
ROCK-solid Engine Technology™ (ROCK-E-
T)
SuccessWare International Technical Paper
Product Description:
SuccessWare International’s ROCK-solid Engine Technology™ (ROCK-E-T) provides Windows® programmers
with high-speed, multi-user local access to the data and index files used by CA-Clipper® (.DBF/.DBT/.NTX),
FoxPro® (.DBF/.FPT/.IDX/.CDX), as well as our super-fast, compact/compound HiPer-SIx® .NSX/.SMT index
and memo file formats. Other features include index Scoping, Conditional Indexing, Sub-indexing, and record-
level Data Encryption (non-DES).

Programming Languages Supported:
ROCK-E-T can be used with any Windows development language that supports standard Windows .DLLs
and .VBX custome controls. These include Visual Basic™, Delphi™, Visual C++™, Visual FoxPro™, Borland C+
+™, dBASE™ for Windows v5.0, and PowerBuilder™.

Direct File Access:
By providing direct access to the data and index files, ROCK-E-T is able to outperform systems using “middle-
ware”, such as ODBC drivers. Instead, ROCK-E-T uses a high-speed Replaceable Database Engine (RDE)
system, which allows your code to remain virtually unchanged, while selecting from any of the three ROCK-E-
T data and index file formats.

Bound Data Controls (.VBXs):
ROCK-E-T includes bound controls (.VBXs) for data access and flexible browses, supporting input masks (like
an Xbase PICTURE clause) and pre and post-validation of data. Display colors, formatting, and source of the
data for individual columns in the browse are easily handled through the browse control’s GetLine event.

Runtime License / Royalty Requirements:
ROCK-E-T has no runtime license or royalty requirements. You are free to distribute ROCK-E-T’s .DLL
and .VBX controls with your applications. The shareware version of Visual Navigator™ (included) can also be
freely distributed with your ROCK-E-T applications.

.DLL/.VBX File Sizes:
ROCKET.DLL (required for all ROCK-E-T applications) . 59k
SXDBFNTX.DLL (required only for CA-Clipper data/index support) 169k
SXDBFCDX.DLL (required only for FoxPro data/index support) 189k
SXDBFNSX.DLL (required only for HiPer-SIx data/index support) 189k
6BROW.VBX (browse grid control) . 78k
6DATA.VBX (data edit control, combo box, list box, check box). 150k

Native Record/File Locking:
ROCK-E-T uses the file and record locking schemes native to the file format it’s accessing (CA-Clipper,
FoxPro, and HiPer-SIx). For example, if you open a FoxPro database with ROCK-E-T and update it
concurrently with a FoxPro application, each application will respect the other’s locks. Most ODBC engines,
including JET™, use an incompatible page locking system.

1

Query Optimization:
To provide super-fast queries, SuccessWare’s Mach SIx™ query optimization (similar to FoxPro’s Rushmore™
technology) is built in. Mach SIx uses existing index files to determine the records meeting a query condition,
in many cases, without the need to access the database file. The query result can be obtained up to 1000 times
faster than conventional database filters.

Xbase-Like Syntax:
ROCK-E-T’s syntax was designed to leverage the existing knowledge of Xbase programmers migrating to a
Windows environment. With this in mind, each ROCK-E-T function name is based on the equivalent Xbase
command or function name. For example, to open a database file, you call sx_Use(). To create a new index
file, call sx_Index(). Append a new record with sx_Append(), search for a record in the active index with
sx_Seek(), ZAP the database with sx_Zap(), and so on. Built-in Xbase functions allow you to continue using
indexes created with Xbase-native functions like UPPER() and DTOS().

Memo File Enhancements:
ROCK-E-T’s memo fields support storage of anything from text to graphic images and other Binary Large
Objects (BLOBs). Windows bitmap (.BMP) images can even be displayed directly from within a ROCK-E-T
memo field, without the use of any other add-on product. Memo file “packing” is also supported, eliminating
the memo file bloat problem typical with all Xbase memo file formats.

Visual Navigator Utility:
ROCK-E-T also includes the Visual Navigator utility, which is a stand-alone Windows executable program that
lets you open, browse, and edit any of the database and index file formats supported by ROCK-E-T. Visual
Navigator includes standard CUA menus, a toolbar of the most common DBMS operations, and a command-
line interpreter, similar to an Xbase dot-prompt.

Documentation:
ROCK-E-T includes a 300 page manual with complete documentation on every ROCK-E-T feature, with
samples for each function in both Visual Basic and Visual C++. Three comprehensive Windows help (.HLP)
files are included instant reference during development.

Sample Applications:
ROCK-E-T includes complete source code for sample database applications written in Visual Basic, Delphi, and
Visual C++. These can be used as a starting point for your own application, or as overall examples of how
ROCK-E-T can be used in your existing application.

Automatic OEM / ANSI Conversion:
ROCK-E-T automatically translates European OEM character set databases and indexes into Windows ANSI
and vice-versa. This allows you to run DOS based applications concurrently with Windows applications using
the same data.

System Requirements:
If your PC can run Windows, it can use ROCK-E-T. Nothing additional is required to use ROCK-E-T, above
and beyond the standard requirements of the Windows development language you are using.

2

Coding Examples:

Visual Basic Example:

Sub ButtonPack_Click ()
 If Not sx_Use("c:\vb\cust.dbf", "cust", EXCLUSIVE, SIXNTX) Then
 MsgBox "File in use. Try again later."
 Else
 iRet = sx_IndexOpen("c:\vb\sxcust1.ntx")
 iRet = sx_IndexOpen("c:\vb\sxcust2.ntx")
 iRet = sx_IndexOpen("c:\vb\sxcust3.ntx")
 sx_SetGaugeHook GaugeBox.hWnd
 GaugeFiles = 4
 sx_Pack
 sx_SetGaugeHook 0
 sx_Close
 End If
End Sub

MFC/C++ Example:

if (!sx_Use("c:\\vb\\cust.dbf", "cust", EXCLUSIVE, SIXNTX))
 AfxMessageBox((LPCSTR) "File in use. Try again later.");
else
 {
 sx_IndexOpen("c:\\vb\\sxcust1.ntx");
 sx_IndexOpen("c:\\vb\\sxcust2.ntx");
 sx_IndexOpen("c:\\vb\\sxcust3.ntx");
 sx_Pack();
 sx_Close();
 }

Delphi Example:

procedure TForm1.Button1Click(Sender : TObject);
begin
 If sx_Use(‘c:\data\cust.dbf’, ‘cust’, EXCLUSIVE, SIXNTX) < 0 Then
 MessageDlg(‘File in use. Try again later.’, mtInformation, [mbOk], 0)
 else
 begin
 sx_IndexOpen(‘c:\data\sxcust1.ntx’);
 sx_IndexOpen(‘c:\data\sxcust2.ntx’);
 sx_IndexOpen(‘c:\data\sxcust3.ntx’);
 sx_Pack;
 sx_Close;
 end;
end;

3

Fast Access to FoxPro and Clipper Tables in Visual Basic
by Cecilia Smith and Loren Scott

So you want to move that Xbase application to Windows? If you’re like many developers, you figured Visual Basic might
be the quickest route. Your hopes may have been dashed when you began implementing Visual Basic’s data methods on
your FoxPro tables. Even if you made it past the data object syntax, you were in for a surprise when you realized that
Visual Basic was largely intolerant of even the simplest Xbase functions in an index expression. UPPER(), for instance.
And if you were counting on Visual Basic to read your Clipper index files, you were completely out of luck.
Clipper .NTX files are not supported by Visual Basic at all.

This article will demonstrate a method for quickly getting your database application into Windows, without sacrificing
what you already know in Clipper and FoxPro. We will step through a couple of the typical things developers like to do
to databases. We will show you what Visual Basic native syntax would look like. And we will present an alternative
method using SuccessWare’s ROCK-solid Engine Technology (ROCK-E-T), which provides developers with a set of
Xbase-like functions that talk directly to FoxPro and Clipper tables.

The function suite contained in ROCK-E-T’s DLLs was designed to leverage the Xbase knowledge of programmers
migrating to a Windows environment. Each ROCK-E-T function name is based on the equivalent Xbase command or
function name. For example:

To open a database file sx_Use()
To create a new index file sx_Index()
Append a new record sx_AppendBlank()
Search for a record in the active index sx_Seek()
Pack the database sx_Pack()

Let’s take a closer look at the real code required for accomplishing these tasks.

For purposes of this example we have one Foxpro .DBF with an associated structural multi-tagged CDX index file. We
will perform some of the simple tasks (simple in Xbase, that is!) data maintenance tasks, that most of us could do in our
sleep under Clipper and FoxPro. In our example, we will open TEST.DBF, index it, delete a record and finally, we will
take a look at what appears to be a daunting task in VB, packing a data table.

Open a Table

Sounds easy enough! But look at the VB code required. In fairness, there are good reasons for this, and VB is not just
opening one “file”. It is, in the case of Xbase tables, defining a set of files that make up the entire database.

Sub vbUse()
 Dim db As Database
 Dim test As Table
 Dim lname As New Index
 dim bExcl%, cRde$
 bExcl = true
 Set db = OpenDatabase(App.Path, bExcl, False, "FoxPro 2.5;")
 Set test = db.OpenTable("TEST")
end sub

Now in VB with ROCK-E-T:

sub rkUse()
 dim wa%
 wa = sx_Use(App.Path & "\TEST.DBF", "TEST", EXCLUSIVE, "SIXFOX")
end sub

In the ROCK-E-T example, wa is a unique number that can be forever associated with the table we just opened. It works
much like a Clipper or Foxpro workarea. One welcomed difference, however, is that when you open the next workarea,
you don’t automatically close the one you just opened. Instead, a new, unique workarea number is returned, assuming
there was no error opening the file.
4

Creating a Simple Index

Now that we have our table, let’s build an index. Note that since we are using the FoxPro engine, an existing CDX files
with the same root name as the DBF table would have been opened automatically under ROCK-E-T, just as it would
under FoxPro itself. In Visual Basic, indexes named in a <table>.INF file would be opened automatically.

sub vbIndex()
 lname.Name = "LNAME"
 lname.Fields = "LAST"
 lname.Unique = False
 lname.Primary = False
 test.Close
 db.TableDefs("TEST").Indexes.Append lname
 Set db = OpenDatabase(App.Path, bExcl, False, cRDE)
 Set test = db.OpenTable("TEST")
 test.Index = "LNAME"
end sub

The equivalent ROCK-E-T code would be:

sub rkIndex()
 dim iOrd as integer
 iOrd = sx_IndexTag(0&, "LNAME", "LAST", 0, 0, 0&)
end sub

Certainly this is shorter. Arguably more intuitive. That is, it makes sense if you are used to the sx_IndexTag parameters. If
you would like your code to be more explicit, you can create an user defined ORDER type that you could pass to the
rkIndex function, making it more generic. Here’s what it might look like:

Type order
 name As String
 expr As String
 unique As Integer
 desc as integer
 cond As String
End Type

Function ixCreate (ix As order) As Integer
' returns the number of the newly created order
if Len(Trim$(ix.cond)) = 0 Then
ixCreate = sx_IndexTag(0&, ix.name, ix.expr, ix.unique, ix.desc, 0&)

 Else
 ixCreate = sx_IndexTag(0&, ix.name, ix.expr, ix.unique, ix.desc, ix.cond)
 End If
End Function

sx_IndexTag() takes 6 parameters:

1) Index file name. When working with FoxPro files, you would most likely pass the Visual
 Basic NULL, that is 0&. Then filename defaults to <table>.CDX.

 2) A string that represents the identifying index TAG. (The same used in foxpro.
 3) A string representing the Xbase expression on which the index is created. We will come
 back to this point later.
 4) TRUE or FALSE to create an equivalent Xbase UNIQUE index.
 5) TRUE or FALSE to create an equivalent Xbase DESCENDING index.
 6) And finally, you may create Conditional indexes by passing a string representing an Xbase
 condition. For example, to get an index that shows only records with an AGE field greater
 than 30, you would pass “AGE > 30”. In most cases, you won’t have a condition, in which
 case you pass the VB NULL of 0&.

Now, back to point #3, the index expression itself. The Visual Basic engine is set up to work properly only with very

5

simple field-only indexes. Typical Xbase style indexes created with functions like DTOS(), upper(), STR() can not be
counted on under Visual Basic itself.

Built-in Xbase functions allow you to continue using indexes created with Xbase-native functions like UPPER() and
DTOS().

Creating Typical Xbase-Style Indexes

Here is an example that creates four tags. All of these are acceptable with the ROCK-E-T engine. Additionally, it is not
required that they be created under ROCK-E-T. Foxpro and/or Clipper-created indexes can be read as well.

sub rkIndex()
 dim iLast%, iState%, iCond%, iDate%
 iLast = sx_indexTag (0&, "last", 0, 0, 0&)
 iState% = sx_indexTag(0&, "upper(state)", 0, 0, 0&)
 iDate% = sx_indexTag(0&, "dtos(hiredate)", 0, 0, 0&)
 iCond% = sx_indexTag(0&, "last", 0, 0, "age > 20")
end sub

Packing the Table

Our final example is that of packing a database. The compactDatabase function in Visual Basic has no effect on
Xbase tables. Performing the equivalent of a PACK requires several steps. A recent Microsoft Knowledge-Base article
outlines how.

The first thing the article points to is that you must have the following in a VB.INI or <appname>.INI file:
 [dBase ISAM]
 Deleted=On

This is VB’s way of saying SET DELETED ON. With ROCK-E-T, the expression is:
 sx_SetDeleted(TRUE)

So far, so good. Here’s the rest of the code excerpted from the Knowledge Base article:

Sub main ()
 Dim db As Database
 Set db = OpenDatabase("c:\jet\x", False, False, "foxpro 2.5")
 Call Pack_DBF(db, "test")
 db.Close
End Sub

Sub Pack_DBF (db As Database, tblname As String)
 Const MB_YESNO = 4 ' Yes and No buttons
 Const MB_ICONEXCLAMATION = 48 ' Warning message
 Const IDYES = 6 ' Yes button pressed

 Dim dbdir As String, tmp As String 'Temp variables
 Dim i As Integer, ret As Integer 'Counter and return value of MsgBox
 Dim flags As Integer 'Flags for MsgBox
 ReDim idxs(0) As New index 'Holds indexes

 On Error GoTo PackErr
 flags = MB_YESNO Or MB_ICONEXCLAMATION
 ret = MsgBox("Remove All Deleted Records in " & tblname & "?", flags)
 If ret = IDYES Then
 dbdir = db.Name + "\" 'Hold database directory

 'Delete the temp file if it exists.
 If Dir$(dbdir & "p_a_c_k.*") <> "" Then
 Kill dbdir & "p_a_c_k.*"
 End If

6

 'Store the indexes.
 For i = 0 To db.TableDefs(tblname).Indexes.Count - 1
 ReDim Preserve idxs(i + 1)
 idxs(i).Name = db.TableDefs(tblname).Indexes(i).Name
 idxs(i).Fields = db.TableDefs(tblname).Indexes(i).Fields
 idxs(i).Primary = db.TableDefs(tblname).Indexes(i).Primary
 idxs(i).Unique = db.TableDefs(tblname).Indexes(i).Unique
 Next

 'Create the new table without the deleted records.
 db.Execute "Select * into [p_a_c_k] from " & tblname
 'Delete the current table.
 db.TableDefs.Delete tblname
 'Rename the DBF file and any memo files.
 tmp = Dir$(dbdir & "p_a_c_k.*")

 Do While tmp <> ""
 'Rename with the correct file extension; this should be on one line.
 Name dbdir & tmp As dbdir & tblname & Right$(tmp, Len(tmp) -
 InStr(tmp, ".") + 1)
 tmp = Dir$
 Loop

 'Refresh the tabledefs and add the indexes to the new table.
 db.TableDefs.Refresh

 For i = 0 To UBound(idxs) - 1
 db.TableDefs(tblname).Indexes.Append idxs(i)
 Next
 MsgBox "'" & tblname & "' successfully Packed!", MB_ICONEXCLAMATION
 End If
Exit Sub
PackErr:
 MsgBox Error$
Exit Sub
PackEnd:
End Sub

Wow! Here is the equivalent using ROCK-E-T:

Const MB_YESNO = 4 ' Yes and No buttons
Const MB_ICONEXCLAMATION = 48 ' Warning message
Const IDYES = 6 ' Yes button pressed

' ROCK-E-T code
Sub main ()
 Dim db%
 db = sx_Use("c:\jet\x\test", "TEST", EXCLUSIVE, SIXFOX)
 Call Pack_DBF(db, "TEST")
 sx_Close
End Sub

Sub Pack_DBF (db%, tblname$)
 Dim dbdir As String, tmp As String 'Temp variables
 Dim i As Integer, ret As Integer 'Counter and return value of MsgBox
 Dim flags As Integer 'Flags for MsgBox
 ReDim idxs(0) As New index 'Holds indexes
 sx_SetErrorHook (True)
 On Error GoTo PackErr
 flags = MB_YESNO Or MB_ICONEXCLAMATION
 ret = MsgBox("Remove All Deleted Records in " & tblname & "?", flags)
 If ret = IDYES Then
 sx_Pack
 End If
Exit Sub
PackErr:
 MsgBox Error$
Exit Sub
7

PackEnd:
 sx_SetErrorHook (False)
End Sub

8

Okay. Let’s give Visual Basic a tiny break here. Let’s say you that one of the things you learned in Xbase school is “thou
shalt not PACK”. The reason for this school of thought is that, PACK means REINDEX, and REINDEX is “bad” because
it pre-supposes non-corrupt index headers that contain the indexed expression. It’s still an easy an intuitive user-defined
sub-routine for those with an Xbase background.. Here is the routine:

Sub Pack_DBF ()
Dim ret As Integer
Dim flags As Integer
Dim dbName as String, ixName as String

sx_SetErrorHook TRUE ' hook into ROCK-E-T error messages
On Error GoTo PackErr

flags = MB_YESNO Or MB_ICONEXCLAMATION
ret = MsgBox("Remove All Deleted Records in " & sx_alias(0) "?", flags)
If ret = IDYES Then

 dbName = sx_baseName() ' DOS file name for table file
 ixName = sx_indexName() ' DOS file name for index file
 If Dir$("p_a_c_k.*") <> "" Then
 Kill "p_a_c_k.*"
 End If

 'Copy non-deleted records to a temp table.
 sx_SetDeleted TRUE 'sx_copyfile respects filters and DELETED setting
 If sx_copyFile("p_a_c_k")
 sx_close
 Kill dbName ' Delete the current table.
 Kill ixName ' Because we're going to re-create the index
 Name “p_a_c_k.Dbf” As dbName
 rkUse() ' open again
 rkIndex() ' create indexes
 End If
 MsgBox "'" & dbName & "' successfully Packed!", MB_ICONEXCLAMATION

End If
Exit Sub

PackErr:
MsgBox Error$
Exit Sub

PackEnd:
end sub

Note that the Knowledge Base routine saves the index information before the PACK. We do not do that in this example
because the only reason we would be doing a PACK the long way might be because we’re fanatical about not depending
on current index header info for our index expression. Instead, we call our rkIndex function.

Summary

This article has shown you a way to quickly move your DOS Xbase applications into the Windows environment using
Microsoft’s Visual Basic and SuccessWare’s ROCK-E-T. Coverage here has been admittdly biased. There can be
advantages to using the VB syntax. For one thing, all tables, regardless of source, can be accessed in the same manner. If
you are familiar with SQL, VB’s implementation may also be more comfortable to you.

As for ROCK-E-T, we’ve really just touched on one of its features: ease of use. ROCK-E-T comes with a rich set of
functions from sx_Append to sx_Zap, and includes data-aware VBX controls, built-in query optimization, and is much
faster at accessing Xbase data than is native Visual Basic,

About the authors: Cecilia Smith is the Technical Support Manager for SuccessWare 90, Inc and Loren Scott is
SuccessWare’s Product Manager.

References: Microsoft Knowledge base article: PSS ID Number: Q119116 Article last modified on 08-12-1994

9

