryId parameter specifies the CORBA Repository ID of the factory. This string has the form
‘IDL:Modulename/FactoryInterfaceName:1.0’.
The ImplGUID parameter specifies the interface type (or GUID) for which the factory creates object
instances.
The ImplementationClass parameter specifies the class that implements ImplGUID. This is the COM
implementation class, not the corresponding skeleton class.
The Instancing parameter indicates whether the factory creates a single object instance that all CORBA
clients share, or whether the factory creates a separate instance for each CORBA client.
The ThreadModel parameter indicates whether the ORB should serialize calls to a single factory
instance or whether multiple clients can call the same factory simultaneously on multiple threads.

Accessibility
Read-only

Hierarchy

TObject

TInterfacedObject

TCorbaFactory

TCorbaDispatchStub
Hierarchy Properties Methods See also

TCorbaDispatchStub is the base class for all automatically generated CORBA stub objects.

Unit
corbaobj

Description
TCorbaDispatchStub is the base class for automatically generated stub objects. It adds a (protected)
dummy implementation of the IDispatch interface to the properties and methods inherited from
TCorbaStub. This dummy implementation is provided so that CORBA server applications can use the
Type Library editor to define CORBA interfaces.
Do not use TCorbaDispatchStub when defining custom stub objects. Instead, use TCorbaStub, which
does not support an unused IDispatch interface. For details on how to define custom stub objects, see
the TCorbaStub documentation.
Applications do not instantiate stub objects directly. Instead, the stub object is registered with the global
stub manager. The code to register automatically generated stub objects is added to the _TLB unit when
a server interface is defined. When the client application needs an interface for the CORBA server, it
calls the CreateInstance method of the automatically generated CORBA stub factory.

TCorbaDispatchStub properties
TCorbaDispatchStub Alphabetically Legend

Derived from TInterfacedObject
RefCount

TCorbaDispatchStub properties
TCorbaDispatchStub By object Legend

RefCount

TCorbaDispatchStub methods
TCorbaDispatchStub Alphabetically

Derived from TCorbaStub
Create
Destroy

Derived from TInterfacedObject
BeforeDestruction

Derived from TObject
AfterConstruction
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
SafeCallException

TCorbaDispatchStub methods
TCorbaDispatchStub By object

AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
Create
DefaultHandler
Destroy
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
SafeCallException

Accessibility
Read-only

Hierarchy

TObject

TInterfacedObject

TCorbaStub

CorbaFactoryCreateStub Example
This example shows how to use CorbaFactoryCreateStub to obtain an interface for a CORBA server
object.
var
 TheServerObject: IMyServerObject;
begin
 TheServerObject :=
CorbaFactoryCreateStub('IDL:MyServer/MyServerObjectFactory:1.0',
'MyServerFactory', 'Instance1', '',IMyServerObject) as IMyServerObject;

 ...

BindStub, CreateStub Example
This example shows how to use BindStub to obtain an interface for a CORBA server object. After
obtaining an interface for the server object, it calls the CORBA stub manager to create a stub object for
marshaling interface calls. The client application should use StubIntf to talk to the server so that the stub
class can handle the marshaling.
var
 ServerIntf: IStub;
 StubIntf: IObject;
begin
 BindStub(PChar(Pointer('IDL:ServerIntf/MyObject:1.0')),
PChar(Pointer('AnInstanceName')), PChar(Pointer('')), ORB, 0, ServerIntf);

 StubIntf := CORBAStubManager.CreateStub(IMyObject, ServerIntf);
...

CorbaBind, RegisterInterface Example
This example uses late (DII) binding to update the salary information of an employee named in Edit1.
Edit2 is an edit control that indicates the percentage raise.
var
 HR, Emp, Payroll, Salary: TAny;
begin
 HR := CorbaBind('IDL:CompanyInfo/HR:1.0');
 Emp := HR.LookupEmployee(Edit1.Text);
 Payroll := CorbaBind('IDL:CompanyInfo/Payroll:1.0');
 Salary := Payroll.GetEmployeeSalary(Emp);
 Payroll.SetEmployeeSalary(Emp, Salary + (Salary * StrToInt(Edit2.Text) /
100));

end;
Note: Before you can use CorbaBind, the relationship between each Repository ID and its interface

type must be registered with the global CorbaInterfaceIDManager:
CorbaInterfaceIDManager.RegisterInterface(IHR, 'IDL:CInfo/HR:1.0');
CorbaInterfaceIDManager.RegisterInterface(IPayroll,
'IDL:CInfo/Payroll:1.0');

ObjectToString, StringToObject Example
This example uses the global ORB variable to convert CORBA stub interfaces to strings that can be
displayed to the user and strings chosen by the user to stub interfaces. The following code displays the
names of three objects in a list box, given interface instances for their corresponding stub objects.
var
 Dept1, Dept2, Dept3: IDepartment;
begin
 Dept1 := TDepartmentFactory.CreateInstance('Sales');
 Dept1.SetDepartmentCode(120);
 Dept2 := TDepartmentFactory.CreateInstance('Marketing');
 Dept2.SetDepartmentCode(98);
 Dept3 := TSecondFactory.CreateInstance('Payroll');
 Dept3.SetDepartmentCode(49);
 ListBox1.Items.Add(ORB.ObjectToString(Dept1));
 ListBox1.Items.Add(ORB.ObjectToString(Dept2));
 ListBox1.Items.Add(ORB.ObjectToString(Dept3));
end;
The advantage of letting the ORB create strings for your objects is that you can use the StringToObject
method to reverse this procedure:
var
 Dept: IDepartment;
begin
 Dept := ORB.StringToObject(ListBox1.Items[ListBox1.ItemIndex]);
 ... { do something with the selected department }

Bind, FindTypeCode, MakeStructure Example
This example uses the dynamic invocation interface (DII) to update an employee’s salary using objects
on a CORBA server. The FindTypeCode method obtains a description of the EmployeeName record (a
CORBA structure consisting of first and last name), and the MakeStructure method creates the
appropriate TAny value for a method that takes this structure as a parameter.
var
 HR, Name, Emp, Payroll, Salary: TAny;
begin
 with ORB do
 begin
 HR := Bind('IDL:CInfo/HR:1.0'); { bind to HR object }
 { create a TAny record describing the employee }
 Name := MakeStructure(FindTypeCode('IDL:CInfo/EmployeeName:1.0',
 [Edit1.Text, Edit2.Text]));
 Emp := HR.LookupEmployee(Name); { use DII to get Employee object }
 Payroll := Bind('IDL:CInfo/Payroll:1.0'); { bind to Payroll object }
 end;
 Salary := Payroll.GetEmployeeSalary(Emp); { look up current salary }
 { apply percentage increase from Edit3 and update salary }
 Payroll.SetEmployeeSalary(Emp,
 Salary + (Salary * StrToInt(Edit3.Text)/ 100));
end;

GetStub, CreateRequest, PutLong, Invoke, GetLong Example
This example shows how a stub object implements an interface call using its IStub interface to obtain
marshaling buffers.
function TMyStub.AddTwoNums(Param1, Param2: Integer): Integer;
var
 OutBuf: IMarshalOutBuffer;
 InBuf: IMarshalInBuffer;
 TheStub: IStub;
begin
 GetStub(TheStub);
 TheStub.CreateRequest('AddTwoNums', 1, OutBuf);
 OutBuf.PutLong(Param1);
 OutBuf.PutLong(Param2);
 TheStub.Invoke(OutBuf, InBuf);
 Result := InBuf.GetLong;
end;

UnmarshalObject, UnmarshalText Example
This example shows how to use UnmarshalObject to obtain the interface for an object that was returned
by a CORBA interface method.
function TLocalStub.GetASubObj(out ObjName: string): ISubObj;
var
 OutBuf: IMarshalOutBuffer;
 InBuf: IMarshalInBuffer;
 StubIntf: IStub;
begin
 GetStub(StubIntf);
 StubIntf.CreateRequest('GetASubObj', 1, OutBuf);
 StubIntf.Invoke(OutBuf, InBuf);
 Result := UnmarshalObject(InBuf, ISubObj) as ISubObj;
 ObjName := UnmarshalText(InBuf); { parameters come after return value }
end;

TCorbaFactory
Hierarchy Properties Methods See also

TCorbaFactory is the base class for objects instantiated remotely by the global CorbaBind function.

Unit
corbaobj

Description
TCorbaFactory descendants are created remotely by CORBA client applications when they call the
global CorbaBind function.

Interfaces
TCorbaFactory implements the ISkeletonObject interface.

TCorbaFactory properties
TCorbaFactory Alphabetically Legend

In TCorbaFactory
InstanceName

Instancing
InterfaceName
RepositoryID
ThreadModel

Derived from TInterfacedObject
RefCount

TCorbaFactory properties
TCorbaFactory By object Legend

InstanceName
Instancing
InterfaceName
RefCount
RepositoryID
ThreadModel

TCorbaFactory.InstanceName
TCorbaFactory Methods See also

Indicates the InstanceName for this factory.
property InstanceName: string;
Description
InstanceName is an optional identifier provided by client applications to identify this factory instance. It is
passed to the CORBA factory constructor.

TCorbaFactory.Instancing
TCorbaFactory Methods See also

Indicates whether the factory creates an object instance for each CORBA client, or only a single object
instance that handles all clients.
type TCorbaInstancing = (iSingleInstance, iMultiInstance);
property Instancing: TCorbaInstancing;
Description
Read Instancing to determine the instancing model specified when the CORBA factory was created.
When Instancing is iSingleInstance, the CORBA factory creates a single, shared object instance that
handles all clients. When Instancing is iMultiInstance, the CORBA factory creates a separate object
instance for each client.

TCorbaFactory.InterfaceName
TCorbaFactory Methods See also

Indicates the name of the factory’s interface.
property InterfaceName: string;
Description
Read Interfacename to determine the name of the factory’s interface as it appears in the IDL
specification. This value is assigned when the CORBA factory is created.

TCorbaFactory.RepositoryID
TCorbaFactory Methods See also

Indicates the factory’s Repository ID.
property RepositoryID: string;
Description
Read RepositoryID to determine the factory’s Repository ID. This value is assigned when the CORBA
factory is created.

TCorbaFactory.ThreadModel
TCorbaFactory Methods See also

Indicates the threading model supported by the CORBA server.
type TCorbaThreadModel = (tmMultiThreaded, tmSingleThread);
property RepositoryID: string;
Description
Read ThreadModel to determine what thread model the Orb uses when calling the CORBA factory and
the objects it creates. When ThreadModel is tmMultiThreaded, object instances can receive calls from
multiple clients simultaneously on separate threads. When ThreadModel is tmSingleThread, each object
instance is guaranteed to receive only one interface call at a time (although other objects in the server
application may be servicing calls on other threads).

TCorbaFactory methods
TCorbaFactory Alphabetically

In TCorbaFactory
Create
Destroy

Derived from TInterfacedObject
BeforeDestruction

Derived from TObject
AfterConstruction
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
SafeCallException

TCorbaFactory methods
TCorbaFactory By object

AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
Create
DefaultHandler
Destroy
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
SafeCallException

TCorbaFactory.Create
TCorbaFactory Methods See also

Creates an instance of TCorbaFactory associated with a specified server interface.
type
 TCORBAInstancing = (iSingleInstance, iMultiInstance);
 TCorbaThreadModel = (tmMultiThreaded, tmSingleThread);
constructor Create(const InterfaceName, InstanceName, RepositoryId: string;
const ImplGUID: TGUID; Instancing: TCorbaInstancing = iMultiInstance;
ThreadModel: TCorbaThreadModel = tmSingleThread);

Description
Call Create to create an instance of TCorbaFactory that can respond to client interface calls.
The InterfaceName parameter specifies the name of the factory’s interface (not the name of the
interface for which the factory creates objects).
The InstanceName parameter specifies an instance identifier that is used by client applications to locate
a specific factory instance.
The RepositoryId parameter specifies the CORBA Repository ID of the factory. This string has the form
‘IDL:ModuleName/FactoryInterfaceName:1.0’.
The ImplGUID parameter specifies the interface type (or GUID) for which the factory creates object
instances.
The Instancing parameter indicates whether the factory creates a single object instance that is shared
by all CORBA clients, or whether the factory creates a separate instance for each CORBA client.
The ThreadModel parameter indicates whether the ORB should serialize calls to a single factory
instance or whether multiple clients can call the same factory simultaneously on multiple threads.

TCorbaFactory.Destroy
TCorbaFactory Methods

Frees an instance of TCorbaFactory.
destructor Destroy; override;
Description
Do not call the CORBA factory destructor. CORBA factories are freed automatically when they are not
needed.

Accessibility
Read-only

Hierarchy

TObject

TInterfacedObject

TCorbaInterfaceIDManager
Hierarchy Methods See also

TCorbaInterfaceIDManager keeps track of which Repository IDs represent which interfaces.

Unit
corbaobj

Description
TCorbaInterfaceIDManager is the type of the global CorbaInterfaceIDManager variable. Applications do
not create CORBA interface ID managers. Instead, they use the global CorbaInterfaceIDManager
variable to register the association between a CORBA interface and its repository ID. This registered
association is then used when an application calls the global CorbaBind function or the ORB’s Bind
method.
Note: In automatically generated stub-and-skeleton units (_TLB.pas files), the code to register

interfaces with the interface ID manager is added automatically.

TCorbaInterfaceIDManager methods
TCorbaInterfaceIDManager Alphabetically

In TCorbaInterfaceIDManager
FindGUID
FindID
RegisterInterface
SearchGUID
SearchID

Derived from TCorbaListManager
Create
Destroy

Derived from TObject
AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
SafeCallException

TCorbaInterfaceIDManager methods
TCorbaInterfaceIDManager By object

AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
Create
DefaultHandler
Destroy
Dispatch
FieldAddress
FindGUID
FindID
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
RegisterInterface
SafeCallException
SearchGUID
SearchID

TCorbaInterfaceIDManager.FindGUID
TCorbaInterfaceIDManager See also

Returns the GUID for an interface identified by its Repository ID.
function FindGUID(const RepositoryID: string): TGUID;
Description
Call FindGUID to obtain a GUID for an interface, given its Repository ID. The Repository ID parameter
specifies this Repository ID.
Note: Before FindGUID can locate the GUID for an interface, the interface must be registered.

Otherwise, FindGUID raises an ECorbaException. Use the RegisterInterface method to register
an interface.

TCorbaInterfaceIDManager.FindID
TCorbaInterfaceIDManager See also

Returns the Repository ID for an interface type.
function FindID(const IID: TGUID): string;
Description
Call FindID to obtain a Repository ID for an interface. The IID parameter specifies the GUID of the
interface (or the interface type).
Note: Before FindID can locate the Repository ID for an interface, the interface must be registered.

Otherwise, FindID raises an ECorbaException. Use the RegisterInterface method to register an
interface.

TCorbaInterfaceIDManager.RegisterInterface
TCorbaInterfaceIDManager See also Example

Registers an interface with the CORBA interface ID manager.
procedure RegisterInterface(const IID: TGUID; const RepositoryID: string);
Description
Call RegisterInterface to register the association between an interface type and its Repository ID.
Specify the interface type, or its GUID, as the IID parameter. Specify the Repository ID as the
RepositoryID parameter.
When defining interfaces in a CORBA server application, code to register the interfaces is automatically
added to the initialization section of the stub-and-skeleton unit (_TLB.pas file).
Note: Although CORBA interfaces do not use globally unique identifiers (GUIDs) for COM support, they

must still be declared using an interface identifier so that the CORBA interface ID manager can
keep track of them.

TCorbaInterfaceIDManager.SearchGUID
TCorbaInterfaceIDManager See also

Returns the GUID for an interface identified by its Repository ID.
function SearchGUID(const RepositoryID: string; out IID: TGUID): Boolean;
Description
Call SearchGUID to obtain a GUID for an interface, given its Repository ID. The Repository ID
parameter specifies this Repository ID.
If the specified Repository ID has not been registered with the interface ID manager, SearchGUID
returns False. If the specified Repository ID has been registered, SearchGUID returns True, passing the
requested GUID as the IID parameter.

TCorbaInterfaceIDManager.SearchID
TCorbaInterfaceIDManager See also

Returns the Repository ID for an interface type.
function SearchID(const IID: TGUID; out RepositoryID: string): Boolean;
Description
Call SearchID to obtain a Repository ID for an interface. The IID parameter specifies the GUID of the
interface (or the interface type).
If the specified GUID has not been registered with the interface ID manager, SearchID returns False. If
the specified GUID has been registered, SearchID returns True, passing the requested Repository ID as
the RepositoryID parameter.

Hierarchy

TObject

TCorbaListManager

TCorbaImplementation
Hierarchy Methods See also

TCorbaImplementation is the base class for classes that implement CORBA server interfaces.

Unit
corbaobj

Description
The CORBA Object Wizard defines a descendant of TCorbaImplementation to represent each object
defined in the public interface of a CORBA server application. Developers add the body to this
TCorbaImplementation descendant’s methods to create a CORBA server.
TCorbaImplementation introduces protected methods to implement the IDispatch and IUnknown
interfaces. This is because automatically defined CORBA interfaces must be descendants of IDispatch
in order to work with the Type Library editor.

TCorbaImplementation methods
TCorbaImplementation Alphabetically

In TCorbaImplementation
Create

Derived from TObject
AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Destroy
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
SafeCallException

TCorbaImplementation methods
TCorbaImplementation By object

AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
Create
DefaultHandler
Destroy
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
SafeCallException

TCorbaImplementation.Create
TCorbaImplementation See also

Creates and initializes an instance of TCorbaImplementation.
constructor Create(Controller: IObject; AFactory: TCorbaFactory); virtual;
Description
Call Create to create an instance of the CORBA implementation class.
In most cases, the Controller parameter is nil. However, if the CORBA implementation is a sub-object of
a COM-style aggregate, the Controller parameter specifies the controlling aggregate object.
When the CORBA implementation is instantiated by a factory object, the factory passes a reference to
itself as the AFactory parameter.

Hierarchy

TObject

TCorbaListManager
Hierarchy Methods See also

TCorbaListManager is the base class for classes that keep track of available CORBA classes and
interfaces.

Unit
corbaobj

Description
Do not use TCorbaListManager in applications. TCorbaListManager is intended only as a base class for
global objects in a CORBA application. It provides thread support for the global objects that manage lists
of classes and interfaces for CORBA clients and servers.

TCorbaListManager methods
TCorbaListManager Alphabetically

In TCorbaListManager
Create
Destroy

Derived from TObject
AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
SafeCallException

TCorbaListManager methods
TCorbaListManager By object

AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
Create
DefaultHandler
Destroy
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
SafeCallException

TCorbaListManager.Create
TCorbaListManager See also

Creates and initializes an instance of TCorbaListManager.
constructor Create;
Description
Most applications do not create CORBA list managers. Instead, these objects are instantiated
automatically as global variables.
Create creates a TMulitReadExclusiveWriteSynchronizer for the CORBA list manager so that it can
efficiently handle threading issues for the list it maintains.

TCorbaListManager.Destroy
TCorbaListManager See also

Frees the TCorbaListmanager instance.
destructor Destroy; override;
Description
Do not call Destroy directly in an application. Instead, call Free. Free verifies that the list manager is not
already freed, and only then calls Destroy.
Most applications do not need to create or destroy list manager instances. Instead, these objects are
available as global objects in the Corbaobj unit.

Hierarchy

TObject

TCorbaObjectFactory
Hierarchy Properties Methods See also

TCorbaObjectFactory creates a CORBA server object.

Unit
corbaobj

Description
The CORBA Object Wizard adds code to create an instance of TCorbaObjectFactory for every object
exposed in a CORBA server application. In response to requests from CORBA client applications, this
factory instance creates CORBA skeletons and implementation classes.
By using a Factory object for each CORBA server object, the CORBA server can control the lifetime of
objects that are created for a specific client and which should be freed when client’s have finished with
them.

TCorbaObjectFactory properties
TCorbaObjectFactory Alphabetically Legend

In TCorbaObjectFactory
ImplementationClass

Derived from TCorbaFactory
InstanceName

Instancing
InterfaceName
RepositoryID
ThreadModel

Derived from TInterfacedObject
RefCount

TCorbaObjectFactory properties
TCorbaObjectFactory By object Legend

ImplementationClass
InstanceName
Instancing
InterfaceName
RefCount
RepositoryID
ThreadModel

TCorbaObjectFactory.ImplementationClass
TCorbaObjectFactory Methods See also

Indicates the class of the object which implements the associated interface.
type TCorbaImplementationClass = class of TCorbaImplementation;
property ImplementationClass: TCorbaImplementationClass;
Description
ImplementationClass specifies the class that implements the Interface for which the factory creates
objects. This is the actual implementation class, not the corresponding skeleton class.

TCorbaObjectFactory methods
TCorbaObjectFactory Alphabetically

In TCorbaObjectFactory
Create

Derived from TCorbaFactory
Destroy

Derived from TInterfacedObject
BeforeDestruction

Derived from TObject
AfterConstruction
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
SafeCallException

TCorbaObjectFactory methods
TCorbaObjectFactory By object

AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
Create
DefaultHandler
Destroy
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
SafeCallException

TCorbaObjectFactory.Create
TCorbaObjectFactory Methods See also

Creates an instance of TCorbaObjectFactory associated with a specified server interface.
type
 TCorbaImplementationClass = class of TCorbaImplementation;
 TCORBAInstancing = (iSingleInstance, iMultiInstance);
 TCorbaThreadModel = (tmMultiThreaded, tmSingleThread);
constructor Create(const InterfaceName, InstanceName, RepositoryId: string;
const ImplGUID: TGUID; ImplementationClass: TCorbaImplementationClass;
Instancing: TCorbaInstancing = iMultiInstance; ThreadModel:
TCorbaThreadModel = tmSingleThread);

Description
A call to the constructor for TCorbaObjectFactory is automatically added to CORBA server applications
when the developer defines CORBA interfaces.
The InterfaceName parameter specifies the name of the factory’s interface (not the name of the
interface for which the factory creates objects).
The InstanceName parameter specifies an instance identifier that is used by client applications to locate
a specific factory instance.
The RepositoryId parameter specifies the CORBA Repository ID of the factory. This string has the form
‘IDL:Modulename/FactoryInterfaceName:1.0’.
The ImplGUID parameter specifies the interface type (or GUID) for which the factory creates object
instances.
The ImplementationClass parameter specifies the class that implements ImplGUID. This is the actual
implementation class, not the corresponding skeleton class.
The Instancing parameter indicates whether the factory creates a single object instance that all CORBA
clients share, or whether the factory creates a separate instance for each CORBA client.
The ThreadModel parameter indicates whether the ORB should serialize calls to a single factory
instance or whether multiple clients can call the same factory simultaneously on multiple threads.

Accessibility
Read-only

Hierarchy

TObject

TInterfacedObject

TCorbaFactory

TCorbaSkeleton
Hierarchy Properties Methods See also

TCorbaSkeleton is the base class for all CORBA skeleton objects.

Unit
corbaobj

Description
Most applications do not need to work directly with CORBA skeleton objects. TCorbaSkeleton objects
are automatically declared and implemented for each server interface in a CORBA server application. To
define a server interface, use the Type Library editor. The TCorbaSkeleton class is defined in the stub
and skeleton unit (_TLB.pas file).
TCorbaSkeleton descendants handle the details of marshaling interface calls and communicating with
the Orb in a CORBA server application. They do not actually implement the server interface. Instead,
they pass calls on to an object instance for which they hold an interface.

Interfaces
TCorbaSkeleton implements the ISkeletonObject interface.

TCorbaSkeleton properties
TCorbaSkeleton Alphabetically Legend

Derived from TInterfacedObject
RefCount

TCorbaSkeleton properties
TCorbaSkeleton By object Legend

RefCount

TCorbaSkeleton methods
TCorbaSkeleton Alphabetically Legend

In TCorbaSkeleton
Create
Destroy

Execute
GetImplementation
GetSkeleton
InitSkeleton

Derived from TInterfacedObject
BeforeDestruction

Derived from TObject
AfterConstruction
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
SafeCallException

TCorbaSkeleton methods
TCorbaSkeleton By object Legend

AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
Create
DefaultHandler
Destroy
Dispatch

Execute
FieldAddress
Free
FreeInstance
GetImplementation
GetInterface
GetInterfaceEntry
GetInterfaceTable
GetSkeleton
InheritsFrom
InitInstance
InitSkeleton
InstanceSize
MethodAddress
MethodName
NewInstance
SafeCallException

TCorbaSkeleton.Create
TCorbaSkeleton Methods See also

Creates an instance of TCorbaSkeleton to represent a specified server interface.
type IObject = System.IUnknown;
constructor Create(InstanceName: string; const Impl: IObject); virtual;
Description
Do not directly instantiate CORBA skeleton objects. TCorbaSkeleton objects are created by the
associated CORBA factory.
The InstanceName parameter specifies an optional name for the CORBA skeleton instance. The Impl
parameter is the interface to an object instance that implements the interface which client applications
call.

TCorbaSkeleton.Destroy
TCorbaSkeleton Methods

Frees an instance of TCorbaSkeleton.
destructor Destroy; override;
Description
Do not call the CORBA skeleton destructor directly. CORBA skeletons are destroyed automatically.

TCorbaSkeleton.Execute
TCorbaSkeleton Methods See also

Executes a specified interface call.
function Execute(Operation: PChar; const Strm: IMarshalInBuffer; Cookie:
Pointer): CorbaBoolean; stdcall;

Description
Applications do not usually call the execute method. It is called automatically when the Orb passes in an
interface invocation from a client application.
The Operation parameter specifies the interface member’s name. The Strm parameter is a marshaling
buffer that contains all the parameter values received from the client. The Cookie parameter specifies an
internal identifier that allows the skeleton object to keep track of which marshaling buffers are
associated with which interface calls.
If the TCorbaSkeleton descendant does not implement a method of the name Operation, or if an
exception is raised when it tries to execute the specified method, Execute returns 0 (False). Otherwise,
Execute calls the specified method and returns 1 (True).

TCorbaSkeleton.GetImplementation
TCorbaSkeleton Methods See also

Returns an interface for the associated implementation object.
type IObject = System.IUnknown;
procedure GetImplementation(out Impl: IObject); virtual; stdcall;
Description
CORBA skeletons use an implementation object rather than directly implementing the server object. An
interface to this implementation object is passed to the TCorbaSkeleton descendant when it is created.
GetImplementation returns this interface as the Impl parameter.
Most applications do not need to call GetImplementation. Component writers deriving their own
TCorbaSkeleton descendants can use GetImplementation for forwarding method calls to the
implementation object once they are unmarshaled.

TCorbaSkeleton.GetSkeleton
TCorbaSkeleton Methods See also

Returns an ISkeleton interface for marshaling interface calls.
procedure GetSkeleton(out servant: IServant); stdcall;
Description
The CORBA factory calls GetSkeleton to obtain the implementation interface and marshaling buffer for
return values.

TCorbaSkeleton.InitSkeleton
TCorbaSkeleton Methods See also

Initializes the ISkeleton interface for a skeleton instance.
type TCorbaThreadModel = (tmMultiThreaded, tmSingleThread);
procedure InitSkeleton(const InterfaceName, InstanceName, RepositoryID:
string; ThreadModel: TCorbaThreadModel; ClientRefCount: Boolean);

Description
Most applications do not need to call InitSkeleton because it is called from the constructor of
automatically generated TCorbaSkeleton descendants. Component writers should add a call to
InitSkeleton when implementing the constructor of a TCorbaSkeleton descendant.
The InterfaceName specifies the base name of the interface represented by the skeleton object. This is
the interface name as it appears in the IDL specification.
The InstanceName parameter is an optional name for the skeleton instance.
The RepositoryID is the Repository ID for the interface represented by the skeleton object.
The ThreadModel parameter indicates whether the Orb ensures that each skeleton instance only
receives one client request at a time (tmSingleThread), or whether a single skeleton instance may
receive multiple client requests simultaneously (tmMultiThreaded). This value is ignored if the CORBA
object instance is instantiated indirectly using a CORBA factory object. Instead, the factory’s threading
model takes precedence.
The ClientRefCount parameter indicates whether a reference count should be maintained for client
connections.

Accessibility
Read-only

Scope
Protected

Hierarchy

TObject

TInterfacedObject

TCorbaSkeletonManager
Hierarchy Methods See also

TCorbaSkeletonManager keeps track of which skeleton classes represent which interfaces.

Unit
corbaobj

Description
TCorbaSkeletonManager is the type of the global CorbaSkeletonManager variable. Applications do not
create CORBA skeleton managers. Instead, they use the global CorbaSkeletonManager variable to
register the association between a TCorbaSkeleton descendant and the interface for which it provides
marshaling.

TCorbaSkeletonManager methods
TCorbaSkeletonManager Alphabetically

In TCorbaSkeletonManager
CreateSkeleton
RegisterSkeleton

Derived from TCorbaListManager
Create
Destroy

Derived from TObject
AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
SafeCallException

TCorbaSkeletonManager methods
TCorbaSkeletonManager By object

AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
Create
CreateSkeleton
DefaultHandler
Destroy
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
RegisterSkeleton
SafeCallException

TCorbaSkeletonManager.CreateSkeleton
TCorbaSkeletonManager See also

Instantiates a skeleton object given an interface ID and an implementation interface.
type IObject = System.IUnknown;
function CreateSkeleton(IID: TGUID; const InstanceName: string; const Impl:
IObject): ISkeletonObject;

Description
Do not call CreateSkeleton directly. CreateSkeleton is called automatically when the CORBA server
needs to create an instance of the skeleton object. When this call is made depends on the instancing
option chosen in the CORBA Automation Object Wizard or CORBA Data Module Wizard.
The IID parameter identifies the interface type which is made available to client applications. The
InstanceName parameter optionally specifies an instance name for the skeleton object. The Impl
parameter is an instance of the implementation class’s interface. CreateSkeleton returns an interface for
the skeleton object instance.
Note: Before CreateSkeleton can instantiate a skeleton object and return its interface, the skeleton

class must be registered. Use the RegisterSkeleton method to register a skeleton class.

TCorbaSkeletonManager.RegisterSkeleton
TCorbaSkeletonManager See also

Registers a skeleton class with the CORBA skeleton manager.
type
 TCorbaSkeletonClass = class of TCorbaSkeleton;
procedure RegisterSkeleton(IID: TGUID; Skeleton: TCORBASkeletonClass);
Description
Call RegisterSkeleton to register a custom skeleton class with the CORBA skeleton manager. The code
to register automatically generated skeleton classes is added to the initialization section of the stub and
skeleton unit (_TLB.pas file) when you create a server interface using the Type Library editor.
RegisterSkeleton records the association between a skeleton class (specified by the Skeleton
parameter) and an interface (specified by the IID parameter). The Interface type can be passed for the
IID parameter instead of the GUID alone. This makes for more readable code such as the following:
CORBASkeletonManager.RegisterSkeleton(IMyServerObject,
TMyServerObjectSkeleton);

Note: Although CORBA interfaces do not use globally unique identifiers (GUIDs) for COM support, they
must still be declared using an interface identifier so that the CORBA skeleton manager can keep
track of them.

Hierarchy

TObject

TCorbaListManager

TCorbaStub
Hierarchy Properties Methods See also

TCorbaStub is the base class for all CORBA stub objects.

Unit
corbaobj

Description
Use TCorbaStub as a base class when deriving custom stub objects. Stub objects handle the
marshaling of interface calls for a CORBA client application. Each TCorbaStub object obtains an IStub
interface from its constructor. This IStub interface can be used to marshal interface calls.
To define a custom stub object, add properties and methods to the TCorbaStub descendant for each
property and method in the interface it represents. When implementing the methods, obtain
IMarshalInBuffer and IMarshalOutBuffer interfaces from the IStub interface of the TCorbaStub. Use
these marshaling interfaces to push parameters before making an IStub call and pop return values when
the call is complete.
Applications do not instantiate stub objects directly. Instead, the stub object is registered with the global
stub manager that can be accessed using the global CorbaStubManager variable. The code to register
automatically generated stub objects is added to the _TLB unit when a server interface is saved. When
the client application needs an interface for the CORBA server, it calls the CreateInstance method of the
automatically generated CORBA stub factory.
Applications that use custom stub objects must add the code to register these stub objects by calling the
RegisterStub method of the CORBA stub manager and the RegisterInterface method of the global
CorbaInterfaceIDManager. Once the stub object is registered, client applications can get an interface by
calling the global CorbaBind function or the global BindStub procedure.

Interfaces
TCorbaStub implements the IStubObject and ICorbaObject interfaces.

TCorbaStub properties
TCorbaStub Alphabetically Legend

Derived from TInterfacedObject
RefCount

TCorbaStub properties
TCorbaStub By object Legend

RefCount

TCorbaStub methods
TCorbaStub Alphabetically Legend

In TCorbaStub
Create
Destroy

GetStub
Hash
IsA
NonExistent
SetPrincipal

Derived from TInterfacedObject
BeforeDestruction

Derived from TObject
AfterConstruction
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
SafeCallException

TCorbaStub methods
TCorbaStub By object Legend

AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
Create
DefaultHandler
Destroy
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable

GetStub
Hash
InheritsFrom
InitInstance
InstanceSize
IsA
MethodAddress
MethodName
NewInstance
NonExistent
SafeCallException
SetPrincipal

TCorbaStub.Create
TCorbaStub Methods See also

Creates an instance of TCorbaStub to represent a specified server interface.
constructor Create(const Stub: IStub); virtual;
Description
Do not directly instantiate CORBA stub objects. Instead, call the global CorbaBind function or the
CORBA stub manager’s CreateStub method to create the stub object. Before the CORBA stub manager
can create a CORBA stub object, the stub class must be registered using the CORBA stub manager’s
RegisterStub method. If you are using CorbaBind function, the associated interface type must be
registered with the global CORBA interface ID manager as well.
The IStub parameter specifies an instance of the server interface which the CORBA stub object
represents. TCorbaStub descendants use this interface for marshaling calls to the CORBA server
application.

TCorbaStub.Destroy
TCorbaStub Methods See also

Frees an instance of TCorbaStub.
destructor Destroy; override;
Description
Do not call the CORBA stub destructor directly. The CORBA stub manager handles the creation and
destruction of all stub objects.

TCorbaStub.GetStub
TCorbaStub Methods See also Example

Returns the interface to an object on the CORBA server.
procedure GetStub(out stub: IStub); stdcall;
Description
Client applications do not call this protected method. Component writers use GetStub to obtain the
server interface when implementing methods that marshal interface calls.
Instead of using the server interface in a CORBA client application, call the methods of the TCorbaStub
descendant, which then marshals the calls. Applications can obtain an interface to the TCorbaStub
descendant using the global CorbaBind function or the CORBA stub manager’s CreateStub method.

TCorbaStub.Hash
TCorbaStub Methods See also

Returns a hash value for the server object instance.
function Hash(Maximum: Integer): Integer;
Description
Call Hash to obtain a hash value for the CORBA object associated with the CORBA stub. This value is
not guaranteed to be unique, but will remain consistent through the lifetime of the object reference.

TCorbaStub.IsA
TCorbaStub Methods See also

Indicates whether the CORBA stub represents a particular type.
function IsA(const LogicalTypeId: string): Boolean;
Description
Call IsA to check whether the associated server object is of a specified type. Specify the type by passing
its base name as the LogicalTypeId parameter This is the name specified in the object’s IDL
specification. IsA returns True if the object on the CORBA server is an instance of the specified type or
one of its descendants. IsA returns False otherwise.

TCorbaStub.NonExistent
TCorbaStub Methods See also

Indicates whether the server object is instantiated.
function NonExistent: Boolean;
Description
Call NonExistent to test whether the object on the server is still instantiated. NonExistent returns False if
the server object is still available. NonExistent returns True if the server instance has been freed.

TCorbaStub.SetPrincipal
TCorbaStub Methods See also

Sends an array of bytes to the server
type TCorbaPrincipal = array of Byte;
procedure SetPrincipal(const Principal: TCorbaPrincipal);
Description
Call SetPrincipal to send an arbitrary value to the server application. Once the client calls SetPrincipal,
the server application can read this value by calling the Boa’s GetPrincipal method. SetPrincipal and
GetPrincipal allow CORBA clients to pass custom state information to servers, or to pass information
that identifies the client.
Note: To obtain a TCorbaPrincipal for the Principal parameter, use the global MakePrincipal function.

Accessibility
Read-only

Scope
Protected

Hierarchy

TObject

TInterfacedObject

TCorbaStubManager
Hierarchy Methods See also

TCorbaStubManager keeps track of which stub classes represent specific server interfaces.

Unit
corbaobj

Description
TCorbaStubManager is the type of the global CorbaStubManager variable. Applications do not create
CORBA stub managers. Instead, they use the global CorbaStubManager variable to register the
association between a TCorbaStub descendant and the interface of a CORBA server object.
Once a TCorbaStub class is registered with the global CorbaStubManager, the CORBA stub manager
can instantiate stub objects which provide marshaling support for server interfaces.

TCorbaStubManager methods
TCorbaStubManager Alphabetically

In TCorbaStubManager
CreateStub
RegisterStub

Derived from TCorbaListManager
Create
Destroy

Derived from TObject
AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
SafeCallException

TCorbaStubManager methods
TCorbaStubManager By object

AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
Create
CreateStub
DefaultHandler
Destroy
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
RegisterStub
SafeCallException

TCorbaStubManager.CreateStub
TCorbaStubManager See also Example

Instantiates a stub object given a CORBA server interface instance.
type IObject = System.IUnknown;
function CreateStub(IID: TGUID; const Stub: IStub): IObject;
Description
Call CreateStub to create a stub object for marshaling calls over an interface that was obtained using
the global BindStub procedure. Before CreateStub can instantiate a stub object and return its interface,
the stub class must be registered. Use the RegisterStub method to register a stub class.
The IID parameter specifies the globally unique identifier of the server interface class. Use either the
GUID or the interface type for this parameter.
The Stub parameter specifies a server interface instance which can be obtained from a call to BindStub.
CreateStub returns an interface for the instantiated stub object.

TCorbaStubManager.RegisterStub
TCorbaStubManager See also

Registers a stub class with the CORBA stub manager.
type
 TCorbaStubClass = class of TCorbaStub;
procedure RegisterStub(IID: TGUID; Stub: TCorbaStubClass);
Description
Call RegisterStub to register a custom stub class with the CORBA stub manager. The code to register
automatically generated stub classes is added to the initialization section of the stub and skeleton unit
(_TLB.pas file) when you create a server interface.
RegisterStub records the association between a stub class (specified by the Stub parameter) and an
interface type (specified by the IID parameter). The Interface type can be passed instead of the GUID
for the IID parameter . This makes for more readable code such as the following:
CORBAStubManager.RegisterStub(IMyServerObject, TMyServerObjectStub);
Note: Although CORBA interfaces do not need globally unique identifiers (GUIDs) for COM support,

they must still be declared using an interface identifier so that the CORBA stub manager can keep
track of them.

Hierarchy

TObject

TCorbaListManager

TCorbaVCLComponentFactory
Hierarchy Properties Methods See also

TCorbaVCLComponentFactory creates a CORBA server object.

Unit
corbaobj

Description
The CORBA Data Module Wizard adds code to create an instance of TCorbaVCLComponentFactory to
the initialization section of the CORBA data module’s unit. In response to requests from CORBA client
applications, this factory instance creates or locates the CORBA data module and forwards incoming
interface calls.
By using a Factory object for the CORBA data module, the CORBA server can support the model where
a single CORBA data module instance is devoted to each client connection. Even when the CORBA
server uses a single shared instance of the CORBA data module, the factory object is used so as to
provide a more uniform architecture.

TCorbaVCLComponentFactory properties
TCorbaVCLComponentFactory Alphabetically Legend

In TCorbaVCLComponentFactory
ComponentClass

Derived from TCorbaFactory
InstanceName

Instancing
InterfaceName
RepositoryID
ThreadModel

Derived from TInterfacedObject
RefCount

TCorbaVCLComponentFactory properties
TCorbaVCLComponentFactory By object Legend

ComponentClass
InstanceName
Instancing
InterfaceName
RefCount
RepositoryID
ThreadModel

TCorbaVCLComponentFactory.ComponentClass
TCorbaVCLComponentFactory Properties See also

Indicates the TCorbaDataModule descendant that the factory creates.
type TComponentClass = class of TComponent;
property ComponentClass: TComponentClass;
Description
Read ComponentClass to determine the implementation class associated with the CORBA factory
object. This class is a descendant of TCorbaDataModule. In response to client requests, the CORBA
VCL component factory creates or locates an object of this class.

TCorbaVCLComponentFactory methods
TCorbaVCLComponentFactory Alphabetically

In TCorbaVCLComponentFactory
Create

Derived from TCorbaFactory
Destroy

Derived from TInterfacedObject
BeforeDestruction

Derived from TObject
AfterConstruction
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
SafeCallException

TCorbaVCLComponentFactory methods
TCorbaVCLComponentFactory By object

AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
Create
DefaultHandler
Destroy
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
SafeCallException

TCorbaVCLComponentFactory.Create
TCorbaVCLComponentFactory Methods See also

Creates an instance of TCorbaVCLComponentFactory associated with a specified server interface.
type
 TComponentClass = class of TComponent;
 TCORBAInstancing = (iSingleInstance, iMultiInstance);
 TCorbaThreadModel = (tmMultiThreaded, tmSingleThread);
constructor Create(const InterfaceName, InstanceName, RepositoryId: string;
const ImplGUID: TGUID; AComponentClass: TComponentClass; Instancing:
TCorbaInstancing = iMultiInstance; ThreadModel: TCorbaThreadModel =
tmSingleThread);

Description
The CORBA Data Module Wizard automatically adds a call to the constructor for
TCorbaVCLComponentFactory in the initialization section of the CORBA data module’s unit.
The InterfaceName parameter specifies the name of the factory’s interface (not the name of the data
module’s interface).
The InstanceName parameter specifies an instance identifier that is used by client applications to locate
a specific factory instance.
The RepositoryId parameter specifies the CORBA Repository ID of the factory. This string has the form
‘IDL:Modulename/FactoryInterfaceName:1.0’.
The ImplGUID parameter specifies the interface type (or GUID) of the CORBA data module. This is a
descendant of IDataBroker.
The AComponentClass parameter specifies the TCorbaDataModule descendant that implements the
CORBA server’s interface.
The Instancing parameter indicates whether the factory creates a single object instance that all CORBA
clients share, or whether the factory creates a separate instance for each CORBA client.
The ThreadModel parameter indicates whether the ORB should serialize calls to a single factory
instance or whether multiple clients can call the same factory simultaneously on multiple threads.

Accessibility
Read-only

Hierarchy

TObject

TInterfacedObject

TCorbaFactory

ECorbaDispatch
Hierarchy Properties Methods

ECorbaDispatch is the exception class that is raised when a CORBA application encounters a problem
using DII.

Unit
provider

Description
ECorbaDispatch is raised when a problem occurs with a late-bound call to a CORBA server object. Such
problems include

Calling interfaces that are not registered with a running Interface Repository.
Calling an interface with the wrong number of parameters or parameters that can’t be converted

to the expected type.
Attempting to call a CORBA server using a variant that does not hold a proper CORBA interface.

ECorbaDispatch properties
ECorbaDispatch Alphabetically

Derived from Exception
HelpContext
Message

ECorbaDispatch properties
ECorbaDispatch By object

HelpContext
Message

ECorbaDispatch methods
ECorbaDispatch Alphabetically

Derived from Exception
Create
CreateFmt
CreateFmtHelp
CreateHelp
CreateRes
CreateResFmt
CreateResFmtHelp
CreateResHelp

Derived from TObject
AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Destroy
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
SafeCallException

ECorbaDispatch methods
ECorbaDispatch By object

AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
Create
CreateFmt
CreateFmtHelp
CreateHelp
CreateRes
CreateResFmt
CreateResFmtHelp
CreateResHelp
DefaultHandler
Destroy
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
SafeCallException

Hierarchy

TObject

Exception

ECorbaException
Hierarchy Properties Methods See also

ECorbaException is the exception class that is raised when a CORBA application can’t perform a
requested action.

Unit
CorbaObj

Description
ECorbaException is raised when an application tries to bind to an unregistered interface or create an
object instance with an ill-formed CORBA factory. In addition, ECorbaException is the base class for
ECorbaUserException, which represents application-specific CORBA exceptions.

ECorbaException properties
ECorbaException Alphabetically Legend

In ECorbaException
Name

Derived from Exception
HelpContext
Message

ECorbaException properties
ECorbaException By object Legend

HelpContext
Message
Name

ECorbaException.Name
ECorbaException See also

Indicates the type of exception that occurred.
property Name: string;
Description
Name is a string that identifies the CORBA exception. When the CORBA exception is a user-defined
exception (ECORBAUserException), the value of Name is assigned by the constructor. For other
exceptions raised by the ORB or generated by the CorbaInterfaceIDManager or CorbaFactory, Name is
one of the values from the following table:

Value Meaning

CORBA interface not registered The association between a requested interface
and its repository ID is not registered with the
global CorbaInterfaceIDManager variable.

CORBA Repository ID <id> not registered The association between a requested repository ID
and the interface type it represents is not
registered with the global
CorbaInterfaceIDManager variable.

CORBA Factory did not implement CreateInterface. The TCorbaFactory descendant on the server did
not implement a CreateInterface method. This
method is automatically created by the CORBA
object wizards.

NO_IMPLEMENT The ORB could not bind to the requested interface.
Usually this is because the server is down.

BAD_CONTEXT The context information (which describes the client
application) could not be interpreted.

BAD_INV_ORDER Calls to the ORB software were made out of order.
BAD_OPERATION The client attempted an invalid operation.
BAD_PARAM An invalid parameter was passed.
BAD_TYPECODE The client sent an Invalid typecode when making a

DII call.
COMM_FAILURE Network communication failure
DATA_CONVERSION Data conversion error.
FREE_MEM Unable to free memory.
IMP_LIMIT Implementation limit violated.
INITIALIZE The ORB failed to initialize.
INTERNAL ORB internal error.
INTF_REPOS Error accessing the interface repository. Usually

this is because the repository is not running.
INV_FLAG An invalid flag was passed to the ORB.
INV_INDENT Invalid identifier syntax.
INV_OBJREF An invalid object reference was specified.
MARSHAL Error on the server marshaling parameter or result.
NO_MEMORY Dynamic memory allocation failure
NO_PERMISSION The client attempted an operation for which it has

insufficient rights.

NO_RESOURCES Insufficient resources to process request
NO_RESPONSE Response to request is not yet available
OBJ_ADAPTOR The BOA detected an error.
OBJECT_NOT_EXIST The requested object is not available.
PERSIST_STORE Persistent storage failure
TRANSIENT Transient failure
UNKNOWN Unknown exception

ECorbaException methods
ECorbaException Alphabetically

Derived from Exception
Create
CreateFmt
CreateFmtHelp
CreateHelp
CreateRes
CreateResFmt
CreateResFmtHelp
CreateResHelp

Derived from TObject
AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Destroy
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
SafeCallException

ECorbaException methods
ECorbaException By object

AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
Create
CreateFmt
CreateFmtHelp
CreateHelp
CreateRes
CreateResFmt
CreateResFmtHelp
CreateResHelp
DefaultHandler
Destroy
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
SafeCallException

Accessibility
Read-only

Hierarchy

TObject

Exception

ECorbaUserException
Hierarchy Properties Methods See also

ECorbaUserException represents exceptions that are defined by the CORBA application developer.

Unit
CorbaObj

Description
Use ECorbaUserException as a base class for exceptions that are defined as part of a CORBA
interface. CORBA user exceptions represent exceptions that are defined as part of a CORBA interface.
To use an ECorbaUserException descendant, the exception must be registered with the ORB, using the
global RegisterUserException function. When registering the exception, provide the ORB with a function
that returns the value of an exception’s Proxy property. When the ORB needs to raise the
ECorbaUserException, it calls this function, which should either create a new exception object and
return its Proxy or simply return the Proxy of a global instance of the exception. When the function can
no longer create user exception objects, call UnRegisterUserException so that the ORB doesn’t try to
raise the exception.

ECorbaUserException properties
ECorbaUserException Alphabetically Legend

In ECorbaUserException
Proxy

Derived from ECorbaException
Name

Derived from Exception
HelpContext
Message

ECorbaUserException properties
ECorbaUserException By object Legend

HelpContext
Message
Name

Proxy

ECorbaUserException.Proxy
ECorbaUserException See also

Represents the exception instance to the ORB.
PUserExceptionProxy = type Pointer;
property Proxy: PUserExceptionProxy ;
Description
Use Proxy as the return value of a function that generates or accesses an ECorbaUserException
instance. This function is passed as the Factory parameter when calling the global
RegisterUerException function. When the ORB needs to raise the user-defined exception, it calls this
function to obtain an instance of the exception.
Proxy enables the ORB to call the Copy method to copy the exception or the Throw method to raise the
exception.

ECorbaUserException methods
ECorbaUserException Alphabetically

In ECorbaUserException
Copy
Create
Throw

Derived from Exception
CreateFmt
CreateFmtHelp
CreateHelp
CreateRes
CreateResFmt
CreateResFmtHelp
CreateResHelp

Derived from TObject
AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Destroy
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
SafeCallException

ECorbaUserException methods
ECorbaUserException By object

AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
Copy
Create
CreateFmt
CreateFmtHelp
CreateHelp
CreateRes
CreateResFmt
CreateResFmtHelp
CreateResHelp
DefaultHandler
Destroy
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
SafeCallException
Throw

ECorbaUserException.Copy
ECorbaUserException See also

Copies the exception’s properties from a CORBA marshaling buffer.
procedure Copy(const InBuf: IMarshalInBuffer); virtual; abstract;
Description
Override Copy when deriving an exception class from ECorbaUserException. The implementation of
Copy must read the properties of the exception, as defined in the CORBA interface, and use them to set
the properties of the ECorbaUserException instance.
Do not call the Copy method. This method is used internally to generate the value of the Proxy property.
The ORB uses the Proxy property to call Copy when it instantiates an instance of a user-defined
property.

ECorbaUserException.Create
ECorbaUserException See also

Creates and initializes an instance of ECorbaUserException.
constructor Create(const Name: string);
Description
Call Create to instantiate a user-defined CORBA exception. Typically, these exceptions are created in a
function that is used as a parameter to the global RegisterUserException function.
Create assigns the Name parameter to the exception’s Name property. It then uses the Throw method
and the Copy method to generate a proxy object, which it assigns as the value of the Proxy property.
Note: Do not create instances of ECorbaUserException. The Copy method of ECorbaUserException is

abstract and should not be used. Instead, create instances of an ECorbaUserException
descendant that has defined an implementation of the Copy method.

ECorbaUserException.Throw
ECorbaUserException See also

Raises the instance of ECorbaUserException.
procedure Throw;
Description
The ORB uses the Throw method to raise ECorbaUserException. Because the ORB can’t directly raise
exceptions in Object Pascal, it requires the Throw method as an extra layer of indirection. When the
ORB needs to raise an exception, it uses the Proxy property to access the Throw method, thereby
raising the exception.

Accessibility
Read-only

Hierarchy

TObject

Exception

ECorbaException

TAny type
See also

Represents a CORBA interface or a parameter in a CORBA interface.

Unit
CorbaObj
type TAny = Variant;
Description
Use TAny when writing CORBA clients that use the dynamic invocation interface (DII). When a TAny
variable holds a CORBA interface, calling the interface methods on that variable causes a DII call which
looks up the interface in the Interface Repository and invokes the server accordingly.
The parameters to any DII interface call must also be TAny values: DII uses late binding, so parameter
values must carry their type information with them.

TCKind type
See also

Designates a native CORBA type.

Unit
Orbpas
type TCKind = (tk_null, tk_void, tk_short, tk_long, tk_ushort, tk_ulong,
tk_float, tk_double, tk_boolean, tk_char, tk_octet, tk_any, tk_TypeCode,
tk_Principal, tk_objref, tk_struct, tk_union, tk_enum, tk_string,
tk_sequence, tk_array, tk_alias, tk_except, tk_longlong, tk_ulonglong,
tk_longdouble, tk_wchar, tk_wstring, tk_fixed);

Description
Use TCKind to indicate a CORBA type. TCKind values indicate the types of elements in CORBA arrays,
sequences, and structures. TCKind values can also be converted into an ITypeCode interface using the
ORB’s MakeTypeCode method.
The following table describes the possible values:

Value Meaning
tk_null a null (empty) type
tk_void no type (such as an empty parameter list)
tk_short a short (16-bit) signed integer
tk_long a long (32-bit) signed integer
tk_ushort a short (16-bit) unsigned integer
tk_ulong a long (32-bit) unsigned integer
tk_float Single (32-bit floating point value)
tk_double Double (64-bit floating point value)
tk_boolean Boolean
tk_char Char
tk_octet 8-bit quantity guaranteed not to undergo conversion during transmission.
tk_any TAny (a CORBA Variant)
tk_TypeCode a type code
tk_Principal TCorbaPrincipal (array of bytes)
tk_objref CORBA object reference (ICorbaObject)
tk_struct CORBA structure (a record)
tk_union CORBA union (a record containing a case statement)
tk_enum enumerated type
tk_string sequence (dynamic array) of Char
tk_sequence dynamic array
tk_array fixed size array
tk_alias a CORBA alias
tk_except an exception
tk_longlong signed 64-bit integer
tk_ulonglong unsigned 64-bit integer
tk_longdouble 80-bit floating-point type

tk_wchar WideChar
tk_wstring WideString
tk_fixed const

ITypeCode type
See also

ITypeCode.is an interface that describes a CORBA type.

Unit
orbpas
type ITypeCode = interface;
Description
Use ITypeCode values to create TAny values that represent complex CORBA types such as structures
(records), arrays (fixed arrays) and sequences (dynamic arrays). ITypeCode is an interface to the
Interface Repository that allows an ORB to access type information about an interface type.

ICorbaObject
Hierarchy Methods See also

ICorbaObject represents the interface of an object accessed through the ORB.

Unit
corbaobj

Description
TCorbaStub objects implement the ICorbaObject interface. This interface lets client applications obtain
information about the server object and send custom information to the server as a TCorbaPrincipal.

ICorbaObject methods
ICorbaObject Alphabetically

In ICorbaObject
Hash
IsA
NonExistent
SetPrincipal

Derived from IUnknown
_AddRef
_Release
QueryInterface

ICorbaObject methods
ICorbaObject By object

_AddRef
_Release
Hash
IsA
NonExistent
QueryInterface
SetPrincipal

ICorbaObject.Hash
ICorbaObject Methods See also

Returns a hash value for the server object instance.
function Hash(Maximum: Integer): Integer;
Description
Call Hash to obtain a hash value for the CORBA object instance. This value is not guaranteed to be
unique, but will remain consistent through the lifetime of the object reference.

ICorbaObject.IsA
ICorbaObject Methods

Indicates whether the CORBA stub represents a particular type.
function IsA(const LogicalTypeId: string): Boolean;
Description
Call IsA to check whether the associated server object is of a specified type. Specify the type by passing
its base name as the LogicalTypeId parameter This is the name specified in the object’s IDL
specification. IsA returns True if the object on the CORBA server is an instance of the specified type or
one of its descendants. IsA returns False otherwise.

ICorbaObject.NonExistent
ICorbaObject Methods See also

Indicates whether the server object has been deactivated.
function NonExistent: Boolean;
Description
Call NonExistent to test whether the object on the server is still instantiated. NonExistent returns False if
the server object is still available. NonExistent returns True if the server instance has been freed.

ICorbaObject.SetPrincipal
ICorbaObject Methods See also

Sends an array of bytes to the server
TCorbaPrincipal = array of Byte;
procedure SetPrincipal(const Principal: TCorbaPrincipal);
Description
Call SetPrincipal to send an arbitrary value to the server application. Once the client calls SetPrincipal,
the server application can read this value by calling the Boa’s GetPrincipal method. SetPrincipal and
GetPrincipal allow CORBA clients to pass custom state information to servers, or to pass information
that identifies the client.
Note: To obtain a TCorbaPrincipal for the Principal parameter, use the global MakePrincipal function.

Hierarchy

IUnknown

ICorbaObj
Hierarchy Methods See also

ICorbaObj is the interface that represents a CORBA object.

Unit
orbpas

Description
Applications do not use ICorbaObj. Instead, they use a descendant interface when communicating with
a CORBA object reference.
ICorbaObj is an interface. As such, it can’t be instantiated. Instead, an ICorbaObj interface is obtained
from the ORB to allow applications to talk to a CORBA object reference.

ICorbaObj methods
ICorbaObj Alphabetically

In ICorbaObj
CorbaObject
IsLocal

Derived from IUnknown
_AddRef
_Release
QueryInterface

ICorbaObj methods
ICorbaObj By object

_AddRef
_Release
CorbaObject
IsLocal
QueryInterface

ICorbaObj.CorbaObject
ICorbaObj Methods See also

Points to the ORB’s representation of the CORBA object instance.
type
 PCorbaObject = type Pointer;
function CorbaObject: PCorbaObject; stdcall;
Description
Applications should not need to use the CorbaObject method. It is used internally.

ICorbaObj.IsLocal
ICorbaObj Methods See also

Indicates whether the CORBA object this interface represents is instantiated locally.
function IsLocal: CorbaBoolean; stdcall;
Description
Call IsLocal to determine whether the object instance that implements ICorbaObj is local or remote. If
IsLocal returns a nonzero value, the instance is local. This allows the application to optimize interface
calls because they do not need to be sent across the network.

Hierarchy

IUnknown

IMarshalInBuffer
Hierarchy Methods See also Example

IMarshalInBuffer is the interface for reading return values from a marshaling buffer.

Unit
orbpas

Description
Use IMarshalInBuffer when implementing a custom CORBA stub object. Stub objects can obtain an
IMarshalInBuffer interface by invoking methods using their IStub interface.
Read output parameters from the marshaling buffer in the order they appear in the interface method. If
the interface method is a function call, the return value of the function call precedes any output
parameters.

IMarshalInBuffer methods
IMarshalInBuffer Alphabetically

In IMarshalInBuffer
Buffer
GetAny
GetChar
GetDouble
GetFloat
GetLong
GetObject
GetShort
GetText
GetUnsignedChar
GetUnsignedLong
GetUnsignedShort
GetWidechar
GetWideText

Derived from IUnknown
_AddRef
_Release
QueryInterface

IMarshalInBuffer methods
IMarshalInBuffer By object

_AddRef
_Release
Buffer
GetAny
GetChar
GetDouble
GetFloat
GetLong
GetObject
GetShort
GetText
GetUnsignedChar
GetUnsignedLong
GetUnsignedShort
GetWidechar
GetWideText
QueryInterface

IMarshalInBuffer.Buffer
IMarshalInBuffer

Returns the marshaling buffer that holds return values.
type
 PMarshalInbuffer = type Pointer;
function Buffer: PMarshalInbuffer; stdcall;
Description
Do not use the buffer function. Instead, use the various Getxxx methods of the IMarshalInBuffer
interface to read from the marshaling buffer.

IMarshalInBuffer.GetAny
IMarshalInBuffer See also

Reads a CORBA Any value from the marshaling buffer.
type
 PCorbaAny = type Pointer;
function GetAny: PCorbaAny; stdcall;
Description
Do not use GetAny to read a value of the CORBA Any type. Instead, use the global UnmarshalAny
function, which retrieves the value and converts it to a more usable Variant type.

IMarshalInBuffer.GetChar
IMarshalInBuffer See also

Reads a char value from the marshaling buffer.
function GetChar: Shortint; stdcall;
Description
Call GetChar to read a char value. GetChar returns a 16-bit integer which can then be cast to a Char
value.

IMarshalInBuffer.GetDouble
IMarshalInBuffer See also

Reads a Double value from the marshaling buffer.
function GetDouble: Double; stdcall;
Description
Call GetDouble to read a Double value.

IMarshalInBuffer.GetFloat
IMarshalInBuffer See also

Reads a Single value from the marshaling buffer.
function GetFloat: Single; stdcall;
Description
Call GetFloat to read the value of a Single. These values are called float values in the CORBA IDL.

IMarshalInBuffer.GetLong
IMarshalInBuffer See also Example

Reads a 32-bit integer value from the marshaling buffer.
function GetLong: Integer; stdcall;
Description
Call GetLong to read the value of a 32-bit integer from the marshaling buffer.

IMarshalInBuffer.GetObject
IMarshalInBuffer See also

Reads an object interface from the marshaling buffer.
procedure GetObject(out Obj: ICorbaObj; ref_cnt: CorbaBoolean = True);
stdcall;

Description
Do not call GetObject to read an object reference from the marshaling buffer. Use the global
UnMarshalObject function instead. UnMarshalObject handles the details of creating a stub object for the
interface that was returned in the marshaling buffer.
An interface for the object is returned in Obj.
ref_cnt indicates whether to increment the reference count for this object.

IMarshalInBuffer.GetShort
IMarshalInBuffer See also

Reads a 16-bit integer from the marshaling buffer.
function GetShort: Smallint; stdcall;
Description
Call GetShort to read a 16-bit integer from the marshaling buffer.

IMarshalInBuffer.GetText
IMarshalInBuffer See also

Reads a string from the marshaling buffer.
function GetText: PChar; stdcall;
Description
Do not call GetText to read a string from the marshaling buffer. Instead, call UnmarshalText which
returns a string value and frees the memory pointed to by the GetText return value.

IMarshalInBuffer.GetUnsignedChar
IMarshalInBuffer See also

Reads a Byte value from the marshaling buffer.
function GetUnsignedChar: Byte; stdcall;
Description
Call GetUnsignedChar to read a Byte value from the marshaling buffer.

IMarshalInBuffer.GetUnsignedLong
IMarshalInBuffer See also

Reads an unsigned integer value from the marshaling buffer.
function GetUnsignedLong: UINT; stdcall;
Description
Call GetUnsignedLong to read a UINT value from the marshaling buffer.

IMarshalInBuffer.GetUnsignedShort
IMarshalInBuffer See also

Reads an unsigned 16-bit value from the marshaling buffer.
function GetUnsignedShort: Word; stdcall;
Description
Call GetUnsignedShort to read a Word value from the marshaling buffer.

IMarshalInBuffer.GetWideChar
IMarshalInBuffer See also

Reads a single UNICODE character from the marshaling buffer.
function GetWidechar: Word; stdcall;
Description
Call GetWidechar to read a UNICODE character from the marshaling buffer. The value is returned as a
Word type.

IMarshalInBuffer.GetWideText
IMarshalInBuffer See also

Reads a wide string from the marshaling buffer.
function GetWideText: PWideChar; stdcall;
Description
Do not call GetWideText to read a UNICODE string from the marshaling buffer. Instead, use the global
UnmarshalWideText function that returns a more usable WideString type and frees the memory in the
buffer returned by GetWideText.

Hierarchy

IUnknown

IMarshalOutBuffer
Hierarchy Methods See also Example

IMarshalOutBuffer is the interface for writing arguments to a marshaling Buffer.

Unit
orbpas

Description
Use IMarshalOutBuffer when implementing a custom CORBA stub object. Stub objects can obtain an
IMarshalOutBuffer interface from their IStub interface. After using the methods of the IMarshalOutBuffer
interface to write parameter values to the marshaling Buffer, the stub object invokes the interface call.
Write arguments to the marshaling Buffer in the order they appear in the interface method.

IMarshalOutBuffer methods
IMarshalOutBuffer Alphabetically

In IMarshalOutBuffer
Buffer
PutAny
PutChar
PutDouble
PutFloat
PutLong
PutObject
PutShort
PutText
PutUnsignedChar
PutUnsignedLong
PutUnsignedShort
PutWidechar
PutWideText

Derived from IUnknown
_AddRef
_Release
QueryInterface

IMarshalOutBuffer methods
IMarshalOutBuffer By object

_AddRef
_Release
Buffer
PutAny
PutChar
PutDouble
PutFloat
PutLong
PutObject
PutShort
PutText
PutUnsignedChar
PutUnsignedLong
PutUnsignedShort
PutWidechar
PutWideText
QueryInterface

IMarshalOutBuffer.Buffer
IMarshalOutBuffer Methods

Returns the marshaling buffer that receives arguments.
type
 PMarshalOutbuffer = type Pointer;
function Buffer: PMarshalOutbuffer; stdcall;
Description
Do not use the Buffer function. Instead, use the various Putxxx methods of the IMarshalOutBuffer
interface to write to the marshaling buffer.

IMarshalOutBuffer.PutAny
IMarshalOutBuffer Methods See also

Adds a CORBA Any value to the marshaling buffer.
type
 PCorbaAny = type Pointer;
procedure PutAny(Value: PCorbaAny); stdcall;
Description
Do not use PutAny to add a Variant value to the marshaling buffer. Instead, use the global MarshalAny
procedure, which converts a Variant value to a CORBA Any and adds it to the marshaling buffer.

IMarshalOutBuffer.PutChar
IMarshalOutBuffer Methods See also

Adds a char value to the marshaling Buffer.
procedure PutChar(Value: Shortint); stdcall;
Description
Call PutChar to add the value of a char parameter. The character must first be converted to a Shortint
before it can be put in the marshaling Buffer.

IMarshalOutBuffer.PutDouble
IMarshalOutBuffer Methods See also

Adds a Double value to the marshaling Buffer.
procedure PutDouble(Value: Double); stdcall;
Description
Call PutDouble to add the value of a Double parameter.

IMarshalOutBuffer.PutFloat
IMarshalOutBuffer Methods See also

Adds a Single value to the marshaling Buffer.
procedure PutFloat(Value: Single); stdcall;
Description
Call PutFloat to add the value of a Single parameter. These values are called float values in the CORBA
IDL.

IMarshalOutBuffer.PutLong
IMarshalOutBuffer Methods See also Example

Adds a 32-bit integer value to the marshaling Buffer.
procedure PutLong(Value: Integer); stdcall;
Description
Call PutLong to add the value of a 32-bit integer parameter.

IMarshalOutBuffer.PutObject
IMarshalOutBuffer Methods See also

Adds an object interface to the marshaling Buffer.
procedure PutObject(const Value: ICorbaObj); stdcall;
Description
Do not use PutObject to add an object reference to the marshaling Buffer. Instead, use the global
MarshalObject procedure.
The Value parameter is an ICorbaObj interface for the object reference that is added to the marshaling
Buffer. This interface can be obtained from a CORBA stub or skeleton object.

IMarshalOutBuffer.PutShort
IMarshalOutBuffer Methods See also

Adds a 16-bit integer to the marshaling Buffer.
procedure PutShort(const Value: Smallint); stdcall;
Description
Call PutShort to pass a 16-bit integer as a parameter.

IMarshalOutBuffer.PutText
IMarshalOutBuffer Methods See also

Adds a string to the marshaling Buffer.
procedure PutText(const Value: PChar); stdcall;
Description
Call PutText to pass a string as a parameter. First cast the string to a PChar to add it to the marshaling
Buffer.

IMarshalOutBuffer.PutUnsignedChar
IMarshalOutBuffer Methods See also

Adds a Byte value to the marshaling Buffer.
procedure PutUnsignedChar(const Value: Byte); stdcall;
Description
Call PutUnsignedChar to pass a Byte value as a parameter.

IMarshalOutBuffer.PutUnsignedLong
IMarshalOutBuffer Methods See also

Adds an unsigned integer value to the marshaling Buffer.
procedure PutUnsignedLong(const Value: UINT); stdcall;
Description
Call PutUnsignedLong to pass a UINT value as a parameter.

IMarshalOutBuffer.PutUnsignedShort
IMarshalOutBuffer Methods See also

Adds an unsigned 16-bit value to the marshaling Buffer.
procedure PutUnsignedShort(const Value: Word); stdcall;
Description
Call PutUnsignedShort to pass a Word value as a parameter.

IMarshalOutBuffer.PutWidechar
IMarshalOutBuffer Methods See also

Adds a single UNICODE character to the marshaling Buffer.
procedure PutUnsignedShort(const Value: Word); stdcall;
Description
Call PutWidechar to pass a UNICODE character as a parameter.

IMarshalOutBuffer.PutWideText
IMarshalOutBuffer Methods See also

Adds a wide string to the marshaling Buffer.
procedure PutWideText(const Value: PWideChar); stdcall;
Description
Call PutWideText to pass a UNICODE string as a parameter. First cast the string to a PWideChar in
order to add it to the marshaling Buffer.

Hierarchy

IUnknown

ISkeleton
Hierarchy Methods See also

ISkeleton allows a CORBA skeleton to access its implementation class or obtain a marshaling buffer for
return values.

Unit
orbpas

Description
TCorbaSkeleton descendants use ISkeleton when talking to the ORB. This allows them to access their
CORBA object reference.
Note: To communicate in the other direction, the ORB talks to TCorbaSkeleton descendants using the

ISkeletonObject interface.

ISkeleton methods
ISkeleton Alphabetically

In ISkeleton
GetImplementation
GetReplyBuffer

Derived from ICorbaObj
CorbaObject
IsLocal

Derived from IUnknown
_AddRef
_Release
QueryInterface

ISkeleton methods
ISkeleton By object

_AddRef
_Release
CorbaObject
GetImplementation
GetReplyBuffer
IsLocal
QueryInterface

ISkeleton.GetImplementation
ISkeleton Methods See also

Returns an interface for the CORBA object implementation.
procedure GetImplementation(out impl: IUnknown); stdcall;
Description
The GetImplementation method returns the interface for a server object implementation. This method is
used when unmarshaling objects from a buffer.

ISkeleton.GetReplyBuffer
ISkeleton Methods

Returns a marshaling buffer that can hold return values.
procedure GetReplyBuffer(cookie: Pointer; out Outbuf: IMarshalOutBuffer);
stdcall;

Description
Skeleton objects call GetReplyBuffer to obtain a marshaling buffer for adding return values that can be
sent to the client identified by the cookie parameter.

Hierarchy

IUnknown

ICorbaObj

ISkeletonObject
Hierarchy Methods See also

ISkeletonObject is the interface that represents a CORBA skeleton.

Unit
orbpas

Description
TCorbaSkeleton objects implement the ISkeletonObject interface. This interface allows the ORB to pass
interface calls to the skeleton, which handles marshaling details and invokes the implementation class.
Note: Communication in the other direction (where the skeleton talks to the ORB) is handled using the

ISkeleton interface.

ISkeletonObject methods
ISkeletonObject Alphabetically

In ISkeletonObject
Execute
GetImplementation
GetSkeleton

Derived from IUnknown
_AddRef
_Release
QueryInterface

ISkeletonObject methods
ISkeletonObject By object

_AddRef
_Release
execute
GetImplementation
GetSkeleton
QueryInterface

ISkeletonObject.Execute
ISkeletonObject Methods See also

Executes a specified interface call.
function Execute(Operation: PChar; const Strm: IMarshalInBuffer; Cookie:
Pointer): CorbaBoolean; stdcall;

Description
Applications do not call the Execute method. It is called automatically when the ORB passes in an
interface invocation from a client application.
The Operation parameter specifies the interface member’s name. The Strm parameter is a marshaling
buffer that contains all the parameter values received from the client. The Cookie parameter specifies an
internal identifier that allows the skeleton object to keep track of which marshaling buffers are
associated with which interface calls.
The execute method returns 1 (True) if the call is successfully executed. It returns 0 (False) otherwise.

ISkeletonObject.GetImplementation
ISkeletonObject Methods See also

Returns an interface for the implementation object.
procedure GetImplementation(out Impl: IUnknown); virtual; stdcall;
Description
The GetImplemenation method returns an interface to the server implementation. This can be used to
call the implementation after unmarshaling any parameters.

ISkeletonObject.GetSkeleton
ISkeletonObject Methods

Returns an ISkeleton interface for marshaling interface calls.
procedure GetSkeleton(out Skeleton: ISkeleton); stdcall;
Description
The GetSkeleton method obtains an ISkeleton interface for marshaling interface calls.

Hierarchy

IUnknown

IStub
Hierarchy Methods See also

IStub represents a remote server object for a CORBA stub.

Unit
orbpas

Description
The CORBA stub manager obtains a descendant of IStub when a client application wants to talk to a
remote CORBA server object. Using the IStub interface, the CORBA stub manager creates a
descendant of TCorbaStub. This CORBA stub object then uses the IStub interface to talk to the CORBA
object reference.
Note: Communication in the other direction (where the ORB talks to the stub object) is handled using

the IStubObject interface.

IStub methods
IStub Alphabetically

In IStub
CreateRequest
Dispatch
GetInterface
Hash
Invoke
IsA
NonExistent
RepositoryID
SetPrincipal

Derived from ICorbaObj
CorbaObject
IsLocal

Derived from IUnknown
_AddRef
_Release
QueryInterface

IStub methods
IStub By object

_AddRef
_Release
CorbaObject
CreateRequest
Dispatch
GetInterface
Hash
Invoke
IsA
IsLocal
NonExistent
QueryInterface
RepositoryID
SetPrincipal

IStub.CreateRequest
IStub Methods See also Example

Sets up an interface call and returns its marshaling buffer.
procedure CreateRequest(Operation: PChar; ResponseExpected: CorbaBoolean;
out Outbuf: IMarshalOutBuffer); stdcall;

Description
Stub objects call CreateRequest to obtain a marshaling buffer into which they can write the arguments
of an interface call.
The Operation parameter is a string that gives the name of the interface method. The
ResponseExpected parameter indicates whether the method is returns any values (out parameters or a
function return value). The Outbuf parameter returns a marshaling buffer into which the stub can write
parameter values.

IStub.Dispatch
IStub Methods See also

Makes a late-bound (DII) call to a remote CORBA object.
function Dispatch(CallDesc: PCallDesc; Params: Pointer; out Result:
Variant): Integer; stdcall;

Description
When client applications use the Dynamic Invocation Interface (DII) to call remote CORBA objects, the
generic stub object calls Dispatch to send the call to the CORBA server after it has parsed the interface
call. Applications do not use this method directly.
The CallDesc parameter is an internal representation of the interface call that is recognized by the ORB.
The Params parameter contains all parameter values, after they have been converted to the CORBA
Any type. The Result parameter returns any return values from the server.
Dispatch returns an error code if the interface call can’t be completed. It returns 0 if the call is
successful.

IStub.GetInterface
IStub Methods See also

Returns a pointer to the interface definition from the Interface Repository.
type
 PCorbaInterfaceDef = type Pointer;
function GetInterface: PCorbaInterfaceDef; stdcall;
Description
If the server object is registered with the Interface Repository, GetInterface returns a structure containing
information about its interface. Otherwise, GetInterface returns NULL.
Applications do not need to use the interface definition returned by GetInterface. It is used internally to
create DII calls at runtime for client applications that do not use static binding.

IStub.Hash
IStub Methods See also

Returns a hash value for the server object instance.
function Hash(Maximum: CorbaULong): CorbaULong; stdcall;
Description
CORBA stub objects call Hash to implement their Hash method. Hash returns a value for the CORBA
object instance. This value is not guaranteed to be unique, but will remain consistent through the lifetime
of the object reference.

IStub.IsA
IStub Methods See also

Indicates whether the CORBA stub represents a particular type.
function IsA(LogicalTypeId: PChar): CorbaBoolean; stdcall;
Description
Call IsA to check whether the associated server object is of a specified type. Specify the type by passing
its base name as the LogicalTypeId parameter This is the name specified in the object’s IDL
specification. IsA returns True if the object on the CORBA server is an instance of the specified type or
one of its descendants. IsA returns False otherwise.

IStub.NonExistent
IStub Methods See also

Indicates whether the server object has been destroyed.
function NonExistent: CorbaBoolean; stdcall;
Description
Call NonExistent to test whether the object on the server is still instantiated. NonExistent returns False if
the server object is still available. NonExistent returns True if the server instance has been freed.

IStub.RepositoryID
IStub Methods

Returns the Repository ID of the associated CORBA object.
function RepositoryID: PChar; stdcall;
Description
Call RepositoryID to obtain the Repository ID of the CORBA object accessed using this IStub interface.

IStub.SetPrincipal
IStub Methods See also

Sends information about the client to the server application.
procedure SetPrincipal(Bytes: Pointer; Length: CorbaULong); stdcall;
Description
Call SetPrincipal to send an arbitrary value to the server application. Once the client calls SetPrincipal,
the server application can read this value by calling the Boa’s GetPrincipal method. SetPrincipal and
GetPrincipal allow CORBA clients to pass custom state information to servers, or to pass information
that identifies the client.
The Bytes parameter is a pointer to an array of bytes, called a “principal”. The Length parameter
specifies the number of bytes in the array.

IStub.Invoke
IStub Methods See also Example

Sends an interface call to the remote server and obtains a result.
procedure Invoke(const Inbuf: IMarshalOutBuffer; out Outbuf:
IMarshalInBuffer); stdcall;

Description
Call Invoke to send a remote interface call to the CORBA server. The Inbuf parameter specifies a
marshaling buffer that contains the arguments for the method call. The Outbuf parameter receives any
output parameters and the return value of function calls.
Note: Stub objects use Invoke to call an interface that is marshaled by the client application. Late-bound

calls (that use DII) must use the Dispatch method instead.

Hierarchy

IUnknown

ICorbaObj

IStubObject
Hierarchy Methods See also

IStubObject is the interface that represents a CORBA stub.

Unit
orbpas

Description
TCorbaStub objects implement the IStubObject interface. This interface allows other objects to obtain
the interface to the CORBA server object given an interface to the CORBA stub.
Because IStubObject is an interface, it can’t be instantiated. Client applications can get IStubObject
descendants by calling the global function CorbaFactoryCreateStub, the ORB’s Bind method, or The
CORBA stub manager’s CreateStub method.

IStubObject methods
IStubObject Alphabetically

In IStubObject
GetStub

Derived from IUnknown
_AddRef
_Release
QueryInterface

IStubObject methods
IStubObject By object

_AddRef
_Release
GetStub
QueryInterface

IStubObject.GetStub
IStubObject Methods See also

Returns the interface to an object on the CORBA server.
procedure GetStub(out stub :IStub); stdcall;
Description
Client applications do not call GetStub to obtain an interface for the CORBA server application. Instead,
Component writers can use GetStub to obtain the server interface when implementing methods that
marshal interface calls.

Hierarchy

IUnknown

TORB
Hierarchy Methods See also

TORB represents the CORBA Object Request Broker.

Unit
corbaobj

Description
Applications do not instantiate TORB objects. Instead, they use the global ORB function to obtain a
global object that can communicate with CORBA
Use the methods of TORB in CORBA client applications to obtain interfaces to objects on a CORBA
server.

TORB methods
TORB Alphabetically

In TORB
Bind
FindTypeCode
Initialize
MakeAlias
MakeAliasTypeCode
MakeArray
MakeObjectRefTypeCode
MakeSequence
MakeSequenceTypeCode
MakeStructure
MakeStructureTypeCode
MakeTypeCode
ObjectToString
Shutdown
StringToObject

Derived from TObject
AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
Create
DefaultHandler
Destroy
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
SafeCallException

TORB methods
TORB By object

AfterConstruction
BeforeDestruction
Bind
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
Create
DefaultHandler
Destroy
Dispatch
FieldAddress
FindTypeCode
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
Initialize
InitInstance
InstanceSize
MakeAlias
MakeAliasTypeCode
MakeArray
MakeObjectRefTypeCode
MakeSequence
MakeSequenceTypeCode
MakeStructure
MakeStructureTypeCode
MakeTypeCode
MethodAddress
MethodName
NewInstance
ObjectToString
SafeCallException
Shutdown
StringToObject

TORB.Bind
TORB See also Example

Makes an object instance available to CORBA clients.
function Bind(const RepositoryID: string; const ObjectName: string = '';
const HostName: string = ''): IObject; overload;

function Bind(const InterfaceID: TGUID; const ObjectName: string = ''; const
HostName: string = ''): IObject; overload;

Description
Call Bind to obtain an interface for calling a remote server object. Bind obtains an interface from the
ORB and uses it to create a stub class that can marshal interface calls. It then returns an interface to
this stub class.
Bind can be called in two ways: specifying the Repository ID of the server interface, or specifying its
interface type. Use the first parameter to specify either the Repository ID or the Interface type (GUID).
To call Bind using an interface type (GUID), the Interface type must be registered with the global
CORBAInterfaceIDManager.
The last two parameters of Bind are optional. ObjectName specifies an instance name for the server
object. HostName specifies a host name of a server machine for cases where you want to use a
particular server.
Before the Bind method can obtain an interface and create a stub, the server interface type and
Repository ID must be registered with the global CorbaInterfaceIDManager. In addition, if a stub class
for the interface is not be registered with the global CorbaStubManager, Bind returns a generic stub
interface. Generic stub interfaces can be used for calling servers using the dynamic invocation interface
(DII), but can’t be cast to the interface type specified by the InterfaceID parameter.

TORB.FindTypeCode
TORB See also Example

Retrieves an interface that supplies type information for a CORBA interface.
function FindTypeCode(const RepositoryID: string): ITypeCode;
Description
Call FindTypeCode to obtain an ITypeCode value that can be used for creating complex TAny
structures. These TAny structures are specialized variants that are used as parameters when making
dynamic (late) binding calls with the Dynamic Invocation Interface (DII).
Pass the Interface Repository ID for the desired structure as the RepositoryID parameter. The ORB
looks up the indicated type in the Interface Repository and returns an interface for it.
Note: The specified type must be registered with the Interface Repository or FindTypeCode returns

NULL.

TORB.Initialize
TORB See also

Sends startup options to the ORB.
type TCommandLine = ORBPAS.TArgv;
class procedure Initialize; overload;
class procedure Initialize(const CommandLine: TCommandLine); overload;
Description
CORBA client applications call Initialize to indicate options such as the IP address and port number of
the Smart Agent to be used. If Initialize is called with no arguments, the command line arguments to the
CORBA client application are sent.
To create a set of options to send to the ORB, treat the CommandLine parameter like a dynamic array.
Use code such as the following to set options:
SetLength(CommandLine, 2);
CommandLine[0] := '-ORBagentAddr 145.199.24.57';
CommandLine[1] := '-ORBagentPort 1457';
The following table summarizes the possible options:

Option Purpose
ORBagentAddr The host name or IP address of the host running the Smart Agent the client

should use.
ORBagentPort The port number of the Smart Agent.
ORBir_name The name of the Interface Repository to use for DII.
ORBir_ior The IOR of the Interface Repository to use for DII.
ORBrcvbufsize The size of the buffer (in bytes) used to receive responses.
ORBsendbufsize The size of the buffer (in bytes) used to send messages.
ORBshmsize The size of the send and receive segments (in bytes) of shared memory.
ORBtcpNodelay Indicates whether messages can be batched when buffers fill (0), or whether they

must be sent immediately when the client makes a request.

TORB.MakeAlias
TORB See also

Creates an alias.
function MakeAlias(const RepositoryID, TypeName: string; Value, Test: TAny):
TAny;

Description
Call MakeAlias to create an alias. The RepositoryID specifies the identifier of the resulting alias. The
TypeName parameter names the type of the alias to be created. The Value parameter is the original for
which the alias is created. The Test parameter is ignored.
MakeAlias returns the new alias as a TAny value.

TORB.MakeAliasTypeCode
TORB See also

Creates a type code interface for an alias.
function MakeAliasTypeCode(const RepositoryID, Name: string; const TC:
ITypeCode): ITypeCode;

Description
Call MakeAliasTypeCode to get a type code interface for an alias. The RepositoryID specifies the alias.
The Name parameter is the name of the alias’s type. The TC parameter is the type code of the original
for which the alias is created.
MakeAliasTypeCode returns a type code interface for the alias.

TORB.MakeArray
TORB See also

Returns a CORBA array built from a set of TAny values.
function MakeArray(Kind: TCKind; const Elements: array of TAny): TAny;
function MakeArray(TypeCode: ITypeCode; const Elements: array of TAny):
TAny;

Description
Call MakeArray to create a TAny value for a CORBA array (a fixed-length array). This array can then be
passed as a parameter to an interface using the dynamic invocation interface (DII).
The first parameter indicates the type of array elements. This can be either a TCKind value or an
ITypeCode that describes these elements.
The Elements parameter is an array of TAny values that are assigned to the elements of the array.

TORB.MakeObjectRefTypeCode
TORB See also

Creates a type code interface for an object.
function MakeObjectRefTypeCode(const RepositoryID, Name: string): ITypeCode;
Description
Call MakeObjectRefTypeCode to get a type code interface for an object. The RepositoryID specifies the
identifier for the object reference. The Name parameter is the name of the object’s type.
MakeObjectRefTypeCode returns the type code interface for the object.

TORB.MakeSequence
TORB See also

Returns a CORBA sequence built from a set of TAny values.
function MakeSequence(Kind: TCKind; const Elements: array of TAny): TAny;
function MakeSequence(TypeCode: ITypeCode; const Elements: array of TAny):
TAny;

Description
Call MakeStructure to create a TAny value for a CORBA sequence (a dynamic array). This sequence
can then be passed as a parameter to an interface using the dynamic invocation interface (DII).
The first parameter indicates the type of array elements. This can be either a TCKind value or an
ITypeCode that describes these elements.
The Elements parameter is an array of TAny values that are assigned to the elements of the array.

TORB.MakeSequenceTypeCode
TORB See also

Creates a type code interface for a CORBA sequence (dynamic array).
function MakeObjectRefTypeCode(Bound: CorbaULong; const TC: ITypeCode):
ITypeCode;

Description
Call MakeSequenceTypeCode to get a type code interface for a sequence. Bound specifies the
maximum number of elements in the sequence. TC is the type code interface that indicates the type of
the sequence elements. MakeSequenceTypeCode returns the type code interface for the sequence.

TORB.MakeStructure
TORB See also Example

Returns a CORBA structure built from a set of TAny values.
function MakeStructure(TypeCode: ITypeCode; const Elements: array of TAny):
TAny;

Description
Call MakeStructure to create a TAny value for a CORBA structure (a record). The TypeCode parameter
is an ITypeCode that describes the fields of the structure. The Elements parameter is an array of TAny
values that are assigned to the fields of the structure.
Note: To obtain an ITypeCode that describes the CORBA structure, use the FindTypeCode method.

TORB.MakeStructureTypeCode
TORB See also

Creates a type code interface for a CORBA structure (record).
type
 TStructMember = record
 Name: string;
 TC: ITypeCode;
 end;
 TStructMembers = array of TStructMember;
function MakeStructureTypeCode(RepositoryID, Name: string; Members:
TStructMembers): ITypeCode;

Description
Call MakeStructureTypeCode to get a type code interface for a structure. RepositoryID specifies the
identifier of the structure. Name is the name of the structure type. Members lists the members of the
structure, where each TStructMember specifies the name and type of the structure member.
MakeStructureTypeCode returns the type code interface for the structure.

TORB.MakeTypeCode
TORB See also

Converts a TCKind value to a CORBA ITypeCode interface.
function MakeTypeCode(Kind: TCKind): ITypeCode;
Description
Call MakeTypeCode to get a type code interface for a specified type. Kind indicates the type that the
interface should represent.

TORB.ObjectToString
TORB See also Example

Returns a string representation of an object.
function ObjectToString(const Obj: IObject): string;
Description
Call ObjectToString to convert an object reference to a string. The string can be converted back to an
object reference using the StringToObject method.

TORB.Shutdown
TORB

Terminates a connection to the server.
procedure Shutdown;
Description
Call Shutdown from a client application to close a connection to the CORBA server.

TORB.StringToObject
TORB See also Example

Converts a string representation of a CORBA object back to an interface.
function StringToObject(const ObjectString: string): IObject;
Description
Call StringToObject to obtain an interface for an object that was previously converted using the
ObjectToString method.
Note: Before calling StringToObject, the object’s interface and Repository ID must be registered with the

global CorbaInterfaceIDManager.

Hierarchy

TObject

AnyToObject function
See also

Converts a TAny value that contains a CORBA object reference to an object interface.

Unit
orbpas
function AnyToObject(Any: TAny; IID: TGUID): IObject;
Description
Call AnyToObject to obtain an interface that can be used to access the methods of the object referenced
by the Any parameter.
If Any refers to an object that is instantiated locally, AnyToObject returns the interface of its
implementation object. This is the same as calling TCorbaSkeleton.GetImplementation.
If Any refers to a remote object, IID must specify the globally unique identifier of the server interface
class, and this GUID must be registered with the CORBA stub manager. AnyToObject returns the
interface to its stub object. This is the same as calling TCorbaStubManager.CreateStub.
If Any does not contain a CORBA object reference, AnyToObject raises an exception.

BindStub procedure
See also Example

Obtains the interface to a CORBA server object as an IStub interface.

Unit
orbpas
procedure BindStub(RepositoryID, InstanceName, HostName: PChar; const Orb:
IORB; RefCountServer: CorbaBoolean; out Stub: IStub);

Description
Call BindStub to obtain an interface for an object on a CORBA server that was not generated using
Delphi. This interface does not include the marshaling support provided by a stub class. Client
applications can either use a marshaling buffer directly when calling into this interface or they can call
the CreateStub method of the global CorbaStubManager. CreateStub creates a stub object that handles
marshaling of interface calls.
The RepositoryID parameter specifies the repository ID for the CORBA server interface. The
InstanceName parameter specifies an optional instance name for the object instance on the CORBA
server. The HostName parameter (also optional) allows the client application to identify the server
machine by host name or IP address. The Orb parameter must take the global ORB variable, which is
available if the unit includes CorbaInit in its uses clause. The RefCountServer parameter indicates
whether the CORBA server maintains a reference count of client connections. The Stub parameter
returns an interface for the server object.

RegisterUserException function
See also

Registers a user-defined exception with the ORB.

Unit
orbpas
type
 PExceptionDescription = type Pointer;
 PUserExceptionProxy = type Pointer;
 TUserExceptionFactoryProc = function : PUserExceptionProxy; cdecl;
function RegisterUserException(Name, RepositoryID: PChar; Factory:
TUserExceptionFactoryProc): PExceptionDescription;

Description
Use RegisterUserException to enable the ORB to raise user-defined exceptions in your application. For
every user-defined exception defined in the server’s IDL file, you must define a corresponding
descendant of ECorbaUserException. Then, for that ECorbaUserException descendant, create a
function (of type TUserExceptionFactoryProc) that instantiates the exception object and returns the
value of its Proxy property. Finally, to enable the ORB to raise these exceptions in your application, call
RegisterUserException with the following arguments:

Name is the name of the exception. This is the same as the value of ECorbaException.Name.
RepositoryID is the repository ID of the user-defined exception in the IDL file.
Factory is the function that instantiates an ECorbaUserException object and returns the value of

its Proxy property.
RegisterUserException returns a pointer to an exception description. Use this pointer when you want to
unregister the user exception.

BOA function
Returns the CORBA Basic Object Adaptor object.

Unit
CorbaObj
function BOA: TBOA;
Description
CORBA server applications use BOA to specify options, retrieve Principal values written by client
applications, and to make CORBA server objects available or unavailable to clients.

CorbaBind function
See also Example

Returns an interface to let clients talk to a CORBA server object.

Unit
corbaobj
function CorbaBind(const RepositoryID: string; const ObjectName: string =
''; const HostName: string = ''): IObject;

function CorbaBind(const InterfaceID: TGUID; const ObjectName: string = '';
const HostName: string = ''): IObject;

Description
Call CorbaBind in a CORBA client application to obtain an interface for talking to a CORBA server
object. CorbaBind obtains an interface from the ORB and uses that to instantiate an appropriate stub
object.
The RepositoryID parameter specifies the Repository ID for an object on the CORBA server. As an
alternate way to call CorbaBind, the InterfaceID specifies the desired interface type on the CORBA
server. Before specifying the desired interface using its type (GUID), the interface must be registered
with the global CORBAInterfaceIDManager.
The ObjectName parameter optionally specifies the instance name of the server object that implements
the interface.
The HostName parameter optionally specifies the server machine that runs the CORBA server. If you
pass an empty string for HostName, a Smart Agent on the local network will bind to an object instance
on the first server found which implements the requested interface (and object).
CorbaBind returns an interface that the client application can use to talk to the implementation object on
the server.
Note: If the returned value is used for early binding, the stub class for the specified interface must be

registered with the global CorbaStubManager. If the stub class is not registered, CorbaBind
returns a generic stub interface that can only be used for late binding calls.

CorbaFactoryCreateStub function
See also Example

Returns an interface to let clients talk to a CORBA server object.

Unit
corbaobj
function CorbaFactoryCreateStub(const RepId, FactoryId, InstanceName,
HostName: string; IID: TGUID): IObject;

Description
Call CorbaFactoryCreateStub in a CORBA client application to obtain an interface for talking to a
CORBA server object. CorbaFactoryCreateStub obtains an interface from the ORB and uses that to
instantiate an appropriate stub object.
The RepId parameter specifies the Repository ID for a factory object on the CORBA server. The
FactoryId parameter specifies the Instance name of that factory object. This factory object creates an
object instance on the server that supports the interface specified by the IID parameter. The
InstanceName parameter gives an optional instance name for the object instance created by the factory
object on the server. The HostName parameter optionally specifies the server’s host name or IP
address.
CorbaFactoryCreateStub returns an interface that the client application can use to talk to the
implementation object on the server.
Before calling CorbaFactoryCreateStub, the stub class for the specified interface must be registered
with the global CorbaStubManager.
Note: To use CorbaFactoryCreateStub, the CORBA server must be running an instance of

TCorbaFactory or one of its descendants. Component writers writing custom stubs for servers
that do not include a factory object should use the BindStub procedure instead.

MakePrincipal function
See also

Creates a TCorbaPrincipal type from an array of bytes.

Unit
corbaobj
type TCorbaPrincipal = array of Byte;
function MakePrincipal(const Bytes: array of Byte): TCorbaPrincipal;
Description
Call MakePrincipal to convert an array of bytes to a TCorbaPrincipal value that can be used when
calling a CORBA stub’s SetPrincipal method.

MarshalAny procedure
See also

Adds a Variant value to a marshaling buffer.

Unit
corbaobj
procedure MarshalAny(const OutBuf: IMarshalOutBuffer; const OV: Variant);
Description
Use MarshalAny to pass a Variant value using a CORBA marshaling buffer. Variants appear as CORBA
Any types in the interface definition. MarshalAny handles the details of converting a Variant to a CORBA
Any type and adding it to the marshaling buffer.
The OutBuf parameter is the marshaling buffer that receives the Variant value. The OV parameter is the
Variant value that is added to the buffer.

MarshalObject procedure
See also

Adds an object interface to a marshaling buffer.

Unit
corbaobj
procedure MarshalObject(const OutBuf: IMarshalOutBuffer; IID: TGUID; const
Intf: IObject);

Description
Use MarshalObject to pass an object reference using a CORBA marshaling buffer. The OutBuf
parameter is the marshaling buffer that should receive the object reference. The IID parameter is the
GUID or interface type for that object. The Intf parameter is the interface instance as it is returned by a
skeleton class.
Note: MarshalObject assumes that the application contains either a stub object that implements the

interface or the interface is registered with the CORBA skeleton manager.

MarshalWordBool procedure
See also!Alink(UnMarshalWordBool_function)

Adds a boolean value to a marshaling buffer.

Unit
corbaobj
procedure MarshalWordBool(const OutBuf: IMarshalOutBuffer; Value: WordBool);
Description
Use MarshalWordBool to pass a boolean value using a CORBA marshaling buffer. The OutBuf
parameter is the marshaling buffer that should receive the boolean value. The Value parameter is equal
to True or False.
MarshalWordBool converts Object Pascal WordBool values to unsigned characters.

ORB function
See also Example

Returns an interface to the CORBA ORB.

Unit
corbaobj
function ORB: TORB;
Description
Corba client applications use the CORBA ORB for binding to objects, disconnecting from servers, and
obtaining string representations for object interfaces. Use ORB when calling routines, such as BindStub,
that require an interface to the CORBA ORB.
Note: Calling ORB initializes the CORBA ORB if it is not already initialized.

SequenceToVariantArray function
See also

Converts a CORBA sequence type to an Object Pascal Variant array.

Unit
corbaobj
function SequenceToVariantArray(Sequence: TAny): Variant;
Description
Use SequenceToVariantArray to convert CORBA sequences that are represented as TAny values into a
Variant array.

UnmarshalAny function
See also

Reads an Any value from a marshaling buffer into a Variant.

Unit
corbaobj
function UnmarshalAny(InBuf: IMarshalInBuffer): Variant;
Description
Use UnmarshalAny to receive a CORBA Any value using a CORBA marshaling buffer. The InBuf
parameter is the marshaling buffer that holds the Any. UnmarshalAny converts the Any value to an
OleVariant and returns it.

UnmarshalObject function
See also Example

Reads an object interface from a marshaling buffer.

Unit
corbaobj
function UnmarshalObject(InBuf: IMarshalInBuffer; IID: TGUID): IObject;
Description
Use UnmarshalObject to receive an object reference using a CORBA marshaling buffer. The InBuf
parameter is the marshaling buffer that holds the object reference. The IID parameter is the GUID or
interface type for that object. UnmarshalObject creates a stub object for the interface in the marshaling
buffer and returns its interface.
Note: Unmarshal object assumes that either the server object is local or the interface has a stub class

registered with the CORBA stub manager.

UnmarshalText function
See also Example

Reads a string from a marshaling buffer.

Unit
corbaobj
function UnmarshalText(InBuf: IMarshalInBuffer): string;
Description
Use UnmarshalText to retrieve a string using a CORBA marshaling buffer. The InBuf parameter is the
marshaling buffer that holds the string. UnmarshalText retrieves the string from the marshaling buffer,
frees the associated buffer, and returns the value as an AnsiString.

UnmarshalWideText function
See also

Reads a UNICODE string from a marshaling buffer.

Unit
corbaobj
function UnmarshalWideText(InBuf: IMarshalInBuffer): WideString;
Description
Use UnmarshalWideText to retrieve a UNICODE string using a CORBA marshaling buffer. The InBuf
parameter is the marshaling buffer that holds the string. UnmarshalWideText retrieves the string from
the marshaling buffer, frees the associated buffer, and returns the value as a WideString.

UnmarshalWordBool function
See also

Reads a boolean value from a marshaling buffer.

Unit
corbaobj
function UnmarshalWordBool(InBuf: IMarshalInBuffer): WordBool;
Description
Use UnmarshalWordBool to retrieve a boolean value from a CORBA marshaling buffer. The InBuf
parameter is the marshaling buffer that holds the boolean value. UnmarshalWordBool retrieves the
value from the marshaling buffer and converts it from an unsigned character into an Object Pascal
WordBool.

UnRegisterUserException procedure
See also

Unregisters a user-defined exception with the ORB.

Unit
orbpas
type PExceptionDescription = type Pointer;
procedure UnRegisterUserException(Description: PExceptionDescription);
Description
Use UnRegisterUserException to prevent the ORB from raising a specific class of user-defined
exceptions in your application.
The Description parameter is the description that is returned by the RegisterUserException function
when you register the exception.

VariantArrayToSequence function
See also

Converts a Variant array to a CORBA sequence.

Unit
corbaobj
function VariantArrayToSequence(TypeCode: ITypeCode; const VariantArray:
Variant): TAny;

Description
Use VariantArrayToSequence to create a CORBA sequence from a Variant array.
The TypeCode parameter is an ITypeCode interface that represents the type of the elements in the
array. Use the ORB’s MakeTypeCode method to obtain a value for this argument.
The VariantArray parameter is the Variant array that should be converted.
VariantArrayToSequence returns the CORBA sequence as a TAny value.

CorbaInterfaceIDManager variable
See also

CorbaInterfaceIDManager keeps track of the association between CORBA Repository IDs and
interfaces.

Unit
corbaobj
var CorbaInterfaceIDManager: TCorbaInterfaceIDManager;
Description
CORBA client applications register the Repository ID for each CORBA interface with the global
CorbaSkeletonManger so that the CorbaBind method (or the ORB variable’s Bind method) can look up
the necessary information for binding to a CORBA server object. The code to perform this registration is
automatically added to the stub and skeleton unit (_TLB.pas file).

CorbaSkeletonManager variable
See also

CorbaSkeletonManger keeps track of the association between CORBA skeleton classes and interfaces.

Unit
corbaobj
var CorbaSkeletonManager: TCorbaSkeletonManager;
Description
CORBA server applications must register their CORBA skeleton classes (TCorbaSkeleton descendants)
with the global CorbaSkeletonManger so that the server can instantiate the appropriate object when
clients request a server interface. The code to perform this registration is automatically added to the
stub and skeleton unit (_TLB.pas file).

CorbaStubManager variable
See also

CorbaStubManger keeps track of the association between CORBA stub classes and server interfaces.

Unit
corbaobj
var CorbaStubManager: TCorbaStubManager;
Description
CORBA client applications must register their CORBA stub classes (TCorbaStub descendants) with the
global CorbaStubManger so that stub objects can be created for server interface instances.
The code to register stub classes is automatically added to the stub and skeleton unit (_TLB.pas file).
However, developers using custom stub classes rather than the classes generated while creating the
server must add the code to register these classes with CorbaStubManger.

Comcorba unit
Other objects and components, by unit
TCorbaComObjectFactory
TCorbaComObjectFactory creates a COM object in response to a request from a CORBA client.

Corbaobj unit
Corbaobj routines
Other objects and components, by unit
ECorbaException
ECorbaException is the exception class that is raised when a CORBA application can’t perform a requested action.

ECorbaUserException
ECorbaUserException represents exceptions that are defined by the CORBA application developer.

ICorbaObject
ICorbaObject represents the interface of an object accessed through the ORB.

TBOA
TBOA represents the CORBA Basic Object Adaptor.

TCorbaDispatchStub
TCorbaDispatchStub is the base class for all automatically generated CORBA stub objects.

TCorbaFactory
TCorbaFactory is the base class for objects instantiated remotely by the global CorbaBind function.

TCorbaImplementation
TCorbaImplementation is the base class for classes that implement CORBA server interfaces.

TCorbaInterfaceIDManager
TCorbaInterfaceIDManager keeps track of which Repository IDs represent which interfaces.

TCorbaListManager
TCorbaListManager is the base class for classes that keep track of available CORBA classes and interfaces.

TCorbaObjectFactory
TCorbaObjectFactory creates a CORBA server object.

TCorbaSkeleton
TCorbaSkeleton is the base class for all CORBA skeleton objects.

TCorbaSkeletonManager
TCorbaSkeletonManager keeps track of which skeleton classes represent which interfaces.

TCorbaStub
TCorbaStub is the base class for all CORBA stub objects.

TCorbaStubManager
TCorbaStubManager keeps track of which stub classes represent specific server interfaces.

TCorbaVCLComponentFactory
TCorbaVCLComponentFactory creates a CORBA server object.

TORB
TORB represents the CORBA Object Request Broker.

Corbastd unit
Other objects and components, by unit
TAppServerSkeleton
TAppServerSkeleton is the skeleton class for a CORBA data module.

TAppServerStub
TAppServerStub is the stub class for a CORBA data module.

Orbpas unit
Orbpas routines
Other objects and components, by unit
ICorbaObj
ICorbaObj is the interface that represents a CORBA object.

IMarshalInBuffer
IMarshalInBuffer is the interface for reading return values from a marshaling buffer.

IMarshalOutBuffer
IMarshalOutBuffer is the interface for writing arguments to a marshaling Buffer.

ISkeleton
ISkeleton allows a CORBA skeleton to access its implementation class or obtain a marshaling buffer for return values.

ISkeletonObject
ISkeletonObject is the interface that represents a CORBA skeleton.

IStub
IStub represents a remote server object for a CORBA stub.

IStubObject
IStubObject is the interface that represents a CORBA stub.

Provider unit
Other objects and components, by unit
ECorbaDispatch
ECorbaDispatch is the exception class that is raised when a CORBA application encounters a problem using DII.

Corbaobj routine
Corbaobj objects/components
Other routines, by unit
BOA function
Returns the CORBA Basic Object Adaptor object.

CorbaBind function
Returns an interface to let clients talk to a CORBA server object.

CorbaFactoryCreateStub function
Returns an interface to let clients talk to a CORBA server object.

CorbaInterfaceIDManager variable
CorbaInterfaceIDManager keeps track of the association between CORBA Repository IDs and interfaces.

CorbaSkeletonManager variable
CorbaSkeletonManger keeps track of the association between CORBA skeleton classes and interfaces.

CorbaStubManager variable
CorbaStubManger keeps track of the association between CORBA stub classes and server interfaces.

MakePrincipal function
Creates a TCorbaPrincipal type from an array of bytes.

MarshalAny procedure
Adds a Variant value to a marshaling buffer.

MarshalObject procedure
Adds an object interface to a marshaling buffer.

MarshalWordBool procedure
Adds a boolean value to a marshaling buffer.

ORB function
Returns an interface to the CORBA ORB.

SequenceToVariantArray function
Converts a CORBA sequence type to an Object Pascal Variant array.

UnmarshalAny function
Reads an Any value from a marshaling buffer into a Variant.

UnmarshalObject function
Reads an object interface from a marshaling buffer.

UnmarshalText function
Reads a string from a marshaling buffer.

UnmarshalWideText function
Reads a UNICODE string from a marshaling buffer.

UnmarshalWordBool function
Reads a boolean value from a marshaling buffer.

VariantArrayToSequencefunction
Converts a Variant array to a CORBA sequence.

Orbpas routine
Orbpas objects/components
Other routines, by unit
AnyToObject function
Converts a TAny value that contains a CORBA object reference to an object interface.

BindStub procedure
Obtains the interface to a CORBA server object as an IStub interface.

RegisterUserException function
Registers a user-defined exception with the ORB.

UnRegisterUserException procedure
Unregisters a user-defined exception with the ORB.

All elements are displayed here
No additional elements exist for this unit or routine.

