
USER MANUAL

ReportEase Plus
Report Writer Engine

(for Windows)

SUB SYSTEMS, INC.

1995

USER MANUAL

ReportEase Plus
Report Writer Engine

(for WIN32)

SUB SYSTEMS, INC.

1995

ReportEase Plus

Version 2.0
1995

Copyright (c) 1993-95, Sub Systems,Inc
All Rights Reserved

11 Tiger Row
Georgetown, MA 01833

Software License Agreement

This license agreement allows the purchaser the right to modify the source code to incorporate it
into an application. Such a target application may be distributed royalty free with these conditions:

a. The target application must not be a STAND ALONE report writer product.
b. The target application should be 'larger' than the ReportEase Plus routine itself.
c. The source code of this software must not be distributed in any form.
d. ReportEase Plus must not be ported to other operating system platforms.

Multideveloper Licenses: Each copy of the product is licensed to one developer.
Multiple licenses are discounted as following:

2 to 4 Licenses: 20 percent discount
5 or more Licenses: 40 percent discount

Sub Systems, Inc. reserves the right to prosecute anybody found to be making illegal use of this
software.

Sub Systems, Inc. offers a 30 day money back guarantee with the product. The source code
diskette envelope must remain sealed. Must call for an RMA number before returning the product.

Disclaimer

Sub Systems, Inc. has made every effort to make this product reliable and error free. However,
the manufacturer makes no warranties against any damage, direct or indirect, resulting from the use of
the software or the manual and can not be held responsible for the same.

IBM PC,XT AND AT are the trademarks of International Business Machine.
MSDOS, Windows, Windows 95, Windows NT, WIN32s, WIN32, Visual Basic and Visual C++

are the trademarks of Microsoft Corp.
Delphi is the trademark of Borland International.

TABLE OF CONTENTS

General Overview..

Getting Started...

PART I: USER'S MANUAL...

User Commands...

File Menu...

Edit Menu...

Field Menu...

Section Menu..

Line, Label and Picture Commands..

Object Arrangement Commands...

Object Selection...

Field Concepts..

Field Placement and Field Width..

Field Value Types..

Source of Field Data..

Summary Fields:..

Section Concepts..

Section Types...

Section Selection Criteria..

Section Parameters...

Calculation Expression..

Operators..

Condition Statement...

Functions..

PART II: DEVELOPER’S GUIDE...

Form Editor Interface...

Report Executer Interface...

Major Data Structures..

Memory Considerations..

Source Level Customization...

Analysis of the Demo Program...

ReportEase Plus File Format..

Sort and Join Utilities..

Visual Basic Support...

VBX function calls...
RvbDrawBitmap...
RvbExit...
RvbForm...
RvbGetDataField..
RvbGetFormField...
RvbGetPictureInfo...
RvbGetSortField...
RvbInit..
RvbRec...
RvbSetDoubleField..
RvbSetFormField...
RvbSetNumField..
RvbSetTextField...

VBX Events..
DrawPicture..
SelectField..
VerifyField...
Unload..

Delphi Interface..

Visual C++ Interface..

General Overview

ReportEase Plus consists of two components. The first component is the form editor.
The form editor allows you to develop report layouts. The second component is the report
executer. The report executer is used to print a report using a specified form.

ReportEase Plus provides a comprehensive set of features. The intuitive graphic
form editor allows even a novice user to become productive quickly. For the sake of user
friendliness, every input parameter offers a default value. The advanced features of
ReportEase Plus can be used to generate sophisticated reports and documents.

Multiple File/Multiple Section

ReportEase Plus does not impose any limitation on the number of data files
that can be used to supply data. A report or document can have up to 9 sort break
sections. Your application supplies a list of data fields that can be used as the sort
fields. In addition to the sort sections, you can also define the page header/footer,
and report header/footer sections. The section footers can display subtotals, average,
minimum, maximum and count fields.

The form editor also allows you to specify a selection criteria for the records
to be printed. This feature allows your user to print the desired subset of the file.

The graphic form editor supports a drag and drop method of placing the
report items. Various item arrangement tools can be used to align the items
horizontally or vertically. Multiple items can be selected and manipulated. The
items can be sized by simply pulling the sizing tabs;

A number of advanced features are also available. For example you can
specify the calculated fields for a section break. A report section can be conditionally
suppressed using a section selection criteria. A section can be instructed to print with
every page break. The blank space before and after a section can be suppressed. You
can specify page break criteria for every section. Moreover, multiple records can be
printed across on the page.

Fields

The form editor supports the following types of fields: text, numeric, float,
logical and date. A long text string field can be word wrapped for printing. The
ReportEase Plus fields can come from one of the following sources:

Data Field: A field that is associated with a data record.

Calculation Field: Specified using constants, operators, functions and other fields.

System Field: Page number, current date, record number, etc.

Dialog Field: Used to prompt the user for data during the report execution. It can
also be printed in the report for information purposes.

[1]

Word Wrapping

The memo fields can be word wrapped. The blank space after the section can
be suppressed to support variable length memo fields. The memo fields can consist
of multiple paragraphs.

Text Formatting Options

The form editor allows multiple fonts, point sizes and character styles. You
can select foreground and background colors for the text. The text can be centered or
justified in the horizontal or vertical direction.

Line/Box, and Picture Items

The form editor supports lines at any angle. You can control the color,
thickness and style of the line objects. ReportEase allows you to import pictures
from the clipboard or bitmap files. The picture can be sized by simply pulling the
sizing tabs.

A box item is treated as a special label item with blank label text. You can
specify any shade or color for the box. You can specify boundary color and style for
the box and embed a box within another box.

Printing

The report executer can print to a printer, or to a screen window. The user
selects the printing device before the report execution session. The screen output is
buffered. You can print selected pages from the screen to the printer.

Interface with Your Application:

Form Editor: Your application calls the form editor with the name of the form to be
edited. Your application also supplies a routine that allows the user to select the data
fields.

Report Executer: Your application initializes the report executer by calling the
initialization routine with the name of the form to run. Then, your application calls
the print routine for each data record in the sorted data set. The Report Executer
performs the record selection, sort breaks, calculations and printing functions. At the
end, your application calls the exit routine to print the footers and release the
resources.

Requirements

The total memory requirement for all ReportEase Plus modules is
approximately 400 K bytes.

ReportEase Plus source code is compatible with Microsoft and Borland 'C' compilers.

[2]

Getting Started

ReportEase Plus Files:

The ReportEase Plus diskettes contain these files.

Interface files:

REP.H Header file to be included into your application. It contains the
function prototypes and parameter structures needed to
interface with the form editor and report executer routines.

REP.LIB (REP32.LIB for WIN32) ReportEase Plus import library. This
file must be linked with your application.

REP.DLL (REP32.DLL for WIN32) ReportEase Plus dynamic link
library contains the APIs.

REP.RC Contains the ReportEase Plus resources.
REP_DLG.DLG Contains the dialog box templates. This file is included in the

REP.RC file.
REP_DLG.H Contains the identifiers for the dialog boxes. This file is

included in the REP.RC file.
REP_CMD.H Contains the ids for Form Editor commands. This file is

included in the REP.RC and REP1.H file.
REP.DEF The definition file to create the DLL.

Major Source Files:

REP.C Contains the screen painting functions for the form editor.
REP1.C Contains the screen item management functions.
REP_INI.C Contains the initialization routines.
REP_BLK.C Contains the picture import routines.
REP_FILE.C Contains the file i/o and print control routines.
REP_FLD.C Contains the field manipulation routines.
REP_SEC.C Contains the section manipulation routines.
REP_FMT.C Contains character format and font routines.
REP_DLG.C Contains the call back routines for every dialog box used by

ReportEase Plus.
REP_EXP.C Contains the expression compilation and execution routines.
REP_REP.C Contains the report initialization, execution, and exit routines.
REP_REP1.C Contains the report output routines.
REP_MISC.C Contains miscellaneous routines.

Other Include Files:

REP1.H Header file needed by the source files. It defines the internal
global variables. You do not need to include this file into your
application.

REP_DEF.H Contains various program constants.
REP_PROT.H Contains ReportEase Plus prototypes.

Help Files:

REP.RTF Help text in the RTF format.
REP.HPJ Help Definition File.
REP.HLP Compiled help file.

[3]

Demo Files:

DEMO.EXE The executable demonstration program
DEMO.C Demo Source File. This file demonstrates the ReportEase Plus

function calls.
DEMO.RC Demo resource file.
DEMO.DEF Linker definition file.
DEMO.H Demo include file.
DEMO.RES Compiled resource file.

Sample Data Files:

CUSTOMER.DF Customer field definition and customer
CUSTOMER.DB data file used by the demo program.
SALES.DF Sales field definition and sales
CUSTOMER.DB data file used by the demo program.

Sample Report and Mail Merge Form Files:

16 Bit DLL:

CUST.FP Customer summary report
SALES.FP Detail sales report
SUMDATE.FP Sales transactions by date
SALEQRT.FP Quarterly Sales Report
LABEL.FP Address labels.

32 Bit DLL:

CUST.FPC Customer summary report
SALES.FPC Detail sales report
SUMDATE.FPC Sales transactions by date
SALEQRT.FPC Quarterly Sales Report
LABEL.FPC Address labels.

Auxiliary Utilities

UTIL.DLL (UTIL32.DLL for WIN32) Demo file sort utility program.
UTIL.C Source code for UTIL DLL
UTIL.DEF linker definition file for UTIL DLL
UTIL.RC Blank resource file for UTIL DLL

Make files:

MAKES-BC.BAT Compiles and links the DEMO with the ReportEase Plus
MAKES-BC routines using the Borland 'C' compiler

MAKES-MC.BAT Compiles and links the DEMO with the ReportEase Plus
MAKES-MC routines using the Microsoft 'C' compiler

[4]

PART I: USER'S MANUAL

[5]

User Commands

The form editor commands can be selected by using the menu or by using the speed
keys. Each menu item also shows the speed key for the item. To get help on any menu item,
highlight the menu item and hit the F1 function key. You can also use the Help menu option
to see the index of help topics.

This chapter describes the form editor commands. We will discuss the commands by
the order in which they appear in the menu.

File Menu

This submenu contains the following selections:

Save

Use this command to save the changes to the current form file. If a file name has not
been assigned yet, this option will allow you to enter the file name.

Save As

Use this command to save a form template to a new file. This option is used to create
a copy of the exiting form. The editor will prompt you for the name of the new form file.

Report Parameters

The report parameters are entered using a dialog box. This option allows you to enter
a description for the form. In addition, you can specify the following parameters.

Page Margins: You can specify top, bottom, left and right margins in inches. The
form editor applies the margin information to the selected printer (see Printer Setup) to
calculate the report width. The report width is indicated by the top ruler.

Date Format: This option lets you specify the default date format. Use an 'M' for
the MM/DD/YY format or a 'D' for the DD/MM/YY format. This format is applicable to
any date information entered by the user during report execution, and any date constants
used in field expressions and filters.

Ruler Type: Use this option to show the ruler in inches or centimeters. You can
also turnoff the ruler.

Print Trial Records: This option is useful when printing on a preprinted form such
as address labels. When this option is enabled, the report executer will print trial records to
allow you to adjust the form on the printer.

Edit Report Selection Criteria

This option allows you to specify a condition that must be met for a record to be
selected by the report executer. In the absence of a selection criteria, all records are

[6]

selected. The selection criteria is specified by entering a calculation expression. This
expression must evaluate to a TRUE or FALSE value. During the report execution session,
this expression will be evaluated for each record. A record will be selected if the expression
evaluates to a TRUE value. For a detail description of calculation expressions, please refer
to the Calculation Expression chapter.

Examples:

1. CUSTOMER->ID>="0010".AND.CUSTOMER->ID<="0040"

This expression will select records with the customer id between "0010" and
"0040" inclusive.

2. SALES->AMOUNT>1000.

This expression will select records with the sales amount greater than $1000.

3. SALES->DATE>DLG->BEGIN_DATE

This expression will select records with the transaction date greater than the
date specified by the dialog field BEGIN_DATE (see Field Concepts).

Printer Setup

The default printer is automatically assigned to a new form. Use this option to select
a different printer from the list of installed printers. This option also allows you to change
the printer parameters for the selected printer. The selected printer and the corresponding
setup parameters affect the width, height and orientation (portrait or landscape) of the printer
output. Although you can opt to print to a screen window during the report execution
session, a printer must always be associated with a form. When screen output is selected
during report execution, the printer information is used to provide wysiwyg screen output
whenever possible.

[7]

Edit Menu

This menu allows you to edit the appearance and placement of the screen objects.
Every form object (label, line, field, or picture) is enclosed in an object box. The object box
boundary lines are invisible by default. This menu allows you to specify the attributes for
the object boundaries, box color, item placement within the box, and text color and fonts.
This menu also includes commands to insert or delete the spaces from the form.

Position Text

Use this option to position the text within the item boundaries. The text can be
justified on the left, right, top, or bottom edges, or it can be centered horizontally or
vertically. This option is valid for the 'label' and 'field' type items only.

Item Outlines

Use this option to select the item boundaries (left, right, top, bottom) to draw for one
or more selected items. You can also specify the color and width of the boundary lines.

Item Background

Use this option to set the background color or pattern for one or more selected items.

Centering

This option is used to center horizontally one or more selected items. When more
than one item are selected, the form editor first centers the selection rectangle and then
moves the selected items such that the position of the selected items relative to the selection
rectangle does not change.

Delete an Object

Use this option to delete one or more currently selected items.

If the current section is being deleted, the program asks for your confirmation before
the deletion. All items within the section are also deleted.

Change Fonts and Text Color

Use this function to change the font and color for the text for one or more selected
objects. This option is valid for the field and label type objects only.

When you select this option, the form editor shows the font and color selection dialog
box. The current font and colors are preselected in the dialog box. Use this dialog box to
specify your selections.

[8]

Expand Horizontally

Use this option to create horizontal spaces by moving the items horizontally. For
example, consider three items, A, B, and C placed horizontally. If you need to insert a new
item between the items A and B, you can use this function to create the desired space
between these two items and place the new item in the newly created space. To move the
items B and C toward right, create a selection rectangle after the item A and select this
option. The width of the selection rectangle specifies the movement of the items B and C
toward the right (note that the selection rectangle does not need to include all items to be
moved). All items toward the right of the selection rectangle and with the vertical placement
between the vertical space spanned by the selection rectangle are moved.

Expand Vertically

Use this option to create additional vertical space by moving the items downward.
For example, consider three items, A, B, and C placed vertically. If you need to insert a new
item between items A and B, you can use this function to create the desired space between
these two items and place the new item in the newly created space. To move the items B and
C downward, create a selection rectangle below the item A and select this option. The height
of the selection rectangle specifies the downward movement of the items B and C (note that
the selection rectangle does not need to include all items to be moved). All items below the
selection rectangle are moved.

This option also expands (vertically) the current section by the height of the selection
rectangle.

Compress Horizontally

Use this option to delete extra horizontal space by moving the items horizontally.
For example, consider three items, A, B, and C placed horizontally. You can use this
function to bring the items B and C closer to the item A. To move the items B and C toward
left, create a selection rectangle after the item A and select this option. The width of the
selection rectangle specifies the movement of the items B and C toward left (note that the
selection rectangle does not need to include all items to be moved). All items toward the
right of the selection rectangle and with the vertical placement between the vertical space
spanned by the selection rectangle are moved.

Compress Vertically

Use this option to delete vertical space by moving the items upward. For example,
consider three items, A, B, and C placed vertically. You can use this function to bring the
items B and C closer to the item A. To move the items B and C upward, create a selection
rectangle below the item A and select this option. The height of the selection rectangle
specifies the upward movement of the items B and C (note that the selection rectangle does
not need to include all items to be moved). All items below the selection rectangle are
moved.

This option also shrinks (vertically) the current section by the height of the selection
rectangle.

[9]

Field Menu

When you select a 'field' type item, the corresponding field name is displayed on the
status line. A field name typically contains a '->' separator. The text to the left of the
separator indicates the file name, and the text to the right indicates the field name (within the
file).

A field can be enlarged or reduced by simply pulling the sizing tabs. A field, like
other screen items, can be moved by dragging and dropping at the desired location.

The field menu contains these options:

Insert New Field
Edit Current Field
Edit Field Expression
Dialog Field Table

Insert New Field

This submenu allows you to insert a field into the form. This option will display a
list of fields to choose from. When you select a field, the form editor displays a cursor
rectangle. Use the mouse to position the cursor rectangle and click any mouse button. The
new field is created where the cursor rectangle is positioned.

The submenu allows you to insert four types of fields (see also Field Concepts):

Data Field: Data fields are associated with the data records. This submenu shows
you selections for the data files and data fields.

Calculated Field: A calculated field is specified using a calculation expression (see
Calculation Expression). You must also provide a unique name for the calculation
field. The calculated fields are used to print values that are not directly available by
any data field. For Example, the profit amount can be calculated by multiplying the
sales amount (data field) by the profit margin.

System Field: The system fields provide system depended information, such as
calendar date, time, page number, record count, and paragraph break field. The
calendar date and page number fields are typically printed on the page header. The
paragraph break field can be used in a calculation expression to create multiple
paragraph text (wrapped text).

Dialog Field: The dialog fields must be created before it can be selected. Use the
Dialog Field option from the Field menu to create the dialog fields. The dialog
fields are used to prompt the user for data before the report execution (example:
report dates). The dialog fields can also be included in the form. For example, you
may create two dialog fields, BEGIN_DATE and END_DATE to prompt the user for
the beginning and ending dates for the report. You can then print these two dates on
the report header by inserting them in proper places. The dialog fields can also be
used in a report selection criteria.

[10]

When you insert a numeric or float field in a footer section, the form editor
automatically assigns a 'total' attribute to the field. This attribute instructs the report executer
to print the total for that field. You can change this attribute by using the 'Edit Current Field'
option.

Edit Current Field

This selection is used to edit the specification about the currently selected field. This
option presents different editing options for different types of fields. ReportEase Plus
supports these types of fields:

Numeric
Float
Text
Date
Logical

Numeric and Float Fields: The following edit options are available for a numeric
or float field:

Number of Decimal Places: This option determines the number of digits to the right
of the decimal point.

Currency Symbol: You may wish to specify a currency symbol ($, Rs, Fr, etc) for
fields that represent money.

Prefix and Suffix for Negative Values: This option allows you to decide the
appearance of a negative value. For example, if you wish to enclose a negative value
in parentheses, specify '(' for the prefix and ')' for the suffix. If you simply wish to
show the '-' symbol, enter '-' for the prefix and nothing for the suffix.

Prefix and Suffix for Positive Values: This option allows you to decide the
appearance of a positive value. For example, if you wish to enclose a positive value
in parentheses, specify '(' for the prefix and ')' for the suffix. If you do not wish to
show any symbol for the positive value, enter blanks for the prefix and the suffix.

Suppress Zero Fields: This option suppresses the printing of a field if it contains a
zero value.

Pad With Zeros: This option will insert zeros before the field if the field value
occupies less spaces than specified by the field width.

The following two options are available for the fields located in a footer section only:

Print Value: Using this option you can instruct ReportEase Plus to print totals,
average, maximum, minimum or count of a field (See Field Concepts). If you simply
wish to print the field value for the last record before the footer section, specify
'value' for this option.

Retain Value After Printing: Normally, when a total (or average, maximum,
minimum, count) is printed, the internal accumulator is cleared to start the next

[11]

iteration of the section from zero. However, if you wish to print the running totals,
select 'Y' for this option.

Text Fields: The following formatting options are available for a text field:

Capitalize All: This option will capitalize all characters in the field.

Cap First Letter: This option will capitalize the first letter of every word in the
field.

Wrap and Word Wrap: These options are used to wrap a text field which is longer
than the width allowed by the field on the form. The Wrap option wraps the text that
is larger than the field width. Whereas, the Word Wrap option breaks the text at the
previous word boundary.

To specify more than one line for a wrapped field, simply pull the bottom
sizing tab downward. When you release the mouse button, the form editor will show
multiple lines in the field object box. Using this technique, you can increase the size
of the wrap field such that it contains the desired number of lines. When a memo
field is expected to contain a large number of lines, you can use the 'Variable number
of lines' option. This option will compress the space after the last text line.

Variable Number of Wrapped Lines: Use this option with a wrapped field that
may have more or less data than what can be contained in the field box. Normally,
you should size the field box to contain the largest possible text data.

Date Field: The following edit options are available for a date field:

Date Format: The following date options are available:

Format Example

MMDDYY 4/30/92
DDMMYY 30/4/92
MMDDYYYY 4/30/1992
MMMDDYYYY Apr 30, 1992

Delimiter: The MMDDYY, DDMMYY and MMDDYYYY date formats use a
delimiter to separate month, day and year. You can specify the value of this delimiter
using this option.

Logical Field: This option allows you to specify the text that should be printed for
the TRUE and FALSE value of a logical field.

A field can also be edited by simply double clicking on the desired field to edit its
attributes.

Edit Field Expression

This selection allows you to edit the calculation expression used for the current
calculation field. When you select this option, the form editor will display the current field
expression and let you edit it. For a complete description of calculation expressions, refer to
a later chapter.

[12]

Dialog Field Table

This selection is used to manipulate the dialog field table. A dialog field must be
created before it can be inserted in the form. A dialog field is used to prompt the user for
data before running the report. The field can also be inserted in the form to print the user
selected values. This field can be used in the report selection criteria to select the records
according to the user entered value for a dialog field.

This selection allows you to create new dialog fields, modify existing dialog fields, or
to delete a dialog field.

Create a Dialog Field: This option lets you create a new dialog field. The user is
prompted for the name of the dialog field and the field type. The field type can be one of the
following:

Text
Numeric
Float
Date
Logical

Once a dialog field is created in the dialog table, it can be inserted in the form by
using the Insert New Field option from the field menu. A dialog field can appear in more
than one place within a form. When a dialog field is selected, the status area shows the
dialog field name with a 'DLG->' prefix.

Modify a Dialog Field: This option can be used to modify the parameters for a
dialog field in the dialog table. This option displays the list of fields from the dialog table
and lets the user select a field to modify. You can modify the following parameters for a
dialog field:

User Prompt: The text to be displayed to prompt the user for the data.

Prompt Order: When more than one dialog fields are used, this option allows you
to enter the order in which the fields should be prompted.

Width: Width of the field given in number of characters.

Delete a Dialog Field: This option allows you to delete a field from the dialog table.
The program shows the list of fields in the dialog table, and allows the user to select one
field to delete. The chosen field is deleted from the dialog box. The dialog field must be
deleted from the form, and removed from any calculation expression, before it can be deleted
from the dialog table.

[13]

Section Menu

The ReportEase Plus forms consist of one or more sections:

Page Header and Footer sections
Report Header and Footer sections
Sort Headers and Footers sections
Detail Sections

The section menu allows you to create a new section, edit the parameters for an
existing section, or to delete the current section.

Insert New Section

When you select this option, the form editor shows a list of sections to choose from.
This list contains the sections that do not already exist. Furthermore, the list will show a sort
header or detail section only if the higher level section is already selected. This option will
not let you select a sort footer section unless the corresponding section header is selected
first.

When a header section is selected, the form editor shows you a list of sort fields to
choose from. Highlight the sort field that you would like to associate with the sort header
section. By choosing a sort field, you instruct the application to sort the record using that
field. If your application has two sort sections, then the records will be sorted using those
two sort fields. The sort field #1 will be the primary sort, and the sort field #2 will be the
secondary sort.

When you create a new section, the form editor inserts the new section in the proper
order within the form.

Edit Current Section

To edit the section parameters for a section, select the section or select any item
within the section. This option allows you to modify the following section parameters:

Advance page Before Section: This option instructs the report executer to advance
to the next page before printing the data for the current section. For example, you
may use this option to print a sort header section on a new page.

Advance page After Section: This option instructs the report executer to advance to
the next page after printing all the items for the current section. For example, you
may use this option to advance to the next page after printing the totals for the current
section.

Compress Space Before the First Item: This option instructs the form editor not to
print the additional space between the beginning of the section line and the topmost
item.

[14]

Compress Space After the First Item: This option instructs the form editor not to
print the additional space between the ending line of the section line and the bottom
most item.

When a section includes a word wrapped field, this option is particularly
useful to suppress the additional space when a memo field is smaller than the field
rectangle. This technique allows you to create a wrapped field rectangle big enough
to accommodate the biggest possible memo field data. The section will be
automatically compressed when the text is smaller than the field rectangle.

Reprint With Page Header: This option is valid only for a header section. When
this option is enabled, the current sort section header will be printed with every page
header. For example, for a customer report with a large number of transactions, the
customer name can be printed on every page.

Number of Records Across: This option is valid only for the detail sections (the
detail section is used to print the individual records). Further, this option is not
available when more than one detail section is used. This option can be used to print
more than one record across the page. Please refer to the Sales Summary by Date
(SUMDATE.FP) demo report for an example of printing more than one records
across. This option can also be used to print labels when you wish to print more than
one label across the page.

Sort Field

This option is valid for a header section only. It is used to change the sort field
associated with the sort header section. If you change the sort field, you may wish to change
the break field also.

Break Field

This option is valid for a header section only. The break fields are used to determine
the section break. In a typical report, the break field will be the same as the sort field. When
you insert a new sort section, the form editor automatically creates a break field which is the
same as the sort field. However, using this option, you can specify a different break field.
Unlike the sort fields, a break field can be a data field or a calculated field.

Edit Selection Expression

Once a section is selected for a form, you can still conditionally suppress the printing
of the section by specifying a selection expression. This option allows you to enter an
expression (see Calculation Expression). The selection expression must evaluate to a TRUE
or FALSE value. Before printing a section, the report executer evaluates the selection
expression, and suppresses the section print if the expression results in a FALSE value. In
the absence of a selection expression, the section will always be printed.

[15]

Line, Label and Picture Commands

Create a Line

Use this option to draw a line. When you select this option, the form editor displays
a positioning rectangle. Use the mouse to position the rectangle and click any mouse key.
The line will be drawn within the position rectangle. The line size can be changed using the
sizing tabs.

Edit Current Line

Use this option to edit the angle, color, and thickness of a 'line' type object.

Create a Label

Use this option to create a new label. When you select this option, the form editor
displays a positioning rectangle. Use the mouse to position the rectangle and click any
mouse key. The 'label' object will be created within the positioning rectangle. By default,
the form editor inserts the text 'label' in the label item. The label text can be edited in the
editing window.

Edit Current Label

A label text can be edited by simply selecting the desired label item and clicking on
the edit window.

When you insert or delete the text, the length of the label text changes. Normally, the
form editor will automatically adjust the item box boundaries to completely enclose the new
text. However, this automatic size adjustment ceases if you manually resized the item
boundary by pulling on the sizing tab. This feature can be used to enclose the text in an item
box larger than the default size.

Picture From Clipboard

Use this command to copy a picture bitmap from the clipboard.

When you select this option, the form editor creates a positioning rectangle equal to
the dimensions of the picture. Use the mouse to position the picture rectangle and click any
mouse key. The picture will be placed within the position rectangle. The picture size can be
changed using the sizing tabs.

Picture From Disk File

Use this command to read a picture bitmap from a disk file.

[16]

When you select this option, the form editor creates a positioning rectangle equal to
the dimensions of the picture. Use the mouse to position the picture rectangle and click any
mouse key. The picture will be placed within the position rectangle. The picture size can be
changed using the sizing tabs.

[17]

Object Arrangement Commands

This menu provides commands to help you position the report objects accurately.
Select a set of objects to be arranged (see Object Selection Commands) and one of the
following functions from the menu.

This menu also contains an undo function to reverse an unintended arrangement
command.

Align at Horizontal Top Edge

Use this option to horizontally align the top edge of the selected items to the top edge
of the leftmost item in the selection.

Align at Horizontal Bottom Edge

Use this option to horizontally align the bottom edge of the selected items to the
bottom edge of the leftmost item in the selection.

Align at Horizontal Center Line

Use this option to align the horizontal center line (imaginary) of the selected items to
the center line of the leftmost item in the selection.

Align at Vertical Left Edge

Use this option to vertically align the left edge of the selected items to the left edge of
the topmost item in the selection.

Align at Vertical Right Edge

Use this option to vertically align the right edge of the selected items to the right edge
of the topmost item in the selection.

Align at Vertical Center Line

Use this option to align the vertical center line (imaginary) of the selected items to
the center line of the topmost item in the selection.

Even Spacing Horizontally

Use this option to place the selected items horizontally at an equal distance from each
other. The inter-item distance is equal to the distance between the first two leftmost items.

[18]

Even Spacing Vertically

Use this option to place the selected items vertically at an equal distance from each
other. The inter-item distance is equal to the distance between the first two topmost items.

Set Even Width

Use this option to change the width of the selected items to the width of the topmost
item.

Set Even Height

Use this option to change the height of the selected items to the height of the leftmost
item.

Undo Previous Arrangement Command

Use this function to undo the previous arrangement command.

[19]

Object Selection

Most form editor commands allow you to manipulate one or more selected items. To
select a single item, simply click any mouse key on the desired item. The selected item is
indicated by the 'dashed' boundary lines.

Multiple items are selected by drawing a selection rectangle. To draw a selection
rectangle, place the mouse cursor where you wish to begin the rectangle (mouse cursor must
not be placed on an item) and click any mouse button. As the mouse button is depressed,
move the cursor such that the rectangle includes the items that you wish to select, and release
the mouse button. All items within the selection rectangle or 'touching' the selection
rectangle are selected. To include or exclude additional items from the selection, hod the
Shift key and click the mouse button on the desired item. The selected items are indicated by
the 'dashed' boundary lines. The selection rectangle is indicated by a red color boundary.

You can stretch or compress the selection rectangle by pulling the sizing tabs with the
mouse cursor. Thus it is possible to scroll the screen horizontally or vertically and include
more items in the selection rectangle.

[20]

Field Concepts

A field represents a value to be printed in the report. This chapter discusses the
placement of the fields, field value types, sources of fields and subtotals.

Field Placement and Field Width

When a field is inserted using a menu option or the field button, the form editor
displays a cursor rectangle. Use the mouse to position the cursor rectangle and click any
mouse button. The new field is created where the cursor rectangle is positioned.

The field rectangle contains a text that represents the data type and the current format
specification for the field. For a 'text' type field, the field rectangle contains a string of 'x'
symbols. The 'x' symbols are capitalized if the capitalization is turned on for the field. The
number of 'x' symbols is equal to the data width of the field or the maximum number of
symbols that can be accommodated within the current rectangle. For a word-wrapped text
field, you can increase the height of the field rectangle to specify multiple text lines
containing the 'x' symbols.

For a numeric field, the field text can consist of the symbol '9', a decimal symbol and
a set of comma symbols. The currency symbol is also shown when the field rectangle is
large enough.

For a 'date' field, the field text describes the format of the date (example: mm/dd/yy,
dd/mm/yy, mmm dd, yyyy etc). A logical field is denoted by a single 'Y' character.

When a field is selected, the name of the field appears on the status line. The field
width is initially set to the default value. Once a field is inserted in the form, you are free to
adjust its location by selecting the item and dragging the mouse. The field width can be
changed by simply pulling the sizing tabs. A field can be deleted by simply selecting the
field and then pressing the 'del' key.

Field Value Types

A field is used to print a value. ReportEase Plus allows 6 types for field values.

Text Field: The text field holds data that consists of characters and digits. The
examples of the text fields would be a name, description or comments. The formatting
options that are available for a text field include printing in capital letters, printing in small
letters, capitalizing the first letter of each word in the field, and word wrapping. The word
wrapping option allows a long text field to be printed in multiple lines.

Technical Note: Within the field structure, a text field has a type of TYPE_TEXT.
During the report execution session, the application provides the text data using the
CharData pointer (LPSTR) in the field structure.

[21]

Numeric and Float Fields: These fields hold numeric values. The numeric fields
hold whole numbers, whereas the Float fields hold floating point numbers. Numeric and
Float fields are used to print numeric values such as dollar amount, quantity, measurements,
etc. The formatting options that are available with these fields include number of decimal
places, currency symbol, prefix and suffix for positive and negative numbers, zero padding
or suppression, and comma formatting.

The decimal placement is treated differently for the numeric and float fields. For a
float field, the digits on the right of the decimal point is given by the value of the field.
However, the form editor allows you to print as many or as few digits to the right of the
decimal point as you wish. As a result, the decimal place option simply performs truncation
of decimal digits. For example, a float field with a value of 123.45678 can be printed as
123.4567, 123.456, 123.45 or simply 123. The number of decimal digits that are printed in
these cases are 4, 3, 2, and 0 respectively.

A non float numeric field, on the other hand, is a whole number. The decimal field
placement option in this case simply decides the number of digits to be printed to the right of
the decimal point. The remaining digits are printed to the left of the decimal point. For
example, a numeric field with a value of 1234567 can be printed as 123.4567 or 1234.567 or
1234567. The number of decimal digits that are printed in these cases are 4,3 and 0
respectively. Many applications prefer a numeric field over a float field for dollar values, as
the numeric fields do not suffer form rounding adjustments. However, the maximum value
that can be represented using the numeric type may not exceed +-2,147,483,647. You must
use the float field to represent a larger value.

Technical Note: Within the field structure, a numeric field is specified using the
TYPE_NUM type, whereas a float field is specified using the TYPE_DBL type.
During the report execution session, the application provides the numeric data using
the NumData (long) variable and the float data using the DblData (double) variable.

Logical Field: This type is used to represent a boolean value that can have only one
of two value, such as yes/no, true/false, black/white. The formatting options available with
this type allows you to specify the text to be printed for a true and false value.

Technical Note: Within the field structure, a logical field is specified using the
TYPE_LOGICAL type. During the report execution session, the application
provides the data for this field using the NumData (long) field. The field value must
be either 1 or 0.

Date Field: This type is used to represent a date field. Various date formats are
available including mm/dd/yy and dd/mm/yy.

Technical Note: Within the field structure, a date field is specified using the
TYPE_DATE type. During the report execution session, the application provides the
data for this field using the NumData (long) field. The long value for this field
should be either YYMMDD or YYYYMMDD. If only 2 digits are provided for the
year field, the report executer adds 1900 to the year value.

Picture Field: This type of field denotes a picture id.

Technical Note: Within the field structure, a picture field is specified using the
TYPE_PICT type. During the report execution session, the application provides the

[22]

data (picture id) for this field using the NumData (long) field. The report executer
actually calls a picture drawing routine in your application to draw the picture . This
routine passes the current picture id as an argument.

Source of Field Data

A field may represent a data value, calculated value, system value or a user entered
value.

Data Field

A data field is associated with the application file data. Your application provides a
list of fields to choose from. Your application can choose to organize the data fields by data
files. In the demo program, the customer and sales files provide the data fields. The
customer file fields are indicated by the CUSTOMER-> prefix, whereas the sales file fields
are indicated by the SALSE-> prefix.

Technical Note: When the user wishes to insert a data field into a form, the form
editor calls a field selection routine provided by your application. This routine
should allow the user to select a data field. The form editor allows your application
to organize the fields in any way you wish. Therefore, your application is free to use
a data set with any number of files in any relationship. The demo program first
allows the user to select the file, and then displays the fields for the selected file. The
demo program inserts the proper file prefix into the field name. The file name prefix
must not be one of these reserved names: SYS, CALC and DLG. Your application
passes the field name along with certain other information in a field structure (see
Form Editor Interfaces).

Calculated Field

The calculated fields allow you to print a value which is derived using other fields,
operators and functions. A calculated field is specified using a calculation expression. Refer
to the Calculation Expression chapter for a complete description on this topic.

System Field

The system fields are used to print information such as the calendar date, time, page,
and record number.

Dialog Field

The dialog fields are used to get data from the user before executing the report. For
example, you can prompt the user for the report dates. The form editor allows you to create
a list of dialog fields. Like other fields, you can place a dialog field anywhere in the report.
Typically, a dialog field for the report date will appear on the report header. You can also
use the dialog fields in the report selection criteria. Thus, the report executer can filter out
the records which don't meet a specific criteria. Refer to the SALES.FP form (Detail Sales
Report) for an example of the dialog fields.

[23]

Summary Fields:

The form editor allows you to summarize a numeric or float field. The summarized
value of a field can be printed in any footer section (see Section Concepts). The following
types of Summary Fields are available:

Totals: The field values for all records within a section are accumulated.

Average: The average field value for all records within a section is accumulated
and then divided by the number of records within that section.

Minimum: This Summary Field computes the minimum value of all records
within a section.

Maximum: This Summary Field computes the maximum value of all records
within a section.

count: This Summary Field prints the number of records with a section.

[24]

Section Concepts

Section Types

ReportEase Plus organizes a report or a mail merge form by sections. A report can
have one or more of these sections.

Report Header and Report Footer: The report header section is printed only once
in the beginning of the report. Among other things, this section can be used to print a detail
description for the report. The report footer section is printed at the end of the report. This
section can be used to print the report summary.

Page Header and Page Footer: The page header can be used to print the report
name, current date, page number, column headers, etc. The text and data for this section is
automatically printed after the top margin on every page. The page footer can be used to
print the page totals or other pertinent text. The report footer is printed before the bottom
margin on every page.

Section Headers and Section Footers: ReportEase Plus allows up to 9 section
headers and 9 section footers. The section headers and footers are numbered from 1 to 9.
The section number 1 is the highest level section, where as the section number 9 is the lowest
level section. A lower level section header is allowed only if all higher level section headers
are already chosen. For example, you can create section number 2 only if section number 1
is already selected. Similarly, a section footer is allowed only if the corresponding section
header is already chosen. However, you can select a lower level section footer without
having to select all higher level section footers. For example, your report can contain section
headers number 1 and 2, and section footer number 2.

A section header is always associated with a sort field. When a new section is
created, a callback routine in your application is called to provide the user with a list of sort
fields to choose from. Your application must have a capability to provide records sorted by
one or more fields in the list. A section header is also associated with another field called
break field. The value of this field is compared by the report executer to determine a sort
break. Most reports will use the same field for both the sort field and the break field.
However, the form editor allows you to specify a different field for comparison. The break
field, unlike a sort field, can also be a calculated field. You can generate complex sort
breaks using a calculated break field.

The footer sections are used to print summarized values for all records within the
section (see Field Concepts). A summarized field is like an ordinary field but with the
summarization attribute turned on. The following types of summarization is available:

Totals: The field values for all records within a section are accumulated.

Average: The average field value for all records within a section is accumulated
and then divided by the number of records within that section.

Minimum: This Summary Field computes the minimum value of all records
within a section.

[25]

Maximum: This Summary Field computes the maximum value of all records
within a section.

count: This Summary Field prints the number of records with a section.

For example, consider a customer order report with two sort breaks. Further, assume
that the first sort break field is the state location of the customer, and the second sort field is
the customer id. This report will print orders for each customer, with the customers grouped
by the state location. You can insert an order summarization field in each section footer.
The first section footer (higher level) will report the total orders by all customers within a
state. The second section footer (lower level) will print the total orders for each customer.
Refer to the User Command chapter for a description of inserting a summarization field into
a footer section.

Detail Sections: A report can have up to 9 detail sections. Typically, a report has
only one detail section. Every detail section is printed for each record. The lower numbered
detail sections are printed before the higher numbered detail sections. The detail sections
print the most detail level data for each record. ReportEase Plus supports a parameter for the
detail section that allows you to print multiple records across the page. This parameter can
be used to print labels, such that two or more addresses can be printed in one row. This
option is available for the reports having one detail section only.

There are two uses for multiple detail sections. The first is to report different fields
for different record type. This can be accomplished by setting a report filter for each detail
section such that only the desired detail section is printed for each record (refer to multdetl.fp
report form).

The second utility for the detail section is print two or more record types. For
example, if your data set includes the 'customer', 'order' and 'location' data such that multiple
order and location data is associated with each customer. In this situation, you can develop a
report with two detail sections, one for the order record and one for the location record.
Your program is, however, responsible for providing the data in the sorted fashion such that
the order data is followed by the location data for each customer.

Section Selection Criteria

Once a section is created, by default it will print in its proper execution sequence.
However, you can define an expression to print the section selectively. If a selection
expression is provided, the section will print only if the expression evaluates to a TRUE
value. A selection expression can use data fields, system fields, dialog fields, operators and
functions. This feature is useful when designing complex reports. For example, you can
suppress the detail section for selected records, yet accumulate the record fields for subtotals.

Section Parameters

These parameters can be selected for any section:

[26]

a. Advance to the next page before printing the section.

b. Advance to the next page after printing the section.

c. Compress space between the beginning of the section and the topmost item in
the section.

d. Discard space after the bottom most item in the section. This attribute can be
used to allow large memo (word-wrapped) fields. This attribute will
automatically suppress the space after the smaller word-wrapped text data.

[27]

Calculation Expression

The calculation expressions can be used to perform the following:

a. Define the calculated fields.

b. Define the report selection criteria. The expression must evaluate to a TRUE
or FALSE value.

c. Define the section selection criteria. The expression must evaluate to a TRUE
of FALSE value.

A calculation expression consists of operands and operators. The operands can be
fields, functions, result of an if/then/else statement or another subexpression. Example of
expressions:

1. amount * qty
2. "abc" + "efg"
3. amount * (1 + profit_percentage)
4. .if.state = "CA"
5. weekday("10/12/82")
6. profit_percentage*.TOTAL-OF.sales->amount

The first expression calculates the product of the amount and qty fields. The second
expression will evaluate to "abcefg". The third expression is a product of the amount field
and the result of another subexpression. The fourth expression evaluates to a TRUE value if
the state field is equal to "CA", otherwise it evaluates to a FALSE value. The fifth
expression returns the value of the 'weekday' function for 10/12/82. The sixth expression
gives the profit amount for all records within a section.

Operator Precedence: In an expression with multiple operators, the execution
priority of an operator is determined by its precedence. The operator with the highest
precedence gets executed first. The lower precedence operators use the result of the higher
precedence operators as operands. You can override the default precedence by using
parentheses. For example, 1 + 2 * 3 evaluates to 7. However, (1 + 2) * 3 will evaluate to 9.
When an expression consists of two operators of the same precedence level, the operator on
the left is executed before the operator on the right.

Result of an Expression: The result of an expression provides a value of a specific
type. For example, 100 + 200 results in 300, which is a number of a numeric type. Also,
"cat" <> "dog" will result in a TRUE value which is an entity of the LOGICAL kind.

The following section describes ReportEase Plus operators in terms of its operands,
precedence and result type. The precedence rank is indicated by a number. The higher
precedence operators have higher value for the rank than a lower precedence operator.

[28]

Operators

Logical OR

Operator Symbol: .OR.
First Operand Type: logical
Second Operand Type: logical
Result Type: logical
Precedence Rank: 100

Description: The logical OR operator returns a TRUE value if either the first
operand or the second operand is TRUE. Otherwise, it returns a FALSE value.
Examples:

10=(20-2).OR.10=(20-10) -> TRUE
10=(20-2).OR.10=(20-8) -> FALSE

Logical AND

Operator Symbol: .AND.
First Operand Type: logical
Second Operand Type: logical
Result Type: logical
Precedence Rank: 200

Description: The logical AND operator returns a TRUE value if both the first
operand and the second operand are TRUE. Otherwise, it returns a FALSE value.
Examples:

10=(30-20).AND.10=(20-10) -> TRUE
10=(30-20).AND.10=(20-8) -> FALSE

Equal

Operator Symbol: =
First Operand Type: Numeric,float,text,date,logical
Second Operand Type: Same as the first operand type
Result Type: logical
Precedence Rank: 300

Description: This operator returns a TRUE value if the first operand is equal to the
second operand. Otherwise, it returns a FALSE value. Examples:

10=(30-20) -> TRUE
10=(30-10) -> FALSE

Not Equal

Operator Symbol: <>
First Operand Type: Numeric,float,text,date,logical
Second Operand Type: Same as the first operand type
Result Type: logical
Precedence Rank: 300

[29]

Description: This operator returns a TRUE value if the first operand is NOT equal to
the second operand. Otherwise, it returns a FALSE value. Examples

10<>(30-20) -> FALSE
10<>(30-10) -> TRUE

Greater than

Operator Symbol: >
First Operand Type: Numeric,float,text,date,logical
Second Operand Type: Same as the first operand type
Result Type: logical
Precedence Rank: 400

Description: This operator returns a TRUE value if the first operand is greater than
the second operand. Otherwise, it returns a FALSE value. Examples:

10>(30-22) -> TRUE
10>(30-10) -> FALSE
"ABC">"ACC" -> FALSE

Less than

Operator Symbol: <
First Operand Type: Numeric,float,text,date,logical
Second Operand Type: Same as the first operand type
Result Type: logical
Precedence Rank: 400

Description: This operator returns a TRUE value if the first operand is less than the
second operand. Otherwise, it returns a FALSE value. Examples:

10<(30-22) -> FALSE
10<(30-10) -> TRUE
"ABC"<"ACC" -> TRUE

Greater than or Equal to

Operator Symbol: >=
First Operand Type: Numeric,float,text,date,logical
Second Operand Type: Same as the first operand type
Result Type: logical
Precedence Rank: 400

Description: This operator returns a TRUE value if the first operand is either greater
or equal to the second operand. Otherwise, it returns a FALSE value. Examples:

10>=(30-22) -> TRUE
10>=(30-10) -> FALSE
"ABC">="AB" -> TRUE

Less than or Equal to

[30]

Operator Symbol: <=
First Operand Type: Numeric,float,text,date,logical
Second Operand Type: Same as the first operand type
Result Type: logical
Precedence Rank: 400

Description: This operator returns a TRUE value if the first operand is either smaller
or equal to the second operand. Otherwise, it returns a FALSE value.

10<=(30-22) -> FALSE
10<=(30-10) -> TRUE
"ABC"<="ABCD" -> TRUE

Part of

Operator Symbol: $
First Operand Type: text
Second Operand Type: text
Result Type: logical
Precedence Rank: 500

Description: This operator returns a TRUE value if the first operand is contained
within the second operand. Otherwise, it returns a FALSE value. Examples:

"KEEP"$"HOUSE KEEPER" ->TRUE
"KEEPING"$"HOUSE KEEPER" ->FALSE.

Addition

Operator Symbol: +
First Operand Type: numeric,float,text
Second Operand Type: same as the first operand type
Result Type: same as the first operand type
Precedence Rank: 600

Description: This operator adds the second operand to the first operand. If one of
the operands is numeric and the other is float, the result will be of the float type. If
the operand type is text, the second string is appended to the first string. Examples:

10 + 20 -> 30
10 + 20.5 -> 30.5
"Good " + "Day" -> "Good Day"

Subtraction

Operator Symbol: -
First Operand Type: numeric,float,text
Second Operand Type: same as the first operand type
Result Type: same as the first operand type
Precedence Rank: 600

Description: This operator subtracts the second operand from the first operand. If
one of the operands is numeric and the other float, the result will be of float type. If
the operand type is text, the second string is appended to the first string. However,

[31]

any spaces after the first string are truncated and transferred at the end of the output
string. Examples:

10 - 20 -> -10
10 - 20.5 -> -10.5
"Good " - "Day" -> "GoodDay "

Multiplication

Operator Symbol: *
First Operand Type: numeric,float
Second Operand Type: numeric, float
Result Type: numeric,float
Precedence Rank: 700

Description: This operator multiplies both operands. If one of the operands is
numeric and the other float, the result will be of float type. Examples:

10 * 20 -> 200
10 * 20.5 -> 205.

Division

Operator Symbol: /
First Operand Type: numeric,float
Second Operand Type: numeric,float
Result Type: numeric,float
Precedence Rank: 700

Description: This operator divides the first operand by the second operand. If one of
the operand is numeric and the other float, the result type will be float. Examples:

10 / 2 -> 5
10 * 20 -> 0
10 * 20.0 -> .5

NOT

Operator Symbol: .NOT.
First Operand Type: logical
Second Operand Type: N/A
Result Type: logical
Precedence Rank: 800

Description: This operator negates the logical value of the first operator. Being a
unary operator, it accepts only one operand. Examples:

.NOT.(10=(20-10)) -> FALSE

.NOT.(10=(20-8)) -> TRUE

.NOT.("KEEP"$"KEEPING") -> FALSE

TOTAL OF

[32]

Operator Symbol: .TOTAL-OF.
First Operand Type: numeric,float
Second Operand Type: N/A
Result Type: Same as the first operand type
Precedence Rank: 900

Description: The operand for this operator must be a field. Being a unary operator,
it accepts only one operand. This operator is allowed only in the calculation fields
that are placed in a footer section. The operator will calculate the subtotal for the
field indicated by the first operand. Example:

.TOTAL-OF.sales->amount calculates the total sales amount for the footer
section field.

AVERAGE OF

Operator Symbol: .AVE-OF.
First Operand Type: numeric,float
Second Operand Type: N/A
Result Type: Same as the first operand type
Precedence Rank: 900

Description: The operand for this operator must be a field. Being a unary operator,
it accepts only one operand. This operator is allowed only in the calculation fields
that are placed in a footer section. The operator will calculate the average value for
the field indicated by the first operand. Example:

.AVE-OF.sales->amount calculates the average sales amount for the
footer section field.

MAXIMUM OF

Operator Symbol: .MAX-OF.
First Operand Type: numeric,float
Second Operand Type: N/A
Result Type: Same as the first operand type
Precedence Rank: 900

Description: The operand for this operator must be a field. Being a unary operator,
it accepts only one operand. This operator is allowed only in the calculation fields
that are placed in a footer section. The operator provides the largest value of the field
indicated by the first operand. Example:

.MAX-OF.sales->amount returns the largest sales amount for the footer
section field.

MINIMUM OF

Operator Symbol: .MIN-OF.
First Operand Type: numeric,float
Second Operand Type: N/A
Result Type: Same as the first operand type
Precedence Rank: 900

[33]

Description: The operand for this operator must be a field. Being a unary operator,
it accepts only one operand. This operator is allowed only in the calculation fields
that are placed in a footer section. The operator provides the smallest value of the
field indicated by the first operand. Example:

.MIN-OF.sales->amount returns the smallest sales amount for the footer
section field.

COUNT OF

Operator Symbol: .COUNT-OF.
First Operand Type: numeric,float
Second Operand Type: N/A
Result Type: Same as the first operand type
Precedence Rank: 900

Description: The operand for this operator must be a field. Being a unary operator,
it accepts only one operand. This operator is allowed only in the calculation fields
that are placed in a footer section. The operator provides the record count for a
section. Example:

.MIN-OF.sales->amount returns the number of records processed within
the current section.

[34]

Condition Statement

The ReportEase Plus calculation expressions allow an if/then/else statement. This
statement evaluates the if condition for a TRUE or FALSE value. If the value is TRUE, then
the entire expression evaluates to the subexpression following the then statement. Otherwise
the entire expression evaluates to the subexpression following the else statement.

Examples:

.IF.sales->amount>100.THEN."GOOD SALE".ELSE."NOT SO GOOD SALE"

This example compares the sales amount and returns a text string. The resulting text
string is equal to "GOOD SALE" when the sales->amount is greater than $100. Otherwise it
is equal to "NOT SO GOOD SALE".

It is important that the subexpression following the then and the else statement must
return the same type result.

Examples of invalid statements:

.IF.sales->amount>100.THEN."GOOD SALE".ELSE.50

.IF.customer->state="CA".THEN.(100).ELSE.(5.0)

The second statement is not valid because the then statement evaluates to a numeric
value, where as the else statement evaluates to a float value. Correct the second statement as
following:

.IF.customer->state="CA".THEN.(100.0).ELSE.(5.0)

or

.IF.customer->state="CA".THEN.(100).ELSE.(5)

[35]

Functions

The ReportEase Plus calculation expressions can use functions. A function accepts a
predefined number of arguments and returns a value of a predefined type. This section
describes available functions:

Length of a Text String

Function Name: LEN
First Argument Type: text
Second Operand Type: N/A
Result Type: numeric

Description: This function returns the length of a text string. Examples:

LEN("ABCD") -> 4
LEN("GOOD DAY") -> 8

Convert to Upper Case

Function Name: UPPER
First Argument Type: text
Second Operand Type: N/A
Result Type: text

Description: This function converts the given string to the upper case. Examples:

UPPER("abcd") -> "ABCD"
UPPER("Good Day") -> "GOOD DAY"

Convert to Lower Case

Function Name: LOWER
First Argument Type: text
Second Operand Type: N/A
Result Type: text

Description: This function converts the given string to the lower case. Examples:

LOWER("ABCD") -> "abcd"
LOWER("Good Day") -> "good day"

Trim Spaces

Function Name: TRIM
First Argument Type: text
Second Operand Type: N/A
Result Type: text

[36]

Description: This function returns a string by removing spaces from the beginning
and ending of given string. Examples:

TRIM(" ABCD ") -> "ABCD"
TRIM("Good Day ") -> "Good Day"

Extract a Word

Function Name: WORD
First Argument Type: text
Second Operand Type: numeric
Result Type: text

Description: This function extracts a word from the input string. The second
argument specifies the word position to be extracted. Examples:

WORD("It is a Good Day",1) -> "It"
WORD("It is a Good Day",2) -> "is"

Extract a Character

Function Name: CHAR
First Argument Type: text
Second Operand Type: numeric
Result Type: text

Description: This function extracts a character from the input string. The second
argument specifies the character position to be extracted. Examples:

CHAR("It is a Good Day",1) -> "I"
CHAR("It is a Good Day",2) -> "t"

Extract First Specified Number of Characters

Function Name: FIRST
First Argument Type: text
Second Operand Type: numeric
Result Type: text

Description: This function extracts the specified number of characters (argument #2)
from the beginning of the specified (argument #1) text string. Examples:

FIRST("It is a Good Day",5) -> "It is"
FIRST("It is a Good Day",2) -> "It"

Extract Last Specified Number of Characters

Function Name: LAST
First Argument Type: text
Second Operand Type: numeric
Result Type: text

[37]

Description: This function extracts the specified number of characters (argument #2)
from the end of the specified (argument #1) text string. Examples:

LAST("It is a Good Day",8) -> "Good Day"
LAST("It is a Good Day",3) -> "Day"

Convert to Text Type

Function Name: TEXT
First Argument Type: numeric, float, date, logical
Second Operand Type: N/A
Result Type: text

Description: This function converts any other type argument to the text type data
using the default format specifications. Examples:

TEXT("3/4/92") -> "3/4/92" (text)
TEXT(123) -> "123"

Smaller Number

Function Name: MIN
First Argument Type: numeric,float
Second Operand Type: numeric,float
Result Type: numeric,float

Description: This function returns the smaller of the first and second arguments. If
one of the arguments is numeric and the other is float, then the return type will be
float. Examples:

MIN(10,20) -> 10
MIN(10,20.0) -> 10.0

Larger Number

Function Name: MAX
First Argument Type: numeric,float
Second Operand Type: numeric,float
Result Type: numeric,float

Description: This function returns the larger of the first and second arguments. If
one of the arguments is numeric and the other is float, then the return type will be
float. Examples:

MAX(10,20) -> 20
MAX(10,20.0) -> 20.0

Round

Function Name: ROUND
First Argument Type: float
Second Operand Type: numeric

[38]

Result Type: float

Description: This function rounds the first argument to the number of decimal places
specified by the second Argument. Examples:

ROUND(10.153,2) -> 10.15
ROUND(10.153,1) -> 10.2

Integer

Function Name: INT
First Argument Type: float, text, date, logical
Second Operand Type: N/A
Result Type: numeric

Description: This function converts any other type argument to the numeric type.
For a 'float' type of argument, this operation discards any decimal digits from the first
argument. The date type argument is converted to YYYYMMDD formatted numeric
value. The logical type is converted either 1 or 0. Examples:

INT(10.153) -> 10
INT("123") -> 123
INT("3/4/92") -> 19920304
INT(1<>2) -> 1

Absolute

Function Name: ABS
First Argument Type: numeric,float
Second Operand Type: N/A
Result Type: Same as the Argument

Description: This function returns the absolute value of the given argument.
Examples:

ABS(-10.153) -> 10.153
ABS(10.153) -> 10.153
ABS(-12) -> 12

Day of the Week

Function Name: WEEKDAY
First Argument Type: date
Second Operand Type: N/A
Result Type: text

Description: This function returns the weekday for given date. Examples:

WEEKDAY("4/13/92") -> "Monday"
WEEKDAY("4/14/92") -> "Tuesday"

Extract Day

Function Name: DAY

[39]

First Argument Type: date
Second Operand Type: N/A
Result Type: numeric

Description: This function extracts the day (1 to 31) from the given date. Examples:

DAY("4/13/92") -> 13
DAY("4/14/92") -> 14

Extract Month

Function Name: MONTH
First Argument Type: date
Second Operand Type: N/A
Result Type: numeric

Description: This function extracts the month (1 to 12) from the given date.
Examples:

DAY("4/13/92") -> 4
DAY("5/14/92") -> 5

Extract Year

Function Name: YEAR
First Argument Type: date
Second Operand Type: N/A
Result Type: numeric

Description: This function extracts the year from the given date. The year is
returned using 4 digits. Examples:

DAY("4/13/92") -> 1992
DAY("5/14/93") -> 1993

[40]

PART II: DEVELOPER’S GUIDE

[41]

Form Editor Interface

The form editor allows the user to develop the report forms. The demo program
shows an example of interfacing with the form editor. In particular, follow these steps to
interface with the form editor:

1. Include the REP.H file into your application module which will interface with
the form editor.

2. Create a list of fields used in your data base. The user will select the fields
from this list to insert in the form. For each field, you should know its name,
default width (number of characters), field type, and number of decimal
places (for numeric and float fields).

For example, assume that your application uses two files. Further, assume
that each file can have up to 15 fields. Define an array to store the field
names and field properties for these two files:

#define MAX_FILES 2
#define MAX_FIELDS 15

struct StrDataField {
char name[35]; /* field name*/
int width; /* field width */
int type; /* field type */
int DecPlaces; /* decimal places */

} DataField[MAX_FILES][MAX_FIELDS];

width: The field width stores the default width of the field for printing. The
user can modify the field width during the form editing
session.

type: The field types are defined in the REP.H file. It can be one of the
following:

TYPE_TEXT Text field
TYPE_NUM Numeric field
TYPE_DBL Float field
TYPE_DATE Date field
TYPE_LOGICAL Logical field
TYPE_PICT Picture field

Decimal Places: For numeric and float fields, you should also store the
number of digits after the decimal point. The user can also change this
parameter during the form editing session.

3. Write a field selection routine. This routine will be called by the form editor
whenever the user wishes to insert a data field in the form. The field selection
routine has the following prototype:

[42]

int FAR PASCAL UserFieldSelection(HWND hWnd, struct StrField far
*field,int SortFieldNo)

The first parameter is the window handle of the Form Editor window.
Your application may need to use this parameter to create a dialog box if
necessary.

The second parameter is a far pointer to a field variable. This routine
should use the field pointer to store the data for the chosen field.

The third Argument indicates whether the form editor intends to use
this field as a sort field. For a regular field, this argument is set to zero. For a
sort field, this argument is set to the sort level number for which the new field
will be used. Your user field selection routine may like to restrict the number
of fields that may be used for sorting. Or, your user selection routine may
need to limit the number of sort levels that can be allowed.

This routine should return a TRUE value (1), if the field selection is
successful. Otherwise, it should return a FALSE value.

Typically, a field selection routine should first display a list of files.
After a file is selected, this routine should show the list of fields that are
available for the file. The user can then choose the desired field. The file and
field selection can be restricted if the SortFieldNo is not zero.

The routine should return certain minimum information about the
chosen field. This information should be written out to the field structure
(argument #2). Although, the field structure contains a number of other
variables, here we will discuss only those variables that must be assigned by
this routine.

field->name This variable should be set to the name of the field. If
your application uses multiple files, the full field name
should be provided. The '->' string should be used to
separate the file name from the field name. For
example, a customer name field in the customer file
should be assigned as CUSTOMER->NAME. The file
or field name must not contain any of these special
characters: ()*/+#<=\"'$, or spaces. ReportEase Plus
field names are not case-sensitive.

field->type The field type must be one of the types described in
step #4.

field->width Initial width of the field.

field->DecPlaces The number of digits to the right of the decimal point.
This data must be specified for a numeric or float field.

field->ParaChar Needed only for a word-wrapped field with multiple
paragraphs. Specify the new paragraph indicator
character in the first byte. When the report executer
sees this character in the text stream, it will place the
subsequent text in the next paragraph. We recommend
ASCII 13 value for this field.

[43]

Although not mandatory, it is advantageous to provide the following two
variables also:

field->FileId An id associated with the file.
field->FieldId An id associated with the field. These variables can be

later used by your application during the report
execution to identify the fields easily.

In the example used by step #4, all the above information can be
provided very easily from the DataField structure.

4. Write a field verification routine. This routine will be called by the form
editor whenever it needs to verify a data field name as entered by the user.
The field verification routine has the following prototype:

int FAR PASCAL VerifyField(struct StrField far *field,int SortFieldNo)

The first parameter is a far pointer to a field variable. The name of the
field to verify is given by the name variable (field->name) within the field
structure. The field name may contain the file prefix as well. The field name
is always given in the upper case. This routine should verify that a field by
this name exists in your application. If the field is found valid, this routine
should use the field pointer to provide the additional data (as mentioned in
step #5) for the field.

The second Argument indicates whether the form editor intends to use
this field as a sort field. For a regular field, this argument is set to zero. For a
sort field, this argument is set to the sort level number for which the current
field will be used. Your field verification routine may choose not to allow all
the fields as sort fields.

This routine should return a TRUE value (1), if the field is valid.
Otherwise, it should return a FALSE value.

For a valid field, this routine should also provide additional
information in the field structure. This information includes field->width,
field->type, field->DecPlaces, field->FileId, field->FieldId. In the example
used in step #4, all this information can be provided very easily from the
DataField structure.

5. Define a structure variable of structure type StrForm (defined in the REP.H
file). This structure is used to pass the initial form parameters to the form
function. Example:

struct StrForm FormParm;

The StrForm structure is defined as following:

struct StrForm {
int x;
int y
int widht;
int height;
int (FAR PASCAL *UserSelection)(HWND, struct StrField far*,int);

[44]

int (FAR PASCAL *VerifyField)(struct StrField far *,int);
char file[129];
char DataSetName[20];
BOOL ShowMenu;
BOOL ShowHorBar;
BOOL ShowVerBar;
HANDLE hInst;
HANDLE hPrevInst;
HANDLE hParentWnd;
HANDLE hFrWnd;
DWORD style;
char FontTypeFace[31];
LPCATCHBUF EndForm;
BOOL open;
BOOL modified;

}

6. Fill the StrForm structure variables as following:

x: Specify the initial X position (in device units) of the form
editor window. You may specify CW_USEDEFAULT to use
the default value.

y: Specify the initial Y position (in device units) of the form
editor window.

width: Specify the initial width (in device units) of the window in
device units. You may specify CW_USEDEFAULT to use the
default value.

height: Specify the initial height (in device units) of the editing
window

UserSelection: Specify the pointer to the data field selection routine
developed in step #3. Example:

FormParm.UserSelection = (void far *)
MakeProcInstance(UserFieldSelection,hInst);

(This process instance should not be freed until the form
editor window is closed)

VerifyField: Specify the pointer to the data field validation routine
developed in step #4. Example:

FormParm.VerifyField = (void far *)
MakeProcInstance(VerifyField,hInst);

(This process instance should not be freed until the form
editor window is closed)

file: Specify the name of the form template file. The full path name
is allowed in the file name.

DataSetName: This field is used only when creating a new form. Using this
field, you can specify a name for the data set needed for this
form. The data set name for the form is stored in the disk file.
Note, that this field is not needed for form editing and is never
used internally by ReportEase Plus. When you initialize a
report for execution, the report executer tells your application

[45]

the data set name as you specify here. Your application can
use this information to prepare the data to run the report.

ShowMenu: Set to TRUE if you wish to use the form editor menu.
ShowHorBar: Set to TRUE to show the horizontal scroll bar.
ShowVerBar: Set to TRUE to show the vertical scroll bar.

hInst: Specify the instance handle of your application.
hPrevInst: Specify the instance handle of any previous invocation of your

program, or specify NULL.

hParentWnd: Specify your window's handle, or set to NULL. The form
editor sends the REP_CLOSE message to this window before
closing itself. Your application can then perform any
necessary housekeeping tasks.

hFrWnd: Set this field to 0. The form editor will place into this field the
handle of the form editor window when it is created.

style: Use this field to specify the style word for the form editor
window.

FontTypeFace: Specify the typeface for the default font. Set this field
to NULL if you wish the form editor to use the preset default
typeface.

open: Set this field to FALSE. The form editor will set this field to a
TRUE value after opening the form editor window.

modified: This flag is used internally and it should be set to FALSE.

7. Update the export section of your application's .DEF file to include the
UserSelection and VerifyField functions. These exported function will be
called by the ReportEase Plus DLL to accept and verify data fields.

8. Call the form editor routine as following:

form(&FormParm);

This routine displays the selected form in an editor window and allows the
user to edit the form. The routine returns a 0 value on a successful execution.
Otherwise it returns an error code. For a list of error codes, refer to ERR_
constants in the REP.H file

10. Edit the link statement in your make file to include the REP.LIB (REP32.LIB
for WIN32 applications) import library file.

Please also refer to the Analysis of the Demo Program chapter for further help with
the form editor interface.

[46]

Report Executer Interface

Your application uses the report executer to print a report or letter for a form
template. Your application provides the data records. The report executer applies the data
records to the chosen form to produce the output. The following functions have been
provided to interface with the report executer.

RepInit(struct StrRep far *): Your application calls this routine to initialize the report
executer for a form. The name of the form is provided using a variable in the
StrRep structure.

RepRec(): Your application calls this routine for each record in the sorted data set.

RepExit(): Your application calls this routine to print the ending totals and free up
the resources.

Follow these steps to interface with the report executer:

1. Include the REP.H file into your application module which will interface with
the report executer.

2. Skip this step if your application does not use the picture type fields.
Otherwise write a picture drawing routine. This routine will be called by the
report executer whenever it needs your application to draw a picture for a
picture id. The picture drawing routine has the following prototype:

int FAR PASCAL DrawPicture(HDC hDC, int PictId, int FileId, int
FieldId, RECT far *rect)

The hDC parameter specifies the device context of the report output device.
This device context either belongs to a printer or to a screen metafile. The
device context is in the ANISOTROPIC mode with the x and y resolutions set
to UNITS_PER_INCH constant (defined in the REP.H file).

The PictId parameter specifies the id of the picture to be drawn. The
parameter has a value which was specified by your application in the field
array before calling the RepRec function.

The FileId parameter specifies the file name that contains this field.

The FieldId parameter specifies the id of the field name.

The rect parameter specifies the rectangle within which your application
should draw the picture.

3. Define a structure variable using the StrRep structure. This structure is
defined in the REP.H file. Example:

struct StrRep RepParm;

Fill in the structure variables as following:

[47]

file: Specify the name of the form file to execute. The full
pathname is allowed for the file name.

device: Your application uses this variable to specify the output device.
It can be one of the following:

'P' = Printer
'S' = Screen
'A' = Ask User.

If the device is specified as 'A', the report executer prompts the
user to select a printer or screen for output.

The following four variables are not used when printing to a
printer.

x: Specify the initial X position (in device units) of the output
window. You may specify CW_USEDEFAULT to use the
default value.

y: Specify the initial Y position (in device units) of the output
window.

width: Specify the initial width (in device units) of the window in
device units. You may specify CW_USEDEFAULT to use the
default value.

height: Specify the initial height (in device units) of the output
window

struct StrField far *field: (OUTPUT) Set to NULL. This variable is returned
by the report executer function RepInit. After your application
returns from the RepInit function, it should save the value of
this variable for a later use. This variable provides a far
pointer to the report executer's field array. Your application
will need to use this variable to fill in the data for each field
before calling the RepRec function.

TotalFields: (OUTPUT) Set to 0. This variable is returned by the report
executer. It tells your application the number of fields in the
field pointer returned by the previous variable. Your
application will need to use this variable to determine the
number of fields to fill in.

struct StrField far *SortField: (OUTPUT) Set to NULL. This variable is
returned by the report executer. It points to a field array
containing the fields needed to sort the data records. Your
application will need to know the fields that are used for
sorting.

TotalSortFields: (OUTPUT) Set to 0. This variable is returned by the report
executer. It tells your application the number of fields used for
sorting. The description of each sort field is provide by the
previous array variable.

DataSetName: (OUTPUT) This variable is returned by the report executer.
It tells your application about the data set needed to run this
report. The value of this field is what your application
provided to create this form (see previous chapter, step #8).
This variable does not have any significance for the internal
use of the report executer.

[48]

SwapDir: Specify the directory path to store swapped screen pages. Set
this variable to NULL, if you wish the report executer to use
the current working directory for swapping.

hInst: Specify the instance handle of your application.
hPrevInst: Specify the instance handle of any previous invocation of your

program, or specify NULL.

hParentWnd: Specify your window's (if any) handle.

style: Use this field to specify the style word for the output window.

DrawPicture: If your application does not use picture fields, set this variable
to a NULL value. Otherwise specify the pointer to the picture
drawing selection routine developed in step #2. Example:

FormParm.DrawPicture = (DRAW_PICTURE)
MakeProcInstance(DrawPicture,hInst);

(This process instance should not be freed until the form
editor window is closed)

For information about variable types for the StrRep structure, refer to the
REP.H file.

Now, call the RepInit function as following:

RepInit(&RepParm);

This function returns a 0 value on the successful execution.
Otherwise, it returns an error code. The function can return an error condition
either because of some internal error or when the user clicks the 'Cancel'
button on any dialog box. If the function returns an error code, the RepRec
and RepExit routines should NOT be called. The ERR_ constants in the
REP.H file describes the error codes.

4. Prepare the data to run the report. The preparation involves joining multiple
files (when more than one file is used) and sorting the records. The call to the
RepInit function in the previous step returns the sort fields used by the form.
It also returns the data set used by the current form. Depending upon how
your application data is structured, the data set name may give you enough
information for joining and sorting the records. Some applications may use
index information for the records, which can simplify the data preparation.

Alternatively, the sort fields in the StrRep structure specifically
provides you the sorting information. You can use the following code
fragment to access the fields from the sort field pointer:

struct StrField far *fld;
int i;

fld=RepParm.SortField;

[49]

for (i=0;i<RepParm.TotalSortFields;i++) {
fld[i].name /* sort field name */
fld[i].FieldId /* sort field id */
fld[i].FileId /* id of the file containing the sort field */

}

The FieldId and FileId are the same information that your application
provided using the field selection routine during the form editing session (see
the previous chapter, step 5). These fields are not of any internal significance
to the report executer.

The ReportEase Plus package comes with a utility (UTIL or UTIL32)
DLL to join two files or to sort a file. Please refer to a later chapter for a
discussion on these utilities. You can use these utilities to prepare the data
set.

5. The next step is to call the RepRec routine for each record in the data set.
The RepRec routine does not take any argument. The data for the record is
passed using the field pointer that your application retrieved by calling the
RepInit function in step #4. The RepInit function also returns the number of
fields in the field structure. The data is stuffed into the field structure using
one of these field variables:

LPSTR CharData; Pointer to the text data, for the fields with
type=TYPE_TEXT. The report executer
allocates enough space for the default width of
the variable. The data may not exceed the
allocated spaces. The text data should always
be NULL terminated.

long NumData; For numeric data (TYPE_NUM), logical data
(TYPE_LOGICAL) , date (TYPE_DATE) and
picture id data (TYPE_PICT).

double DblData; For Float data (TYPE_DBL).

The field structure contains many fields other than data fields. Your
application MUST NOT change any value for any field other than the
application data fields (source=SCR_APPL).

A data field may appear more than once within the field array.
Your application must provide the data for each application data field
within the array.

Use the following code fragment to carry out this step:

struct StrField far *fld;
int i,TotalFields;

fld=RepParm.field;
TotalFields=RepParm.TotalFields;

for each record in the data set {

for each field in the data record {

for (i=0;i<TotalFields;i++) {

[50]

if (fld[i].source==SRC_APPL && fld[i].FieldId ==
record field id) {

if (fld[i].type==TYPE_TEXT)
lstrcpy(fld[i].CharData, record field
data);

else if (fld[i].type==TYPE_NUM)
fld[i].NumData=record field data.

else if (fld[i].type==TYPE_DBL)
fld[i].DblData = record field data.

else if (fld[i].type==TYPE_LOGICAL)
fld[i].NumData = record field data.

else if (fld[i]==TYPE_DATE) fld[i].NumData
= record field data.

else if (fld[i]==TYPE_PICT) fld[i].NumData =
record field data (picture id)

}

}
}
if (RepRec()!=0) break;

}

The logical data must be provided as a (long) 1 or (long) 0. The date
information must be provided as YYMMDD or YYYYMMDD. Example,
(long) 920430, or (long) 19920430.

6. Call the RepExit routine to end the report. This routine prints the ending
totals and frees up the memory resources.

RepExit();

Please also refer to Analysis of the Demo Program chapter for further help with the
ReportEase Plus interface.

[51]

Major Data Structures

This chapter describes the major data structures used by ReportEase Plus.

StrForm

This structure is used to define the parameter list to call the form editor. This
structure is defined in the REP.H file. The calling program must define a variable using this
structure. The parameters must be passed using the pointer to this variable. Please refer to
the Form Editor Interface chapter for a complete description of the structure members.

StrRep

This structure is used to define the parameter list to initialize a report execution
session. This structure is defined in the REP.H file. The calling program must define a
variable using this structure. The parameters must be passed using the pointer to this
variable. Please refer to the Report Executer Interface chapter for a complete description of
the structure members.

StrFormHdr

This structure describes the form file header. This structure is defined in the REP.H
file. Your application can use this structure to read the form name from the form header.
Your application can then display the available forms to the user to select. Member
variables:

FormSign: (unsigned) A valid form file will have a 2 byte code in the beginning
of the file. The value of this code should be 0xDEBC.

name: (char [52]) Name of the form. The form name may not exceed 50 characters.

DataSetName: (char [20]) Data set to be used to produce the report. This value is of
no internal significance to ReportEase Plus. However, your application can
use this value to prepare the data before running the report.

TotalItems: (int) Total number of screen items in the form.

FieldCount: (int) Total number of fields used in the form.

BreakFieldCount: (int) Total number of sort/break fields used in the form.

FontCount: (int) Total number of entires in the font table.

LeftMargin: (float) Left margin (inches).

RightMargin: (float) Right margin (inches)

TopMargin: (float) Top margin (inches)

[52]

BottomMargin: (float) Bottom margin (inches)

SelExp: (int [52]) Report selection expression. This expression consists of
fields, constants, functions and operator tokens. Only the first 50 integers
may be used for this field.

Orientation: (int) Specifies portrait (DMORIENT_PORTRAIT) or landscape
(DMORIENT_LANDSCAPE) orientation for output.

PaperSize: (int) Specified by using DMPAPER_* variables used by Windows'
DEVMODE structure.

PaperLength: (int) Specified in tenths of a millimeter. used only if the PaperSize
variable is set to 0.

PaperWidth: (int) specified in tenths of a millimeter. used only if the PaperSize
variable is set to 0.

PrintQuality: (int) Print quality specified using the DMRES_* variables used by
Windows' DEVMODE structure.

PrinterName: (char [52]) Name of the printer for which the current form is
designed.

PrinterDriver: (char [52]) Driver name of the current printer.

flags: (unsigned) The following flag bit can be set for a report (defined in REP.H):

RFLAG_TRIAL: Print trial records for form adjustment.

DateFormat: (int) Specifies the default date format. A 0 value for this field
specifies MM/DD/YY format, where as a 1 value
specifies the DD/MM/YY format.

RulerType: (int) Specifies the ruler type used by the form: RULER_INCH
(inches), RULER_CM (centimeters), or RULER_OFF
(ruler not used).

SecBannerHeight: (int) Height of the section banner in 1/10 of millimeters.

reserved: (char [148]) reserved for future use.

StrField

The StrField structure is used to define individual fields used in a form. The form
editor defines an array of fields using this structure. This structure is defined in the REP.H
file. Member variables:

source: (int) This variable defines the source of the field. It can be set to one of the
following values:

SRC_APPL: Derived from your application. This type of field will
contain application data during the report execution.

[53]

SRC_CALC: Calculation field.

SRC_SYS: System field used for defining calendar date, time,
record count, and paragraph break field, etc.

SRC_CONST: Defines the constants used in an expression.

SRC_NONE: Indicates a deleted field.

SRC_DLG: Dialog field. Defined by the user using the dialog field
menu option.

name: (char [52]) This field contains the field name. If the file name is a part of the
field name, it is separated from the field name using a '->' separator,
i.e. CUSTOMER->ADDRESS. A field name may not exceed 50
characters.

FileId: (int) This value is supplied by your application in the field selection routine.
Your application can use this value during the report execution session
to determine the file that contains a field.

FieldId: (int) This value is supplied by your application in the field selection
routine. Your application can use this value during the report
execution session to determine a field.

type: (int) This variable specifies the field data type. The field data types are
defined in the REP.H file:

TYPE_NUM Numeric field. Stored as a long variable.

TYPE_DBL Float type numeric field. Stored as a double variable.

TYPE_ALPHA Text field. Stored using a character pointer.

TYPE_LOGICAL: Logical field. Stored as a long variable. The valid
values are 0 or 1.

TYPE_DATE: Date Field. Stored as a long variable in either
YYMMDD format or YYYYMMDD format.

TYPE_PICT: Picture id field. Stored as a long variable. During the
report execution time, your application routine
(DrawPicture) is called to draw this type of data.

width: (int) default width of the field. The number of data characters in the text
field may not exceed the value specified by this variable.

DecPlaces: (int) Specifies the number of digits to the right of the decimal point for
the numeric and double fields.

AllowChanges: (int) This field can be set to a FALSE value by your
application to protect the field from any changes by the user.

InUse: (int) This variable is set to a FALSE value when a field is deleted or if it is
not being used.

[54]

flags: (unsigned) The following flag bits can be set for a field (defined in the
REP.H file):

FLAG_SUP_ZERO: Do not print a numeric or float field with a zero value.

FLAG_PAD_ZERO: Insert zeroes in front of a numeric or float field to yield
the required field width.

FLAG_CAPS: Capitalize the text field.

FLAG_FIRST_CAP: Capitalize the first character of each word in a text
field.

FLAG_SMALL: Convert the text field to the lower case letters.

FLAG_COMMA: Specifies a comma format for a numeric or float field.

FLAG_WRAP: Specifies that the text field will be wrapped if it is
longer than the display width. An overflow field must
be defined underneath the text field.

FLAG_WORD_WRAP: Specifies that the text field will be word
wrapped if it is longer than the display width. An
overflow field must be defined underneath the text
field.

FLAG_RETAIN: Specifies that a summary field will retain its value after
printing. Normally, a summary field is cleared after
printing.

SumType: (int) This variable defines the summary type:

SUM_NONE: Print the value of the field.

SUM_TOTAL: Print the total for the field.

SUM_AVERAGE: Print the average for the field.

SUM_COUNT: Print the number of records between the breaks.

SUM_MAX: Print the largest value for the field between the breaks.

SUM_MIN: Print the smallest value for the field between the
breaks.

SysIdx: (int) For a system field, this variable specifies the index into the
system field table. For the dialog fields, it specifies the index into the dialog
field table.

DateFormat: (int) The date format (for output) can be one of the following:

DT_MMDDYY: Example: 4/30/92
DT_DDMMYY: Example: 30/4/92
DT_MMDDYYYY: Example: 4/30/1992
DT_MMMDDYYYY: Example: Apr 30, 1992

DateDelim: (char [2]) This variable specifies two separators that are used in a date
format. The default is '/'.

[55]

CurrencySymbol: (char [4]) Allows you to specify the currency symbol ($, Rs,
Fr. etc) for a numeric and float fields.

LogicalSymbols: (char [2]) Allows you to specify the symbols to display logical
values, such as Y,N,T,F,0,1.

NegSignPrefix: (char [4]) The prefix to be printed for a negative value
(example '-').

NegSignSuffix: (char [4]) The suffix to be printed for a negative value
(example 'CR').

PosSignPrefix: (char [4]) The prefix to be printed for a positive value
(example + or nothing).

PosSignPrefix: (char [4]) The suffix to be printed for a positive value
(example 'DR' or anything else).

CalExp: (unsigned int [52]) This field contains the expression for a calculation
field. The expression is defined in terms of other fields, constants, functions
and operator tokens. An expression may not be greater than 50 integers.

CharData: (LPSTR) This field is used by your application to supply text data.
The report executer provides a valid character pointer in this variable for the
text (TYPE_TEXT) fields. Your application copies the text data to the
location pointed by the variable. The text data must be NULL terminated and
should not be longer than the width specified by the 'width' variable.

NumData: (long) This field is used by your application to provide numeric,
logical, date, and picture id (TYPE_NUM, TYPE_LOGICAL, TYPE_DATE,
TYPE_PICT) data.

DblData: (double) This field is used by your application to provide float type
data.

HoldNum: (long) Used by the report executer to accumulate summary data for
the numeric field.

HoldDbl: (double) Used by the report executer to accumulate summary data for
the float type field.

count: (long) Stores the number of records within a sort break.

section: (int) For the sort and break fields, this variable stores the section
location of the field.

misc: (int) Used for temporary calculations.

ParaChar: (char [2]) For a word-wrapped text field with multiple paragraphs,
use this variable to specify the new paragraph indicator in the first byte. The
report executer examines the text data to search for the new paragraph
indicator character. The text following the new paragraph indicator character
is placed on the next paragraph. The second byte for this variable should be
set to NULL.

[56]

reserved: (char [18]) for future use.

StrBreakField

This structure contains the index to the sort and break (comparison) fields for each
sort break. This structure is defined in the REP1.H file. Member variables:

SortField: (int) Index of the corresponding sort field. The index points to a
field in the field array.

CompField: (int) Index of the corresponding comparison field. The index points
to a field in the field array.

section: (int) Index of the sort section. The index points to a section in the
section array.

StrSection

This structure defines the properties of each section in a form. This structure is
defined in the REP1.H file. Member variables:

InUse: (int) A TRUE value of this variable indicates that the current section is being
used in the form.

flags: (unsigned) Various bits in this flag can be set to indicate the following
properties:

SFLAG_PAGE_BEF: Advance to the new page before printing this
section.

SFLAG_PAGE_AFT: Advance to the new page after printing this
section.

SFLAG_REPRINT: Reprint this section on every page break.
SFLAG_TRIM_BEFORE: Trim extra space before the top most item in the

section.
SFLAG_TRIM_AFTER: Trim extra space after the bottom most item in

the section.

SelExp: (int [52]) The selection criteria that must be met to print a section. A
selection expression consists of fields, constants, functions and operator
tokens.

selected: (int) This variable stores the result upon the execution of the selection
expression.

ScrItem: (int) Screen item number of the section banner object.

height: (int) The combined height (in logical units) of all lines in the section. This
field is used by the report executer.

FirstItem: (int) The position of the first screen item belonging to this section.
This field is used by the report executer.

[57]

ItemCount: (int) Number of screen items which belong to this section. This field
is used by the report executer.

reserved: (char [16]) Reserved for future use.

StrSysField

This structure maintains a table of system variables. The structure is defined in the
REP1.H file. Member variables:

name: (char [51]) The name of the system variable.

type: (int) The variable type can have one of these values: TYPE_NUM,
TYPE_DBL, TYPE_TEXT, TYPE_DATE, and TYPE_LOGICAL.

width: (int) The initial width of the variable.

StrDlgField

This structure maintains the table of dialog fields created by the user. This structure
is defined in the REP1.H file. Member variables:

InUse: (int) Indicates a valid dialog field.

name: (char [52]) The name of the dialog field as entered by the user.

prompt: (char [52]) The text to be displayed to prompt the user for data.

type: (int) The variable type can have one of these values: TYPE_NUM,
TYPE_DBL, TYPE_TEXT, TYPE_DATE, and TYPE_LOGICAL.

PromptOrder: (int) When more than one dialog field has been created, this variable
specifies the order in which the user will be prompted for data.

CharData: (char [52]) This variable stores the user entered text data for the
TYPE_TEXT fields.

NumData: (long) This variable stores the user entered numeric data for the
TYPE_NUM, TYPE_DATE and TYPE_LOGICAL fields.

DblData: (double) This variable stores the user entered numeric data for the
TYPE_DBL fields.

x: (int) X position where the dialog box will be displayed (future use).

y: (int) Y position where the dialog box will be displayed (future use).

width: (int) Width (in number of characters) of the dialog field data.

ValExp: (int [52]) The dialog field validation expression. This field is not
being used currently.

[58]

reserved: (char [20]) Reserved for future use.

StrFont

This structure is used to define the fonts or picture bitmap used by a form. This
structure is defined in the REP1.H file. Member variables:

InUse: (BOOL) Turned on when the font structure is in use.

IsPict: (BOOL) TRUE if this font entry actually represents a picture bitmap.

hFont: (HFONT) handle to the current font.

lFont: (LOGFONT) Logical font structure.

hBM: (HBITMAP) Handle to the current bitmap when the 'IsPict' flag is TRUE.
The following 8 variables are applicable only when using a bitmap.

ImageSize: (DWORD) Size of the device independent bitmap image.

InfoSize: (DWORD) Size of the device independent bitmap information
header.

hImage: (HANDLE) Handle to the bitmap data.

hInfo: (HANDLE) Handle to the bitmap info header.

bmHeight: (int) Actual height of the stored bitmap.

bmWidth: (int) Actual width of the stored bitmap.

PictHeight: (int) Height translated to the point size units.

PictWidth: (int) Width translated to the point size units.

height: (int) Height of the font or picture stored in logical units (1/10 mm).

BaseHeight: (int) Ascent specified in the logical units (1/10 mm).

CharWidth: (int [256]) Unit height of each character in the font.

[59]

Memory Considerations

The memory requirement for ReportEase Plus can be roughly categorized as
following:

Code 125K
DATA Segment 36K
Dynamic Data 250K

Additional 35K bytes of memory may be needed for 'C' run time library routines
(Borland).

Although, ReportEase Plus routines leave an ample amount of memory of other tasks,
you make take certain steps to release even more memory if necessary.

Reduce the MAX_FIELDS constant from 500 to 200. This will save approximately
85K bytes of dynamic memory. However, this change will allow only up to 200 fields per
form.

Reduce the MAX_ITEMS constant from 150 to 75. This will save approximately
28K bytes of dynamic memory. However, this change will allow only up to 75 screen
objects per form.

Reduce the MAX_DLGS constant from 12 to 4. This will save approximately 2K
bytes in the data segment. However, this change will allow only up to 4 dialog fields.

To save memory from the code segment, compile the form editor and report executer
as separate executables. The form editor does not require most of the routines from the
REP_REP.C and REP_REP1.C modules. Whereas, the report executer does not need most
of the routines from the REP1.C, REP_SEC.C, REP_FLD.C, and REP_BLK.C modules. In
this arrangement, each executable file will save approximately 20K bytes.

[60]

Source Level Customization

The startup parameter structure for the form editor provides some customization.
Additional customization is possible by altering the values of some global variables or
making the minor changes to the source code.

Command Keystrokes:

You can change the keystroke for a command by simply editing the accelerator
resource statement in the REP.RC file. First, select a new unique keystroke for the
command. Then, edit the corresponding resource statement to reflect this change.

For example, if you wish to change the keystroke for the 'Delete Item' command,
locate the original resource statement:

VK_DELETE, ID_DEL_ITEM, VIRTKEY, NOINVERT

If you wish to change the command key from the 'Del' key to the Alt G key
combination, change the resource statement as following:

"G", ID_DEL_ITEM, VIRTKEY, NOINVERT, ALT

Screen Colors:

These global variables (defined in the REP1.H file) control the screen colors:

BackColor: Background screen color.
DrawColor: Color used to draw the rulers, section banners, dashed item

boundary, etc.
InputAreaColor: Color of the area between the form area and the menu area.
SelectionColor: Color of the multiple selection rectangle, and the color of the

selected option on the option bar.
OptRectColor: Default color of the option bar.

The editor defines the color variable using the COLORREF declaration. A color
variable has 3 components, each a byte long. The first byte represents the RED color, the
second the GREEN, and the third byte represents the BLUE color. Each color byte can
have a value from 0x00 to 0xFF. The 0x00 value represents the absence of this color
component, whereas the 0xFF value represents full contribution of this color toward the
final color. For example, a black color has all its components at 0 value, whereas a white
color has all its components equal to 0xFF. All intermediate colors can be derived by
varying the value of these 3 components.

[61]

Analysis of the Demo Program

This chapter describes the demo program. The demo program provides an example
of interfacing with ReportEase Plus. You may like to begin with the demo program code to
create your own interface.

Data Files

The demo program uses two data files: CUSTOMER and SALES file. The customer
file contains the client data such as customer id, name and address. The sales file contains
the information about order transactions for each customer id. This file contains the
customer id, order date, order amount, description of the order item, etc. The customer id is
the common field in these two files. During the report execution session, the customer id
field is used to join the two files to produce a combined data set.

Each data file has an extension of .DB (CUSTOMER.DB and SALES.DB). The data
is stored in the file in the text format. The fields are separated by the comma character. The
text fields are enclosed within quotation marks. You can type the CUSTOMER.DB and
SALES.DB files at the DOS prompt to display the contents of the file.

Each data file also has a data definition file which has an extension of .DF
(CUSTOMER.DF and SALES.DF). Each line of the data definition file contains the
information about one field of the file. The line contains the field name, maximum width of
the field, field type, and number of decimal digits for the numeric and float fields. The field
type can be text (T), numeric (N), float (F), date (D), and logical (L). The ReadFields
function in the demo program reads the field definition files and stores the data about
individual fields in a structure array called DataField.

Include Files

The demo program includes the REP.H file. This file must be included into your
application module which will interface with ReportEase Plus.

Definition File

The demo.def file contains the export functions for its dialog boxes and two
additional functions used for field selection and verifications. Each export function in the
export section must have a unique ordinal number. see the DEMO.DEF file for an example.

Global Constants

MAX_FORMS Number of forms that can be displayed by the demo program
menu.

MAX_FILES Number of data files supported by the demo program
(CUSTOMER AND SALES)

MAX_FIELDS Number of fields that each data file can have.
ITEM_WIDTH Display width of the menu items.

[62]

Global Variables:

struct StrForm FormParm; This structure is used to call the form function. For the
definition of the StrForm structure, refer to the REP.H file.

struct StrRep RepParm; This structure is used to call the RepInit function. The
RepInit function initializes the report executer. For the definition of the
StrRep structure, refer to the REP.H file.

char FormName[MAX_FORMS+2][NAME_WIDTH+2]; This array stores the form
names for the form files found in the current directory. The form name is
read from a header structure within a form file.

char FormFile[MAX_FORMS+2][13]; This array stores the names of the form files
found in the current directory. The form files have a .FP extension.

struct StrDataFile DataFile[MAX_FILES]; This array stores the data file names and
total number of fields in each data file.

struct StrDataField DataField[MAX_FILES][MAX_FIELDS]; This structure stores
the field definition for each field of both files. The field definition is read
from the CUSTOMER.DF and SALES.DF files.

Program Flow

The following pseudo code gives an overview of the demo program flow.

InitInstance() {
Create Demo Window.
Initialize Form Editor calling parameters.
Initialize Report Executer Initialization parameters.
Read the field information for each data file.

}

ReadFields() { // read fields from a definition file

Open the definition file.
Read lines from the file. Each line describes one field of the file.
For each line, use ExtractField() to extract field attributes {

Extract the field name. Store it in the DataField array.
Extract the field maximum width. Store it in the DataField array.
Extract the field type. T=Text, N=Numeric, F=Float, D=Date, L=Logical. The field
attributes are stored in the DataField array using the TYPE_ constants (REP.H)
Extract the number of decimal digits for the numeric and float fields.

}
Close the definition file.

}

ExtractField() {

Extract the next field attribute from a text line. After extracting the current field attribute,
this routine advances the index in the text line, so that the next call can extract the
next attribute.

[63]

}

CAllEditor() {

GetFormSelection() // get a form name to edit
Set the typeface to NULL (use default).
Set the point size to 0 (use default).
Call the form editor function:

form(&FormParam)
}

GetFormSelection() {

Get the report form files, add them to the selection list.
When called from the EditForm function, add an additional selection to allow the creation

of new report form.
Show the selection in the list box and let the user select one form.

}

GetFormFiles() {

Read from the current directory the files with the .FP extension.
Open each file to read the form header.
Extract the form name from the form header.
Return the form name.

}

UserFieldSelection() {

This routine is called by the form editor when the user wishes to insert a data field in the
form. The form editor passes the pointer to the field structure (second argument).
This routine will pass the information about the selected field using the field pointer.
The third argument indicates if the new field will be used for sorting. The zero value
for the second field indicates that the field is not a sort field. A non-zero value
indicates the sort level for which the field will be used. The demo program allows
only the fields from the CUSTOMER file to be used for sorting. Therefore, if the
third argument is non-zero, the demo program allows the user to select the fields only
from the CUSTOMER file.

If the third Argument is 0, show the file names (CUSTOMER and SALES to select).
Otherwise assume the CUSTOMER file.

Show the fields for the selected file, and let the user select one field.
Fill in these values in the field structure:

field->name
field->width
field->type
field->DecPlaces.
The above values are copied from the DataField structure which was created by the
ReadFields function during initialization.
Fill in two additional values (optional):
field->FileId
field->FieldId
This information is used to easily identify the field to fill in data during the report
execution session.

}

VerifyField {

This routine is called by the form editor to verify a data field used in the form. The form
editor passes the pointer to the field structure (first argument). This routine will
provide the information about the selected field using the field pointer. The second
argument indicates if the new field will be used for sorting. The zero value for the
second field indicates that the field is not a sort field. A non-zero value indicates the

[64]

sort level for which the field will be used. The demo program allows only the fields
from the CUSTOMER file to be used for sorting.

Verify that the field name exists in the CUSTOMER and SALES files.
Fill in the field values in the field structure:

}

RunReport() {

GetFormSelection() // select a form to execute
Fill the report initialization structure (StrRep) as following:

device='A' // ask user for the output device
specify the window width for screen output.

Call the report initialization routine:
RepInit(&RepParm) // a Report Executer function
This routine returns two pointers. The first pointer points to the report executer's

output field array. This pointer is used by the PrintRecord function to supply the
data. The second pointer points to another field array which contains the sort
fields used by the form. The PrepareFile function extracts the sort field names
from this array to sort the data records as needed.

PrepareFile() //Prepare data set
PrintRecord() //print each record
RepExit() //Close the report executer

}

PrepareFile() { // Sort and join the customer and sales files.

Extract the sort fields from the sort field array.
Sort the customer file by the given sort fields.
Determine if any of the fields in the SALES files have been used by the form.
If the SALES file is used, join the SALES file to the CUSTOMER file.
The data set is now ready for printing.

}

PrintRecords() {

Read each record from the sorted data set file.
For each record field in the data record:

Initialize the data values in the output field array.
For each field in the output array:

If the field in the output array is an application field,
and if the field id and file id are the same as the current record field:
Fill in the data value for the field.

}
RepRep()// Ask report executer to print the current record

}
}

[65]

ReportEase Plus File Format

The ReportFile consists of 7 sections in the following sequence:

Form Header Block
Screen Object Block
Field Block
Break Field Block
Section Block
Dialog Block
Font Table

Form Header Block: The file begins with a header block. The contents of the
header block is defined by the StrFormHdr structure. The size of the header block is equal to
the sizeof(struct StrFormHdr). The header is stored as a packed structure. In other words,
there is no gap between adjacent header variables. The first 2 bytes of the header block
contains a signature for ReportEase Plus:

First Byte = 0xBC
Second Byte = 0xDE

The TotalItems field in the header defines the total number of screen items in the
screen object block. The FieldCount element defines the size of the Field Block. The
BreakFieldCount element defines the size of the BreakField block. The FontCount defines
the number of fonts used by the font.

Screen Object Block: This block contains the screen objects used in the form. The
total number of screen items is defined by the TotalItems variable in the header structure.

Each screen object contains a 'font' field, which is an index into the StrFont array
(last block in the file). The 'field' type screen object also includes a 'field' variable, which is
an index into the field table (see Field Block). Each screen object also contains a 'section'
variable which is an index into the section table (see Section Block).

Field Block: This block contains the field table. The number of entries in the field
table is defined by the FieldCount variable in the header structure. The size of the individual
field table element is equal to the sizeof(struct StrField). The data is stored in the packed
structure. In other words, there is no gap between the adjacent variables in the structure.

Break Field Block: This section stores the sort/break field table. The number of
entries in the break field table is defined by the BreakFieldCount variable in the header
structure. The size of the individual break field element is equal to the sizeof(struct
StrBreakField). The data is stored in the packed structure. The break field table summarizes
the sort and break fields used by a form.

Section Block: This block stores the section attributes for all 23 sections allowed by
the form editor. For a description of various sections allowed in the form, refer to the SEC_

[66]

global constants in the REP_DEF.H file. The size of each section block is equal to the
sizeof(StrSection). The data is stored in the packed structure.

Dialog Field Block: This block stores the information about all 12 dialog fields
allowed by the form editor. The size of each dialog field block is equal to the
sizeof(StrDlgField). The data is stored in the packed structure.

Font Block: This section stores the font table. It begins with a signature byte of
value 0xBE. The signature byte is followed by the data for each font. The number of entries
in the font table is given by the FontCount variable in the form header structure. Each entry
represents a font or a picture bitmap.

When the first integer byte of the font entry is non-zero, it is followed by picture
bitmap information, as following:

Picture Height WORD
Picture Width WORD
Image Size DWORD
Info Size DWORD
Image string of size Image Size
Info string of size Info Size

When the first integer byte of the font entry is zero, it is followed by the LOGFONT
structure (refer to Windows SDK for the description of the LOGFONT structure). The
LOGFONT structure provides the font specification.

[67]

Sort and Join Utilities

The package includes a general purpose utility DLL (UTIL or UTIL32) containing
the file sort and join API functions. The demo program uses these functions but this DLL is
not required by ReportEase Plus DLL. This chapter describes the syntax, usage and
limitations of these APIs. Some applications have sorting and joining functions built into
their database facility. However, if your application needs these features, please refer to the
description below.

FileSort

Syntax:

int FileSort(LPSTR filename, int NumKeys, LPINT KeyTable)

The first argument specifies the name of the text file to sort. Each line in the file
must be delimited by <CR> and newline characters. A line of text can contain a number of
fields separated by the comma characters. The text field containing special characters must
be enclosed within the quotation marks. The number of lines in the file must not exceed
30000 lines. The sort function reads the entire text file into memory. Therefore, the file size
is also limited by the available memory.

The second argument specified the number of sort fields to be used for sorting. The
third argument is a pointer to a table containing the field numbers for the sort fields. The sort
field can be a number between 1 and the total number of fields in a text line. The sort field
represented by the field number must be a text field. You can specify up to 10 sort keys.
The sorting is always in the ascending order.

The output sort file name consists of the input file name prefix with a .SRT
extension.

Return Value: This function returns TRUE when successful.

Examples:

1. int KeyTable[3]={3,5,6};

FileSort(“myfile”,3,KeyTable);

This example sorts the myfile file to create myfile.srt as the sort file. The field
numbers 3,5 and 6 are used for sorting.

2. int KeyTable[1]={1};

FileSort(“myfile.txt”,1,KeyTable);

This example sorts the myfile.txt to create myfile.srt as the sort file. The first
field is used for sorting.

FileJoin

[68]

Syntax:

int FileJoin(LPSTR InputFile1, int field1, LPSTR InputFile2, int field2,
LPSTR OutputFile)

InputFile1: The first file to join
field1: The common field in the first file.
InputFile2: The second file to join
field2: The common field in the second file.
OutputFile: The name of the output file.

This function joins the second file to the first file creating an output file (Argument
#5). The two files to be joined must have a common field. For Example, the
CUSTOMER.DB and SALES.DB have a common field called customer id. The output file
is sorted in the same order as the first file.

The input files must be in the text format. The fields within the text line must be
separated by the comma character. The text fields containing special characters must be
enclosed within the quotation characters. The input files may not exceed 30000 lines each.
The FileJoin function reads both input files into memory before the join operation.
Therefore, the file size is also limited by the available memory.

Return Value: This function returns TRUE when successful.

Examples:

1. FileJoin(“customer.db” , 1 , “sales.db”, 1 , “customer.set”);

This example joins the sales.db file to the customer.db file. The output file
name is customer.set. Both input files have field number 1 as the common
field.

2. FileJoin(“test1”, 5, “test2”, 2, “ test.set”)

This example joins the test2 file to the test1 file. The output file name is
test.set. The field number 5 in the test1 file represents the same data as the
field number 2 in the test2 file.

[69]

Visual Basic Support
(Not applicable to WIN32)

ReportEase Plus can now be used by a Visual Basic application. Your application
should include the REP.BAS and RVB.VBX files in the project. You should also have
REP.DLL and RVB.VBX files available in the project directory.

The VBX manifests itself on the Visual Basic toolbar with an icon. Your application
should create a RE control by clicking on the icon. This control is visible only during the
design time and is used to communicate with the Form Editor and Report Executor windows.
The Form Editor and Report Executor use pop-up windows which are not confined to your
application form window.

Your application is responsible for providing the data field names to the Form Editor
and data field values to the Report Executor. Your application communicates with the VBX
using the events and function calls. This section describes the function calls and events in
alphabetic order. The DMO_VBX program included in the diskette provides an example of
using these function calls and events. Please refer to this demo program source as needed.

VBX function calls

RvbDrawBitmap
 Draw a bitmap to the output device context

int RvbDrawBitmap(hWnd as Integer, hImageWnd as Integer, image as Integer, x as
Integer, y as Integer, width as Integer, height as Integer)

Description: This function is used within a ‘DrawPicture’ event handler to draw a bitmap
(or part of) to the current report output device context. The ‘hWnd’ parameter is the
window handle of the reporter control. The ‘hImageWnd’ is the window handle of the
image control which contains the bitmap to draw. The ‘image’ parameter specifies a handle
to a bitmap. The last four parameters specify the part of the bitmap to display. These
parameters are specified in the percentage values. For example, to display the entire bitmap,
the parameter values should be as following: x=0, y=0, width=100, height=100. To display
the bottom half of the bitmap, the parameter values should be as following: x=0, y = 50,
width = 100, height = 50.

Return Value: This function return TRUE if successful.

See Also: RvbGetPictureInfo, DrawPicture Event

RvbExit
Close the Report Executor

int RvbExit(hWnd as Integer)

[70]

Description: This function frees up the resources used by the ReportExecutor. The hWnd
parameter is the window handle of the control.

Return Value: This function returns 0 upon the successful execution, otherwise it returns an
error code (see ERR_ constants in the REP.BAS file)

See Also: RvbInit, RvbRep

RvbForm
Launch the Form Editor

int RvbForm(FormParam as TypeForm)

Description: This function is used to launch the Form Editor. Your application provides the
form name and other relevant parameters using the ‘TypeForm’. Please refer to the
REP.BAS file for the description of the individual member variables for this structure.

Once the Form Editor is launched, it communicates with your program by firing the events.

Return Value: This function returns 0 upon the successful execution, otherwise it returns an
error code (see ERR_ constants in the REP.BAS file)

See Also: SelectField event, VerifyField Event.

RvbGetDataField
Get the specified ReportExecutor data field.

int RvbGetDataField(hWnd as Integer, FieldNo as Integer, field as TypeField)

Description: This function is used to retrieve the field structure (TypeField) for the specified
field. The ‘hWnd’ parameter is the window handle of the control. The ‘FieldNo’ parameter
specifies the field to retrieve. This parameter must be between 0 and TotalFields - 1 (see
RvbInit).

Return Value: This function returns a True value upon the successful execution.

See Also: RvbInit, RvbSetTextField, RvbSetNumField, RvbSetDoubleField

RvbGetFormField
Get the current Form Editor field

int RvbGetFormField(hWnd as Integer, field as TypeField, SortLevel as Integer)

Description: This function is used in pair with RvbSetFormField function within the
SelectField and VerifyField event handlers. The ‘hWnd’ parameter is the window handle of
the control. The ‘field’ parameter returns the current field being selected or verified. The
‘SortLevel’ parameter indicates whether the field is being used for a sort break. The

[71]

‘SortLevel’ parameter is 0 if the field is not a sort break field. Otherwise, the value of the
field (1, 2, 3...) indicates the sort section level to which this field belongs.

Return Value: This function returns a True value upon the successful execution.

See Also: RvbSetFormField

RvbGetPictureInfo
Get the picture parameters

int RvbGetPictureInfo(hWnd As Integer, PictInfo as TypePict)

Description: This function is used to get the parameters to draw a ‘picture’ type field. This
function is typically used within a ‘DrawPicture’ event handler. The ‘hWnd’ parameter is
the window handle of the control. The information about the picture is returned by the
‘TypePict’ variable. The following parameters are available in the ‘TypePict’ structure:

Type TypePict
hDC as Integer ‘ device context of the reporting device
PictId as Integer ‘ the value of the current picture field
FileId as Integer ‘ the file id that contains the current picture field
FieldId as Integer ‘ the field id that correspond to the current picture

field
x as Integer ‘ X location of the picture rectangle
y as Integer ‘ Y location of the picture rectangle
width as Integer ‘ width of the picture rectangle
height as Integer ‘ height of the picture rectangle

End Type

Return Value: This function return TRUE if successful.

See Also: RvbDrawBitmap, DrawBitmap event

RvbGetSortField
Get the specified ReportExecutor sort field.

int RvbGetSortField(hWnd as Integer, FieldNo as Integer, field as TypeField)

Description: This function is used to retrieve the field structure (TypeField) for the specified
sort field. The ‘hWnd’ parameter is the window handle of the control. The ‘FieldNo’
parameter specifies the sort field to retrieve. This parameter must be between 0 and
TotalSortFields - 1 (see RvbInit).

Return Value: This function returns a True value upon the successful execution.

See Also: RvbInit

[72]

RvbInit
Initialize the Report Executor

int RvbInit(hWnd as Integer, RepParm As TypeRep)

Description: This function is used to initialize the Report Executor. The hWnd parameter is
the window handle of the control. The application provides the form name and other
relevant information using the TypeRep parameter. Please refer to the REP.BAS file for the
description of the individual members of this structure.

This function updates in the values for two of the member variables: TotalFields, and
TotalSortFields. These variables indicate a total number of data fields and total number of
sort fields used by the report.

Return Value: This function returns 0 upon the successful execution, otherwise it returns an
error code (see ERR_ constants in the REP.BAS file)

See Also: RvbRec, RvbExit, RvbGetDataField, RvbGetSortField

RvbRec
Print a data record

int RvbRec(hWnd as Integer)

Description: This function instructs the Report Executor to print the current record. The
hWnd parameter is the window handle of the control.

Return Value: This function returns 0 upon the successful execution, otherwise it returns an
error code (see ERR_ constants in the REP.BAS file)

See Also: RvbInit, RvbExit, RvbGetDataField, RvbGetSortField

RvbSetDoubleField
Set the value of the specified double type field.

int RvbSetDoubleField(hWnd as Integer, FieldNo as Integer, DataValue as double)

Description: This function is used to supply the data for a double type field. The
‘hWnd’ parameter is the window handle of the control. The ‘FieldNo’ parameter specifies
the field number to supply data for. This parameter must be between 0 and TotalFields - 1
(see RvbInit). The ‘DataValue’ field should contain the value for the field.
.
Return Value: This function returns a True value upon the successful execution.

See Also: RvbGetDataField, RvbSetTextField, RvbSetNumField

[73]

RvbSetFormField
Set the current Form Editor field

int RvbSetFormField(hWnd as Integer, field as TypeField, valid as Integer)

Description: This function is used in pair with RvbGetFormField function within the
SelectField and VerifyField event handlers. The ‘hWnd’ parameter is the window handle of
the control. The ‘field’ parameter contains the updated data for the current field being
selected or verified. The ‘valid’ should be set to TRUE to indicate a valid field.

Return Value: This function returns a True value upon the successful execution.

See Also: RvbGetFormField

RvbSetNumField
Set the value of the specified numeric, date or logical field

int RvbSetNumField(hWnd as Integer, FieldNo as Integer, DataValue as long)

Description: This function is used to supply the data for a numeric field. The ‘hWnd’
parameter is the window handle of the control. The ‘FieldNo’ parameter specifies the field
number to supply data for. This parameter must be between 0 and TotalFields - 1 (see
RvbInit).

The ‘DataValue’ field should contain the value for the field. For a ‘date’ field, the value
should be in the yyyymmdd format (example: 19941231 for 12/3194). For a ‘Logical’ field,
this value should be either 1 (True) or 0 (False).
.
Return Value: This function returns a True value upon the successful execution.

See Also: RvbGetDataField, RvbSetTextField, RvbSetDoubleField

RvbSetTextField
Set the value of the specified text field

int RvbSetTextField(hWnd as Integer, FieldNo as Integer, TextData as String,
TextLen as Integer)

Description: This function is used to supply the data for a text field. The ‘hWnd’
parameter is the window handle of the control. The ‘FieldNo’ parameter specifies the field
number to supply data for. This parameter must be between 0 and TotalFields - 1 (see
RvbInit).
.
Return Value: This function returns a True value upon the successful execution.

See Also: RvbGetDataField, RvbSetNumField, RvbSetDoubleField

[74]

VBX Events

DrawPicture
Draw a picture field

Description: This event is fired by the Report Executor when it needs your application to
draw a ‘picture’ type field. Your application will typically call the RvbGetPictureInfo
function to retrieve the picture parameters and the RvbDrawBitmap function to draw your
bitmap to the report output device context.

SelectField
User field selection handler

Description: This event is fired by the Form Editor when your user wishes to paste a data
field to the report template. This event allows your application to prompt the user for the
field (and file) selection and return the information about the selected field.

Typically, this event handler should be structured as following:

1. Retrieve the current field structure using the RvbGetFormField function. This
function also returns the SortLevel for the current field. The sort level is zero if the current
field is not used for a sort break, otherwise it contains the level of the sort section (1, 2, 3...).

2. Prompt the user for the field and file selection using a list box or some other
GUI function. Some applications may need to restrict the number of fields available for
selection when the SortLevel is non-zero.

3. Update in the field structure with the basic field information. The following
field must be provided:

name: Field name. Use -> to separate the file name, ex: SALE->DATE
type: Field Type. See TYPE_ constants in the REP.BAS file
width: Maximum number of characters in the field.
DecPlace: Number of decimal places for a numeric or double type field

Optional fields:

FileId: A sequential id for the selected file
FieldId: A sequential id for the selected field.
ParaChar: Paragraph break character for a word-wrapped text field.

4. Return the updated field structure to the FormEditor using the
RvbSetFormField function.

VerifyField
User field verification handler

[75]

Description: This event is fired by the Form Editor when your user types in a data field
name within an expression. This event allows your application to verify the field (and file)
name and return the information about the current field.

Typically, this event handler should be structured as following:

1. Retrieve the current field structure using the RvbGetFormField function. This
function also returns the SortLevel for the current field. The sort level is zero if the current
field is not used for a sort break, otherwise it contains the level of the sort section (1, 2, 3...).

2. Verify the specified field for validity. Skip the next two steps if the field is
not valid.

3. Update in the field structure with the basic field information. The following
field must be provided:

type: Field Type. See TYPE_ constants in the REP.BAS file
width: Maximum number of characters in the field.
DecPlace: Number of decimal places for a numeric or double type field

Optional fields:

FileId: A sequential id for the selected file
FieldId: A sequential id for the selected field.
ParaChar: Paragraph break character for a word-wrapped text field.

4. Return the updated field structure to the FormEditor using the
RvbSetFormField function.

Unload

This event is fired when the form editor or the report executor window is being closed. In
response to this event your application should reset the ‘open’ flag in the ‘FormParm’
structure.

[76]

Delphi Interface

A Delphi application (not applicable to WIN32) interfaces directly with the
REP.DLL. The VBX wrapper (RVB.VBX) is not needed to interface with the DLL. Please
refer to the DMO_DLP.DPR demo program as an example of interfacing a Delphi
application to ReportEase Plus.

Interface Units: The package contains the following files to interface with a Delphi
application:

REP.PAS: This file contains the constant and type definition to interface with the
DLL. This file is to be included in the Interface section of your application unit
which interfaces with ReportEase Plus. Example:

Interface
uses
{$I REP.PAS}

REP_PROT.PAS: This file contains the function declarations for the DLL. This file
is to be included in the Implementation section of your application unit which
interfaces with ReportEase Plus. Example:

Implementation
uses
{$I REP_PROT.PAS}

The REP.PAS and REP_PROT.PAS files together provide the same functionality as
the REP.H file does for a ‘C’ language application. The constants, types and function
names in these units are the same as they are in the REP.H file.

 Message Callback Function: The ReportEase Plus form editor and report executer
send a message to the parent window (your application form window) before closing the
form editor or the report executer windows. Because, Delphi does not include a provision to
intercept custom messages, ReportEase plus provides an alternative method of sending the
message to a Delphi application. Your application defines a callback function to receive the
message.

The following example sets a flag when the form editor or the report executer session
is being ended:

function MsgCallback(hWnd: THandle; msg: integer): LongInt;
begin
 if (msg=REP_CLOSE) then ReportClose:=True; {set a global flag}
end;

[77]

For a callback function to start receiving messages, it must be registered with the
DLL immediately after the form editor or the report executer is initialized. Example:

form(FormParm); {launch form editor}
RepSetMsgCallback(@MsgCallback); {register the callback function}

[78]

Visual C++ Interface

The ReportEase Plus DLL can be used with a Visual C++ application without any
change. Follow these general steps to call the REP routines from a Visual C++ application:

1. Include the REP.H file into your application module that calls the REP
functions. Use the REP API functions as necessary.

2. Modify the alignment compiler option for your application to specify the
alignment at 1 byte.

Recompiling REP DLL files

If you need to modify the DLL source code and recompile within the Visual C++
environment, follow these steps to create a Visual C++ project:

Files: REP*.C, REP.DEF and REP.RC

Executable Type: Windows DLL

Compiler Option: 1 Byte Alignment

Remaining parameters should be left at their default values.

[79]

	General Overview
	Getting Started
	PART I: USER'S MANUAL
	User Commands
	File Menu
	Edit Menu
	Field Menu
	Section Menu
	Line, Label and Picture Commands
	Object Arrangement Commands
	Object Selection

	Field Concepts
	Field Placement and Field Width
	Field Value Types
	Source of Field Data
	Summary Fields:

	Section Concepts
	Section Types
	Section Selection Criteria
	Section Parameters

	Calculation Expression
	Operators
	Condition Statement
	Functions

	PART II: DEVELOPER’S GUIDE
	Form Editor Interface
	Report Executer Interface
	Major Data Structures
	Memory Considerations
	Source Level Customization
	Analysis of the Demo Program
	ReportEase Plus File Format
	Sort and Join Utilities
	Visual Basic Support
	VBX function calls
	RvbDrawBitmap
	RvbExit
	RvbForm
	RvbGetDataField
	RvbGetFormField
	RvbGetPictureInfo
	RvbGetSortField
	RvbInit
	RvbRec
	RvbSetDoubleField
	RvbSetFormField
	RvbSetNumField
	RvbSetTextField

	VBX Events
	DrawPicture
	SelectField
	VerifyField
	Unload

	Delphi Interface
	Visual C++ Interface

