
InaGrid Control
{button ,AL(`Inagrid objects',0,`',`')} See Also
{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ
{button ,AL(`property',0,`',`')} Properties {button ,AL(`method',0,`',`')} Methods
{button ,AL(`event',0,`',`')} Events

InaGrid is an unbound/virtual 32-bit ActiveX grid control for use with VB, C++, Delphi or any language
that supports OCX's. It is an ideal tool for database oriented viewers and editors where complex
formatting is not required. It is also a good replacement for list boxes and list controls where you want to
edit cells or display data fast. Because InaGrid is virtual, there are no pre-load or initialization delays;
you can quickly open and scroll though very large files.

InaGrid gives you control over all aspects of a grid. Features include the following:
§ Control color of background, foreground, regular or highlighted text, gridlines
§ Horizontal and vertical alignment
§ Selection by row or cell
§ Multiple selection
§ Over 999 billion rows by 2 billion columns
§ Editing of any cell
§ Moving and resizing of columns
§ Multiple levels of column headers
§ Owner-draw cells that can display bitmaps, etc.
§ Creation of line styles
§ Ability to embed an OCX in a cell

The InaGrid control is a system of three objects:
§ GridControl (contains the ColumnHeaders object)
§ ColumnHeaders (contains the ColumnHeader object)
§ ColumnHeader

InaGrid also supplies three editing controls that can be used to capture user input:
§ InaEdit
§ InaCombo
§ InaCheck

ColumnHeader Object
{button ,AL(`Inagrid objects',0,`',`')} See Also
{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ {button ,AL(`col hd
property',0,`',`')} Properties Methods Events

The InaGrid control is a system of three objects:
§ GridControl (contains the ColumnHeaders object)
§ ColumnHeaders (contains the ColumnHeader object)
§ ColumnHeader (this object)

The ColumnHeader object describes a column in the InaGrid control. There is one ColumnHeader object
for each column in the control. The set of ColumnHeader objects for an InaGrid control is contained
within a ColumnHeaders collection object, which provides properties and methods on the set of
ColumnHeader objects.

Id Property (ColumnHeader Object)
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Returns or sets the identification number of the column.

Syntax

VB
Object.Id [= number]

C++
long Object.GetId()
void Object.SetId(long number)

Part Description
Object An object expression that evaluates to a ColumnHeader

object.
Number A value or constant that specifies the id of the column.

Remarks
This property is intended to represent an application-defined value that identifies the column. This is
useful when responding to the GetData event which requests data for a particular row and column.

Example

VB
pValue = "Row = " + Str(nRow * 10000) + ", Col = " + Str(pColumn.Id)

C++
CColumnHeader hdrColumn(pColumn);
long nCol = hdrColumn.GetId();

OwnerDraw Property (ColumnHeader Object)
{button ,AL(`draw;main',0,`',`') } See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Returns or sets whether the data displayed in the column is drawn by the programmer.

Syntax

VB
Object.OwnerDraw [= bValue]

C++
BOOL Object.GetOwnerDraw()
void Object.SetOwnerDraw(BOOL bValue)

Part Description
Object An object expression that evaluates to a ColumnHeader

object.
bValue A Boolean expression specifying whether data is drawn

by the programmer.

Settings

The settings for bValue are:
Setting Description
True The programmer is responsible for drawing the data

presentation. The programmer must respond to the
OnDraw event and use Windows functions to display the
data.

False The InaGrid control performs all data display
functionality.

Remarks

Setting the OwnerDraw property to TRUE allows the programmer to present text or graphic data for the
column using Windows text and GDI routines.

Example

VB
Dim aCol As ColumnHeader
Set aCol = GridControl1.ColumnHeaders.Add(-1, "Second Column", 100, 2, gColumnLeft),
gColumnVCenter)
aCol.OwnerDraw = True

C++
CColumnHeader header = hdrCol.Add(-1, "Second Column", 100, 2, ColumnLeft), gColumnVCenter);
header.SetOwnerDraw(TRUE);

FixedWidth Property (ColumnHeader Object)
{button ,AL(`width;Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Returns or sets whether the column width can be changed by the user.

Syntax

VB
Object.FixedWidth [= bValue]

C++
BOOL Object.GetFixedWidth()
void Object.SetFixedWidth(BOOL bValue)

Part Description
Object An object expression that evaluates to a ColumnHeader

object.
bValue A Boolean expression specifying whether the user can

resize the column.

Settings

The settings for bValue are:
Setting Description
True The user can resize the column by dragging the sizing

icon at the edge of the column heading.
False The column width remains fixed and cannot be changed.

Remarks

The FixedWidth property does not change the ability to modify the column width using the Width
property.

Example

VB
Dim aCol As ColumnHeader
Set aCol = GridControl1.ColumnHeaders.Add(-1, "Second Column", 100, 2, gColumnLeft),
gColumnVCenter)
aCol.FixedWidth = True

C++
CColumnHeader header = hdrCol.Add(-1, "Second Column", 100, 2, gColumnLeft) , gColumnVCenter);
header.SetFixedWidth(TRUE);

Text Property (ColumnHeader Object)
{button ,AL(`text;Main',0,`',`Second')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Returns or sets the text displayed in the column header.

Syntax

VB
object.Text [= string]

C++
CString Object.GetText()
void Object.SetText(LPCTSTR string)

The Text property syntax has these parts:
Part Description
Object An object expression that evaluates to a ColumnHeader

object.
string A string expression specifying the text appearing in

column header.

Example

VB
Dim aColHdrs As ColumnHeaders
Set aColHdrs = GridControl1.ColumnHeaders
aColHdrs.Item(1).Text = "New column text"

C++
CColumnHeader header = hdrCol.GetItem(1);
header.SetText("New column text");

Width Property (Column Header Object)
{button ,AL(`width;Main',0,`',`Second')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Returns or sets the width of the column.

Syntax

VB
Object.Width [= lVal]

C++
long Object.GetWidth()
void Object.SetWidth(long lVal)

Part Description
Object An object expression that evaluates to a ColumnHeader

object.
lVal A value or constant that determines the width of the

column.

Example

VB
Dim aColHdrs As ColumnHeaders
Set aColHdrs = GridControl1.ColumnHeaders
aColHdrs.Item(1).Width = 125

C++
CColumnHeader header = hdrCol.GetItem(1);
header.SetWidth(125);

Selected Property (ColumnHeader Object)
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Returns or sets the selection state of the column.

Syntax

VB
Object.Selected [= bValue]

C++
BOOL Object.GetSelected()
void Object.SetSelected(BOOL bValue)

Part Description
Object An object expression that evaluates to a ColumnHeader

object.
bValue Specifies whether the column is selected.

Settings

The settings for bValue are:
Setting Description
True The column is selected. The cell containing the selected

row is painted in the highlighted colors.
False The column is not selected.

Example

VB
Dim aColHdrs As ColumnHeaders, bSelected As Boolean
Set aColHdrs = GridControl1.ColumnHeaders
bSelected = aColHdrs.Item(1).Selected

C++
CColumnHeader header = hdrCol.GetItem(1);
BOOL bSelected = header.GetSelected();

Parent Property (ColumnHeader Object)
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Returns or sets the ColumnHeaders container for the ColumnHeader object.

Syntax

VB
Object.Parent [= columnHeaders]

C++
CColumnHeaders Object.GetParent()
void Object.SetParent(LPDISPATCH columnHeaders)

Part Description
Object An object expression that evaluates to a ColumnHeader

object.
columnHeaders Specifies the ColumnHeaders object that serves as the

container for the column header.

Alignment Properties (ColumnHeader Object)
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

§ HAlignment--Returns or sets the horizontal alignment for data that is displayed in the column.
§ VAlignment--Returns or sets the vertical alignment for data that is displayed in the column.

Syntax

VB
Object.HAlignment [= hAlign]
Object.VAlignment [= vAlign]

C++
long Object.GetHAlignment()
void Object.SetHAlignment(long hAlign)

long Object.GetVAlignment()
void Object.SetVAlignment(long vAlign)

Part Description
Object An object expression that evaluates to a ColumnHeader

object.
hAlign A GridColumnHAlignmentConstants enumerator

specifying the type of horizontal alignment to use when
displaying text data.

vAlign A GridColumnVAlignmentConstants enumerator

specifying the type of vertical alignment to use when
displaying text data.

Settings

The settings for hAlign are:
Setting Description
gColumnLeft The column text is displayed left-aligned.
gColumnCenter The column text is displayed center-aligned.
gColumnRight The column text is displayed right-aligned.

The settings for vAlign are:
Setting Description
gColumnTop The column text is displayed at the top of the cell.
gColumnVCenter The column text is displayed vertically centered.
gColumnBottom The column text is displayed along the bottom of the cell.

Remarks

The vertical alignment settings have no effect if the InaGrid WrapColumnHeaders property is set to
TRUE.

Example

VB
Dim aColHdrs As ColumnHeaders
Set aColHdrs = GridControl1.ColumnHeaders
aColHdrs.Item(1).HAlignment = gColumnCenter
aColHdrs.Item(1).VAlignment = gColumnTop

C++
CColumnHeader header = hdrCol.GetItem(1);
header.SetHAlignment(gColumnCenter);
header.SetVAlignment(gColumnTop);

FirstColumn, LastColumn Properties (ColumnHeader Object)
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

§ FirstColumn--Returns the id of the first InaGrid control column that a sub-header is positioned over.
§ LastColumn--Returns the id of the last InaGrid control column that a sub-header is positioned over.

Syntax

VB
Object.FirstColumn

Object.LastColumn

C++
long Object.GetFirstColumn()
long Object.GetLastColumn()

Part Description
Object An object expression that evaluates to a ColumnHeader

object.

Remarks

These properties are used with sub-header column headers. When a column header represents a sub-
header (spans over several columns) these values represent the starting and ending columns of the
grid, over which this header spans. For example if a column header is an item of one of the sub-headers
and it has FirstColumn and LastColumn properties set respectively to 5 and 7, this header will span over
the 5-th, 6-th and the 7-th columns of the grid. These properties are not useful if the column header does
not represent a sub-header.

These properties are read-only.

If no column exists in the first or last position, or if the column header object does not represent a sub-
header, -1 is returned.

Example

VB
'Get "Attributes" sub-header
Dim aColHdr As ColumnHeader
Set aColumnHeader = GridControl1.ColumnHeaders.GetSubHeader (1,1)
lFirstCol = aColHdr.FirstColumn
lLastCol = aColHdr.LastColumn

C++
// Get "Attributes" sub-header
CColumnHeaders hdrCols = m_wndGrid.GetColumnHeaders();
CColumnHeader aColHdr = hdrCols.GetSubHeader(1,1);
long lFirstCol = aColHdr.GetFirstColumn();
long lLastCol = aColHdr.GetLastColumn();

ColumnHeaders Object
{button ,AL(`Inagrid objects',0,`',`')} See Also
{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ {button ,AL(`col hds
property',0,`',`second')} Properties {button ,AL(`col hds method',0,`',`second')} Methods
Events

§ GridControl (contains the ColumnHeaders object)
§ ColumnHeaders (this object, which contains the ColumnHeader object)
§ ColumnHeader

The ColumnHeaders collection object provides properties and methods on the set of ColumnHeader
objects that are part of an InaGrid control.

Count Property (ColumnHeaders Object)
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Returns the number of ColumnHeader objects contained within the ColumnHeaders collection.

Syntax

VB
Object.Count

C++
long Object.GetCount()

Part Description
Object An object expression that evaluates to a ColumnHeaders

collection object.

Remarks

This is a read-only property.

Example

VB
For i = 0 To GridControl1.ColumnHeaders.Count –1
 If GridControl1.ColumnHeaders(i).Id = SelectedColumn Then
 Set GridControl1.FocusColumnHeader = GridControl1.ColumnHeaders(i)
 End If
Next I

C++
CColumnHeaders hdrCol = m_wndGrid.GetColumnHeaders();
int nHeaderCount = hdrCol.GetCount();
for(int nHeader = 0; nHeader < nHeaderCount; nHeader++)
{
 CColumnHeader header = hdrCol.GetItem(nHeader);
 if(header.GetId() == nId)
 return nHeader;
}

Item Property
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Returns a ColumnHeader object contained within the ColumnHeaders collection.

Syntax

VB
Object.Item(nIndex As Long)

C++
CColumnHeader Object.GetItem(long nIndex)

The Item property syntax has these parts:
Part Description
Object An object expression that evaluates to a ColumnHeaders

collection object.
nIndex The 0-based index position of the ColumnHeader object.

Remarks

The ColumnHeaders collection is a 0-based collection.

Example

VB
Dim aColHdrs As ColumnHeaders
Set aColHdrs = GridControl1.ColumnHeaders
aColHdrs.Item(1).Width = 125

C++
CColumnHeaders hdrCol = m_wndGrid.GetColumnHeaders();
int nHeaderCount = hdrCol.GetCount();
for(int nHeader = 0; nHeader < nHeaderCount; nHeader++)
{
 CColumnHeader header = hdrCol.GetItem(nHeader);
 if(header.GetId() == nId)
 return nHeader;
}

Parent Property (ColumnHeaders Object)
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Returns or sets the InaGrid control object that the ColumnHeaders collection belongs to.

Syntax

VB
object.Parent

C++
LPDISPATCH Object.GetParent();

The Parent property syntax has these parts:
Part Description
Object An object expression that evaluates to a ColumnHeaders

collection object.
parentObject An object expression that evaluates to an InaGrid control

object.

Example

VB
Dim aGridControl As Object
Set aGridControl = GridControl1.ColumnHeaders.Parent

C++
LPDISPATCH pGridDisp = hdrCol.GetParent();
CGridControl* pGridControl = (CGridControl*)CCmdTarget::FromIDispatch(pGridDisp);

Remove Method
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Removes the specified ColumnHeader object from the ColumnHeaders collection.

Syntax
VB
object.Remove nIndex As Long

C++
void Object.Remove(long nIndex)

The Remove method syntax has these parts:
Part Description
Object An object expression that evaluates to a ColumnHeaders

collection object.
nIndex The 0-based index of the ColumnHeader object to

remove from the collection.

Remarks

If a column header is removed that is spanned by one or more sub-headers, all column headers from
sub-header rows, which contain this column, will be resized. If the removed column is the only column
they span, then the sub-header column is removed as well.

Example

VB
'Remove the fourth ColumnHeader object
Dim aColHdrs As ColumnHeaders
Set aColHdrs = GridControl1.ColumnHeaders
aColHdrs.Remove 3

C++
// Remove the fourth ColumnHeader object
CColumnHeaders hdrCol = m_wndGrid.GetColumnHeaders();
hdrCol.Remove(3);

Clear Method
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Removes all ColumnHeader objects and sub-headers from the ColumnHeaders collection.

Syntax

VB
object.Clear

C++
void Object.Clear()

The Clear method syntax has these parts:
Part Description
Object An object expression that evaluates to a ColumnHeaders

collection object.

Example

VB
Dim aColHdrs As ColumnHeaders
Set aColHdrs = GridControl1.ColumnHeaders
aColHdrs.Clear

C++
CColumnHeaders hdrCol = m_wndGrid.GetColumnHeaders();
hdrCol.Clear();

Add Method
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Adds and returns a new ColumnHeader object to the ColumnHeaders collection.

Syntax

VB
object.Add(nIndex As Long, pText As String, nWidth As OLE_XSIZE_PIXELS, nId As Long,
eHAlignment As GridColumnHAlignmentConstants, eVAlignment As GridColumnVAlignmentConstants)
As ColumnHeader
C++
CColumnHeader Object.Add(long nIndex, LPCTSTR pText, long nWidth, long nId, long eHAlignment,
long eVAlignment)

The Add method syntax has these parts:
Part Description
Object An object expression that evaluates to a ColumnHeaders

collection object.
nIndex 0-based position within the ColumnHeaders collection in

which to insert the new ColumnHeader.
pText The column header text.
nWidth The width of the column in pixels.
nId The unique Id to assign to the column.
eHAlignment The horizontal alignment of the text that is displayed in

the column.
eVAlignment The vertical alignment of the text that is displayed in the

column.

Settings

The settings for eHAlignment are:
Setting Description
gColumnLeft The sub-header text is displayed left-aligned.
gColumnCenter The sub-header text is displayed center-aligned.
gColumnRight The sub-header text is displayed right-aligned.

The settings for eVAlignment are:
Setting Description
gColumnTop The column text is displayed top-aligned.
gColumnVCenter The column text is displayed vertically center-aligned.
gColumnBottom The column text is displayed bottom-aligned.

Remarks

This method adds new ColumnHeader objects at the position specified in nIndex. If nIndex is specified
with the value of –1, a new ColumnHeader object is added at the end of the list.

Adding a new column header object resizes all column headers in sub-header rows which span the
position where the header is added.

See also : Alignment Properties (ColumnHeader Object)

Example

VB
GridControl1.ColumnHeaders.Add -1, "First Name", 100, 0, gColumnLeft, gColumnBottom;
GridControl1.ColumnHeaders.Add -1, "Last Name", 150, 1, gColumnLeft, gColumnBottom;

C++
CColumnHeaders hdrCol = m_wndGrid.GetColumnHeaders();
hdrCol.Add(-1, "First Name", 100, 0, gColumnLeft), gColumnBottom;
hdrCol.Add(-1, "Last Name", 150, 1, gColumnLeft), gColumnBottom;

AddSubHeader Method
{button ,AL(`Main;subheader',0,`',`')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Adds and returns a new ColumnHeader object that spans one or more columns.

Syntax

VB
object.AddSubHeader(nSubHeader As Long, nFirstCol As Long, nLastCol As Long, pText As String, nId
As Long, eHAlignment As GridColumnHAlignmentConstants, eVAlignment As
GridColumnVAlignmentConstants) As ColumnHeader

C++
CColumnHeader Object.AddSubHeader(long nSubHeader, long nFirstCol, long nLastCol, LPCTSTR
pText, long nId, long eHAlignment, long eVAlignment)

The AddSubHeader method syntax has these parts:
Part Description
Object An object expression that evaluates to a

ColumnHeaders collection object.
nSubHeader The 0-based vertical position of the sub-header. See

remarks.
nFirstCol The first 0-based column position that the sub-header is

positioned above.
nLastCol The last 0-based column position that the sub-header is

positioned above.
pText The sub-header text.
nId The unique Id to assign to the sub-header.
eHAlignment The horizontal alignment of the text that is displayed in

the sub-header.
eVAlignment The vertical alignment of the text that is displayed in the

sub-header.

Settings

The settings for eHAlignment are:
Setting Description
gColumnLeft The sub-header text is displayed left-aligned.
gColumnCenter The sub-header text is displayed center-aligned.
gColumnRight The sub-header text is displayed right-aligned.

The settings for eVAlignment are:
Setting Description
gColumnTop The sub-header text is displayed top-aligned.
gColumnVCenter The sub-header text is displayed vertically center-

aligned.
gColumnBottom The sub-header text is displayed bottom-aligned.

Remarks

The nSubHeader index specifies how the subheaders are placed in relation to each other vertically. The
first sub-header position, nSubHeader = 0, is placed at the top most position of the headers. Since sub
headers can span multiple columns, those that are intended to be placed side by side should have the
same nSubHeader value.

Do not add a sub-header to a row that spans a column in another sub-header in the same row. For
example if there is a column header in a sub-header row with first and last columns set to 2 and 5, you
cannot add a new column header in the same sub-header with first and last columns set to 4 and 7
because columns 4 and 5 would belong to both column headers.

See also : Alignment Properties (ColumnHeader Object)

Example

VB
GridControl1.ColumnHeaders.AddSubHeader 0, 0, 5, "Personal Data", 6, gColumnCenter,
gColumnVCenter
GridControl1.ColumnHeaders.AddSubHeader 1, 0, 1, "Name", 7, gColumnCenter, gColumnVCenter
GridControl1.ColumnHeaders.AddSubHeader 1, 2, 5, "Attributes", 8, gColumnCenter, gColumnVCenter

C++
CColumnHeaders hdrCol = m_wndGrid.GetColumnHeaders();
hdrCol.AddSubHeader(0, 0, 5, "Personal Data", 6, gColumnCenter), gColumnVCenter;
hdrCol.AddSubHeader(1, 0, 1, "Name", 7, gColumnCenter), gColumnVCenter;
hdrCol.AddSubHeader(1, 2, 5, "Attributes", 8, gColumnCenter), gColumnVCenter;

GetSubHeaderLineCount Method
{button ,AL(`Main;subheader',0,`',`')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Returns the number of rows that contain sub-headers.

Syntax

VB
object.GetSubHeaderLineCount() As Long

C++
long Object. GetSubHeaderLineCount()

The GetSubHeaderLineCount method syntax has these parts:
Part Description
Object An object expression that evaluates to a ColumnHeaders

collection object.

Example

VB
Dim lSubCount As Long
lSubCount = GridControl1.ColumnHeaders.GetSubHeaderLineCount()

C++
CColumnHeaders hdrCol = m_wndGrid.GetColumnHeaders();
long lSubCount = hdrCol.GetSubHeaderLineCount();

GetSubHeaderColumnCount Method
{button ,AL(`Main;subheader',0,`',`')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Returns the number of sub-headers on a specified sub-header row.

Syntax

VB
object.GetSubHeaderColumnCount(nSubHeader As Long) As Long

C++
long Object. GetSubHeaderColumnCount(long nSubHeader)

The GetSubHeaderColumnCount method syntax has these parts:
Part Description
Object An object expression that evaluates to a ColumnHeaders

collection object.
nSubHeader The 0-based vertical position of the sub-header. See

remarks.

Remarks

The nSubHeader index specifies how the subheaders are placed in relation to each other vertically. The
first sub header position, nSubHeader = 0, is placed at the top most position of the headers. Since sub
headers can span multiple columns, those that are intended to be placed side by side should have the
same nSubHeader value.

Example

VB
'Get number of columns that the first sub-header position spans
Dim lSubColCount As Long
lSubColCount = GridControl1.ColumnHeaders.GetSubHeaderColumnCount(0)

C++
// Get number of columns that the first sub-header position spans
CColumnHeaders hdrCol = m_wndGrid.GetColumnHeaders();
long lSubColCount = hdrCol.GetSubHeaderColumnCount(0);

GetSubHeader Method
{button ,AL(`Main;subheader',0,`',`')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Returns a ColumnHeader object that represents a sub-header.

Syntax

VB
object.GetSubHeader(nSubHeader As Long, nColumn As Long) As ColumnHeader

C++
CColumnHeader Object. GetSubHeader(long nSubHeader, long nColumn)

The GetSubHeader method syntax has these parts:
Part Description
Object An object expression that evaluates to a ColumnHeaders

collection object.
nSubHeader The 0-based vertical position of the sub-header. See

remarks.
nColumn The 0-based index of the sub-header.

Remarks

The nSubHeader index specifies how the subheaders are placed in relation to each other vertically. The
first sub-header position, nSubHeader = 0, is placed at the top most position of the headers. Since sub
headers can span multiple columns, those that are intended to be placed side by side should have the
same nSubHeader value.

Example

VB
'Get "Attributes" sub-header
Dim aColHdr As ColumnHeader
Set aColumnHeader = GridControl1.ColumnHeaders.GetSubHeader (1,1)

C++
// Get "Attributes" sub-header
CColumnHeaders hdrCols = m_wndGrid.GetColumnHeaders();
CColumnHeader aColHdr = hdrCols.GetSubHeader(1,1);

ClearSubHeaders Method
{button ,AL(`Main;subheader',0,`',`')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Removes all sub-headers from the ColumnHeaders collection.

Syntax

VB
object.ClearSubHeaders()

C++
void Object. ClearSubHeaders()

The ClearSubHeaders method syntax has these parts:
Part Description
Object An object expression that evaluates to a

ColumnHeaders collection object.

Example

VB
GridControl1.ColumnHeaders.ClearSubHeaders

C++
CColumnHeaders hdrCols = m_wndGrid.GetColumnHeaders();
hdrCols.ClearSubHeaders();

GridControl Object
{button ,AL(`Inagrid objects',0,`',`')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ
{button ,AL(`property',0,`',`')} Properties {button ,AL(`method',0,`',`')} Methods {button
,AL(`event',0,`',`')} Events

The InaGrid control is a system of three objects:
§ GridControl (this object, which contains the ColumnHeaders object)
§ ColumnHeaders (contains the ColumnHeader object)
§ ColumnHeader

Font Property
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Returns a Font object.

Syntax

VB
Object.Font [= aFont]

C++
COleFont Object.GetFont()
void Object.SetFont(LPDISPATCH aFont)

Part Description
Object An object expression that evaluates to an InaGrid

control.
aFont A StdFont object defined in the Visual Basic StdType

library.

Remarks

Use the Font property of an object to identify a specific Font object whose properties you want to use.
For example, the following code changes the Bold property setting of a Font object identified by the Font
property of an InaGrid control:

Example

VB
GridControl1.Font.Bold = True

C++
COleFont font = m_wndGrid.GetFont();
font.SetName(pDoc->m_lfText.lfFaceName)

Count Property
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Returns or sets the number of rows of an InaGrid control.

Syntax

VB
Object.Count [= number]

C++
ROWNUMBER Object.GetCount()
void Object.SetCount(ROWNUMBER& number)

Part Description
Object An object expression that evaluates to an InaGrid

control.
number A 64-bit value or constant that determines the number of

rows to display in an InaGrid control.

Remarks

VB:
The parameter number is a 64-bit value that is expressed in the Currency data type. To read this value
properly you must multiply by 10,000. Conversely, to set this value, you must divide the row count by
10,000.

C++
The parameter number is a 64-bit value that is expressed in the ROWNUMBER data type. Use the
int64 union member to read and assign values using this type.

Example

VB
GridControl1.Count = 12 / 10000 'Set count to 12

C++
ROWNUMBER RowCount;
RowCount.int64 = 12;
m_wndGrid.SetCount(RowCount);

ShowNumbers Property
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Returns or sets whether row numbers are displayed in an InaGrid control.

Syntax

VB
Object.ShowNumbers [= bValue]

C++
BOOL Object.GetShowNumbers()
void Object.SetShowNumbers(BOOL bValue)

Part Description
object An object expression that evaluates to an InaGrid

control.
bValue A Boolean expression specifying whether row numbers

are displayed for each row in the control.

Settings

The settings for Boolean are:

Setting Description
True An additional column exists on the left side of the

control that can contain any program-provided data
such as the line number of each row.

False The line number column is not present.

Remarks

Use this property to provide an extra column that can display row number information. The programmer
is responsible for providing data for this column using the GetData event handler. No ColumnHeader
object for this column exists.

Example

VB
GridControl1.ShowNumbers = True

C++
m_wndGrid.SetShowNumbers(TRUE);

WrapColumnHeaders Property
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Returns or sets whether column header text is word-wrapped in an InaGrid control.

Syntax

VB
Object.WrapColumnHeaders [= bValue]

C++
BOOL Object.GetWrapColumnHeaders()
void Object.SetWrapColumnHeaders (BOOL bValue)

Part Description
Object An object expression that evaluates to an InaGrid

control.
bValue A Boolean expression specifying whether heading text is

word-wrapped.

Settings

The settings for bValue are:
Setting Description
True Column header text wraps to the next line, and the

height of the header row is increased accordingly, if the
width of the column is not sufficient to display the header
text string.

False No word-wrapping occurs if the column width is
insufficient to display the full text. An ellipsis is displayed
in place of the remaining text.

Remarks

This property cannot be combined with vertical alignment of ColumnHeader objects.

Example

VB
GridControl1.WrapColumnHeaders = True

C++
m_wndGrid.SetWrapColumnHeaders(TRUE);

ShowGridLines Property
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Returns or sets whether grid lines are displayed in the rows and columns of an InaGrid control.

Syntax

VB
Object.ShowGridLines [= bValue]

C++
BOOL Object.GetShowGridLines()
void Object.SetShowGridLines (BOOL bValue)

Part Description
Object An object expression that evaluates to an InaGrid

control.
bValue A Boolean expression specifying whether grid lines are

displayed.

Settings

The settings for bValue are:
Setting Description
True Grid lines are displayed in the rows and columns of the

control using the GridLinesColor property.
False No gridlines are displayed within the rows and columns

of the control.

Example

VB
GridControl1.ShowGridLines = False

C++
m_wndGrid.SetShowGridLines(FALSE);

ColumnHeadersIn3D Property
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Returns or sets whether column headers and row numbers are displayed with 3D highlighting.

Syntax

VB
Object.ColumnHeadersIn3D [= bValue]

C++
BOOL Object.GetColumnHeadersIn3D ()
void Object.SetColumnHeadersIn3D (BOOL bValue)

Part Description
Object An object expression that evaluates to an InaGrid

control.
bValue A Boolean expression specifying whether column

headers and row numbers are displayed with 3D
highlighting.

Settings

The settings for bValue are:
Setting Description
True Headers and row numbers are displayed with 3D

highlighting.
False Headers and row numbers are displayed with no

highlighting and appear flat.

Example

VB
GridControl1.ColumnHeadersIn3D = False

C++
m_wndGrid.SetColumnHeadersIn3D(FALSE);

Color Properties
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

§ BackColor — returns or sets the background color of rows in an InaGrid control.
§ ForeColor — returns or sets the foreground color used to display text in an InaGrid control.
§ BackHiliteColor — returns or sets the background color used to display highlighted text in an InaGrid

control.
§ ForeHiliteColor — returns or sets the foreground color used to display highlighted text in an InaGrid

control.
§ GridLinesColor — returns or sets the color used to display lines separating rows and columns in an

InaGrid control.
§ ForeNumbersColor--returns or sets the foreground color used to display row numbers in an InaGrid

control.

Syntax

VB
Object.BackColor [= color]
Object.ForeColor [= color]
Object.BackHiliteColor [= color]
Object.ForeHiliteColor [= color]
Object.GridLinesColor [= color]
Object.ForeNumbersColor [= color]

C++
OLE_COLOR Object.GetBackColor ()
void Object.SetBackColor (OLE_COLOR color)
OLE_COLOR Object.GetForeColor ()
void Object.SetForeColor (OLE_COLOR color)
OLE_COLOR Object.GetBackHiliteColor ()
void Object.SetBackHiliteColor (OLE_COLOR color)
OLE_COLOR Object.GetForeHiliteColor ()
void Object.SetForeHiliteColor (OLE_COLOR color)
OLE_COLOR Object.GetGridLinesColor ()
void Object.SetGridLinesColor (OLE_COLOR color)
OLE_COLOR Object.GetForeNumbersColor ()
void Object.SetForeNumbersColor (OLE_COLOR color)

The color property syntaxes have these parts:
Part Description
object An object expression that evaluates to an InaGrid

control.
color A value or constant that determines the background

and foreground colors of an object, as described in
Settings.

Settings

The InaGrid control uses the Microsoft Windows operating environment red-green-blue (RGB) color
scheme. The settings for color are:

Setting Description
Normal RGB
colors

Colors specified by using the Color palette or by using
the RGB or QBColor functions in code.

System default
colors

Colors specified by system color constants listed in the
Visual Basic (VB) object library in the Object Browser .
The Windows operating environment substitutes user
choices as specified in the Control Panel settings.

The default settings at design time are as follows:
§ BackColor — set to the system default color specified by the constant vbWindowBackground.
§ ForeColor - set to the system default color specified by the constant vbWindowText.
§ BackHiliteColor - set to the system default color specified by the constant vb3DHighlight.
§ ForeHiliteColor - set to the system default color specified by the constant vb3Dface.
§ GridLinesColor - set to the system default color specified by the constant vb3Dshadow.
§ ForeNumbersColor - set to the system default color specified by the constant vbWindowText.

Remarks

The valid range for a normal RGB color is 0 to 16,777,215 (&HFFFFFF). The high byte of a number in
this range equals 0; the lower 3 bytes, from least to most significant byte, determine the amount of red,
green, and blue, respectively. The red, green, and blue components are each represented by a number
between 0 and 255 (&HFF). If the high byte isn’t 0, Visual Basic uses the system colors, as defined in
the user’s Control Panel settings and by constants listed in the Visual Basic (VB) object library in the
Object Browser.

To display text in the Windows operating environment, both the text and background colors must be
solid. If the text or background colors you've selected aren't displayed, one of the selected colors may
be dithered--that is, comprised of up to three different-colored pixels. If you choose a dithered color for
either the text or background, the nearest solid color will be substituted.

See Visual C++ Help. If MSB of color set, then color contains index used in GetSysColor: 0x800000xx,
xx is a valid GetSysColor index.

Example

VB
GridControl1.BackColor = "&H00FF00"
GridControl1.ForeColor = "&H0000FF"

C++
m_wndGrid.SetForeColor(RGB(0x00, 0xff, 0x00));
m_wndGrid.SetBackColor(RGB(0x00, 0x00, 0xff));

GridLinesStyle Property
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Returns or sets the style of grid lines.

Syntax

VB
Object.GridLinesStyle [= eGridLinesStyle]

C++
long Object.GetGridLinesStyle()
void Object.SetGridLinesStyle(GridLinesStyle eGridLinesStyle)

Part Description
Object An object expression that evaluates to a ColumnHeader

object.
eGridLinesStyle The type of line style to display grid lines.

Settings

The settings for eGridLinesStyle are:
Setting Description
gGridLineSolid Solid line.
gGridLineDot Dotted line.
gGridLineDashDot Dash-dotted line.
gGridLineThinDash Thin line.
gGridLineWideDash Wide line.

Remarks

The values for gGridLineSolid, gGridLineDot, gGridLineDashDot, gGridLineThinDash and
gGridLineWideDash are respectively 0, 1, 2, 3 and 4.

Example

VB
GridControl1.GridLinesStyle = gGridLineDashDot

C++
CColumnHeader header = hdrCol.GetItem(1);
m_wndGrid.SetGridLinesStyle(gGridLineDashDot);

hWnd Property
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Returns a handle to the InaGrid control.

Syntax

VB
Object.hWnd
The object represents an object expression that evaluates to an InaGrid control.

C++
OLE_HANDLE Object.GetHWnd()

Part Description
Object An object expression that evaluates to an InaGrid

control.
hWnd A handle to the InaGrid control window.

Remarks

The Microsoft Windows operating environment identifies each form and control in an application by
assigning it a handle, or hWnd. The hWnd property is used with Windows API calls. Many Windows
operating environment functions require the hWnd of the active window as an argument.

This is read-only property.

Note: Because the value of this property can change while a program is running, never store the
hWnd value in a variable.

Example

VB
nRet = OSWinHelp(GridControl1.hWnd, App.HelpFile, 3, 0)

C++
SetFocus((HWND)m_wndGrid.GetHWnd());

TextGutter Property
{button ,AL(`text;Main',0,`',`Second')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Returns or sets the size of the margin that surrounds the text within rows and columns of an InaGrid
control.

Syntax

VB
Object.TextGutter [=lValue]

C++
long Object.GetTextGutter()
void Object.SetTextGutter (long lValue)

Part Description
Object An object expression that evaluates to an InaGrid

control.
lValue A value or constant in pixels that determines the size of

the margin surrounding text.

Example

VB
GridControl1.TextGutter = 3

C++
m_wndGrid.SetTextGutter(3);

DeferUpdate Property
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Returns or sets whether the InaGrid control displays updates to its appearance.

Syntax

VB
Object.DeferUpdate [=bValue]

C++
BOOL Object.GetDeferUpdate()
void Object.SetDeferUpdate (BOOL bValue)

Part Description
Object An object expression that evaluates to an InaGrid

control.
bValue A Boolean expression specifying whether updates are

displayed.

Settings

The settings for Boolean are:
Setting Description
True All changes made to the control are immediately

displayed.
False Certain changes made to the control (font changes,

count changes, row height changes) are recorded
internally but are not displayed until the DeferUpdate
property is set to TRUE or the control is repainted by
another method.

Example

VB
GridControl1.DeferUpdate = True

C++
m_wndGrid.DeferUpdate(TRUE);

ShowHeaders Property
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Returns or sets whether the InaGrid control displays headers and sub-headers.

Syntax

VB
Object.ShowHeaders [= boolean]

C++
BOOL Object.GetShowHeaders()
void Object.SetShowHeaders (BOOL bValue)

Part Description
Object An object expression that evaluates to an InaGrid

control.
Boolean A Boolean expression specifying whether headers and

sub-headers are displayed.

Settings

The settings for bValue are:
Setting Description
True Column headers and any sub-headers that are defined

are displayed.
False No headers or sub-headers are displayed.

Example

VB
GridControl1.ShowHeaders = True

C++
m_wndGrid.SetShowHeaders(TRUE);

SelectMode Property
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Returns or sets the selection behavior of the InaGrid control.

Syntax

VB
Object.SelectMode [=lValue]

C++
long Object.GetSelectMode()
void Object.SetSelectMode (long lValue)

Part Description
Object An object expression that evaluates to an InaGrid

control.
lValue A number or constant that specifies the selection mode

of the control.

Settings

The settings for lValue are:
Setting Description
gCellSelect Selections are made on individual cells within the control.
gRowSelect Selections made on any cell within a row select the row.

Example

VB
GridControl1.SelectMode = gRowSelect

C++
m_wndGrid.SetSelectMode(gRowSelect);

VerticalOffset, HorizontalOffset Properties
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

§ VerticalOffset - returns or sets the offset of the first visible row of the control.
§ HorizontalOffset - returns or sets the horizontal offset of the grid

Syntax

VB
Object.VerticalOffset [= number]
Object.HorizontalOffset [= number]

C++
ROWNUMBER Object.GetVerticalOffset()
void Object.SetVerticalOffset (ROWNUMBER& number)
CY Object.GetHorizontalOffset()
void Object.SetHorizontalOffset (CY& number)

The VerticalOffset and HorizontalOffset property syntaxes have these parts:
Part Description
Object An object expression that evaluates to an InaGrid

control.
number A value or constant that determines the 0-based offset.

The vertical offset determines the first row that is
displayed at the top of the control. The horizontal offset
determines the pixel offset of left side of the control.

Remarks

The parameter number is a 64-bit value that is expressed in the ROWNUMBER data type. To read this
value properly you must multiply by 10,000. Conversely, to set this value, you must divide the row count
by 10,000.

When setting either of the offsets, the control automatically scrolls if necessary. The current selection is
not affected by the vertical offset.

The InaGrid control will always attempt to fill its current Height and Width. For this reason you cannot set
a vertical offset value that is larger than the number of rows that can be displayed within the control, nor
a horizontal offset that would cause the grid to scroll beyond the right-hand side of the control.

Example

VB
GridControl1.VerticalOffset = 100 / 10000 'scroll to row 101

C++
ROWNUMBER Offset;
Offset.int64 = 100;
m_wndGrid.SetVerticalOffset(Offset);

RowHeight Property
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Returns or sets the height of a row of an InaGrid control.

Syntax

VB
Object.RowHeight [= number]

C++
long Object.GetRowHeight()
void Object.SetRowHeight (long number)

Part Description
Object An object expression that evaluates to an InaGrid

control.
Number A value or constant that determines the height in pixels

of a row in an InaGrid control. If the value is negative the
row height is calculated automatically based on current
Font Height and Text Gutter.

Remarks

If RowHeight is positive, Height is set by the user. If RowHeight is the current auto line height, it is
calculated from the font size.

Example

VB
GridControl1.RowHeight = 25

C++
m_wndGrid.SetRowHeight(25);

FocusRow Property
{button ,AL(`focus;Main',0,`',`Second')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Returns or sets the row that is drawn with a focus rectangle.

Syntax

VB
object.FocusRow [= number]

C++
ROWNUMBER Object.GetFocusRow()
void Object.SetFocusRow (ROWNUMBER& number)

The FocusRow property syntax has these parts:
Part Description
Object An object expression that evaluates to an InaGrid

control.
number A numeric expression specifying the 0-based row that

contains the focus rectangle.

Remarks

The parameter number is a 64-bit value that is expressed in the ROWNUMBER data type. To read this
value properly you must multiply by 10,000. Conversely, to set this value, you must divide the row count
by 10,000.

If the value of number is –1, the focus is removed from all rows.

Example

VB
GridControl1.FocusRow = 0 / 10000 'set focus to first row

C++
ROWNUMBER FocusRow;
FocusRow.int64 = 0;
m_wndGrid.SetFocusRow(FocusRow);

FocusColumnHeader Property
{button ,AL(`focus;Main',0,`',`Second')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Returns or sets the column that is drawn with a focus rectangle.

Syntax

VB
object.FocusColumnHeader [= headerObject]

C++
CColumnHeader Object.GetFocusColumnHeader()
void Object.SetFocusColumnHeader (LPDISPATCH headerObject)

The FocusColumnHeader property syntax has these parts:
Part Description
Object An object expression that evaluates to an InaGrid

control.
headerObject An object expression that evaluates to a ColumnHeader

object.

Example

VB
'Set focus to cell in second column
Dim aColHdrs As ColumnHeaders
Set aColHdrs = GridControl1.ColumnHeaders
GridControl1.FocusColumnHeader = aColHdrs.Item(1)

C++
// Set focus to cell in second column
CColumnHeaders hdrCol = m_wndGrid.GetColumnHeaders();
CColumnHeader header = hdrCol.GetItem(1);
m_wndGrid.SetFocusColumnHeader(header);

ScalePrint Property
{button ,AL(`edit;Main',0,`',`second')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Returns or sets whether InaGrid control data is scaled to print on a single page.

Syntax

VB
Object.ScalePrint [= bValue]

C++
BOOL Object.GetScalePrint()
void Object.SetScalePrint (BOOL bValue)

Part Description
Object An object expression that evaluates to an InaGrid

control.
bValue A Boolean expression specifying whether control data is

scaled.

Settings

The settings for bValue are:
Setting Description
True All of the InaGrid data is scaled to print on a single page.
False The InaGrid data prints normally according to the printer

capabilities.

Example

VB
GridControl1.ScalePrint = True

C++
m_wndGrid.SetScalePrint(TRUE);

MultipleSelection Property
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Returns or sets whether multiple rows or cells can be selected in an InaGrid control.

Syntax

VB
Object.MultipleSelection [= bValue]

C++
BOOL Object.GetMultipleSelection()
void Object.SetMultipleSelection (BOOL bValue)

Part Description
Object An object expression that evaluates to an InaGrid

control.
bValue A Boolean expression specifying whether multiple

selections can be made.

Settings

The settings for bValue are:
Setting Description
True Multiple selections can be made using Windows 95

conventions.
False Only a single selection can exist.

Remarks

If the MultipleSelection property is true and the InaGrid control is in row selection mode (see
SelectMode), multiple rows can be selected. Otherwise, if the control is in cell selection mode, multiple
cells can be selected.

Example

VB
Dim bMultiSelect As Boolean
bMultiSelect = GridControl1.MultipleSelection

C++
BOOL bMultiSelect = m_wndGrid.GetMultipleSelection();

Height, Width Properties
{button ,AL(`width;Main',0,`',`Second')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Returns or sets the dimensions of an InaGrid control.

Syntax

VB
object.Height [= number]
object.Width [= number]

C++
int Object.GetHeight()
int Object.GetWidth()

The Height and Width property syntaxes have these parts:

Part Description
Object An object expression that evaluates to an InaGrid

control.
number A numeric expression specifying the dimensions of an

object, as described in Settings.

Settings

Measurements are calculated as follows:
Setting Description
Number Measured from the center of the control's border so that

controls with different border widths align correctly.
These properties use the scale units of a control's
container.

Remarks

Width and height are read-only attributes; you may only get, not set.

The values for these properties change as the object is sized by the user or by your code. Maximum
limits of these properties for all objects are system-dependent.

Use the Height, Width, Left, and Top properties for operations or calculations based on an object's total
area, such as sizing or moving the object.

Example

VB
Dim iHeight As Integer
iHeight = GridControl1.Height

C++
int iGridHeight = m_wndGrid.GetHeight()

ColumnHeaders Property
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Returns a collection of ColumnHeader objects.

Syntax

VB
object.ColumnHeaders

C++
CColumnHeaders Object.GetColumnHeaders()

The object placeholder is an object expression that evaluates to an InaGrid control.

Remarks

The ColumnHeaders property returns a collection of ColumnHeader objects in a Variant.

You can manipulate many of an InaGrid control's attributes by changing the properties of ColumnHeader
objects.

Example

VB
'Set focus to cell in second column
Dim aColHdrs As ColumnHeaders
Set aColHdrs = GridControl1.ColumnHeaders
GridControl1.FocusColumnHeader = aColHdrs.Item(1)

C++
// Set focus to cell in second column
CColumnHeaders hdrCol = m_wndGrid.GetColumnHeaders();
CColumnHeader header = hdrCol.GetItem(1);
m_wndGrid.SetFocusColumnHeader(header);

Container Property (Visual Basic Only)
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Returns or sets the container of an InaGrid on a Form. Not available at design time.

Syntax

Set object.Container [= container]

The Container property syntax has these parts:
Part Description
Object An object expression that evaluates to an InaGrid

control.
container An object expression that evaluates to an object that can

serve as a container for other controls.

DragIcon Property (Visual Basic Only)
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Returns or sets the icon to be displayed as the pointer in a drag-and-drop operation.

Syntax

object.DragIcon [= icon]

The DragIcon property syntax has these parts:
Part Description
Object An object expression that evaluates to an InaGrid

control.
icon Any code reference that returns a valid icon, such as a

reference to a form's icon (Form1.Icon), a reference to
another control's DragIcon property (Text1.DragIcon), or
the LoadPicture function.

Settings

The settings for icon are:
Setting Description
(none) (Default) An arrow pointer inside a rectangle.
Icon A custom mouse pointer. You specify the icon by setting

it using the Properties window at design time. You can
also use the LoadPicture function at run time. The file
you load must have the .ico filename extension and
format.

Remarks

You can use the DragIcon property to provide visual feedback during a drag-and-drop operation-- for
example, to indicate that the source control is over an appropriate target. DragIcon takes effect when the
user initiates a drag-and-drop operation. Typically, you set DragIcon as part of a MouseDown or
DragOver event procedure.

Note At run time, the DragIcon property can be set to any object's DragIcon or Icon property, or you
can assign it an icon returned by the LoadPicture function.

When you set the DragIcon property at run time by assigning the Picture property of one control to the
DragIcon property of another control, the Picture property must contain an .ico file, not a .bmp file.

DragMode Property (Visual Basic Only)
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Returns or sets a value that determines whether manual or automatic drag mode is used for a drag-and-
drop operation.

Syntax

object.DragMode [= number]

The DragMode property syntax has these parts:
Part Description
Object An object expression that evaluates to an InaGrid

control.
number An integer that specifies the drag mode, as described in

Settings.

Settings

The settings for number are:
Constant Setting Description
vbManual 0 (Default) Manual--requires using the Drag

method to initiate a drag-and-drop operation
on the source control.

vbAutomatic 1 Automatic--clicking the source control
automatically initiates a drag-and-drop
operation. OLE container controls are
automatically dragged only when they don't
have the focus.

Remarks

When DragMode is set to 1 (Automatic), the control doesn't respond as usual to mouse events. Use the
0 (Manual) setting to determine when a drag-and-drop operation begins or ends; you can use this
setting to initiate a drag-and-drop operation in response to a keyboard or menu command or to enable a
source control to recognize a MouseDown event prior to a drag-and-drop operation.

Clicking while the mouse pointer is over a target object or form during a drag-and-drop operation
generates a DragDrop event for the target object. This ends the drag-and-drop operation. A drag-and-
drop operation may also generate a DragOver event.

Note: While a control is being dragged, it can't recognize other user-initiated mouse or keyboard
events (KeyDown, KeyPress or KeyUp, MouseDown, MouseMove, or MouseUp). However, the control
can receive events initiated by code or by a DDE link.

HelpContextID Property (Visual Basic Only)
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Returns or sets an associated context number for an object. Used to provide context-sensitive Help for
your application.

Syntax

object.HelpContextID [= number]

The HelpContextID property syntax has these parts:
Part Description
Object An object expression that evaluates to an InaGrid control. If object is

omitted, the form associated with the active form module is assumed to
be object.

number A numeric expression that specifies the context number of the Help topic
associated with object.

Settings

The settings for number are:
Setting Description
0 (Default) No context number specified.
> 0 An integer specifying a valid context number.

Remarks

For context-sensitive Help on an object in your application, you must assign the same context number to
both object and to the associated Help topic when you compile your Help file.

If you've created a Microsoft Windows operating environment Help file for your application and set the
application's HelpFile property, when a user presses the F1 key, Visual Basic automatically calls Help
and searches for the topic identified by the current context number.
The current context number is the value of HelpContextID for the object that has the focus. If
HelpContextID is set to 0, then Visual Basic looks in the HelpContextID of the object's container, and
then that object's container, and so on. If a nonzero current context number can't be found, the F1 key is
ignored.

For a Menu control, HelpContextID is normally read/write at run time. But HelpContextID is read-only
for menu items that are exposed or supplied by Visual Basic to add-ins, such as the Add-In Manager
command on the Add-Ins menu.

Note Building a Help file requires the Microsoft Windows Help Compiler, which is included with the
Visual Basic Professional Edition.

Index Property (Visual Basic Only)
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Returns or sets the number that uniquely identifies an object in a collection.

Syntax

object.Index

The object placeholder is an object expression that evaluates to an InaGrid control.

Remarks

The Index property is set by default to the order of the creation of objects in a collection. The index for
the first object in a collection will always be one.

The value of the Index property of an object can change when objects in the collection are reordered,
such as when you set the Sorted property to True. If you expect the Index property to change
dynamically, it may be more useful to refer to objects in a collection by using the Key property.

Left, Top Properties (Visual Basic Only)
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

§ Left--returns or sets the distance between the internal left edge of the InaGrid control and the left
edge of its container.

§ Top--returns or sets the distance between the internal top edge of the InaGrid control and the top
edge of its container.

Syntax

object.Left [= value]
object.Top [= value]

The Left and Top property syntaxes have these parts:
Part Description
Object An object expression that evaluates to an InaGrid

control.
value A numeric expression specifying distance.

Remarks

The Left and Top properties are measured in units depending on the coordinate system of its container.
The values for these properties change as the object is moved by the user or by code.

For either property, you can specify a single-precision number.

Use the Left, Top, Height, and Width properties for operations based on an object's external dimensions,
such as moving or resizing.

Name Property (Visual Basic Only)
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Returns the name used in code to identify the InaGrid control object. Read-only at run time.

Syntax

object.Name

An object expression that evaluates to an InaGrid control. If object is omitted, the form associated with
the active form module is assumed to be object.

Remarks

The default name for new objects is the kind of object plus a unique integer. For example, the first new
InaGrid control is GridControl1.

An object's Name property must start with a letter and can be a maximum of 40 characters. It can
include numbers and underline (_) characters but can't include punctuation or spaces. Although the
Name property setting can be a keyword, property name, or the name of another object, this can create
conflicts in your code.

You can create an array of InaGrid controls by setting the Name property to the same value. For
example, when you set the name of all InaGrid controls in a group to MyGrid, Visual Basic assigns
unique values to the Index property of each control to distinguish it from others in the array. Two controls
of different types can't share the same name.

Object Property (Visual Basic Only)
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Returns the object and/or a setting of an InaGrid control method or property.

Syntax

object.Object[.property | .method]

The Object property syntax has these parts:
Part Description
Object An object expression that evaluates to an InaGrid

control.
property Property that the InaGrid control object supports.
method Method that the InaGrid control object supports.

Remarks

Use this property to specify an InaGrid control object you want to use in an Automation task.

You use the object returned by the Object property in an Automation task by using the properties and
methods of the InaGrid control object.

Parent Property (Visual Basic Only)
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Returns the form, object, or collection that contains the InaGrid control.

Syntax

object.Parent

The object placeholder is an object expression that evaluates to an InaGrid control.

Remarks

Use the Parent property to access the properties, methods, or controls of an InaGrid control’s parent.
For example:

GridControl1.Parent.MousePointer = 4

The Parent property is useful in an application in which you pass objects as arguments. For example,
you could pass a control variable to a general procedure in a module, and use the Parent property to
access its parent form.

There is no relationship between the Parent property and the MDIChild property. There is, however, a
parent-child relationship between an MDIForm object and any Form object that has its MDIChild
property set to True.

TabIndex Property (Visual Basic Only)
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Returns or sets the tab order of the InaGrid control object within its parent form.

Syntax

object.TabIndex [= index]

The TabIndex property syntax has these parts:
Part Description
Object An object expression that evaluates to an InaGrid

control.
index An integer from 0 to (n–1), where n is the number of

controls on the form that have a TabIndex property.
Assigning a TabIndex value of less than 0 generates an
error.

Remarks

By default, Visual Basic assigns a tab order to controls as you draw them on a form, with the exception
of the Menu, Timer, Data, Image, Line and Shape controls, which are not included in the tab order. At
run time, invisible or disabled controls and controls that can't receive the focus (Frame and Label
controls) remain in the tab order but are skipped during tabbing.

Each new control is placed last in the tab order. If you change the value of a control's TabIndex property
to adjust the default tab order, Visual Basic automatically renumbers the TabIndex of other controls to
reflect insertions and deletions. You can make changes at design time using the Properties window or at
run time in code.

The TabIndex property isn't affected by the ZOrder method.

Note A control's tab order doesn't affect its associated access key. If you press the access key for a
Frame or Label control, the focus moves to the next control in the tab order that can receive the focus.

When loading forms saved as ASCII text, controls with a TabIndex property that aren't listed in the form
description are automatically assigned a TabIndex value. In subsequently loaded controls, if existing
TabIndex values conflict with earlier assigned values, the controls are automatically assigned new
values.

When you delete one or more controls, you can use the Undo command to restore the controls and all
their properties except for the TabIndex property, which can't be restored. TabIndex is reset to the end of
the tab order when you use Undo.

TabStop Property (Visual Basic Only)
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Returns or sets a value indicating whether a user can use the TAB key to give the focus to an InaGrid
control object.

Syntax

object.TabStop [= boolean]

The TabStop property syntax has these parts:
Part Description
Object An object expression that evaluates to an InaGrid

control.
boolean A Boolean expression specifying whether the object is a

tab stop, as described in Settings.

Settings

The settings for boolean are:
Setting Description
True (Default) Designates the InaGrid control as a tab stop.
False Bypasses the InaGrid control when the user is tabbing,

although the control still holds its place in the actual tab
order, as determined by the TabIndex property.

Remarks

This property enables you to add or remove an InaGrid control from the tab order on a form.

Tag Property (Visual Basic Only)
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Returns or sets an expression that stores any extra data needed for your program. Unlike other
properties, the value of the Tag property isn't used by Visual Basic; you can use this property to identify
objects.

Syntax

object.Tag [= expression]

The Tag property syntax has these parts:
Part Description
Object An object expression that evaluates to an InaGrid

control.
expression A string expression identifying the InaGrid control. The

default is a zero-length string ("").

Remarks

You can use this property to assign an identification string to an InaGrid control without affecting any of
its other property settings or causing side effects. The Tag property is useful when you need to check the
identity of an InaGrid control that is passed as a variable to a procedure.

ToolTipText Property (Visual Basic Only)
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Returns or sets a ToolTip.

Syntax

object.ToolTipText [= string]

The ToolTipText property syntax has these parts:
Part Description
Object An object expression that evaluates to an InaGrid

control.
string A string, associated with an InaGrid control, that appears

in a small rectangle when the user's cursor hovers over
the control at run time for about one second.

Remarks

At design time you can set the ToolTipText property string in the control's properties dialog box.

Visible Property (Visual Basic Only)
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Returns or sets a value indicating whether the InaGrid control is visible or hidden.

Syntax

object.Visible [= boolean]

The Visible property syntax has these parts:
Part Description
Object An object expression that evaluates to an InaGrid

control.
boolean A Boolean expression specifying whether the InaGrid

control is visible or hidden.

Settings

The settings for boolean are:
Setting Description
True (Default) The control is visible.
False The control is hidden.

Remarks

To hide the InaGrid control at startup, set the Visible property to False at design time. Setting this
property in code enables you to hide and later redisplay the control at run time in response to a
particular event.

WhatsThisHelpID Property (Visual Basic Only)
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Returns or sets an associated context number for an InaGrid control. Use to provide context-sensitive
Help for your application using the What's This pop-up in Windows 95 Help.

Syntax

object.WhatsThisHelpID [= number]

The WhatsThisHelpID property syntax has these parts:
Part Description
Object An object expression that evaluates to an InaGrid

control.
number A numeric expression specifying a Help context number,

as described in Settings.

Settings

The settings for number are:
Setting Description
0 (Default) No context number specified.
>0 An integer specifying the valid context number for the

What's This topic associated with the InaGrid control.

Remarks

Windows 95 uses the What's This button in the upper-right corner of the window to start Windows Help
and load a topic identified by the WhatsThisHelpID property.

UpdateRow Method
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Forces a complete repaint of a row in an InaGrid control.

Syntax

VB
object.UpdateRow nRow
C++
void object.UpdateRow(const ROWNUMBER& nRow)

The UpdateRow method syntax has these parts:
Part Description
Object An object expression that evaluates to an InaGrid

control.
nRow A numeric ROWNUMBER expression specifying the

row number.

Remarks

This method is used to force the control to redisplay data for the specified row. The data is refreshed
during the GetData event. The value of nRow can range from 0 to Count -1.

nRow is a 64-bit parameter that is expressed in the ROWNUMBER data type. You must scale this value
by dividing by 10,000.

Example

VB
InaGridControl.UpdateRow 20 / 10000

C++
ROWNUMBER Row;
Row.int64 = 20;
m_wndGrid.UpdateRow(Row);

UpdateColumn Method
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Forces a complete repaint of a column in an InaGrid control.

Syntax

VB
object.UpdateColumn nColumn

C++
void object.UpdateColumn(long nColumn)

The UpdateColumn method syntax has these parts:
Part Description
Object An object expression that evaluates to an InaGrid

control.
nColumn A numeric expression specifying the column number.

Remarks

The value of nColumn can range from 0 to object.ColumnHeaders.Count -1.

GetRowNumber Method
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Returns the row number that the specified vertical pixel resides in.

Syntax

VB
object.GetRowNumber yPos

C++
ROWNUMBER object.GetRowNumber(long yPos)

The GetRowNumber method syntax has these parts:
Part Description
Object An object expression that evaluates to an InaGrid

control.
yPos The vertical pixel position relative to the InaGrid client

area.

Remarks

Returns a 64-bit parameter that is expressed in the ROWNUMBER data type. You must scale this value
by dividing by 10,000.

Returns -1 if the specified pixel does not reside in a row within the InaGrid control.

Example

VB
Dim yPos As Integer, nRow As ROWNUMBER
yPos = 123
nRow = GridControl1.GetRowNumber(yPos)

C++
ROWNUMBER nRow = m_wndGrid.GetRowNumber(123);

GetColumnNumber Method
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Returns the column number that the specified horizontal pixel resides in.

Syntax

VB
object.GetColumnNumber xPos

C++
long object.GetColumnNumber(long xPos)

The GetColumnNumber method syntax has these parts:
Part Description
Object An object expression that evaluates to an InaGrid control.
xPos The horizontal pixel position relative to the InaGrid client area.

Remarks

Returns -1 if the specified pixel does not reside in a column within the InaGrid control.

Example

VB
Dim xPos As Integer, lCol As Long
xPos = 50
lCol = GridControl1.GetColumnNumber(xPos)

C++
long lCol = m_wndGrid.GetColumnNumber(50);

ForceVisible Method
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Makes the specified row visible within the InaGrid control by scrolling the client area.

Syntax

VB
object.ForceVisible nRow, bPartialOk

C++
void object.ForceVisible(const ROWNUMBER& nRow, BOOL bPartialOk)

The ForceVisible method syntax has these parts:
Part Description
Object An object expression that evaluates to an InaGrid

control.
nRow The row number to make visible.
bPartialOk A Boolean expression specifying whether the full row

must be visible.

Settings

The settings for bPartialOk are:
Setting Description
True If any part of the row is visible, scrolling is unnecessary.
False Require that the InaGrid control scroll so that the entire

row is visible.

Remarks

nRow is a 64-bit parameter that is expressed in the ROWNUMBER data type. You must scale this value
by dividing by 10,000.

Example

VB
Dim nRow As ROWNUMBER
nRow = 45
GridControl1.ForceVisible nRow, False

C++
ROWNUMBER nRow;
nRow.int64 = 45;
m_wndGrid.ForceVisible(nRow, FALSE);

ForceVisibleColumn Method
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Makes the specified column visible within the InaGrid control by scrolling the client area.

Syntax

VB
object.ForceVisibleColumn pColumnHeader, bPartialOk

C++
void object.ForceVisibleColumn(LPDISPATCH pColumnHeader, BOOL bPartialOk)

The ForceVisibleColumn method syntax has these parts:
Part Description
Object An object expression that evaluates to an InaGrid control.
pColumnHeader The column to make visible.
bPartialOk A Boolean expression specifying whether the full column must be visible.

Settings

The settings for bPartialOk are:
Setting Description
True If any part of the row is visible, scrolling is unnecessary.
False Require that the InaGrid control scroll so that the entire row is visible.

Example

VB
'Force the second column to be fully visible
Dim aColHdrs As ColumnHeaders
Set aColHdrs = GridControl1.ColumnHeaders
GridControl1.ForceVisibleColumn aColHdrs.Item(1), False

C++
// Force the second column to be fully visible
CColumnHeaders hdrCol = m_wndGrid.GetColumnHeaders();
CColumnHeader header = hdrCol.GetItem(1);
m_wndGrid.ForceVisibleColumn(header, FALSE);

SetPaintRect Method
{button ,AL(`print;Main',0,`',`second')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Sets the rectangle that defines the printing area for subsequent printing using the Paint method.

Syntax

VB
object.SetPaintRect xPos, yPos, xSize, ySize

C++
void object.SetPaintRect(long xPos, long yPos, long xSize, long ySize)

The SetPrintRect method syntax has these parts:
Part Description
Object An object expression that evaluates to an InaGrid

control.
xPos The horizontal pixel origin relative to the InaGrid client

area, that defines the left-most printing rectangle.
yPos The vertical pixel origin relative to the InaGrid client area,

that defines the top-most printing rectangle.
xSize The horizontal pixel width relative to the origin, that

defines the width of the printing rectangle.
ySize The vertical pixel height relative to the origin, that defines

the height of the printing rectangle.

Example

VB
GridControl1.SetPaintRect 0, 0, 400, 200

C++
int nPageWidth = pDC->GetDeviceCaps(HORZRES);
int nPageHeight = pDC->GetDeviceCaps(VERTRES);
CSize szInch(pDC->GetDeviceCaps(LOGPIXELSX), pDC->GetDeviceCaps(LOGPIXELSY));
CRect rect(0, 0, nPageWidth, nPageHeight);

rect.InflateRect(-szInch.cx/2, -szInch.cy/2);
m_wndGrid.SetPaintRect(rect.left, rect.top, rect.Width(), rect.Height());

GetPaintRect Method
{button ,AL(`print;Main',0,`',`second')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Gets the values that define the printing area for subsequent printing using the Print method.

Syntax

VB
object.GetPaintRect xPos, yPos, xSize, ySize

C++
void object.GetPaintRect(long* xPos, long* yPos, long* xSize, long* ySize)

The GetPaintRect method syntax has these parts:
Part Description
Object An object expression that evaluates to an InaGrid

control.
xPos Receives the horizontal pixel origin relative to the InaGrid

client area, that defines the left-most printing rectangle.
yPos Receives the vertical pixel origin relative to the InaGrid

client area, that defines the top-most printing rectangle.
xSize Receives the horizontal pixel width relative to the origin,

that defines the width of the printing rectangle.
ySize Receives the vertical pixel height relative to the origin,

that defines the height of the printing rectangle.

Example

VB
Dim xPos As Long, yPos As Long, xSize As Long, ySize As Long
GridControl1.GetPaintRect xPos, yPos, xSize, ySize

C++
long xPos, yPos, xSize, ySize;
m_wndGrid.GetPaintRect(&xPos, &yPos, &xSize, &ySize);

Paint Method
{button ,AL(`print;Main',0,`',`second')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Prints a single page within the current print rectangle of the InaGrid control.

Syntax

VB
object.Paint hDc, hDeviceDc, nRow, nHeader, bScaleToFit
C++
void object.Paint(long hDc, long hDeviceDc, ROWNUMBER* pnRow, long* pnHeader, BOOL
bScaleToFit)

The Paint method syntax has these parts:
Part Description
Object An object expression that evaluates to an InaGrid

control.
hDc Handle to the printer device context.
hDeviceDc Handle to the attribute query device context.
nRow Passes in the top-most row number to begin printing and

receives the last row number that was printed on the
page.

nHeader Passes in the left-most column number to begin printing
and receives the last column number that was printed on
the page.

bScaleToFit A Boolean expression that specifies whether the entire
print region should be scaled to fit on a single page.

Settings

The settings for bScaleToFit are:
Setting Description
True Scale the print rectangle to fit on a single page.
False The print rectangle is printed without scaling and may

occupy multiple pages.

Remarks

nRow is a 64-bit parameter that is expressed in the ROWNUMBER data type. You must scale this value
by multiplying by 10,000.

If no print rectangle has been set using SetPaintRect, the entire InaGrid control area is printed.

Example

C++
ROWNUMBER Row;
long nHeader = 0;

Row.int64 = 0;

m_wndGrid.Print((long)pDC->GetSafeHdc(), (long)pDC->m_hAttribDC, &Row, &nHeader, FALSE);

GetPaintPageCount Method
{button ,AL(`print;Main',0,`',`second')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Returns the number of pages that would be printed using the current print rectangle.

Syntax

VB
object.GetPaintPageCount hDc, hDeviceDc, bScaleToFit

C++
ROWNUMBER object.GetPaintPageCount(long hDc, long hDeviceDc, BOOL bScaleToFit)

The GetPaintPageCount method syntax has these parts:
Part Description
Object An object expression that evaluates to an InaGrid

control.
hDc Handle to the printer device context.
hDeviceDc Handle to the attribute query device context.
bScaleToFit A Boolean expression that specifies whether the entire

print region should be printed on a single page.

Settings

The settings for bScaleToFit are:
Setting Description
True Scale the print rectangle to fit on a single page.
False The print rectangle is printed without scaling and may

occupy multiple pages.

Remarks

If no print rectangle has been set using SetPaintRect, the entire InaGrid control area is considered the
print rectangle.

Example

C++
ROWNUMBER PageCount = m_wndGrid.GetPrintPageCount((long)pDC->GetSafeHdc(),
 (long)pDC->m_hAttribDC, FALSE);

GetPaintWidthCount Method
{button ,AL(`print;Main',0,`',`second')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Returns the number of pages that would be required to print the width of the current print rectangle.

Syntax

VB
object.GetPaintWidthCount hDc, hDeviceDc

C++
long object.GetPaintWidthCount(long hDc, long hDeviceDc)

The GetPaintWidthCount method syntax has these parts:
Part Description
Object An object expression that evaluates to an InaGrid

control.
hDc Handle to the printer device context.
hDeviceDc Handle to the attribute query device context.

Remarks

If no print rectangle has been set using SetPaintRect, the entire InaGrid control area is considered the
print rectangle.

Example

C++
long cxWidthCount = m_wndGrid.GetPaintWidthCount((long)pDC->GetSafeHdc(),
 (long)pDC->m_hAttribDC);

PrintIt Method
{button ,AL(`print;Main',0,`',`second')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Prints as many pages as required to output all the data to a printer.

Syntax

VB
object.PrintIt hDeviceDC As OLE_HANDLE, nStartRow As ROWNUMBER, nEndRow As
ROWNUMBER, bScaleToFit As Boolean

VC
void object.PrintIt(OLE_HANDLE hDeviceDc, ROWNUMBER nStartRow, ROWNUMBER nEndRow,
VARIANT_BOOL bScaleToFit);

The PrintIt method syntax has these parts:
Part Description
Object An object expression that evaluates to an InaGrid

control.
hDeviceDc Handle to the printer device context.
nStartRow Passes in the top-most row number to begin printing.
nEndRow Passes in the bottom-most row number to end printing.
bScaleToFit A Boolean expression that specifies whether the entire

print region should be printed on a single page.

Settings

The settings for bScaleToFit are:
Setting Description
True Scale the columns to fit on a single page.
False The print rectangle is printed without scaling and may

occupy multiple pages.

Example

VB
Private Sub mnuFilePrint_Click()
Dim Grid As INAGRIDLib.GridControl
Dim NumCopies, i

‘ Get the active inagrid control from a MDI child frame
Set Grid = ActiveForm.ActiveControl
‘ Set Cancel to True
dlgCommonDialog.CancelError = True
On Error GoTo ErrHandler
‘ Display the Print dialog box
dlgCommonDialog.ShowPrinter
‘ Get user-selected values from the dialog box
NumCopies = dlgCommonDialog.Copies
For i = 1 To NumCopies
‘ Just Print It
Grid.PrintIt Printer.hdc, 0, Grid.Count, False
Next i

Exit Sub
ErrHandler:

 ‘ User pressed the Cancel button
 Exit Sub

End Sub

C++
CPrintInfo printInfo;
if (NULL == printInfo.m_pPD->m_pd.hDC)

{
 AfxGetApp()->GetPrinterDeviceDefaults(&printInfo.m_pPD->m_pd);
 if ((NULL == printInfo.m_pPD->m_pd.hDC) && (NULL ==

printInfo.m_pPD->CreatePrinterDC()))
 return;
}

CY nStartRow;
nStartRow.int64 = 0;
CY nEndRow = m_wndGrid.GetCount();
nEndRow.int64 -= 1;
m_wndGrid.PrintIt((OLE_HANDLE)printInfo.m_pPD->m_pd.hDC, nStartRow, nEndRow, TRUE);

About Method
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Displays the About box for the InaGrid control.

Syntax

VB
object.AboutBox

C++
void object.AboutBox()

The object placeholder is an object expression that evaluates to an InaGrid control.

Remarks

This is the same as clicking About in the Properties window.

Example

VB
GridControl1.AboutBox

C++
m_wndGrid.AboutBox();

Drag Method (Visual Basic Only)
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Begins, ends, or cancels a drag operation for the InaGrid control. Doesn't support named arguments.

Syntax

object.Drag action

The Drag method syntax has these parts:
Part Description
Object An object expression that evaluates to an InaGrid

control.
action (optional) (Optional) A constant or value that specifies the action to

perform, as described in Settings. If action is omitted, the
default is to begin dragging the object.

Settings

The settings for action are:
Constant Value Description
vbCancel 0 Cancels drag operation
vbBeginDrag 1 Begins dragging object
vbEndDrag 2 Ends dragging and drop object

Remarks

These constants are listed in the Visual Basic (VB) object library in the Object Browser .

Using the Drag method to control a drag-and-drop operation is required only when the DragMode
property of the object is set to Manual (0). However, you can use Drag on an object whose DragMode
property is set to Automatic (1 or vbAutomatic).

If you want the mouse pointer to change shape while the object is being dragged, use either the
DragIcon or MousePointer property. The MousePointer property is only used if no DragIcon is specified.

In earlier versions of Visual Basic, Drag was an asynchronous method where subsequent statements
were invoked even though the Drag action wasn't finished.

Move Method (Visual Basic Only)
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Moves an InaGrid control. Doesn't support named arguments.

Syntax

object.Move left, top, width, height

The Move method syntax has these parts:
Part Description
Object An object expression that evaluates to an InaGrid

control.
left (Required) Single-precision value indicating the

horizontal coordinate (x-axis) for the left edge of the
InaGrid control.

top (Optional) Single-precision value indicating the vertical
coordinate (y-axis) for the top edge of the InaGrid
control.

width (Optional) Single-precision value indicating the new
width of the InaGrid control.

height (Optional) Single-precision value indicating the new
height of the InaGrid control.

Remarks

Only the left argument is required. However, to specify any other arguments, you must specify all
arguments that appear in the syntax before the argument you want to specify. For example, you can't
specify width without specifying left and top. Any trailing arguments that are unspecified remain
unchanged.

When the InaGrid control is in a Frame control, the coordinate system is always in twips. Moving the
control in a Frame is always relative to the origin (0,0), which is the upper-left corner. When moving an
InaGrid control on a Form object or in a PictureBox (or an MDI child form on an MDIForm object), the
coordinate system of the container object is used. The coordinate system or unit of measure is set with
the ScaleMode property at design time. You can change the coordinate system at run time with the
Scale method.

SetFocus Method (Visual Basic Only)
{button ,AL(`focus;Main',0,`',`Second')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Moves the focus to the InaGrid control.

Syntax

object.SetFocus

The object placeholder is an object expression that evaluates to an InaGrid control.

Remarks

After invoking the SetFocus method, any user input is directed to the InaGrid control.

You can only move the focus to an InaGrid control that is visible.

You also can't move the focus to an InaGrid control if the Enabled property is set to False. If the Enabled
property has been set to False at design time, you must first set it to True before it can receive the focus
using the SetFocus method.

ShowWhatsThis Method (Visual Basic Only)
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Displays a selected topic in a Help file using the What's This popup provided by Windows 95 Help.

Syntax

object.ShowWhatsThis

The object placeholder is an object expression that evaluates to an InaGrid control.

Remarks

The ShowWhatsThis method is very useful for providing context-sensitive Help from a context menu in
your application. The method displays the topic identified by the WhatsThisHelpID property of the object
specified in the syntax.

ZOrder Method (Visual Basic Only)
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Places an InaGrid control at the front or back of the z-order within its graphical level. Doesn't support
named arguments.

Syntax

object.ZOrder position

The ZOrder method syntax has these parts:
Part Description
Object An object expression that evaluates to an InaGrid

control.
Position (Optional) Integer indicating the position of the control

relative to other instances of the same control. If position
is 0 or omitted, object is positioned at the front of the z-
order. If position is 1, object is positioned at the back of
the z-order.

Remarks

The z-order of InaGrid controls can be set at design time by choosing the Bring To Front or Send To
Back menu command from the Edit menu.

Three graphical layers are associated with forms and containers. The back layer is the drawing space
where the results of the graphics methods are displayed. Next is the middle layer where graphical
objects and Label controls are displayed. The front layer is where all nongraphical controls like the
InaGrid control are displayed. Anything contained in a layer closer to the front covers anything contained
in the layer(s) behind it. ZOrder arranges objects only within the layer where the object is displayed.

Click Event
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Occurs when the user presses and then releases a mouse button over an InaGrid control. It can also
occur when the value of the control is changed.

For an InaGrid control, this event occurs when the user clicks the control with the left or right mouse
button.

Syntax

VB
Private Sub object_Click([index As Integer])

C++
void OnClick()

The Click event syntax has these parts:
Part Description
object An object expression that evaluates to an InaGrid control.
index An integer that uniquely identifies the control if it’s in a

control array.

Remarks

Note To distinguish between the left, right, and middle mouse buttons, use the MouseDown and
MouseUp events.

If there is code in the Click event, the DblClick event will never trigger, because the Click event is the
first event to trigger between the two. As a result, the mouse click is intercepted by the Click event, so
the DblClick event doesn’t occur.

KeyDown, KeyUp Events
{button ,AL(`key;Main',0,`',`second')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Occur when the user presses (KeyDown) or releases (KeyUp) a key while an InaGrid control has the
focus. (To interpret ANSI characters, use the KeyPress event.)

Syntax

VB
Private Sub object_KeyDown([index As Integer,]keycode As Integer, shift As Integer)
Private Sub object_KeyUp([index As Integer,]keycode As Integer, shift As Integer)

C++
void OnKeyDown(short* keycode, short shift)
void OnKeyUp(short* keycode, short shift)

The KeyDown and KeyUp event syntaxes have these parts:
Part Description
object An object expression that evaluates to an InaGrid control.
index An integer that uniquely identifies a control if it’s in a control

array.
keycode A key code, such as vbKeyF1 (the F1 key) or vbKeyHome

(the HOME key). To specify key codes, use the constants in
the Visual Basic (VB) object library in the Object Browser.

shift An integer that corresponds to the state of the SHIFT, CTRL,
and ALT keys at the time of the event. The shift argument is a
bit field with the least-significant bits corresponding to the
SHIFT key (bit 0), the CTRL key (bit 1), and the ALT key (bit
2). These bits correspond to the values 1, 2, and 4,
respectively. Some, all, or none of the bits can be set,
indicating that some, all, or none of the keys are pressed. For
example, if both CTRL and ALT are pressed, the value of shift
is 6.

Remarks
For both events, the InaGrid control with the focus receives all keystrokes. Although the KeyDown and
KeyUp events can apply to most keys, they’re most often used for:

§ Extended character keys such as Function Keys .
§ Navigation keys.
§ Combinations of keys with standard keyboard modifiers.
§ Distinguishing between the numeric keypad and regular number keys.

Use KeyDown and KeyUp event procedures if you need to respond to both the pressing and releasing
of a key.

KeyDown and KeyUp are not invoked for the TAB key.

KeyDown and KeyUp interpret the uppercase and lowercase of each character by means of two

arguments: keycode, which indicates the physical key (thus returning A and a as the same key) and
shift, which indicates the state of shift+key and therefore returns either A or a.

If you need to test for the shift argument, you can use the shift constants, which define the bits within the
argument. The constants have the following values:
Constant Value Description
vbShiftMask 1 SHIFT key bit mask.
VbCtrlMask 2 CTRL key bit mask.
VbAltMask 4 ALT key bit mask.

The constants act as bit masks that you can use to test for any combination of keys.

You test for a condition by first assigning each result to a temporary integer variable and then comparing
shift to a bit mask. Use the And operator with the shift argument to test whether the condition is greater
than 0, indicating that the modifier was pressed, as in this example:

ShiftDown = (Shift And vbShiftMask) > 0

In a procedure, you can test for any combination of conditions, as in this example:

If ShiftDown And CtrlDown Then

MouseDown, MouseUp Events
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Occur when the user presses (MouseDown) or releases (MouseUp) a mouse button.

Syntax

VB
Private Sub object_MouseDown([index As Integer,]button As Integer, shift As Integer, x As Single, y
As Single)
Private Sub object _MouseUp([index As Integer,]button As Integer, shift As Integer, x As Single, y
As Single)

C++
void OnMouseDown(short button, short shift, long x, long y)
void OnMouseUp(short button, short shift, long x, long y)

The MouseDown and MouseUp event syntaxes have these parts:
Part Description
object An object expression that evaluates to an InaGrid control.
index Returns an integer that uniquely identifies the control if it’s in a

control array.
button Returns an integer that identifies the button that was pressed

(MouseDown) or released (MouseUp) to cause the event. The
button argument is a bit field with bits corresponding to the left
button (bit 0), right button (bit 1), and middle button (bit 2).
These bits correspond to the values 1, 2, and 4, respectively.
Only one of the bits is set, indicating the button that caused the
event.

shift Returns an integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys when the button specified in the button
argument is pressed or released. A bit is set if the key is down.
The shift argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit 1),
and the ALT key (bit 2). These bits correspond to the values 1,
2, and 4, respectively. The shift argument indicates the state of
these keys. Some, all, or none of the bits can be set, indicating
that some, all, or none of the keys are pressed. For example, if
both CTRL and ALT were pressed, the value of shift would be
6.

x, y Returns a number that specifies the current location of the
mouse pointer. The x and y values are always expressed in
terms of the coordinate system set by the ScaleHeight,
ScaleWidth, ScaleLeft, and ScaleTop properties of the
InaGrid control

Remarks

Use a MouseDown or MouseUp event procedure to specify actions that will occur when a given mouse
button is pressed or released. Unlike the Click and DblClick events, MouseDown and MouseUp events

enable you to distinguish between the left, right, and middle mouse buttons. You can also write code for
mouse-keyboard combinations that use the SHIFT, CTRL, and ALT keyboard modifiers.

The following applies to both Click and DblClick events:
§ If a mouse button is pressed while the pointer is over an InaGrid control, then it "captures" the mouse

and receives all mouse events up to and including the last MouseUp event. This implies that the x, y
mouse-pointer coordinates returned by a mouse event may not always be in the internal area of the
object that receives them.

§ If mouse buttons are pressed in succession, the control that captures the mouse after the first press
receives all mouse events until all buttons are released.

If you need to test for the button or shift arguments, you can use constants listed in the Visual Basic
(VB) object library in the Object Browser to define the bits within the argument:
Constant (Button) Value Description
vbLeftButton 1 Left button is pressed
vbRightButton 2 Right button is pressed
vbMiddleButton 4 Middle button is pressed

Constant (Shift) Value Description
vbShiftMask 1 SHIFT key is pressed.
vbCtrlMask 2 CTRL key is pressed.
vbAltMask 4 ALT key is pressed.

The constants then act as bit masks you can use to test for any combination of buttons without having to
figure out the unique bit field value for each combination.

Note You can use a MouseMove event procedure to respond to an event caused by moving the
mouse. The button argument for MouseDown and MouseUp differs from the button argument used for
MouseMove. For MouseDown and MouseUp, the button argument indicates exactly one button per
event, whereas for MouseMove, it indicates the current state of all buttons.

GetData Event
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Occurs when the InaGrid control is about to display row and column data.

Syntax

VB
Private Sub object_GetData(nRow As ROWNUMBER, pColumn As ColumnHeader, pValue As String,
pColor As OLE_COLOR)

C++
void OnGetData(ROWNUMBER nRow, LPDISPATCH pColumn, BSTR FAR* pValue, OLE_COLOR*
pColor);

The GetData event syntax has these parts:
Part Description
Object An object expression that evaluates to an InaGrid

control.
nRow The row that requires data.
pColumn The column that requires data.
pValue Specifies the data for the row and column.
pColor Specifies the color of the text used to display the data.

Remarks

This event occurs when a cell in the InaGrid control is about to display its data. Use this event to
populate the InaGrid control with the data from your application. Because the control does not keep a
separate copy of the application’s data, it must callback into the application, using this event, to display
its data. This allows a very large number of rows and columns to be displayed in a virtual view. This
event is only called to display the rows and columns that are required by the current position of the
control.

Example

VB
Private Sub GridEvts_GetData(ByVal nRow As INAGRIDLib.ROWNUMBER, ByVal pColumn As
INAGRIDLib.IColumnHeader, pValue As String, pColor As Stdole.OLE_COLOR)

 'Simply put the row and column number as data to the grid
 If pColumn Is Nothing Then
 pValue = Str((nRow * 10000) + 1)
 Else
 pValue = "Row = " + Str(nRow * 10000) + ", Col = " + Str(pColumn.Id)
 End If
End Sub

C++
void CInaGridContainer::OnGetData(ROWNUMBER nRow, LPDISPATCH pColumn, BSTR FAR* pValue,

OLE_COLOR* pColor)
{
 CString strData;
 if(NULL == pColumn)
 {
 strData.Format("%d", (int)nRow.int64 + 1);
 *pColor = (0x80000000 | COLOR_BTNTEXT);
 }
 else
 {
 CColumnHeader hdrColumn(pColumn);
 strData.Format("Row=%d, Col = %d", (int)nRow.int64, hdrColumn.GetId());
 hdrColumn.DetachDispatch();
 *pColor = (0x80000000 | COLOR_WINDOWTEXT);
 }
 strData.SetSysString(pValue);
}

SetData Event
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Occurs when a data in a cell is changed in the InaGrid control.

Syntax

VB
Private Sub object_SetData(nRow As ROWNUMBER, pColumn As ColumnHeader, pValue As String)

C++
void OnSetData(ROWNUMBER nRow, LPDISPATCH pColumn, LPCTSTR pValue);

The GetData event syntax has these parts:
Part Description
Object An object expression that evaluates to an InaGrid control.
nRow The row that contains the changed data.
pColumn The column that contains the changed data.
pValue The changed data at the row and column.

Remarks

This event occurs when the data in a cell in the InaGrid control has been changed by an editing action.
This allows the application to update its data structures to reflect the changed data.

IsSelected Event
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Occurs when a row or cell is displayed.

Syntax

VB
Private Sub object_IsSelected(nRow As ROWNUMBER, pColumn As ColumnHeader, bSelect As
Boolean)

C++
void OnIsSelected(ROWNUMBER nRow, LPDISPATCH pColumn, BOOL FAR* bSelect);

The IsSelected event syntax has these parts:
Part Description
Object An object expression that evaluates to an InaGrid

control.
nRow The row that is being displayed.
pColumn The column that is being displayed.
bSelect Specifies whether the row or cell should be selected.

Remarks

This event occurs when a cell in the InaGrid control is displayed. Using data passed in the parameters to
this event, the row and column information can be determined and the selection can be made or
cancelled if desired.

Example

VB
Private Sub InaGridControl_IsSelected()(ByVal nRow As INAGRIDLib.ROWNUMBER,
ByVal pColumn As INAGRIDLib.IColumnHeader, pValue As Boolean)

pValue = False
If Not pColumn Is Nothing Then

If (nRow = (SelectedRow / 10000)) And (pColumn.Id = SelectedColumn) Then pValue =
True

End If
End Sub

C++
void CInaGridContainer::OnIsSelected(ROWNUMBER nRow, LPDISPATCH pColumn, BOOL FAR* pValue)
{
 *pValue = FALSE;
 if(NULL != pColumn)
 {
 CColumnHeader hdrColumn(pColumn);
 *pValue = ((nRow.int64 == m_n64SelectedRow) && (hdrColumn.GetId() ==
m_nSelectedColumn));
 hdrColumn.DetachDispatch();
 }
}

OnSelect Event
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Occurs when a cell or row is selected.

Syntax

VB
Private Sub object_OnSelect (nRow As ROWNUMBER, pColumn As ColumnHeader, eType As
GridSelectConstants)

C++
void OnSelect(ROWNUMBER nRow, LPDISPATCH pColumn, long eType);

The OnSelect event syntax has these parts:
Part Description
Object An object expression that evaluates to an InaGrid control.
nRow The row that is being selected.
pColumn The column that is being selected.
eType The type of selection that is being made.

Settings

The settings for eType are:
Setting Description
gSingleSelect A single selection is being made.
gSelectRange A range of selections is being made using the Shift key.
gSelectToggle Multiple selections are being made using the Control key.

Remarks

This event is called first when a selection is made by the user. Typically the application will invalidate the
affected rows/cells and move the focus rectangle to the selected cell using FocusRow or
Focus/ColumnHeader.

The values of GridSelectConstants are 0, 1 and 2 respectively for gSingleSelect, gSelectRange and
gSelectToggle.

Example

VB
Private Sub GridEvts_OnSelect(ByVal nRow As INAGRIDLib.ROWNUMBER, ByVal pColumn As
INAGRIDLib.IColumnHeader, ByVal eType As INAGRIDLib.GridSelectConstants)

 Dim oldSelectedRow As ROWNUMBER
 oldSelectedRow = gSelectedRow
 gSelectedRow = nRow
 GridControl1.UpdateRow nRow
 GridControl1.FocusRow = nRow
 nRow = oldSelectedRow
 GridControl1.UpdateRow nRow

 gSelectedColumn = pColumn.Id
 GridControl1.FocusColumnHeader = pColumn

End Sub

C++
void CInaGridContainer::OnSelect(ROWNUMBER nRow, LPDISPATCH pColumn, long eType)
{
 if(NULL != pColumn)
 {
 ROWNUMBER OldSelectedRow = m_n64SelectedRow;
 m_n64SelectedRow = nRow.int64;
 m_wndGrid.UpdateRow(nRow);
 m_wndGrid.SetFocusRow(nRow);
 nRow.int64 = n64OldSelectedRow;
 m_wndGrid.UpdateRow(nRow);

 CColumnHeader hdrColumn(pColumn);
 m_nSelectedColumn = hdrColumn.GetId();
 m_wndGrid.SetFocusColumnHeader(pColumn);
 hdrColumn.DetachDispatch();
 }
}

OnDraw Event
{button ,AL(`draw;main',0,`',`') } See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Occurs when an OwnerDraw cell is about to be displayed.

Syntax

VB
Private Sub object_OnDraw (hDc As OLE_HANDLE, nRow As ROWNUMBER, pColumn As
ColumnHeader, xPos As Single, yPos As Single, xSize As Single, ySize As Single)

C++
void OnDraw(OLE_HANDLE hDc, ROWNUMBER nRow, ColumnHeader* pColumn, long xPos, long
yPos, long xSize, long ySize)

The OnDraw event syntax has these parts:
Part Description
Object An object expression that evaluates to an InaGrid control.
hDc A handle to a Windows device context in which the

drawing occurs.
nRow The row that contains the cell that is being drawn.
pColumn The column that contains the cell that is being drawn.
xPos The x-origin of the cell that is being drawn.
yPos The y-origin of the cell that is being drawn.
xSize The width of the cell that is being drawn.
ySize The height of the cell that is being drawn.

Remarks

This event allows a cell within a ColumnHeader with its OwnerDraw property set to TRUE to perform its
custom drawing.

Example

C++
void CInaGridContainer::OnDraw(long hDc, ROWNUMBER nRow, LPDISPATCH pColumn, long xPos, long
yPos, long xSize, long ySize)
{
 CBitmap bmpDraw;
 bmpDraw.LoadBitmap(IDB_BITMAP);

 CDC* pDC = CDC::FromHandle((HDC)hDc);
 CDC dcBitmap;
 dcBitmap.CreateCompatibleDC(pDC);
 CBitmap* pBitmap = dcBitmap.SelectObject(&bmpDraw);
 pDC->BitBlt(xPos, yPos, xSize, ySize, &dcBitmap, 0, 0, SRCCOPY);
 dcBitmap.SelectObject(pBitmap);
 bmpDraw.DeleteObject();
}

OnEditCell Event
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Occurs when the user initiates a cell edit.

Syntax

VB
Private Sub object_OnEditCell (nRow As ROWNUMBER, pColumn As ColumnHeader, pClassID As
String)

C++
void OnEditCell(ROWNUMBER nRow, LPDISPATCH pColumn, BSTR FAR* pClassId);

The OnEditCell event syntax has these parts:
Part Description
Object An object expression that evaluates to an InaGrid control.
nRow The row that contains the cell that is being edited.
pColumn The column that contains the cell that is being edited.
pClassID The CLSID of the editing control that performs the cell

edit.

Remarks

The user initiates an edit action by double-clicking on the cell with the mouse or pressing the F2 key. If
an InaGrid cell has the focus, pressing ENTER sets the first editable cell on the row into edit mode.
Subsequent presses of the TAB key moves through all of the editable cells in the row in turn, placing
each one into edit mode.

The pClassID parameter is used to select the editing control for the cell. By default, the InaEdit control is
used. If an empty string is returned, no editing is performed in the cell.

It is not necessary to catch this event if the default edit box control is used for data editing.

An arbitrary valid Class ID can be specified for the pClassID parameter. The InaGrid control object will
create this OCX edit control, and will invoke the OnInitEditCell event so that this edit control can be
initialized. If the edit process finishes successfully the InaGrid control object will get the text of the edit
control and will invoke the OnSetData event to notify the container so that the application can save the
user’s entry data. The InaGrid control object works with the standard OCX property "Caption" of this
control both to initialize the text before editing and to extract the user's entry data after editing.

NOTE: See the InaGrid Editing Controls:
§ InaEdit
§ InaCombo
§ InaCheck

Example

VB

Private Sub GridEvts_OnEditCell(ByVal nRow As INAGRIDLib.ROWNUMBER, ByVal pColumn As
INAGRIDLib.IColumnHeader, pClassId As String)

 If Not pColumn Is Nothing Then

 Select Case pColumn.Id

 Case 0
 ‘ Default InaEdit control

 Case 1
 ‘return InaCombo ClassID
 pClassId = "{0052B91E-9C90-11D1-B46C-0080ADC8C04D}"

 Case 2
 ‘return InaCheck ClassID
 pClassId = "{3844F267-9D42-11D1-B46C-0080ADC8C04D}"

 Case 3
 ‘return the ClassID of your OCX control
 pClassId = "{########-####-####-####-############}"

 Case Else
 ‘disable editing
 pClassId = ""

 End Select

 End If

End Sub

C++
void CInaGridContainer::OnEditCell(ROWNUMBER nRow, LPDISPATCH pColumn, BSTR FAR* pClassId)
{
 if (NULL != pColumn)
 {
 CColumnHeader hdrColumn(pColumn);

 switch(hdrColumn.GetId())
 {
 case 0:
 // edit box--leave default
 break;

 case 1:
 // combo box
 SysFreeString(*pClassId);

 // return InaCombo ClassID
 *pClassId = SysAllocString(L"{0052B91E-9C90-11D1-B46C-0080ADC8C04D}")
 break;

 case 2:
 // check box
 SysFreeString(*pClassId);

 // return InaCheck ClassID
 *pClassId = SysAllocString(L"{3844F267-9D42-11D1-B46C-0080ADC8C04D}");
 break;

 case 3:

 // user OCX control
 SysFreeString(*pClassId);

 // Return the ClassID of your OCX control
 *pClassId = SysAllocString(L"{########-####-####-####-############}")
 break;

 default: // don’t allow editing
 SysFreeString(*pClassId);
 *pClassId = NULL;
 break;
 }
 hdrColumn.DetachDispatch();
 }
}

OnInitEditCell Event
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Occurs when the user initiates a cell edit after OnEditCell event. Catch this event to initialize the OCX
control specified in OnEditCell event.

Syntax

VB
Private Sub object_OnInitEditCell (nRow As ROWNUMBER, pColumn As ColumnHeader, pControl As
Object, pExtraWidth As Long, pExtraHeight As Long)

C++
void OnInitEditCell(ROWNUMBER nRow, LPDISPATCH pColumn, LPDISPATCH pControl, long FAR*
pExtraWidth, long FAR* pExtraHeight)

The OnInitEditCell event syntax has these parts:
Part Description
Object An object expression that evaluates to an InaGrid

control.
nRow The row that contains the cell that is being edited.
pColumn The column that contains the cell that is being edited.
pControl A pointer to the IDispatch interface on the edit control.
pExtraWidth The width in pixels to add to the right-hand side of the

InaGrid cell, beyond the normal cell boundary.
pExtraHeight The height in pixels to add to the bottom side of the

InaGrid cell, beyond the normal cell boundary.

Remarks

It is not necessary to catch this event if the edit cell requires no special initialization, i.e., default edit box
control.

Example

VB
Private Sub GridEvts_OnInitEditCell(ByVal nRow As INAGRIDLib.ROWNUMBER, ByVal pColumn As
INAGRIDLib.IColumnHeader, ByVal pControl As Object, pExtraWidth As Long, pExtraHeight As Long)

 Dim editHwnd As OLE_HANDLE
 Dim lResult As Long

 If Not pColumn Is Nothing Then

 Select Case pColumn.Id

 Case 0
 'EditBox--leave default

 Case 1

 'Combobox
 editHwnd = pControl.hWnd
 lResult = SendMessage(editHwnd, CB_ADDSTRING, 0, "Choice 1")
 lResult = SendMessage(editHwnd, CB_ADDSTRING, 0, "Choice 2")
 lResult = SendMessage(editHwnd, CB_SETCURSEL, 1, 0)

 pExtraHeight = GridControl1.RowHeight * 2

 Case 2
 'CheckBox
 editHwnd = pControl.hWnd
 pControl.Init "Choose", "Yes", "No"
 lResult = SendMessage(editHwnd, BM_SETCHECK, 0, 0)

 Case 3
 'Do the necessary initialization of your OCX control

 End Select

 End If

End Sub

C++
void CInaGridContainer::OnInitEditCell(ROWNUMBER nRow, LPDISPATCH pColumn, LPDISPATCH pControl,
long FAR* pExtraWidth, long FAR* pExtraHeight)
{
 if (NULL != pColumn)
 {
 CColumnHeader hdrColumn(pColumn);

 switch(hdrColumn.GetId())
 {
 case 0:
 // edit box--leave default
 break;

 case 1:
 //combo box
 {
 _DInaCombo inaCombo(pControl);
 ::SendMessage((HWND)inaCombo.GetHWnd(), CB_ADDSTRING, NULL, (LPARAM)"Choice 1");
 ::SendMessage((HWND)inaCombo.GetHWnd(), CB_ADDSTRING, NULL, (LPARAM)"Choice 2");
 ::SendMessage((HWND)inaCombo.GetHWnd(), CB_SETCURSEL, (WPARAM)1, NULL);

 // extra height for the drop-down list
 *pExtraHeight = abs(m_wndGrid.GetRowHeight()) * 2;
 inaCombo.DetachDispatch();
 }
 break;

 case 2:
 // check box
 {
 _DInaCheck inaCheck(pControl);
 inaCheck.Init("Choose", "Yes", "No");
 ::SendMessage((HWND)inaCheck.GetHWnd(), BM_SETCHECK, (WPARAM)0, NULL);
 inaCheck.DetachDispatch();
 }
 break;

 case 3:
 // user OCX control
 {
 // Do the necessary initialization of your OCX control
 }

 break;
 }
 hdrColumn.DetachDispatch();
 }
}

OnResizeColumn Event
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Occurs when a column header is resized.

Syntax

VB
Private Sub object_OnResizeColumn(pColumn As ColumnHeader)

C++
void OnResizeColumn(LPDISPATCH pColumn);

The OnResizeColumn event syntax has these parts:
Part Description
Object An object expression that evaluates to an InaGrid

control.
pColumn The column that is being resized.

Example

void CInaGridContainer::OnResizeColumn(LPDISPATCH pColumn)
{

//Center InaGrid control
CRect rWnd;
GetClientRect(rWnd);

CY cyGridHeight = m_wndGrid.GetHeight();
CY cyGridWidth = m_wndGrid.GetWidth();

CRect rGrid(rWnd);
if (cyGridHeight.int64 < rWnd.Height())

rGrid.InflateRect(0, (int(cyGridHeight.Lo) - rWnd.Height()) / 2);
if (cyGridWidth.int64 < rWnd.Width())

rGrid.InflateRect((int(cyGridWidth.Lo) - rWnd.Width()) / 2, 0);
rGrid.right = min(rGrid.left + cyGridWidth.Lo, rWnd.right);
rGrid.bottom = min(rGrid.top + cyGridHeight.Lo, rWnd.bottom);

m_wndGrid.MoveWindow(rGrid);
}

OnMoveColumn Event
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Occurs when a column header is moved (drag & drop).

Syntax

VB
Private Sub object_OnMoveColumn(pColumn As ColumnHeader)

C++
void OnMoveColumn(LPDISPATCH pColumn);

The OnMoveColumn event syntax has these parts:
Part Description
Object An object expression that evaluates to an InaGrid

control.
pColumn The column that is being moved.

Example

C++
void CInaGridContainer::OnMoveColumn(LPDISPATCH pColumn)
{

 //Center InaGrid control
 CRect rWnd;
 GetClientRect(rWnd);

 CY cyGridHeight = m_wndGrid.GetHeight();
 CY cyGridWidth = m_wndGrid.GetWidth();

 CRect rGrid(rWnd);
 if (cyGridHeight.int64 < rWnd.Height())

 rGrid.InflateRect(0, (int(cyGridHeight.Lo) - rWnd.Height()) / 2);
 if (cyGridWidth.int64 < rWnd.Width())
 rGrid.InflateRect((int(cyGridWidth.Lo) - rWnd.Width()) / 2, 0);
 rGrid.right = min(rGrid.left + cyGridWidth.Lo, rWnd.right);
 rGrid.bottom = min(rGrid.top + cyGridHeight.Lo, rWnd.bottom);

 m_wndGrid.MoveWindow(rGrid);
 }

DragDrop Event (Visual Basic Only)
{button ,AL(`Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Occurs when a drag-and-drop operation is completed as a result of dragging a control over an object
and releasing the mouse button or using the Drag method with its action argument set to 2 (Drop).

Syntax

Private Sub object_DragDrop([index As Integer,]source As Control, x As Single, y As Single)

The DragDrop event syntax has these parts:
Part Description
Object An object expression that evaluates to an InaGrid

control.
index An integer that uniquely identifies a control if it's in a

control array.
source The control being dragged. You can include properties

and methods in the event procedure with this argument
—for example, Source.Visible = 0.

x, y A number that specifies the current horizontal (x) and
vertical (y) position of the mouse pointer within the
target form or control. These coordinates are always
expressed in terms of the target's coordinate system as
set by the ScaleHeight, ScaleWidth, ScaleLeft, and
ScaleTop properties.

Remarks

Use a DragDrop event procedure to control what happens after a drag operation is completed. For
example, you can move the source control to a new location or copy a file from one location to another.

When multiple controls can potentially be used in a source argument:
§ Use the TypeOf keyword with the If statement to determine the type of control used with source.
§ Use the control's Tag property to identify a control, and then use a DragDrop event procedure.

Note Use the DragMode property and Drag method to specify the way dragging is initiated. Once
dragging has been initiated, you can handle events that precede a DragDrop event with a DragOver
event procedure.

DragOver Event (Visual Basic Only)
{button ,AL(`drag;Main',0,`',`Main')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Occurs when a drag-and-drop operation is in progress. You can use this event to monitor the mouse
pointer as it enters, leaves, or rests directly over a valid target. The mouse pointer position determines
the target object that receives this event.

Syntax

Private Sub object_DragOver([index As Integer,]source As Control, x As Single, y As Single, state As
Integer)

The DragOver event syntax has these parts:
Part Description
Object An object expression that evaluates to an InaGrid control.
index An integer that uniquely identifies a control if it's in a

control array.
source The control being dragged. You can refer to properties

and methods in the event procedure with this argument--
for example, Source.Visible = False.

x, y A number that specifies the current horizontal (x) and
vertical (y) position of the mouse pointer within the target
form or control. These coordinates are always expressed
in terms of the target's coordinate system as set by the
ScaleHeight, ScaleWidth, ScaleLeft, and ScaleTop
properties.

state An integer that corresponds to the transition state of the
control being dragged in relation to a target form or
control:
0 = Enter (source control is being dragged within the
range of a target).
1 = Leave (source control is being dragged out of the
range of a target).
2 = Over (source control has moved from one position in
the target to another).

Remarks

Use a DragOver event procedure to determine what happens after dragging is initiated and before a
control drops onto a target. For example, you can verify a valid target range by highlighting the target
(set the BackColor or ForeColor property from code) or by displaying a special drag pointer (set the
DragIcon or MousePointer property from code).

Use the state argument to determine actions at key transition points. For example, you might highlight a
possible target when state is set to 0 (Enter) and restore the object's previous appearance when state is
set to 1 (Leave).

When an object receives a DragOver event while state is set to 0 (Enter):

§ If the source control is dropped on the object, that object receives a DragDrop event.

§ If the source control isn't dropped on the object, that object receives another DragOver event when
state is set to 1 (Leave).

Note Use the DragMode property and Drag method to specify the way dragging is initiated. For
suggested techniques with the source argument, see Remarks for the DragDrop event topic.

GotFocus Event (Visual Basic Only)
{button ,AL(`focus;Main',0,`',`Second')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Occurs when an InaGrid control receives the focus, either by user action, such as tabbing to or clicking
the control, or by changing the focus in code using the SetFocus method.

Syntax

Private Sub object_GotFocus([index As Integer])

The GotFocus event syntax has these parts:
Part Description
Object An object expression that evaluates to an InaGrid

control.
index An integer that uniquely identifies a control if it's in a

control array.

Remarks

Typically, you use a GotFocus event procedure to specify the actions that occur when the InaGrid
control first receives the focus. For example, by attaching a GotFocus event procedure to an InaGrid
control on a form, you can guide the user by displaying brief instructions or status bar messages. You
can also provide visual cues by enabling, disabling, or showing other controls that depend on the
InaGrid control that has the focus.

Note An InaGrid control can receive the focus only if its Enabled and Visible properties are set to
True. To customize the keyboard interface in Visual Basic for moving the focus, set the tab order or
specify access keys for the control.

LostFocus Event (Visual Basic Only)
{button ,AL(`focus;Main',0,`',`Second')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Occurs when an InaGrid control loses the focus, either by user action, such as tabbing to or clicking
another object, or by changing the focus in code using the SetFocus method.

Syntax

Private Sub object_LostFocus([index As Integer])

The LostFocus event syntax has these parts:
Part Description
Object An object expression that evaluates to an InaGrid

control.
index An integer that uniquely identifies a control if it's in a

control array.

Remarks

A LostFocus event procedure is primarily useful for verification and validation updates. Using LostFocus
can cause validation to take place as the user moves the focus from the control. Another use for this
type of event procedure is enabling, disabling, hiding, and displaying other objects as in a GotFocus
event procedure. You can also reverse or change conditions that you set up in the object's GotFocus
event procedure.

KeyPress Event
{button ,AL(`key;Main',0,`',`second')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Occurs when the user presses and releases an ANSI key.

Syntax

VB
Private Sub object_KeyPress([index As Integer,]keyascii As Integer)

C++
void OnKeyPress(short* keyascii)

The KeyPress event syntax has these parts:
Part Description
object An object expression that evaluates to an InaGrid control.
index An integer that uniquely identifies the control if it's in a control

array .
keyascii An integer that returns a standard numeric ANSI keycode.

keyascii is passed by reference; changing it sends a different
character to the object. Changing keyascii to 0 cancels the
keystroke so the object receives no character.

Remarks

The InaGrid control with the focus receives the event. A KeyPress event can involve any printable
keyboard character, the CTRL key combined with a character from the standard alphabet or one of a
few special characters, and the ENTER or BACKSPACE key.

You can convert the keyascii argument into a character by using the expression:

Chr(KeyAscii)

You can then perform string operations and translate the character back to an ANSI number that the
control can interpret by using the expression:

KeyAscii = Asc(char)

Use KeyDown and KeyUp event procedures to handle any keystroke not recognized by KeyPress, such
as function keys, editing keys, navigation keys, and any combinations of these with keyboard modifiers.
Unlike the KeyDown and KeyUp events, KeyPress doesn't indicate the physical state of the keyboard;
instead, it passes a character.

KeyPress interprets the uppercase and lowercase of each character as separate key codes and,
therefore, as two separate characters. KeyDown and KeyUp interpret the uppercase and lowercase of
each character by means of two arguments: keycode, which indicates the physical key (thus returning A
and a as the same key), and shift, which indicates the state of shift+key and therefore returns either A or
a.

If the KeyPreview property is set to True, a form receives the event before controls on the form receive
the event. Use the KeyPreview property to create global keyboard-handling routines.

Note The ANSI number for the keyboard combination of CTRL+@ is 0. Because Visual Basic
recognizes a keyascii value of 0 as a zero-length string (""), avoid using CTRL+@ in your applications.

DblClick Event
{button ,AL(`Main',0,`',`Main')} See Also
{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Occurs when the user presses and releases a mouse button and then presses and releases it again
over an InaGrid control.

Syntax

VB
Private Sub object_DblClick (index As Integer)

C++
void OnClick()

Part Description
object An object expression that evaluates to an InaGrid control.
index Identifies the control if it's in a control array .

Remarks

The argument Index uniquely identifies the control if it's in a control array. You can use a DblClick event
procedure for an implied action or to carry out multiple steps with a single action

The mouse events occur in this order: MouseDown, MouseUp, Click, DblClick, and MouseUp.

If DblClick doesn't occur within the system's double-click time limit, the object recognizes another Click
event. The double-click time limit may vary because the user can set the double-click speed in the
Control Panel. When you're attaching procedures for these related events, be sure that their actions
don't conflict.

Note To distinguish between the left, right, and middle mouse buttons, use the MouseDown and
MouseUp events.

If there is code in the Click event, the DblClick event will never trigger.

MouseMove Event
{button ,AL(`Main',0,`',`Main')} See Also
{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Occurs when the user moves the mouse.

Syntax

VB
Private Sub object_MouseMove([index As Integer,] button As Integer, shift As Integer, x As Single, y As
Single)

C++
void OnMouseMove(short button, short shift, long x, long y)

The MouseMove event syntax has these parts:
Part Description
object An object expression that evaluates to an InaGrid control.
index An integer that uniquely identifies the control if it's in a control

array .
button An integer that corresponds to the state of the mouse buttons

in which a bit is set if the button is down. The button argument
is a bit field with bits corresponding to the left button (bit 0),
right button (bit 1), and middle button (bit 2). These bits
correspond to the values 1, 2, and 4, respectively. It indicates
the complete state of the mouse buttons; some, all, or none of
these three bits can be set, indicating that some, all, or none of
the buttons are pressed.

shift An integer that corresponds to the state of the SHIFT, CTRL,
and ALT keys. A bit is set if the key is down. The shift argument
is a bit field with the least-significant bits corresponding to the
SHIFT key (bit 0), the CTRL key (bit 1), and the ALT key (bit
2). These bits correspond to the values 1, 2, and 4,
respectively. The shift argument indicates the state of these
keys. Some, all, or none of the bits can be set, indicating that
some, all, or none of the keys are pressed. For example, if
both CTRL and ALT were pressed, the value of shift would be
6.

x, y A number that specifies the current location of the mouse
pointer. The x and y values are always expressed in terms of
the coordinate system set by the ScaleHeight, ScaleWidth,
ScaleLeft, and ScaleTop properties of the object.

Remarks

The MouseMove event is generated continually as the mouse pointer moves across the InaGrid control.
Unless another object has captured the mouse, the control recognizes a MouseMove event whenever
the mouse position is within its borders.

If you need to test for the button or shift arguments, you can use constants listed in the Visual Basic

(VB) object library in the Object Browser to define the bits within the argument:
Constant (Button) Value Description
vbLeftButton 1 Left button is pressed.
vbRightButton 2 Right button is pressed.
vbMiddleButton 4 Middle button is pressed.

Constant (Shift) Value Description
vbShiftMask 1 SHIFT key is pressed.
vbCtrlMask 2 CTRL key is pressed.
vbAltMask 4 ALT key is pressed.

The constants then act as bit masks you can use to test for any combination of buttons without having to
figure out the unique bit field value for each combination.

You test for a condition by first assigning each result to a temporary integer variable and then comparing
the button or shift arguments to a bit mask. Use the And operator with each argument to test if the
condition is greater than zero, indicating the key or button is pressed, as in this example:

LeftDown = (Button And vbLeftButton) > 0
CtrlDown = (Shift And vbCtrlMask) > 0

Then, in a procedure, you can test for any combination of conditions, as in this example:

If LeftDown And CtrlDown Then

Note You can use MouseDown and MouseUp event procedures to respond to events caused by
pressing and releasing mouse buttons.

The button argument for MouseMove differs from the button argument for MouseDown and MouseUp.
For MouseMove, the button argument indicates the current state of all buttons; a single MouseMove
event can indicate that some, all, or no buttons are pressed. For MouseDown and MouseUp, the button
argument indicates exactly one button per event.

Any time you move a window inside a MouseMove event, it can cause a cascading event . MouseMove
events are generated when the window moves underneath the pointer. A MouseMove event can be
generated even if the mouse is perfectly stationary.

InaGrid Editing Controls
{button ,AL(`edit;Main',0,`',`second')} See Also
{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

The InaGrid control ships with several editing controls that can be used to capture user input into an
InaGrid cell. The grid control is designed to recognize these editing controls and use them with very little
intervention by the application.

All editing controls support the standard OCX property hWnd. hWnd provides a general way to access
and initialize these objects. Although this property is not required to use the editing controls with the
InaGrid control, it can be useful when the container application needs to access the control. The
standard OCX property Caption is used by the InaGrid control object to initialize and extract text data
from the controls. The standard OCX event KeyDown is defined in the editing controls. It is handled by
the InaGrid control to respond when the user ends the editing process by pressing the RETURN, ESC or
TAB key. And finally a custom event, OnNoFocus (ID = 2000) is defined in the controls. It is called when
an editing control loses focus. The InaGrid control uses this event to process the user’s edit. This usage
is the only requirement for custom OCX controls that can be created in the InaGrid control object and
edited in the OnEditCell event.

Normally the InaGrid control creates the instance of the editing control and passes a pointer to the
instance in the OnInitEditCell event. By trapping this event, the application is able to use this pointer to
access properties and methods on the editing control object.

The available controls are:
§ InaEdit Control
§ InaCombo Control
§ InaCheck Control

InaEdit Control Object
{button ,AL(`edit;Main',0,`',`second')} See Also
{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ {button ,AL(`inaedit
control property',0,`',`second')} Properties

This is one of the three editing controls that can be used to capture user input into an InaGrid cell. The
grid control is designed to recognize these editing controls and use them with very little intervention by
the application.

By default, the InaEdit control is created by the InaGrid control when the user initiates an editing action.
To change this behavior, the application must override the OnEditCell event.

The other editing controls are InaCheck and InaCombo.

hWnd Property (InaEdit Object)
{button ,AL(`edit;Main',0,`',`second')} See Also
{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Returns a handle to the InaEdit control.

Syntax

VB
Object.hWnd

C++
OLE_HANDLE Object.GetHWnd()

Part Description
Object An object expression that evaluates to an InaEdit

control.
hWnd A handle to the InaEdit control window.

Remarks

The Microsoft Windows operating environment identifies each form and control in an application by
assigning it a handle, or hWnd. The hWnd property is used with Windows API calls. Many Windows
operating environment functions require the hWnd of the active window as an argument.

Trap the OnInitCellEdit event to gain access to the editing control in order to access its properties and
methods.

This is read-only property.

Note: Because the value of this property can change while a program is running, never store the
hWnd value in a variable.

Example

VB
Dim editHwnd As OLE_HANDLE, lResult As Long

editHwnd = pControl.hWnd
‘Select the entire text
lResult = SendMessage(editHwnd, EM_SETSEL, 0, -1)

C++
HWND hWndControl = m_editControl.GetHWnd();
IGridEdit inaEdit(pControl);
CString strData = “InaEdit Control”;
inaEdit.SetCaption(strData);

::SendMessage((HWND)inaEdit.GetHWnd(), EM_SETSEL, (WPARAM)strData.GetLength(),
(LPARAM)strData.GetLength());
inaEdit.DetachDispatch();

Caption Property (InaEdit Object)
{button ,AL(`edit;Main',0,`',`second')} See Also
{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Returns or sets the text displayed in the InaEdit control.

Syntax

VB
Object.Caption [= str]

C++
CString Object.GetCaption()
void Object.SetCaption(LPCTSTR str)

Part Description
Object An object expression that evaluates to an InaEdit

control.
str A string expression specifying the text appearing in the

edit control.

Example

VB
Dim strOldEditCaption As String
strOldEditCaption = pControl.Caption
PControl.Caption = "InaEdit Control"

C++
CString strEditCaption = m_inaEdit.GetCaption();
IGridEdit inaEdit(pControl);
CString strData = “InaEdit Control”;
inaEdit.SetCaption(strData);
inaEdit.DetachDispatch();

InaCombo Control Object
{button ,AL(`edit;Main',0,`',`second')} See Also
{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

{button ,AL(`inacombo control property',0,`',`second')} Properties

This is one of the three editing controls that can be used to capture user input into an InaGrid cell. The
grid control is designed to recognize these editing controls and use them with very little intervention by
the application.

The other editing controls are InaEdit and InaCheck.

hWnd Property (InaCombo Object)
{button ,AL(`edit;Main',0,`',`second')} See Also
{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Returns a handle to the InaCombo control.

Syntax

VB
Object.hWnd

C++
OLE_HANDLE Object.GetHWnd()

Part Description
Object An object expression that evaluates to an InaCombo

control.
hWnd A handle to the InaCombo control window.

Remarks

The Microsoft Windows operating environment identifies each form and control in an application by
assigning it a handle, or hWnd. The hWnd property is used with Windows API calls. Many Windows
operating environment functions require the hWnd of the active window as an argument.

Trap the OnInitCellEdit event to gain access to the editing control in order to access its properties and
methods.

This is read-only property.

Note: Because the value of this property can change while a program is running, never store the
hWnd value in a variable.

Example

VB
Dim editHwnd As OLE_HANDLE

comboHwnd As OLE_HANDLE, lResult As Long
comboHwnd = pControl.hWnd
lResult = SendMessage(comboHwnd, CB_ADDSTRING, 0, “Choice 1”)
lResult = SendMessage(comboHwnd, CB_ADDSTRING, 0, “Choice 2”)
lResult = SendMessage(comboHwnd, CB_SETCURSEL, 1, 0)

C++
HWND hWndControl = m_editControl.GetHWnd();

_DInaCombo inaCombo(pControl);

 ::SendMessage((HWND)inaCombo.GetHWnd(), CB_ADDSTRING, NULL, (LPARAM)”Combo Item1”);

 ::SendMessage((HWND)inaCombo.GetHWnd(), CB_ADDSTRING, NULL, (LPARAM)”Combo Item2”);

 ::SendMessage((HWND)inaCombo.GetHWnd(), CB_ADDSTRING, NULL, (LPARAM)”Combo Item3”);

 ::SendMessage((HWND)inaCombo.GetHWnd(), CB_SETCURSEL, (WPARAM)nSel, NULL); if(-1 ==
 nSel)

 inaCombo.SetCaption(“No selection”);

 inaCombo.DetachDispatch();

Caption Property (InaCombo Object)
{button ,AL(`edit;Main',0,`',`second')} See Also
{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Returns or sets the text displayed in the InaCombo control.

Syntax

VB
Object.Caption [= str]

C++
CString Object.GetCaption()
void Object.SetCaption(LPCTSTR str)

Part Description
Object An object expression that evaluates to an InaCombo

control.
str A string expression specifying the text appearing in the

InaCombo control.

Example

VB
Dim strOldComboCaption As String
strOldComboCaption = pControl.Caption
pControl.Caption = “InaCombo Control”

C++
CString strComboCaption = m_inaCombo.GetCaption();

_DInaCombo inaCombo(pControl);

inaCombo.SetCaption(“InaCombo Control”);

inaCombo.DetachDispatch();

InaCheck Control Object
{button ,AL(`edit;Main',0,`',`second')} See Also
{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ
{button ,AL(`inacheck control property',0,`',`second')} Properties {button ,AL(`inacheck
method',0,`',`second')} Methods

This is one of the three editing controls that can be used to capture user input into an InaGrid cell. The
grid control is designed to recognize these editing controls and use them with very little intervention by
the application.

The other editing controls are InaEdit and InaCombo.

hWnd Property (InaCheck Object)
{button ,AL(`edit;Main',0,`',`second')} See Also
{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Returns a handle to the InaCheck control.

Syntax

VB
Object.hWnd

C++
OLE_HANDLE Object.GetHWnd()

Part Description
Object An object expression that evaluates to an InaCheck

control.
hWnd A handle to the InaCheck control window.

Remarks

The Microsoft Windows operating environment identifies each form and control in an application by
assigning it a handle, or hWnd. The hWnd property is used with Windows API calls. Many Windows
operating environment functions require the hWnd of the active window as an argument.

Trap the OnInitCellEdit event to gain access to the editing control in order to access its properties and
methods.

This is read-only property.

Note: Because the value of this property can change while a program is running, never store the
hWnd value in a variable.

Example

VB
Dim checkHwnd As OLE_HANDLE, lResult As Long
checkHwnd = pControl.hWnd
lResult = SendMessage(checkHwnd, BM_SETSTYLE, BS_3STATE, 0)
lResult = SendMessage(checkHwnd, BM_SETCHECK, BST_INDETERMINATE, 0)

C++
HWND hWndControl = m_editControl.GetHWnd();

_DInaCheck inaCheck(pControl);

inaCheck.Init(“Check”, “Yes”, “No”);

::SendMessage((HWND)inaCheck.GetHWnd(), BM_SETSTYLE, (WPARAM)(BS_3STATE), NULL);

::SendMessage((HWND)inaCheck.GetHWnd(), BM_SETCHECK, (WPARAM)(BST_INDETERMINATE),
NULL); //Set grayed state

inaCheck.DetachDispatch();

Caption Property (InaCheck Object)
{button ,AL(`edit;Main',0,`',`second')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Returns or sets the text displayed in the InaCheck control.

Syntax

VB
Object.Caption [= str]

C++
CString Object.GetCaption()
void Object.SetCaption(LPCTSTR str)

Part Description
Object An object expression that evaluates to an InaCheck

control.
str A string expression specifying the text appearing in the

InaCheck control.

Example

VB
Dim strOldCheckCaption As String
pControl.Init “Check”, “Yes”, “No”
‘Set checked state
pControl.Caption = “Yes”

C++
CString strCheckCaption = m_inaCheck.GetCaption();
_DInaCheck inaCheck(pControl);
inaCheck.Init(“Check”, “Yes”, “No”);
inaCheck.SetCaption(“Yes”); ////Set checked state
inaCheck.DetachDispatch();

Remarks

Setting the caption changes the check state of the check box. If the caption text is the ON text--the
check box is checked; if the caption text is the OFF text--the check box is unchecked. If the caption text
is anything else, the check box is placed in the third (intermediate) state. For ON and OFF texts, see Init
method.

Init Method (InaCheck Object)
{button ,AL(`edit;Main',0,`',`second')} See Also

{button ,JI(`inagrid.HLP',`InaGrid_Frequently_Asked_Questions_FAQ_')} FAQ

Initializes the title of the check box and tests for checked and unchecked state as they will be accessed
by Caption property.

Syntax

VB
object.Init pszTitle, pszOn, pszOff

C++
void Object.Init(LPCTSTR pszTitle, LPCTSTR pszOn, LPCTSTR pszOff)

The Init method syntax has these parts:
Part Description
Object An object expression hat evaluates to a ColumnHeaders

collection object.
pszTitle The title of the check box.
pszOn The string corresponding to checked state of the check

box.
pszOff The string corresponding to unchecked state of the check

box.

Example

VB
pControl.Init “Check”, “Yes”, “No”

lResult = SendMessage(pControl.hWnd, BM_SETSTYLE, BS_3STATE, 0)
lResult = SendMessage(pControl.hWnd, BM_SETCHECK, BST_INDETERMINATE, 0)

C++
_DInaCheck inaCheck(pControl);

inaCheck.Init(“Check”, “Yes”, “No”);

::SendMessage((HWND)inaCheck.GetHWnd(), BM_SETSTYLE, (WPARAM)(BS_3STATE), NULL);

::SendMessage((HWND)inaCheck.GetHWnd(), BM_SETCHECK, (WPARAM)(BST_INDETERMINATE), NULL); //Set
grayed state

inaCheck.DetachDispatch();

constant
A named item that retains a constant value throughout the execution of a program, as opposed to a
variable, whose value can change during execution. Each host application can define its own set of
constants. Additional constants may be defined by the user with the Const statement. Constants can be
used anywhere in your code in place of actual values. A constant may be a string or numeric literal,
another constant, or any combination that includes arithmetic or logical operators except Is and
exponentiation. For example:
Const A = "MyString"

object library
A file with the .OLB extension that provides information to Automation controllers (like Visual Basic)
about available Automation objects. You can use the Object Browser to examine the contents of an
object library to get information about the objects provided.

Object Browser
You can use the Object Browser to examine the contents of an object library to get information about the
objects provided.

object expression
An expression that specifies a particular object. This expression can include any of the object's
containers. For example, your application can contain an Application object that contains a Document
object that contains a Text object.

Cascading event
A sequence of events caused by an event procedure directly or indirectly calling itself; also referred to
as an event cascade or recursion. Cascading event procedures often result in run-time errors, such as
stack overflow.

access key
A key pressed while holding down the ALT key that allows the user to open a menu, carry out a
command, select an object, or move to an object. For example, ALT+F opens the File menu.

focus
In the Microsoft Windows environment, only one window, form, or control can receive mouse clicks or
keyboard input at any one time. The object that "has the focus" is usually indicated by a highlighted
caption or title bar. The focus can be set by the user or by the application.

control array
A group of controls that share a common name, type, and event procedures. Each control in the array
has a unique index number that can be used to determine which control recognizes an event.

bit masks
A value used with bit-wise operators (And, Eqv, Imp, Not, Or, Xor) to test, set, or reset the state of
individual bits in a bit-field value.

function keys
Any of the keys labeled F1 through F12. Function keys often provide shortcuts for frequently carried out
commands and actions. You can assign a function key as a shortcut key.

editing keys
The INSERT, DELETE, or BACKSPACE key.

ANSI character set
American National Standards Institute (ANSI) 8-bit character set used by Microsoft Windows that allows
you to represent up to 256 characters using your keyboard. The first 128 characters correspond to the
letters and symbols on a standard U.S. keyboard. The second 128 characters represent special
characters, such as letters in international alphabets, accents, currency symbols, and fractions.

InaGrid Frequently Asked Questions (FAQ)

How do I create an InaGrid control in an application?
In Visual Basic 5.0:

To add the InaGrid control to your project, select Project | Components... Select the InaGrid ActiveX
Control Module, InaEdit ActiveX Control Module, InaCombo ActiveX Control Module and InaCheck
ActiveX Control Module.

The InaGrid controls will now be available in the Visual Basic Toolbox. Select the InaGrid control from
the Toolbox and insert it into a form as usual.

In Visual C++ 5.0:

To add the InaGrid control to your project, select Project | Add To Project | Components and
Controls... In Registered ActiveX Controls folder select InaGrid Control. The InaGrid control wrapper
class will be added to your project.

To insert the InaGrid control in an application window derived from CWnd, implement a WM CREATE
message handler in your application window. Inside this function, create the InaGrid control as a
child of your window by calling the Create method of the InaGrid control wrapper class.

To insert the InaGrid control in a dialog, choose InaGrid control from the Control toolbar and select
the destination in the dialog where the control is to be placed. You can also click the right mouse
button in the dialog. Choose Insert ActiveX control... from the popup-menu and then select InaGrid
Control. The InaGrid control is inserted into your dialog.

How do I display row and column information?
The InaGrid control presents a virtual view on data in your program. Whereas most list and grid
controls maintain a copy of the row and column information within their own internal data structures,
the InaGrid control relies on the application to maintain its data – where it exists to begin with. Also,
since the InaGrid control does not bind to a data source, it presents the programmer many more
options to manipulate and check data before and after it is presented and edited in the control.

Because the InaGrid control presents a virtual view of your program data, it only requires that data
be supplied by the application as it displays it onscreen. As the user scrolls through the data
presented in the grid, the control asks the application for row and column information that will be
needed for each page of data. Your application needs to be ready to respond to these requests as
they occur.

The event that calls back into your application is GetData. See the sample programs for examples of
responding to this event and providing your application’s data.

Using 64-bit data types

The large capacity of the InaGrid control is driven by the use of 64-bit numbers in all functions that
require a row number. Visual Basic and Visual C++ handle 64-bit quantities differently. The InaGrid
control provides a custom data type, ROWNUMBER, that is equivalent to a CURRENCY data type in
Visual Basic and a CY data type in Visual C++.

Visual Basic

The ROWNUMBER data type must be scaled properly in order to interpret the value. When using a
value from a function that returns a ROWNUMBER, you must multiply by 10,000. Conversely, to
provide a scaled value to a function that expects a ROWNUMBER data type, you must divide by
10,000. When passing values to and from functions that expect a ROWNUMBER type, no scaling is
necessary.

Visual C++

The ROWNUMBER data type in Visual C++ is equivalent to an CY data type. This requires all
accesses to the variable to be through the int64 union member.

How do I edit data in InaGrid cells?
By default, the InaGrid control is built to provide editing of an InaGrid cell when the user chooses to
edit the cell data. The user initiates an edit action by double-clicking on the cell with the mouse, or
pressing the F2 key. If an InaGrid cell has the focus, pressing ENTER sets the first editable cell on
the row into edit mode.Subsequent presses of the TAB key moves through all of the editable cells in
the row in turn, placing each one into edit mode.

If the user changes data by editing the cell, the InaGrid control informs the application of the changes
using the SetData event. This provides your application with the new cell information for updating the
application’s information.

What kind of licensing agreement do I need to distribute InaGrid control?
The distribution of the InaGrid control is controlled by a license agreement. As a developer using the
InaGrid control, you are required to purchase a license in order to distribute applications that contain
one or more InaGrid controls. Without this license, the InaGrid control is considered under evaluation
and displays a message box to indicate this. When you purchase a license, you are given a license
file (*.lic) that must be copied to the directory that the InaGrid control (InaGrid.ocx) resides in. You
must not redistribute the license file.

If you are using Visual C++, you may define a variable that is passed as a parameter to the Create
function. The contents of this variable contain the first line of text from the license file. Use the
following method for defining and passing the license variable:

In Visual C++ 5.0:
static const CString strLicenseKey = "first line of text from license file";
BSTR bstrLicenseKey = strLicenseKey.AllocSysString();
BOOL bRet = m_wndGrid.Create(NULL, NULL, CRect(0, 0, 100, 100), this, 1, NULL, FALSE,
bstrLicenseKey);
SysFreeString(bstrLicenseKey);

