
Color Selector Custom Dialog Control

Help Index

Product Information
Overview
Files Included in This Kit
Color Selector Control Behavior
Implementing Color Selectors
Sample Program

Color Selector Custom Dialog Control

Product Information

Copyright
Registration
Feedback
Disclaimer

Color Selector Custom Dialog Control

Copyright Information

CLRCTRL
Color Selector Custom Dialog Control

for Microsoft Windows (Tm) Applications

Version 1.2
8/25/1991

Copyright (c) 1991
Clickon Software

Scott Gourley
 Compuserve ID 72311,613

105 Union Street, Watertown, MA 02172
(617)-924-5761

Color Selector Custom Dialog Control

Registration

This software product is SHAREWARE.    You are permitted to evaluate this software product
for a period of 30 days.    If, after that period, you find the software product useful, you must
register the software product and send $15 with your name and address to the address
shown below.    You will then receive a registered copy of the kit , including the files
necessary to use the OBJ interface to the control.    You will also be entitled to receive a
registered copy of the next major revision of the product plus technical support at no charge.

Scott Gourley
Clickon Software
105 Union Street

Watertown, MA    02172

You may also make additional copies of the evaluation kit for the purpose of allowing others
to evaluate the software product, as long as no modifications or additions are made to the
software, its documentation, or any associated files, and this kit is not bundled in a
distribution of any other software except that which is distributed as Shareware or Public
Domain.

Since this product is a programmer's kit, the RUN-TIME version of this product, which
consists of the .DLL file alone plus code compiled against the CLRCTRL.H file, may be
distributed as part of a RUN-TIME ONLY distribution of a commercial, shareware, or public
domain application.

In the case of the OBJ interface to the code, the run-time portion of the product consists of
the appropriate .OBJ file for the control, plus code compiled against the .H file.

Color Selector Custom Dialog Control

Feedback

If you find this software product useful and have any interesting comments or ideas on how
it might be improved, please let me know!    I will attempt to incorporate the best of these
suggestions in future versions of this software product. And, if you happen to provide
particularly valuable feedback, I will, at my discretion, register you free of charge.

Also, watch for other custom controls to be available as shareware soon.    If I get a positive
response from this product, I have many more that I will upload in the future!

Thanks again for evaluating this product!

Scott Gourley
Clickon Software
Compuserve ID 72311,613
(617)-924-5761

Color Selector Custom Dialog Control

Disclaimer

This software product is made available on an "as is" basis, and carries no warranties,
express or implied, including, but not limited to, merchantability or fitness for a particular
purpose.    The author shall in no way be held liable for any damages resulting from the use
of this software product or the media on which it is distributed, including, without limitation,
loss of business profits, interruption of business, loss of information, damage to equipment,
or any other incidental or consequential damages.

Color Selector Custom Dialog Control

Overview

Thank you for trying this product!

The CLRCTRL kit makes it easy for Win 3.0 programmers to include color selection controls in
their application dialogs.    The core of the kit is a "dynamic link library," CLRCTRL.DLL, which
is a self-contained package that can easily be integrated into any program.    The DLL allows
the custom control to be manipulated the same way a built-in control is manipulated, using
the SDK Dialog Editor.

The color selector control is a combobox that contains rectangles of color selectable by a
user using the normal input actions for comboboxes.    The advantage of this method of color
selection is that it allows an easy, familiar way for the user to make a color selection, while
requiring minimal space for the control on the dialog box.

The default color selector uses the standard 16 "pure" colors as its selection palette, but this
can be changed using normal combobox messages.    The following table gives the "pure"
colors and their positions in the default color selector control.

Index in
Color RGB value combobox list
Black RGB (0x00, 0x00, 0x00) 0
Dark Red RGB (0x80, 0x00, 0x00) 1
Dark Green RGB (0x00, 0x80, 0x00) 2
Dark Yellow RGB (0x80, 0x80, 0x00) 3
Dark Blue RGB (0x00, 0x00, 0x80) 4
Dark MagentaRGB (0x80, 0x00, 0x80) 5
Dark Cyan RGB (0x00, 0x80, 0x80) 6
Dark Grey RGB (0x80, 0x80, 0x80) 7
Bright Grey RGB (0xC0, 0xC0, 0xC0) 8
Bright Red RGB (0xFF, 0x00, 0x00) 9
Bright Green RGB (0x00, 0xFF, 0x00) 10
Bright Yellow RGB(0xFF, 0xFF, 0x00) 11
Bright Blue RGB (0x00, 0x00, 0xFF) 12
Bright Magenta RGB (0xFF, 0x00, 0xFF) 13
Bright Cyan RGB (0x00, 0xFF, 0xFF) 14
White RGB (0xFF, 0xFF, 0xFF) 15

Uses for this product

Because this control is flexible enough to allow its behavior to be modified by the
programmer, it is useful in any situation where a selection of color must be provided.    These
situations range from simple text and background color selection in a text-based application
to palette definition in a paint program.    It can be up to the programmer what color choices
are available and what the color choice means to the application program.

Color Selector Custom Dialog Control

Files Included In This Kit

The following files are included in this kit:

Custom Control Files

CLRCTRL.DLL This is the dynamic link library containing the code that defines and
maintains the color selector control.    The library includes code to interface
with the user program as well as code to interface with the SDK Dialog
Editor.

CLRCTRL.H This is the header file that defines the source-code interface to the control. 
It contains information that the user program can use to access the control
and its DLL library.

Sample Program Files

CLRTEST This is the makefile for the CLRTEST.EXE program.    It should be generic
enough to build the program in your environment.    If not, it can be easily
modified.

CLRTEST.C This is the source code for the CLRTEST.EXE program.    This program
provides a simple    test of the functioning of the color selector, and serves
as an example of using the custom control kit.

CLRTEST.H This is the main header file for the CLRTEST.EXE test program.    It contains
menu IDs, prototypes, variable defaults, and other information needed by
the program.

CLRTESTD.H This is the header that contains the dialog IDs used for controls defined in
the dialog in CLRTEST.DLG.   

WINSTD.H This is a general header file of information to configure Windows
applications.

CLRTEST.DEF This is the module definition file for the CLRTEST.EXE program.    All
Windows applications require a module definition file.

CLRTEST.RC This is the resource script file for the CLRTEST.EXE test program.    It
contains a definition of the application menu structure.

CLRTEST.DLG This is the dialog definition for CLRTEST.EXE test program.    The dialog
allows the user to select a text color and a background color, and uses this
data to paint the program's main window.

CLRTEST.ICO This is the program icon for the CLRTEST.EXE test program.
CLRTEST.EXE This is a pre-built copy of the color selector test program.

Documentation Files

CLRCTRL.HLP This help file.
README.TXT This file is an ASCII file that explains this software kit and how to use it.    It

contains largely the same information as this text.
RELEASE.120 This file is the release notes for the Version 1.2 upgrade of the kit.

OBJ Interface Files (registered kit only)

CLRCTRLS.OBJ Small model object code for control's OBJ interface
CLRCTRLM.OBJ Medium model object code for control's OBJ interface
CLRCTRLL.OBJ Large model object code for control's OBJ interface

Color Selector Custom Dialog Control

Color Selector Behavior

Because the color selector control is defined as a combobox, all of the behavior associated
with a normal combobox is supported in the color selector.    The only exception to this is
that direct text entry in the edit field is not implemented.    The following paragraphs briefly
describe the normal functioning of a color selector control.

Keyboard Interface

If the programmer defines the control to have the WS_TAB style, the user can give the
control input focus by moving to the control with the TAB key.

If the programmer defines the control to be in a group using WS_GROUP, the left and right
arrow keys also can be used to give the control the input focus.    Moving the input focus out
of the color selector works in the same way.

Once the control has the input focus, the up and down arrows cause the currently selected
color, as displayed in the edit box, to change, moving through the defined set of color
choices.

Pressing Alt-Up arrow or Alt-Down arrow will both cause the listbox to be alternately dropped
down and removed.    While dropped down, the list box will display up to six of the colors
defined in the list. The up and down arrows then still work in the normal way, moving the
"item selected" highlighting through the list box as appropriate.

Mouse Interface

With a mouse, the interface is also straightforward.    Clicking the mouse on the control will
give the control the input focus if it does not already have it.    When it has the input focus,
clicking on another control will cause the control to lose the input focus.

Clicking on the drop-down button of the control will cause the listbox to be displayed (or
removed if it is already displayed) as described above.

When the list box is dropped down, a new color can be selected by using the mouse to scroll
through the list and click on another color.

Color Selector Custom Dialog Control

Implementing Color Selectors

The following sections describe the steps necessary to add color selector controls to an
application:

Accessing the Color Selector DLL
Accessing the Alternative OBJ Interface
Dialog Creation with the Dialog Editor
Accessing the Control from the Dialog Procedure
Windows Messages Supported by the Color Selector

Color Selector Custom Dialog Control

Accessing the Color Selector DLL

To use the color selector control, the application must access the dynamic link library (DLL)
file for the control.    To accomplish this, the following steps are necessary:

1. Load the DLL Library
2. Free the DLL Library
3. Distribute the DLL with the Application

Color Selector Custom Dialog Control

Load the DLL Library

During program initialization, the DLL library must be loaded and initialized by the program. 
Add the following code to the WinMain function somewhere before the main message loop:

HANDLE hClrLib;
.
.
.
if ((hClrLib = LoadLibrary ("CLRCTRL.DLL")) < 32) return 0;

This code loads the library for the color selector control.    If it cannot be loaded, returning a
zero value from WinMain will cause the program to end.    (If program clean-up is necessary,
do it before the return statement.)

Note that the name of the DLL file is defined in the CLRCTRL.H header file under the symbol
"CLRCTRL_DLLNAME."    This symbol can be used in the LoadLibrary call, provided the
CLRCTRL.H file is included by the .C file that contains WinMain.

Color Selector Custom Dialog Control

Free the DLL Library

During program shutdown, the DLL library must be released by the application.    Add the
following code to the WinMain function somewhere after the main message loop:

FreeLibrary (hClrLib);

This code releases the program's access to the DLL library.    The parts of the library that
have been loaded into memory can be discarded by Windows once no applications are still
accessing the library, so it is important that any application that uses the DLL frees it during
shutdown.

Note that the hClrLib parameter needs to be the same value as that returned from the call to
LoadLibrary.    If the calls are both made directly from WinMain, hClrLib can simply be a local
variable used in both calls.    If the calls are instead made from subordinate functions defined
in the application, programmer needs to provide a way of keeping the value around during
the life of the program's execution.

Color Selector Custom Dialog Control

Distribute the DLL library

Since the DLL becomes a separate but integral part of the application, it must be distributed
with the application.    The rules for where Windows looks for the DLL file are documented in
the Windows SDK Guide to Programming, among other places.    Normally, however, it is
easiest to keep the DLL in the same directory as the application's .EXE file.

Please refer to the Registration section of this help document for information about
distributing the files in this kit.

Color Selector Custom Dialog Control

Accessing the Alternative OBJ Interface

An optional OBJ interface to the control is available to registered users of this kit, which
allows an application to access the control's code without the need for including a
separate .DLL file with the application.

The advantages of using the OBJ interface are:
- fewer files to add to the application's distribution kit and copy during installation,

especially when using many custom controls
- less chance that the user will delete, misplace, or overwrite the .DLL file, causing the

application to fail

The disadvantages of using the OBJ interface are:
- the application's .EXE file is larger
- the control's .OBJ file must be linked into the application, in contrast to the pre-

linked .DLL file (which means that implementing new versions of the control with the
application requires a relink)

- the .DLL file may still need to be kept in the development environment in order to
allow using the Dialog Editor to modify dialog boxes that use the control

- the .OBJ file used must match the memory model that the application uses

The following steps are necessary to implement access to the control using the OBJ
interface;    these steps replace the section, "Accessing the Color Selector DLL":

1. Register the Control Class
2. Export the Control Window Procedure
3. Link the .OBJ file to the Application

Color Selector Custom Dialog Control

Register the Control Window Class

When using the OBJ interface to the control, the ClrCtrlRegisterClass function should be
called from WinMain sometime during the program initialization process.    This function
registers with Windows the special window class that is needed by the color selector control. 
The function takes an argument that is the program's instance handle, as in the following
example:

ClrCtrlRegisterClass (hInstance);

Color Selector Custom Dialog Control

Export the Control Window Procedure

Since the window procedure (ClrCtrlWndProc) for the color selector control will be called by
Windows' Dialog Manager code, this function must be exported when using the OBJ interface
to the control.    Add the function to the list of exported functions in the application's .DEF
file, as in the following example:

EXPORTS
...various function names ...
      ClrCtrlWndProc
...various function names ...

Color Selector Custom Dialog Control

Link the .OBJ with the Application

When using the OBJ interface to the control, the appropriate .OBJ file must be linked into the
application.    Depending on the memory model (small, medium, or large) used by the
application, link the proper .OBJ file (CLRCTRLS.OBJ, CLRCTRLM.OBJ, or CLRCTRLL.OBJ) into
the executable file for the application.    Any one of these files replaces all of the run-time
functionality of the control that is defined in the .DLL.

Color Selector Custom Dialog Control

Color Selector Access Using the Dialog Editor

The easiest way to add color selector controls to an application's dialog is to edit the dialog
using the Dialog Editor found in the Microsoft SDK.    The following sections describe the
steps    necessary to add color selector controls to a dialog using the Dialog Editor.

Installing the DLL Library
Creating a Color Selector in a Dialog
Modifying the Color Selector
Color Selector Control Styles

Color Selector Custom Dialog Control

Installing the DLL Library

To access the color selector custom control from within the Dialog editor, the CLRCTRL.DLL
file that defines the control must be installed" in the Dialog Editor.    To do this, execute the
Add Custom Control menu option from the File menu of the Dialog Editor, and give the full
pathname of the control's .DLL file.    This pathname will point to wherever this custom
control kit is installed.

If the .DLL file ever needs to be de-installed, use the Remove Control option from the Dialog
Editor's File menu, and choose the control library to be removed from the list presented.

Color Selector Custom Dialog Control

Creating a Color Selector in a Dialog

To use the color selector in a dialog, choose the Custom menu option from the Control menu.
Then choose the CLRCTRL control from the list presented.    The control also can be chosen
from the Toolbox, if it is displayed.    Once the control has been selected, position the plus
sign cursor where the upper left corner of the control should be on the dialog, and click the
left mouse button to add the control.

Color Selector Custom Dialog Control

Modifying the Color Selector

After adding a color selector to a dialog, it can be moved and    resized in the same way as a
standard control.    Keep in mind that the size of the control is really larger than the visible
portion of the control, because of the drop-down area.    To make a color selector the current
object in the Dialog Editor, click the mouse in the drop-down area, instead of in the visible
area, because the latter mouse click will be interpreted by the control and not the Dialog
Editor.

Also, it is important to note how the vertical size of the control affects the control.    The
default vertical size of a color selector control is sixty dialog units.    At this size, the height of
the edit box and drop down button are the same as the height of their standard Windows
counterparts.    When dropped down, six color rectangles are displayed (or fewer if there are
less than six color choices in the list.)    If the size of the control is changed the size of the
color rectangles and the size of the edit box and drop down button also change.    There will
still be six colors displayed in the dropped down list.

Within the Dialog Editor, the behavior is different.    If the size of the control is changed and
the dialog is then tested within the Dialog Editor, the edit box and drop down button do not
change size.    In addition, the number of color rectangles displayed when the list box is
dropped down changes, instead of the size.    Keep this difference in mind when sizing the
color selector controls within a dialog.

Color Selector Custom Dialog Control

Color Selector Control Styles

A color selector's ID value is the only "style" associated with this type of control.    To modify
this value, double-click the mouse on the control or make the control the current object and
press Control-C.    Choosing the Styles menu option in the Edit menu also works.    These
actions cause the control's styles dialog box to be presented, which has an edit field for the
control's ID value. This ID value field can be used in the same way as with a standard
control; a number can be entered or a string value can be used that equates to a number
using a #define in the header file associated with the dialog.    See the SDK's Tools manual
for information on how to maintain a header file of ID values for the dialog.

It is also possible to modify the dialog file without using the Dialog Editor using a standard
text editor.    A color selector control in a dialog uses the CONTROL statement in the dialog
file and its format is the same as the CONTROL statement for a standard control.    The class
string for color selector's CONTROL statement is "ClrCtrl" -- see the SDK tools manual for
information on the full format of the CONTROL statement.

Color Selector Custom Dialog Control

Color Selector Dialog Procedure Handling

To access a dialog's color selector control from the application, code must be added to the
dialog procedure to initialize the state of the color selector and retrieve its current selected
color at the end of dialog processing.    To implement this access, perform the following
steps:

1. Include the Color Selector Include File
2. Modify the Control's Color Choices
3. Set the Current Color Choice
4. Get the Current Color Choice

Color Selector Custom Dialog Control

Include the Color Selector Header File

The header file for color selector control access, CLRCTRL.H, should be included in any .C
modules that define dialogs using the color selector control.    This header file defines
message codes specific to the color selector and other information useful to access the
control.

Color Selector Custom Dialog Control

Modify the Color Choices

During WM_INITDIALOG message processing for the dialog, it is possible to modify the color
choices available in the control.    To do this, the standard Windows messages for modifying
items in a combobox can be used.

For the following examples, hClrCtrl is assumed to be an HWND value, initialized to be a
color selector's window handle.    This value can be obtained in several ways, as explained in
any Windows programming reference.

To add a color selection to the end of the control's list, use the CB_ADDSTRING message.   
For example,

SendMessage (hClrCtrl, CB_ADDSTRING, 0, RGB (0xC0, 0x40, 0x00));

will add an orange color to the end of the color selector's list.    (Keep in mind that the color
capability of the video hardware that the application is being run on will determine whether
a particular RGB color is rendered as a pure color.)

To remove a color choice from the list, determine the index of the color in the list (starting at
0) and send the CB_DELETESTRING message to the control.    For example,

SendMessage (hClrCtrl, CB_DELETESTRING, 3, 0L);

will remove the fourth color selection in the list.    Note that removing an item will cause the
indices assigned to all colors below the removed color to be decremented by one, so if more
than one color selection is to be removed, it is best to remove them from the bottom up.

To insert a color choice in the middle of the list, determine the index of the position at which
to insert the item and send the CB_INSERTSTRING message to the control.    For example,

SendMessage (hClrCtrl, CB_INSERTSTRING, 7, RGB (0x80,0x00,0xFF));

will insert a lavender color after the first seven colors in the list.    Note that inserting an item
will cause the indices assigned to all colors below the inserted color to be incremented by
one, so if more than one color selection is to be inserted, it is best to insert them from the
bottom up.

For special situations, it may be desirable to remove all color selections and then add back a
complete set.    To do this, send the CB_RESETCONTENT message to the control to remove all
current color selections in the list.    For example,

SendMessage (hClrCtrl, CB_RESETCONTENT, 0, 0L);

will remove all color selections.    (The last two parameters are ignored.)

Color Selector Custom Dialog Control

Set the Current Color Choice

During WM_INITDIALOG processing, it is possible to select the default color choice for a color
selector.    This can either be a hardcoded default choice, or it can be the saved value of the
choice that was selected during the last time the dialog was processed.    If the index of the
desired default color choice is known, the CB_SETCURSEL message can be sent to the
control.    For example,

SendMessage (hClrCtrl, CB_SETCURSEL, 6, 0L);

sets the seventh color in the list as the default.

If the RGB color value of the desired default color is known, but the index of the color is not
known, a special color selector message, CLRM_SETCURCOLOR can be used.    For example,

SendMessage (hClrCtrl, CLRM_SETCURCOLOR, 0, RGB (0xFF,0x00,0x00));

sets the current color selection to be red.    Note that if the exact RGB color specified does
not exist in the control's list, the current color selection will not be changed, and a CB_ERR
value will be returned.    (When a combobox control is created, its initial current selection is
index 0, until changed by a message such as those above.)

Color Selector Custom Dialog Control

Get the Current Color Choice

When a user action indicates that the current dialog control values should be retrieved and
used (such as when the user presses an "OK" or "Apply" button), the current color value for
a color selector can be retrieved as an RGB value by using the special color selector
message, CLRM_GETCURCOLOR.    For example,

COLORREF rgbColor;
.
.
.
rgbColor = SendMessage (hClrCtrl, CLRM_GETCURCOLOR, 0, 0L);

will store in rgbColor the current RGB color selected in the control.    (The last two
parameters are ignored.)

Color Selector Custom Dialog Control

Windows Message Interface

To make the color selector control as flexible as possible, most of the standard Windows
messages and notification codes that are supported by a combobox control also are
supported by the color selector control.    The following sections contain further information
about this support.

Color Selector Messages
Windows Messages
Windows Notification Codes

Color Selector Custom Dialog Control

Color Selector Messages

The following messages are defined as part of the interface to color selector controls:

CLRM_GETCURCOLOR retrieve the RGB color of the current selected item in the
control.    wParam and lParam are not used.    The return value of
the SendMessage call is the current selected RGB value.    See
the Color Selector Dialog Procedure Handling section for
information on using this message.

CLRM_SETCURCOLOR set the current selected item of the control to the specified RGB
color.    wParam is not used for this message.    lParam is used to
pass the desired RGB color value.    The return value of the
SendMessage call is CB_ERR if the specified RGB color is not in
the control's list.    See the Color Selector Dialog Procedure
Handling section for information on using this message.

Color Selector Custom Dialog Control

Windows Messages

The following Windows messages are supported in the color selector control, either by
special processing or by default processing handled within Windows.

WM_CREATE create the control on the dialog
WM_DESTROYremove the control from the dialog
WM_SIZE resize the control
WM_PAINT repaint the control
WM_COMMAND process commands from the user
WM_ACTIVATEactivate or inactivate the control
WM_CHAR process a keyboard character sent to the control
WM_ENABLE enable or disable the control
WM_KEYDOWN process a key press for a non-system key
WM_KEYUP process a key release for a non-system key
WM_KILLFOCUS remove the input focus from the control
WM_MOVE move the control on the dialog box
WM_SETFOCUS give the input focus to the control
WM_SYSCHARprocess a system keystroke sent to the control
WM_SYSKEYDOWN process a key press for a system key
WM_SYSKEYUP process a key release for a system key

See the SDK Reference manual (volume 2) for more information on these messages.

The control sends the following messages to its dialog parent:

WM_CTLCOLOR ask the dialog to change the drawing attributes used to paint the
control (note that these attributes are used to draw the structural
aspects of the control, and do not affect the color choices in the color
selector's list)

WM_DELETEITEM tell the dialog that a color choice has been removed from the color
selector's list

These messages control the comobox-specific aspects of the color control:

CB_ADDSTRING add an item to the end of a combobox's list
CB_DELETESTRING delete an item from a combobox's list
CB_GETCOUNT determine the number of items in a combobox's list
CB_GETCURSEL determine the index of the currently selected item in a combobox
CB_GETITEMDATA retrieve the data associated with an item in a combobox (for color

selectors, this data is the stored RGB color value)
CB_INSERTSTRING insert an item in the middle of a combobox's list
CB_RESETCONTENT remove all items from a combobox's list
CB_SETITEMDATA store a data value in a combobox item (for color selectors, this data is

the RGB color value)
CB_SETCURSEL change the currently selected item in a combobox

Color Selector Custom Dialog Control

Windows Notification Codes

The color selector control returns the following combobox notification codes to its parent
window, in WM_COMMAND messages:

CBN_DROPDOWN notify the dialog that the color selector listbox has been dropped down
CBN_KILLFOCUS notify the dialog that the color selector control has lost the input focus
CBN_SELCHANGE notify the dialog that the color selector current color has changed
CBN_SETFOCUS notify the dialog that the color selector control has gained the input

focus
CBN_EDITCHANGE notify the dialog that the color selector control's edit box may have

changed
CBN_EDITUPDATE notify the dialog that the color selector control's edit box will be

changed

See the SDK Reference manual (volume 2) for more information on these codes.

Color Selector Custom Dialog Control

Sample Program

This kit comes with a sample Windows program, CLRTEST.EXE.    The following sections
describe the design and use of the program.

Purpose
Using the Program
Commands

Color Selector Custom Dialog Control

Sample Program Purpose

CLRTEST.EXE serves two purposes:    first, it provides a good test of the control and its
application interface; second, it represents a clean example of the use of the control in a
program.

In addition, it may come in handy as a starting point for testing special ways of interfacing
with the control, whenever changes to the control's standard behavior are desired.

Color Selector Custom Dialog Control

Using the Sample Program

The CLRTEST.EXE program consists of a normal application window and a short application
menu.    The window contains a line of sample text that is colored according to a default color
value defined in the test program, displayed on a background that is colored by another
default color value.

Color Selector Custom Dialog Control

Sample Program Commands

The sample program has an application menu with the following options:

File Controls the exit options of the program
Options Controls the testing options of the program
Help Provides access to online help for the color selector kit

Color Selector Custom Dialog Control

File Menu

The File menu has a standard meaning on most Windows applications, but in this program,
only one standard File menu option is defined: Exit.    When Exit is chosen, the program
simply shuts down.

Color Selector Custom Dialog Control

Options Menu

Under the Options menu, there is one option: Test Color Selector.    This option displays the
"Color Test Attributes" dialog.

Color Test Attributes Dialog

This dialog is used to test the functionality of the color selector control.    It contains the
following controls:

Text color selector

Changing the currently selected text color using this control changes the
corresponding current text color used when repainting the program's main window.

Background color selector

Changing the currently selected background color using this control changes the
corresponding current background color used when repainting the program's main
window.

OK pushbutton

Clicking on the OK pushbutton causes the colors currently selected in the color
selectors to be stored as the program's current color settings, and the main
application window is repainted with those color settings.

Cancel pushbutton

Clicking on the Cancel pushbutton causes the color settings to be left as they were
before the dialog box was displayed.

Reset pushbutton

Clicking on the Reset pushbutton resets the current colors in the color selectors to
the default values defined in the program code.

To test and demonstrate the ability to modify the default 16 "pure" color choices in a color
selector, the following changes were made to the controls in this dialog:

Text color selector

Dark Magenta was removed, and Sky Blue was added in the fourth position in the list.

Background color selector

An orange color was added at the end of the list.

These changes are made with standard Windows messages defined for comboboxes.

Color Selector Custom Dialog Control

Help Menu

The Help menu provides access to this online help text.    Besides help information for the
test program, this text contains information about using the color selector control in other
applications.

In addition, an "About Color Test..." option is defined, which provides general information
about the kit.

