
    SocketWrench/VB Control
Properties                  Events              Error Messages              License
Description
The SocketWrench/VB control uses the standard Windows Sockets library to provide network 
communication services for Visual Basic applications. The control supports both stream and datagram 
protocols, a buffered text mode for ease of use, and both client and server functionality in the same 
control.

File Name
CSWSOCK.VBX

Object Type
Socket

Remarks
The SocketWrench/VB custom control provides network communication services for your Visual Basic 
application using a third-party TCP/IP protocol stack and compatible Windows Sockets library. The control
offers the following features:

· Client and server functionality in a single control
· Support for blocking and non-blocking socket operations
· Convenient text mode for receiving data a line at a time
· Support for both stream and datagram protocols
· Send and receive urgent (out-of-band) data

Instead of using API calls, virtually all socket functions can be performed by setting control properties and 
responding to events. For those developers who are not familiar with the details of socket programming, 
SocketWrench can also insulate them from many of the common pitfalls, without sacrificing functionality 
or flexibility.

Each control that you use corresponds to one socket (which may or may not be connected to a remote 
host). If you need access to multiple sockets, you must use multiple controls, typically as a control array. 
This is most commonly needed when your application acts a server and must be able to handle several 
connections at one time.

Requirements
The sockets control requires Microsoft Windows 3.1 or later, Visual Basic 3.0 or later and a TCP/IP 
product that supports the Windows Sockets 1.1 specification. The WINSOCK.DLL library must be located 
in the Windows directory or in a directory that is in the search path.

Distribution
When you distribute your application that uses the socket control, you should install the CSWSOCK.VBX 
file in the Windows system directory. Note that it is not required that the end-user of your application use 
the same TCP/IP product that you’ve used for development.

Copyright
Copyright Ó 1995, Catalyst Software. All rights reserved.

SocketWrench Custom Control
Software License

1. This License Agreement ("License") permits you to use the software product identified above 
("Software") and to distribute it to others, provided that the Software is redistributed in it's original 
unmodified form, complete with all files, and no fee is charged for such distribution except for reasonable 
media and shipping charges.

2. The Software is owned by Catalyst Software and is protected by United States copyright laws and 
international treaty provisions. Therefore, you must treat the Software like any other copyrighted material, 
except that you may copy and redistribute the Software in accordance with this License.

3. You may not rent or lease the Software. You may not reverse engineer, decompile or disassemble the 
Software, except to the extent such restriction is expressly prohibited by law. Except as described above, 
you may not legally copy or distribute the Software (which includes the documentation, object code and 
supporting programs), in whole or in part. All rights not specifically granted are reserved by the copyright 
holder.

4. You have a royalty-free right to reproduce and distribute executable files that incorporate the Software. 
This right includes the distribution of the runtime module of the Software, provided that you: (a) distribute 
the runtime module only in conjunction with and as part of your software product; (b) include a valid 
copyright notice on your software product; and (c) agree to indemnify, hold harmless and defend the 
copyright holder against any claims or lawsuits, including attorney's fees, that arise from the use or 
distribution of your software product. The "runtime module" refers to the custom control library required 
during execution of your software product.

Warranty

The Software is provided "as is", without warranty of any kind, either expressed or implied, including, but 
not limited to, the implied warranties of merchantability and fitness for a particular purpose. Should the the
Software prove defective, you assume the cost of all necessary servicing, repair or correction. Some 
states do not allow limitations on implied warranties, so the above limitations may not apply to you.

In no event, unless required by applicable law, will the copyright holder, or any other party who may 
redistribute the Software as permitted above, be liable to you for damages, including any general, special,
incidental or consequential damages arising from the use or inability to use the Software. This includes 
losses sustained by third parties, even if such holder or other party has been advised of the possibility of 
such damages. Some states do not allow the exclusion or limitation of incidental or consequential 
damages, so the above limitation or exclusion may not apply to you.

If you have any questions or comments regarding this custom control, or any other Catalyst products, you
can send us electronic mail on CompuServe, AmericaOnline or the Internet. Our e-mail addresses are:

CompuServe:
AmericaOnline:
Internet:

72202,1427
mstefan
mstefan@catsoft.com

Of course, you can also reach us by writing, calling or faxing. Please be sure to include your full name 
and a daytime telephone number where you can be reached. If you would like information faxed back to 
you, please be sure to include your fax number as well. Our postal address is:

Catalyst Software
638 Lindero Canyon Road, Suite 107
Oak Park, California 91301

Phone:
Fax:

818.879.1144
818.879.1211

Glossary of Terms

Address - Socket
The term address in this context refers to a combination of an internet address, a service port and 
address family. For those applications that do not care to specify the internet address, the constant 
INADDR_ANY can be used.

Address - Internet
The term address in this context refers to a 32-bit number which uniquely identifies a remote host on a 
network. An internet address is expressed in dot notation, which consists of each of the four bytes in the 
address seperated by periods.

Internet addresses are commonly mapped to logical names, either through a local database (called a 
hosts file) or over the network through a domain name server.

All of the properties for this control are listed in the following table. Properties that apply only to this 
control, or that require special consideration when used with it, are marked with an asterisk (*). For 
documentation on the remaining properties, refer to Appendix A, "Standard Properties, Events and 
Methods" in the Custom Control Reference.

*Accept *HostFile *LocalAddress *ReuseAddress
*Action *HostName *LocalName *Route
*AddressFamily Index *LocalPort *SendData
*AtMark *InLine *LocalService *SendLen
*Backlog *Interval Name *Shutdown
*Binary *IsBlocked *Peek *State
*Blocking *IsClosed *PeerAddress TabIndex
*Broadcast *IsReadable *PeerName Tag
*BufferSize *IsWritable *Protocol *Timeout
*Connected *KeepAlive *RecvData Top
*GetFirstHost Left *RecvLen *Type
*GetNextHost *LastError *RecvNext *Urgent
*Handle *Linger *RemotePort *Vendor
*HostAddress *Listening *RemoteService *Version

Accept Property
Description
A write-only property, that when set to the value of a listening socket’s handle, accepts the
connection. The listening socket is not closed and may continue to listen for new client
connections.

Visual Basic
[form.]Socket.Accept = handle%

Remarks
Setting this property to a socket that is not listening for connections will generate an error. If
the Accept property is set to the value of the current socket’s handle, the effect is the same
as if the SOCKET_ACCEPT action has been taken.
Data Type
Integer

See Also
Action Property, Backlog Property, Listening Property, Accept Event

Action Property
Description
Setting this property causes the socket to take some action, such as creating a socket,
connecting to a remote system or closing a connection.

Visual Basic
[form.]Socket.Action = action%

Remarks
The following table lists the actions that a socket control may take:

Value Constant Description
1 SOCKET_OPEN Create a socket using the AddressFamily,

Protocol and Type properties. This action is
commonly used to create datagram
sockets, or if supported by the TCP vendor,
raw sockets.

2 SOCKET_CONNECT Connect to a remote system specified by
the HostAddress or HostName properties.
If a socket has not already been created,
this action will create it.

3 SOCKET_LISTEN Listen on a socket for incoming
connections on the port specified by the
LocalPort or LocalService properties. If a
socket has not already been created, this
action will create it.

4 SOCKET_ACCEPT Accept an incomming connection on the
socket. The listening socket connection is
closed and the client is connected. To
resume listening for new connections, the
Action must be set to SOCKET_LISTEN
again. This approach allows only one
incomming connection per listening   
socket

5 SOCKET_CANCEL Cancel the current blocking operation. This
action only has meaning for blocking
sockets.

6 SOCKET_FLUSH Flush the contents of the send and receive
socket buffers.

7 SOCKET_CLOSE Close the socket, and if connected, break
the connection with the remote system.
This action should be taken before the
control is unloaded from the form.

8 SOCKET_ABORT Immediately close the socket without
waiting for remaining data to be written
out. This action should only be taken
under extreme circumstances.

The SOCKET_CONNECT and SOCKET_ACCEPT actions are always blocking (i.e.: the value of
the Blocking property is ignored) and will use the Timeout property to determine the amount
of time to wait until the action times-out.

Data Type
Integer

See Also
Blocking Property, Connected Property, Listening Property, State Property, Timeout Property

AddressFamily Property
Description
Sets or returns the address family for the socket.

Visual Basic
[form.]Socket.AddressFamily [= aftype%]

Remarks
The address family value should be set to the constant AF_INET. This property is included
only for completeness and future expansion.

Data Type
Integer

See Also
Protocol Property, Type Property

AtMark Property
Description
A read-only property that returns True if the next receive will return urgent data.

Visual Basic
[form.]Socket.AtMark

Remarks
This property can only be used if the socket type is SOCK_STREAM and the InLine property
has been set to True. Reading this property is the same as using the SIOCATMARK option
with the ioctlsocket function.

Data Type
Integer (Boolean)

See Also
RecvData Property, Urgent Property, Read Event

Backlog Property
Description
Sets or returns the number of connections that may be accepted by a listening socket.

Visual Basic
[form.]Socket.Backlog [= backlog%]

Remarks
This property must be set to the desired value before the SOCKET_LISTEN action is taken. If
the value is less than one or greater than five, it’s value is silently changed to nearest legal
value.

Data Type
Integer

See Also
Accept Property, Listening Property, Accept Event

Binary Property
Description
Sets or returns the binary mode flag for the current socket. If set to a value of False, then
subsequent reads on the socket return lines of text terminated by newlines.

Visual Basic
[form.]Socket.Binary [= { True | False }]

Remarks
This property may only be set for buffered sockets of type SOCK_STREAM, and may not be
changed after a connection has been established with a remote system.

Data Type
Integer (Boolean)

See Also
BufferSize Property, RecvData Property

Blocking Property
Description
Sets or returns the blocking state of the socket.

Visual Basic
[form.]Socket.Blocking [= { True | False }]

Remarks
Setting this property determines if socket operations complete synchronously or
asynchronously. If set to True, then each socket operation (such as sending or receiving
data) will return when the operation has completed or timed-out. If set to False, socket
operations return immediately. If the operation would result in the socket blocking (such as
attempting to receive data when none has been written), the error WSAEWOULDBLOCK is
generated. Socket events such as Accept, Close, Read and Write are only fired if the socket
is non-blocking.

If the socket is made blocking, the Blocking event is fired before the blocking operation
starts, and it is possible to cancel the operation at that point.

Data Type
Integer (Boolean)

See Also
IsBlocked Property, Blocking Event

Broadcast Property
Description
Determines if datagrams should be broadcast over the network

Visual Basic
[form.]Socket.Broadcast [= { True | False }]

Remarks
If set to a value of True, the datagram written to the socket will be broadcast to all systems
on the network. Use of this property is restricted to SOCK_DGRAM socket types.

Data Type
Integer (Boolean)

See Also
InLine Property, KeepAlive Property, ReuseAddress Property, Route Property

BufferSize Property
Description
Set the send and receive buffer sizes for the socket

Visual Basic
[form.]Socket.BufferSize [= bufsize%]

Remarks
This property sets the size of the send and receive buffers for SOCK_STREAM socket types. A
buffer size of 0 indicates that no buffering should be done. Buffering reads and writes on the
socket is recommended if the socket is non-blocking, and required if the Binary property has
been set to a value of False.

Data Type
Integer

See Also
Binary Property, RecvData Property, Read Event

Connected Property
Description
Return if the socket is connected to a remote host

Visual Basic
[form.]Socket.Connected

Remarks
This read-only property is set to a value of True if the socket was connected with the
SOCKET_CONNECT action, or if a connection was accepted on a listening socket.

Data Type
Integer (Boolean)

See Also
Listening Property

GetFirstHost Property
Description
Return the name of the first host in the host table

Visual Basic
[form.]Socket.GetFirstHost

Remarks
Reading this property returns the name of the first host in the specified host file. If there is
no host file, or the file is empty, this property will return an empty string.

Data Type
String

See Also
GetNextHost Property, HostFile Property

GetNextHost Property
Description
Return the name of the next host in the host table

Visual Basic
[form.]Socket.GetNextHost

Remarks
Reading this property returns the name of the next host in the specified host file. If the last
host entry has been read, this property will return an empty string.

Data Type
String

See Also
GetFirstHost Property, HostFile Property

Handle Property
Description
Returns the handle (descriptor) for the current socket

Visual Basic
[form.]Socket.Handle

Remarks
This read-only property returns the handle to the current socket. If the socket has not been
opened, a value of -1 is returned. This property can be used in conjunction with direct calls
to the Windows Sockets API.

Data Type
Integer

HostAddress Property
Description
Set or return the IP address of the remote host

Visual Basic
[form.]Socket.HostAddress [= addr$]

Remarks
This property can be used to set the IP address for a remote system that you wish to
communicate with. If the address is valid and matches an entry in the host table, the
HostName property will be changed to match the address.

Data Type
String

See Also
HostName Property, LocalAddress Property, PeerAddress Property

HostFile Property
Description
Sets or returns the name of the host file

Visual Basic
[form.]Socket.HostFile [= hostfile$]

Remarks
This property should be set to the name of the host file used by the Windows Sockets library.
If no directory is provided as part of the file name, the directories listed in the PATH
environment variable are searched. If the host file is located, each host entry is read into
memory and returned by the GetFirstHost and GetNextHost properties.

Note that the host file must be a standard UNIX-style text file. Blank lines, or any characters
that follow a hash-mark (#) are ignored.

Data Type
String

See Also
GetFirstHost Property, GetNextHost Property

HostName Property
Description
Set or return the name of the remote host

Visual Basic
[form.]Socket.HostName [= hostname$]

Remarks
This property should be set to the name of the remote system that you wish to communicate
with. If the name is found in the host table, the HostAddress property is updated to reflect
the IP address of the host.

Note that it is legal to assign an IP address to this property, but it is not legal to assign a
host name to the HostAddress property.

Data Type
String

See Also
HostAddress Property, LocalName Property, PeerName Property

InLine Property
Description
Sets or returns if urgent data is received in-line with non-urgent data

Visual Basic
[form.]Socket.InLine [= { True | False }]

Remarks
This property controls how urgent (out-of-band) data is handled when reading data from the
socket. If set to a value of True, urgent data is placed in the data stream along with non-
urgent data. To determine if the data that is being read is urgent, the AtMark property can be
read.

Note    Urgent data is sent and received directly from the socket, and is not buffered even if
buffering is enabled. It is recommended that you do not enable buffering if urgent data is
being received in-line.

Data Type
Integer (Boolean)

See Also
Urgent Property, Read Event

Interval Property
Description
Set or return the number of milliseconds between calls to the control's Timer event

Visual Basic
[form.]Socket.Interval [= milliseconds]

Remarks
This property specifies the number of milliseconds between calls to the Timer event. A value
of zero indicates that the timer is disabled and no events will be generated. The maximum
interval value is 65536 milliseconds, which is slightly more than one minute.

There are a limited number of timers available (16 in the Windows environment). Setting the interval to a 
non-zero value when no timers are available will generate a runtime error.

Data Type
Long

See Also
Timer Event

IsBlocked Property
Description
Return if the current socket is blocked performing an operation

Visual Basic
[form.]Socket.IsBlocked

Remarks
This property returns True if the current socket is blocked performing an operation. However,
since the Windows Sockets API does not allow functions to be re-entered during a blocking
operation for a given task, this property could return False and a socket operation may still
fail with the WSAEWOULDBLOCK error if multiple sockets have been created by the
application.

Data Type
Integer (Boolean)

See Also
Blocking Property, Blocking Event

IsClosed Property
Description
Return if the socket has been closed by the remote host

Visual Basic
[form.]Socket.IsClosed

Remarks
This property returns True if the socket connection has been closed by the remote host. Note
that it is possible to continue to receive data on a closed socket if the socket was buffered.

Data Type
Integer (Boolean)

See Also
IsReadable Property, IsWritable Property

IsReadable Property
Description
Return if data can be read from the socket without blocking

Visual Basic
[form.]Socket.IsReadable

Remarks
This property returns True if data can be read from the socket without blocking. For non-
blocking sockets, this property can be checked before the application attempts to read the
socket, preventing a WSAEWOULDBLOCK error.

Data Type
Integer (Boolean)

See Also
IsClosed Property, IsWritable Property, Read Event

IsWritable Property
Description
Return if data can be written to the socket without blocking

Visual Basic
[form.]Socket.IsWritable

Remarks
This property returns True if data can be written to the socket without blocking. For non-
blocking sockets, this property can be checked before the application attempts to write to
the socket, preventing a WSAEWOULDBLOCK error.

Data Type
Integer (Boolean)

See Also
IsClosed Property, IsReadable Property, Write Event

KeepAlive Property
Description
Set or return if "keep alives" are sent on a connected socket

Visual Basic
[form.]Socket.KeepAlive [= { True | False }]

Remarks
Setting this property to a value of True indicates that packets are to be sent to the remote
system when no data is being exchanged to keep the connection active. This property can
only be set for SOCK_STREAM socket types.

Data Type
Integer (Boolean)

See Also
Broadcast Property, InLine Property, ReuseAddress Property, Route Property

LastError Property
Description
Set or return the last error that occurred on the socket

Visual Basic
[form.]Socket.LastError [= errval%]

Remarks
This property can be read to determine the last error that occurred for this socket. If a value
is assigned to this property, it must either be zero (to clear the error) or a valid socket error
code.

Data Type
Integer

See Also
Error Event

Linger Property
Description
Set or return the number of seconds to linger on a close

Visual Basic
[form.]Socket.Linger [= nsecs%]

Remarks
Setting this property to a value greater than zero indicates that the SOCKET_CLOSE action
should wait up to the specified number of seconds for any data on the socket to be written
before it is closed. A value of zero indicates that the socket should be closed immediately
(but gracefully, without data loss).

Data Type
Integer

See Also
Close Event

Listening Property
Description
Returns if the socket is listening for connections

Visual Basic
[form.]Socket.Listening

Remarks
This read-only property returns True if the socket is listening for connections after the
SOCKET_LISTEN action is taken.

Data Type
Integer (Boolean)

See Also
Accept Property, Backlog Property, Accept Event

LocalAddress Property
Description
Return the IP address of the local host

Visual Basic
[form.]Socket.LocalAddress

Remarks
This read-only property returns the local host’s IP address in dot notation (four numbers
seperated by periods).

Data Type
String

See Also
HostAddress Property, LocalName Property, PeerAddress Property

LocalName Property
Description
Return the name of the local host

Visual Basic
[form.]Socket.LocalName

Remarks
This read-only property returns the name of the local host. The name that is returned
depends on the configuration of the TCP/IP software.

Data Type
String

See Also
HostName Property, LocalAddress Property, PeerName Property

LocalPort Property
Description
Set or return the port number for a local listening socket

Visual Basic
[form.]Socket.LocalPort [= portno%]

Remarks
This property is used to set the port number that a local server will listen on for connections.
If the port number specifies a well-known port, the LocalService property will be updated
with that name.

Data Type
Integer

See Also
LocalService Property, RemotePort Property

LocalService Property
Description
Set or return the name of a well-known local port

Visual Basic
[form.]Socket.LocalService [= servicename$]

Remarks
This property is used to set the port that a local server will listen on for connections. If the
service name does not exist, an error is generated. The LocalPort property is updated to
reflect the service’s port number.

Data Type
String

See Also
LocalPort Property, RemoteService Property

Peek Property
Description
Set or return if data is to be removed from the socket when read

Visual Basic
[form.]Socket.Peek [= { True | False }]

Remarks
If this property is set to a value of    True, the data that is read from the socket is not
removed, and may be read again.

Note    This property is automatically reset to a value of    False after data has been read
from the socket.

Data Type
Integer (Boolean)

See Also
RecvData Property, Read Event

PeerAddress Property
Description
Return the IP address of the remote peer

Visual Basic
[form.]Socket.PeerAddress

Remarks
This read-only property returns the IP address of a the peer in dot notation (four numbers
seperated by periods). The peer is the remote system that is either connected to, or was last
sent data (if a connectionless socket is being used).

Data Type
String

See Also
HostAddress Property, LocalAddress Property, PeerName Property

PeerName Property
Description
Return the name of the remote peer

Visual Basic
[form.]Socket.PeerName

Remarks
This read-only property returns the name of the peer. The peer is the remote system that is
either connected to, or was last sent data (if a connectionless socket is being used).

Data Type
String

See Also
HostName Property, LocalName Property, PeerAddress Property

Protocol Property
Description
Set or return the protocol that should be used to create the socket

Visual Basic
[form.]Socket.Protocol [= proto%]

Remarks
This property may only be set before a socket has been created, or after it has been closed.
Supported socket protocols are:

Value Constant Description
0 IPPROTO_IP Default IP protocol. This value indicates

that the protocol appropriate for the
socket type should be used, and is the
default.

6 IPPROTO_TCP Transmission Control Protocol. This
protocol should be used with stream
sockets.

17 IPPROTO_UDP User Datagram Protocol. This protocol
should be used with datagram sockets

There may be other protocols supported by your vendor, or in future versions of the
Windows Sockets specification. Consult your TCP/IP documentation to determine what
protocols are valid.

Data Type
Integer

See Also
AddressFamily Property, Type Property

RecvData Property
Description
Return data read from the socket

Visual Basic
[form.]Socket.RecvData

Remarks
This property returns data that has been read from the socket, up to the number of bytes
specified by the RecvLen property. If no data is available to be read, an error will be
generated if the socket is non-blocking. If the socket is blocking, the program will stop until
data is written on the socket, or the socket is closed.

Note that there may be fewer bytes returned than specified by the RecvLen property. If the
socket is in text mode, only the characters up to a newline are returned by this property.

Data Type
String

See Also
Peek Property, RecvLen Property, RecvNext Property, SendData Property, Urgent Property,
Read Event

RecvLen Property
Description
Set the maximum number of bytes to read, or return the number of bytes read

Visual Basic
[form.]Socket.RecvLen [= maxlen%]

Remarks
If set to a value, this specifies the maximum number of bytes that may be returned by the
RecvData property. After the data has been read, RecvLen contains the actual number of
bytes that have been read.

Note that it is common for the number of bytes to be read from the socket to be fewer than
that which was specified. The application should never make any assumptions about the
number of bytes received. If an error occurs, or the socket is closed, this property will have a
value of zero.

Data Type
Integer

See Also
RecvData Property, RecvNext Property, Read Event

RecvNext Property
Description
Return the number of bytes available to be read from the socket

Visual Basic
[form.]Socket.RecvNext

Remarks
This read-only property returns the number of bytes that are remaining in the socket and
available to be read. If the socket is buffered, it is possible that this property will return a
non-zero value after the socket has been closed.

Data Type
Integer

See Also
RecvData Property, RecvLen Property, Read Event

RemotePort Property
Description
Set or return the port number for a remote connection

Visual Basic
[form.]Socket.RemotePort [= portno%]

Remarks
This property is used to set the port number that a local client will use to establish a
connection with a remote system. If the port number specifies a well-known port, the
RemoteService property will be updated with that name.

Data Type
Integer

See Also
LocalPort Property, RemoteService Property

RemoteService Property
Description
Set or return the name of a well-known remote port

Visual Basic
[form.]Socket.RemoteService [= servicename$]

Remarks
This property is used to set the port that a local client will use to establish a connection with
a remote system. If the service name does not exist, an error is generated. The RemotePort
property is updated to reflect the service’s port number.

Data Type
String

See Also
LocalService Property, RemotePort Property

ReuseAddress Property
Description
Set or return if an address can be reused

Visual Basic
[form.]Socket.ReuseAddress [= { True | False }]

Remarks
Setting this property to a value of True allows the address that the socket is listening on to
be reused. By default this property is False.

Data Type
Integer (Boolean)

See Also
Broadcast Property, InLine Property, KeepAlive Property, Route Property

Route Property
Description
Set or return if packets should be routed

Visual Basic
[form.]Socket.Route [= { True | False }]

Remarks
Setting this property to False tells the socket library that packets are not to be routed, but
rather sent directly to the network interface.

Data Type
Integer (Boolean)

See Also
Broadcast Property, InLine Property, KeepAlive Property, ReuseAddress Property

SendData Property
Description
Write data to the socket

Visual Basic
[form.]Socket.SendData = data$

Remarks
By assigning a value to this property, the data in the string is written to the socket. If the
socket is buffered, the data is copied to the send buffer and control immediately returns to
the program. If the socket is non-blocking, and the socket is out of buffer space, the error
WSAEWOULDBLOCK will be generated. If the socket is blocking, the program will wait until
the data can be sent.

The maximum number of bytes written on the socket is determined by the SendLen
property. It is possible that fewer than the number of bytes specified will be written to the
socket. After the data has been written, the SendLen property will be changed to reflect the
number of bytes actually written to the socket. If the socket is non-blocking and the send
fails with WSAEWOULDBLOCK, the Write event will be fired when the socket can be written
to again.

Data Type
String

See Also
SendLen Property, Timeout Property, Urgent Property, Timeout Event, Write Event

SendLen Property
Description
Set or return the maximum number of bytes to write to the socket

Visual Basic
[form.]Socket.SendLen [= datalen%]

Remarks
If set to a value, this property specifies the maximum number of bytes that may be written
to the socket. If this value is greater than the length of the string being sent, the value is
ignored and all of the characters are sent.

After data has been written to the socket, this property is updated to reflect the actual
number of bytes written.

Data Type
Integer

See Also
SendData Property, Write Event

Shutdown Property
Description
Stop reading and/or writing on the socket

Visual Basic
[form.]Socket.Shutdown [= what%]

Remarks
This write-only property shuts down reading and/or writing on the socket. Any further
attempt to send or receive data will return an error on the socket. The possible values that
may be assigned to this property are:

Value Constant Description
0 SOCKET_READ All subsequent attempts to read

data from the socket are
disallowed. If the socket is
buffered, it is possible that data
may still be read until the buffer is
exhausted.

1 SOCKET_WRITE All subsequent attempts to write
data to the socket are disallowed. If
the socket is buffered, it is possible
that data may be written until the
buffer is full.

2 SOCKET_READWRITE Both reads and writes to the socket
are disallowed.

Note that shutting down a socket is not the same as closing it. The socket will remain
connected, and no resources will be freed until the SOCKET_CLOSE action is taken.

Data Type
Integer

See Also
IsReadable Property, IsWritable Property

State Property
Description
Return the current state of the socket

Visual Basic
[form.]Socket.State

Remarks
This read-only property returns the state of the socket. This property should be checked on
blocking sockets to determine if the socket is in use before taking some action. The possible
values returned by this property are:

Value Constant Description
0 SOCKET_UNUSED The socket has not been created.

Attempts to use the socket will
generate an error.

1 SOCKET_IDLE The socket exists, but is not
currently in use. A blocking
socket operation can be executed
at this point.

2 SOCKET_LISTENING The socket is listening for
connections from remote hosts

3 SOCKET_CONNECTIN
G

The socket is in the process of
connecting to a remote host

4 SOCKET_RECEIVING The socket is in the process of
receiving data

5 SOCKET_SENDING The socket is in the process of
sending data

6 SOCKET_CLOSING The socket is being closed.
Subsequent attempts to access
the socket will result in an error.

Note that for non-blocking sockets, the only possible states that may be returned are
SOCKET_UNUSED, SOCKET_IDLE or SOCKET_CLOSING.

Data Type
Integer

See Also
IsBlocked Property, Blocking Event, Cancel Event, Timeout Event

Timeout Property
Description
Set or return the amount of time until a blocking operation fails

Visual Basic
[form.]Socket.Timeout [= msecs&]

Remarks
Setting this property specifies the number of milliseconds until a blocking operation fails
with the error WSAETIMEDOUT. A value of zero indicates that the blocking operation should
wait indefinitely.

Data Type
Long

See Also
Accept Property, Action Property, RecvData Property, SendData Property, Timeout Event

Type Property
Description
Sets or returns the type of socket that should be created

Visual Basic
[form.]Socket.Type [= socktype%]

Remarks
This property may only be set before a socket has been created, or after it has been closed.
Supported socket types are:

Value Constant Description
1 SOCK_STREAM Stream socket used with the TCP

protocol. This type of socket
provides a reliable byte stream
that may be read similar to the
way a file is read.

2 SOCK_DGRAM Datagram socket used with the
UDP protocol. This type of socket
is used to transfer datagrams
using a fast (but unreliable)
protocol. Datagrams may arrive
out of sequence, or not at all.
Retransmission of lost datagrams
is the responsibility of the
application.

3 SOCK_RAW A raw socket that is commonly
used to send ICMP messages
over the network. This socket
type may or may not be
supported by your TCP/IP vendor.

There may be other types of sockets supported by your vendor, or in future versions of the
Windows Sockets specification. Consult your TCP/IP documentation to determine what socket
types are valid.

Data Type
Integer

See Also
AddressFamily Property, Protocol Property

Urgent Property
Description
Send or receive urgent data

Visual Basic
[form.]Socket.Urgent [= { True | False }]

Remarks
This Boolean property affects how the RecvData and SendData properties read or write
data to the socket. If set to a value of True, urgent (out-of-band) data will be read or written.
All reads or writes of urgent data are unbuffered. The property value will automatically be
reset to a value of False after the socket has been read or written.

Note    Not all implementations may support more than one byte of urgent data if the data is
not being received in-line. Refer to the InLine property for additional information.

Data Type
Integer (Boolean)

See Also
InLine Property, RecvData Property, SendData Property, Read Event

Vendor Property
Description
Returns the name of the TCP/IP vendor

Visual Basic
[form.]Socket.Vendor

Remarks
This read-only property returns a string that contains the name of the vendor that has
supplied the Windows Sockets library that is being used.

Data Type
String

See Also
Version Property

Version Property
Description
Returns the version of the Windows Sockets library

Visual Basic
[form.]Socket.Version

Remarks
This read-only property returns a string that specifies the version of the Windows Sockets
library that is being used. Note that at least version 1.1 is required for use with this control.

Data Type
String

See Also
V   endor Property   

All of the events for this control are listed in the following table. Events that apply only to this control, or 
that require special consideration when used with it, are marked with an asterisk (*). For documentation 
on the remaining events refer to Appendix A, "Standard Properties, Events and Methods" in the Custom
Control Reference.

*Accept *Connect *Timer
*Blocking *Error *Write
*Cancel *Read
*Close *Timeout

Accept Event
Description
The Accept event is generated when a remote host connects to a listening socket.

Visual Basic
Sub Socket_Accept ([Index As Integer,]SocketID As Integer)

Remarks
This event is generated for sockets that are listening for connections from a remote host. A
connection with the remote system is not actually established until it has been accepted by
the listening server.

The SocketID argument specifies the socket descriptor of the listening socket. To accept the
connection, one of the following actions must be taken:

·      The socket control sets the Action property to a value of SOCKET_ACCEPT. This allows
the socket that was listening to connect with the remote host. However, this method closes
the listening socket, so only one host can establish a connection with the application.

·      A second socket has it’s Accept property set to the value of SocketID. The second
socket accepts the connection on behalf of the server, and the original socket may continue
to listen for additional connections.

Once the connection has been established, the PeerAddress or PeerName properties may
be used to determine the name of the remote host that has connected with the application.

See Also
Accept Property, Action Property, PeerAddress Property, PeerName Property

Blocking Event
Description
The Blocking event is generated whenever a blocking operation occurs

Visual Basic
Sub Socket_Blocking ([Index As Integer,]StatusAs Integer, Cancel As Integer)

Remarks
This event is generated immediately before a blocking operation takes place, and provides a
kind of blocking hook function for the application.

The Status argument specifies which blocking action is about to be taken. For a list of
values, refer to the State property.

The Cancel argument allows the blocking operation to be canceled if the value is set to
True. The blocking function will fail with the error WSAEINTR.

Note    It is not recommended that code be placed in this event that would take any
significant amount of time to complete or calls DoEvents to yield time to other tasks.

See Also
State Property, Cancel Event

Cancel Event
Description
The Cancel event is generated when a blocking operation is canceled

Visual Basic
Sub Socket_Cancel ([Index As Integer,]Status As Integer, Response As Integer)

Remarks
This event is generated when a blocking operation on the socket, such as sending or
receiving data, is canceled with the SOCKET_CANCEL action.

The Status argument specifies which blocking operation was canceled. For a list of values,
refer to the State property.

The Response argument determines if a WSAEINTR error is generated in response to the
canceled operation. The possible values are:

Value Constant Description
0 SOCKET_ERRIGNORE Ignore the canceled event and

return as though the operation
completed successfully.

1 SOCKET_ERRDISPLAY Return the WSAEINTR error to the
canceled socket operation. This is
the default response to the event.

Setting Response to ignore the canceled event can result in unexpected errors. For example,
if a blocking read on the socket is cancelled, the WSAEWOULDBLOCK error may be returned.

See Also
State Property, Blocking Event, Error Event

Close Event
Description
The Close event is generated when the socket is closed

Visual Basic
Sub Socket_Close ([Index As Integer])

Remarks
This event occurs when a remote host closes the socket connection. It is not generated when
the SOCKET_CLOSE action is taken. When this event is generated, the local socket should be
closed to free the resources allocated to it.

See Also
Action Property, Connect Event

Connect Event
Description
The Connect event is generated when a connection is established

Visual Basic
Sub Socket_Connect ([Index As Integer])

Remarks
This event is generated when a connection is made with a remote host as a result of a
SOCKET_CONNECT action, or when a connection is accepted on a listening socket.

See Also
Action Property, Close Event

Error Event
Description
The Error event is generated when a socket error occurs

Visual Basic
Sub Socket_Error ([Index As Integer,] ErrCode As Integer, ErrMsg As String, Response
As Integer)

Remarks
This event is generated when an error occurs during a socket operation. Visual Basic errors
do not generate this event.

The ErrCode argument specifies the error that has occurred on the socket.

The ErrMsg argument is a string that describes the error that occurred.

The Response argument determines if the socket error generates a Visual Basic error. The
possible values are:

Value Constant Description
0 SOCKET_ERRIGNORE Ignore the error and return as

though the operation completed
successfully

1 SOCKET_ERRDISPLAY Return the error to Visual Basic,
which may be trapped by the
application. This is the default
response to the event.

See Also
LastError Property, Cancel Event

Read Event
Description
The Read event is generated when data is available to be read

Visual Basic
Sub Socket_Read ([Index As Integer,] DataLength As Integer, IsUrgent As Integer)

Remarks
This event is generated for non-blocking sockets when data is available to be read from the
socket.

The DataLength argument specifies the number of bytes that can be read from the socket.

The IsUrgent argument specifies if the data to be read is marked as urgent. A non-zero value
indicates that the Urgent property should be set to True to receive the out-of-band data.

Note    It is possible for the RecvNext property to return a value greater than DataLength if
additional data has been written to the socket while executing code inside the event.

See Also
IsReadable Property, Write Event

Timeout Event
Description
The Timeout event is fired when a blocking operation times out

Visual Basic
Sub Socket_Timeout ([Index As Integer,] Status As Integer, Response As Integer)

Remarks
This event is generated when a blocking socket operation, such as sending or receiving data,
times out.

The Status argument specifies which blocking operation timed out. For a list of values, refer
to the State property.

The Response argument determines if a WSAETIMEDOUT error is generated. The possible
values are:

Value Constant Description
0 SOCKET_ERRIGNORE Ignore the timeout and return as

though the operation completed
successfully

1 SOCKET_ERRDISPLAY Return the WSAETIMEDOUT error
to the timed-out socket operation.
This is the default response to the
event.

See Also
State Property, Timeout Property, Cancel Event

Timer Event
Description
The Timer event is fired when the control's preset timer interval expires

Visual Basic
Sub Socket_Timer ([Index As Integer])

Remarks
This event is generated when the control's timer interval has elapsed. The frequency is
specified in milliseconds by setting the Interval property.

See Also
Interval Property

Write Event
Description
The Write event is generated when data can be written to the socket

Visual Basic
Sub Socket_Write ([Index As Integer])

Remarks
This event is generated for non-blocking sockets when data can be written to the socket
after a previous attempt failed with the WSAEWOULDBLOCK error.

See Also
IsWritable Property, Read Event

Error Messages
The error codes listed here are based on Windows Sockets errors (which, in turn, are based on the error 
codes that are returned by the Berkeley sockets implementation). The base error value has been 
increased by 14000 to be compatible with Visual Basic.

Value Constant Description
24004 WSAEINTR Blocking function was canceled
24009 WSAEBADF Invalid socket descriptor passed to function
24013 WSAEACCES Access denied
24014 WSAEFAULT Invalid address passed to function
24022 WSAEINVAL Invalid socket function call
24024 WSAEMFILE No socket descriptors are available
24035 WSAEWOULDBLOCK Socket would block on this operation
24036 WSAEINPROGRESS Blocking function in progress
24037 WSAEALREADY Function being canceled has already completed
24038 WSAENOTSOCK Invalid socket descriptor passed to function
24039 WSAEDESTADDRREQ Destination address is required
24040 WSAEMSGSIZE Datagram was too large to fit in specified buffer
24041 WSAEPROTOTYPE Specified protocol is the wrong type for this socket
24042 WSAENOPROTOOPT Socket option is unknown or unsupported
24043 WSAEPROTONOSUPPORT Specified protocol is not supported
24044 WSAESOCKTNOSUPPORT Specified socket is not supported in this address family
24045 WSAEOPNOTSUPP Socket operation is not supported
24046 WSAEPFNOSUPPORT Specified protocol family is not supported
24047 WSAEAFNOSUPPORT Specified address family is not supported by this protocol
24048 WSAEADDRINUSE Specified address is already in use
24049 WSAEADDRNOTAVAIL Specified address is not available
24050 WSAENETDOWN Network subsystem has failed
24051 WSAENETUNREACH Network cannot be reached from this host
24052 WSAENETRESET Network dropped connection on reset
24053 WSAECONNABORTED Connection was aborted due to timeout or other failure
24054 WSAECONNRESET Connection was reset by remote network
24055 WSAENOBUFS No buffer space is available
24056 WSAEISCONN Socket is already connected
24057 WSAENOTCONN Socket is not connected
24058 WSAESHUTDOWN Socket connection has been shut down
24060 WSAETIMEDOUT Operation timed out before completion
24061 WSAECONNREFUSED Connection refused by remote network
24064 WSAEHOSTDOWN Remote host is down
24065 WSAEHOSTUNREACH Remote host is unreachable
24091 WSAESYSNOTREADY Network subsystem is not ready for communication
24092 WSAEVERNOTSUPPORTED Requested version is not available
24093 WSAENOTINITIALIZED Windows sockets library not initialized
25001 WSAHOST_NOT_FOUND Authoritative Answer Host not found
25002 WSATRY_AGAIN Non-Authoritative Answer Host not found

25003 WASNO_RECOVERY Non-recoverable error
25004 WSANO_DATA No data record of requested type

WSAEINTR
Blocking function was canceled

This error is generated whenever a blocking socket operation is canceled by setting the Action property to
SOCKET_CANCEL. Note that the Cancel event is fired when a blocking operation is canceled, and the 
generation of this error depends on how the application responds to this event.

WSAEBADF
Invalid socket descriptor passed to function

This error is generated when a socket operation is being performed on an invalid socket. Before the 
socket can be used, the Action property must be used to create the socket.

WSAENOTSOCK
Invalid socket descriptor passed to function

This error is generated when a socket operation is being performed on an invalid socket. Before the 
socket can be used, the Action property must be used to create the socket.

WSAEACCES
Access denied

This error is generated when data is being written to a broadcast address, but the appropriate flags are 
not set. This error should never be generated by the control.

WSAEFAULT
Invalid address passed to function

This error is generated when an invalid address to an internal data structure is passed to a socket 
function. This error should never occur with the control.

WSAEINVAL
Invalid socket function call

This error is generated when an invalid argument is passed to a socket function. It should never occur 
when using the control.

WSAEMFILE
No socket descriptors are available

This error is generated when an application attempts to create another socket, and no more socket 
connections can be created. Note that the maximum number of open sockets is determined by the 
underlying socket library, not the control.

WSAEWOULDBLOCK
Socket would block on this operation

This error is generated when an application attempts to perform an operation on the socket, such as 
receiving data, that would cause the socket to block. This error is only generated for non-blocking 
sockets, or in some cases, blocking sockets that had a blocking function canceled.

WSAEINPROGRESS
Blocking function in progress

This is error is generated when an application attempts to perform some socket operation when either 
that same socket, or another socket created by the same task, is blocked. For example, consider the 
following scenario:

The application attempts to read data from the socket. However, since there is no data to be read, it 
blocks waiting for data to arrive. This causes the control to go into a message loop which allows the 
application to respond to events.

The user presses a button that generates an event which attempts to write data to the socket. Since 
this event occurred while the socket is still blocked waiting for data to be received, the 
WSAEINPROGRESS error is generated.

Other combinations are possible. To determine if a specific socket is blocked, the IsBlocked property can 
be read. If it is blocked, the State property will report what blocking function the socket is executing.

WSAEALREADY
Function being canceled has already completed

The Action property was set to SOCKET_CANCEL, but the blocking socket operation has already 
completed.

WSAEDESTADDRREQ
Destination address is required

This error is generated when a connection is attempted, but no host name or address has been specified.

WSAEMSGSIZE
Datagram was too large to fit in specified buffer

This error is generated for sockets of type SOCK_DGRAM when the amount data being written to the socket
is too large.

WSAEPROTOTYPE
Specified protocol is the wrong type for this socket

This error is generated when a socket is created with incompatible Type and Protocol properties. For 
example, the IPPROTO_UDP protocol is not compatible with a SOCK_STREAM type socket.

WSAENOPROTOOPT
Socket option is unknown or unsupported

This error is generated when an invalid option is set for a socket. The control silently ignores any attempt 
to set an option not supported by the library, so this error should never occur.

WSAEPROTONOSUPPORT
Specified protocol is not supported

This error is generated when the Protocol property is set to an illegal value, or to a protocol that is not 
supported by the underlying socket library. The Windows Sockets specification only guarantees that the 
IPPROTO_TCP and IPPROTO_UDP protocols will be supported.

WSAESOCKTNOSUPPORT
Specified socket type is not supported by this protocol

This error is generated when the Type property is set to an illegal value, or to a socket type that is not 
supported by the underlying socket library for the given protocol. The Windows Sockets specification only 
guarantees that the SOCK_STREAM and SOCK_DGRAM socket types will be supported.

WSAEOPNOTSUPP
Socket operation is not supported

This error is generated when an invalid socket operation is performed, such as attempting to write urgent 
data on datagram socket.

WSAEPFNOSUPPORT
Specified protocol family is not supported

This error occurs when an invalid or unsupported protocol family is specified, and should never be 
generated by the control.

WSAEAFNOSUPPORT
Specified address family is not supported by this protocol

This error is generated when the AddressFamily property is set to an illegal value, or to a value not 
supported by the underlying socket library. The Windows Sockets specification only guarantees that the 
AF_INET address family will be supported.

WSAEADDRINUSE
Specified address is already in use

This error is generated when an application attempts to create a listening socket and specifies an address
that is in use, or if the socket is already listening for connections. This error can also occur if the LocalPort
property was set to a value of IPPORT_ANY and no ports are available.

WSAEADDRNOTAVAIL
Specified address is not available

This error occurs when an application attempts to connect to a remote host, and the address is not 
available from the local system.

WSAENETDOWN
Network subsystem has failed

This error is generated when the Windows Sockets library has detected a failure in the underlying 
protocol stack. If this error occurs frequently, contact your network software vendor.

WSAENETUNREACH
Network cannot be reached from this host

This error occurs when the Windows Sockets library cannot establish a connection with the specified 
remote host.

WSAENETRESET
Network dropped connection on reset

WSAECONNABORTED
Connection was aborted due to timeout or other failure

This error is generated when the remote host aborts the connection due to a timeout or some other 
failure.

WSAECONNRESET
Connection was reset by remote network

This error is generated when the remote host resets the connection.

WSAENOBUFS
No buffer space is available

This error is generated when the Windows Sockets library determines that it does not have enough buffer 
space to establish a connection. This error is not generated if the control cannot allocate enough memory 
for it's own internal buffers.

WSAEISCONN
Socket is already created

This error is generated if the application attempts to connect or listen on a socket that is already 
connected to a remote host.

WSAENOTCONN
Socket is not connected

This error is generated when an application attempts to perform an operation on a socket that is not 
connected to a remote host, where such a connection is required. For example, attempting to write data 
to a SOCK_STREAM socket that has been created but not connected.

WSAESHUTDOWN
Socket connection has been shut down

This error is generated when an application attempts to read or write on a socket that has been shut 
down. Note that a socket can be shut down by setting the Shutdown property.

WSAETIMEDOUT
Operation timed out before completion

This error is generated when a blocking socket operation times out before it has completed. The amount 
of time that the control waits until a timeout occurs is determined by the Timeout property.

WSAECONNREFUSED
Connection refused by remote network

This error occurs when the remote system rejects your attempt to connect with it, either because no 
server is listening on the specified port or it's unable to accept any additional connections.

WSAEHOSTDOWN
Remote host is down

WSAEHOSTUNREACH
Remote host is unreachable

WSAESYSNOTREADY
Network subsystem is not ready for communication

This error occurs when the Windows Sockets library determines that the underlying protocol stack is not 
ready or unavailable. This error should never be generated by the control.

WSAEVERNOTSUPPORTED
Requested version is not available

This error occurs when the control attempts to initialize the Windows Sockets library, and the initialization 
fails because it does not support the 1.1 specification. Since this error results in the failure of the control 
to load, it should never be returned to an application program.

WSAENOTINITIALIZED
Windows Sockets library is not initialized

This error occurs when a program calls a socket function but has not yet initialized the Windows Sockets 
library. This error should never be generated by the control.

WSAHOST_NOT_FOUND
Authoritative Answer Host not found

This error occurs when a database function, such as resolving an internet address into a host name, fails.
This error may indicate a configuration problem with the underlying protocol stack.

WSATRY_AGAIN
Non-Authoritative Host not found

This error occurs when a database function, such as resolving an internet address into a host name, fails.
This error may indicate a configuration problem with the underlying protocol stack.

WSANO_RECOVERY
Non-recoverable error occured

This error occurs when a database function, such as resolving an internet address into a host name, fails.
This error may indicate a configuration problem, or a problem with the remote server.

WSANO_DATA
No data of requested type

This error occurs when a database function, such as resolving an host name into an internet address, 
fails. This is typically a configuration or data entry problem, such as an invalid host name or non-existent 
service.

